
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

METADD: BOOSTING DATASET DISTILLATION WITH
NEURAL NETWORK ARCHITECTURE-INVARIANT
GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset distillation (DD) entails creating a refined, compact distilled dataset from
a large-scale dataset to facilitate efficient training. A significant challenge in DD
is the dependency between the distilled dataset and the neural network (NN) archi-
tecture used. Training a different NN architecture with a distilled dataset distilled
using a specific architecture often results in diminished trainning performance for
other architectures. This paper introduces MetaDD, designed to enhance the gen-
eralizability of DD across various NN architectures. Specifically, MetaDD parti-
tions distilled data into meta features (i.e., the data’s common characteristics that
remain consistent across different NN architectures) and heterogeneous features
(i.e., the data’s unique feature to each NN architecture). Then, MetaDD employs
an architecture-invariant loss function for multi-architecture feature alignment,
which increases meta features and reduces heterogeneous features in distilled data.
As a low-memory consumption component, MetaDD can be seamlessly integrated
into any DD methodology. Experimental results demonstrate that MetaDD signif-
icantly improves performance across various DD methods. On the Distilled Tiny-
Imagenet with Sre2L (50 IPC), MetaDD achieves cross-architecture NN accuracy
of up to 30.1%, surpassing the second-best method (GLaD) by 1.7%.

1 INTRODUCTION

Neural networks (NNs) rely heavily on data, and their performance is directly influenced by the
scale and quality of the data Devlin et al. (2018); Ramesh et al. (2022). However, as datasets grow,
the cost of training NNs increases significantly. Dataset distillation (DD) Cui et al. (2022) addresses
this issue by compressing datasets, producing a smaller, distilled version that can serve as an effi-
cient substitute. This technique is particularly valuable in environments with limited memory and
computational resources, such as edge devices or real-time applications. With DD, researchers can
achieve competitive model performance while significantly reducing both data size and resource
consumption.

A significant challenge in DD is its limited transferability across different NN architectures. Dis-
tilled datasets tailored for specific NNs often experience notable performance drop when applied
to other architectures. Existing solutions to this cross-architecture gap have various shortcomings.
Some do not effectively integrate with vision transformers Zhong & Liu (2023), others only enhance
performance for the architectures directly involved in the distillation process Zhou et al. (2024a), and
some incur high memory costs due to reliance on image generators Cazenavette et al. (2023). These
challenges underscore the need for more robust and versatile DD methods that can maintain strong
performance across diverse architectures.

To investigate the causes of DD’s cross-architecture gap, we visualize NN architecture biases in fea-
ture preferences using Class Activation Maps (CAMs) Zhou et al. (2016); Selvaraju et al. (2017).
CAMs highlight the image regions most relevant to a network’s predictions, revealing the key fea-
tures that drive its decision-making. We define the overlap between CAM regions from different
architectures as the shared decision-making consensus (meta features), while the non-overlapping
regions represent each architecture’s unique feature preference (heterogeneous features). Our in-
vestigation focuses on two key aspects: (1) why the original dataset shows better cross-architecture

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Initial

Image

DM

DC

CAMs

Meta

Feature
Heterogeneous

Feature

Initial

Image

MTT

Sre2L

CAMs

Meta

Feature
Heterogeneous

Feature

Same

Architecture

Cross

Architecture
Same

Architecture

Same

Architecture

Cross

Architecture
Same

Architecture

Cross

Architecture

Cross

Architecture

(a) Tiny ImageNet

Initial

Image

DM

DC

CAMs

Meta

Feature
Heterogeneous

Feature

Initial

Image

MTT

Sre2L

CAMs

Meta

Feature
Heterogeneous

Feature

Same

Architecture

Cross

Architecture
Same

Architecture

Same

Architecture

Cross

Architecture
Same

Architecture

Cross

Architecture

Cross

Architecture

(b) ILSVRC-2012

Figure 1: Meta and heterogeneous features based on CAM. For Tiny-ImageNet, we utilize DM Zhao
& Bilen (2023) and DC Zhao et al. (2020), while MTT Cazenavette et al. (2022) and Sre2L Yin et al.
(2024) are employed for ISRL2012. The meta features of an image represent the overlapping areas
across different NN CAMs, whereas the heterogeneous features are the unique portions remaining
after the meta features are excluded. The synthetic images of every DD method are from the same
class as the initial images. ResNet18 is used for distillation, with GoogLeNet and AlexNet serving
as cross-structural models.

performance than the distilled dataset, and (2) why the distilled NN architecture outperforms other
architectures on the distilled dataset.

By exploring both differences, we find that distilled datasets have massive heterogeneous features
of the distilled architecture and rare meta features. As shown in Figure 1: (1) Original images
show substantial meta features across different architectures trained on the original dataset, whereas
distilled images show almost no meta features. This meta feature comparison explains why original
dataset performs more consistently across different NNs than distilled data. (2) Distilled images
have significantly more heterogeneous features with the same architecture used for DD compared to
crossed architectures. These heterogeneous features represent the same architecture can extract more
semantic information from distilled data, which crossed NN architecture cannot capture, leading to
cross-architecture gap.

Based on the above observations, we propose MetaDD to improve the cross-architecture general-
ization of DD. MetaDD begins with using an architecture-invariant loss to obtain and maximize
the exposure of diverse features across different NN architectures. Then, MetaDD decouples het-
erogeneous and meta features by transferring distilled data’s CAMs to a common space. By driv-
ing the evolution of distilled data towards maximizing meta features, MetaDD encourages to form
a generalized consensus cross different NN architectures. MetaDD maintains low memory con-
sumption by persistently freezing various NN architectures during DD. We conducted comprehen-
sive experiments using DC, DM, MTT, and Sre2L as baselines. Incorporating MetaDD improved
DD performance in cross-architecture training. MetaDD covers typical NN architectures, ensuring
that even unconsidered models benefit from the meta features generated. On TinyImagenet and
ILSVRC-2012, MetaDD has an average accuracy increase of 1.6% and 1.0% compared with GlaD
Cazenavette et al. (2023).

2 RELATED WORK

2.1 DATASET DISTILLATION

DD Liu et al. (2023); Sajedi et al. (2023); Du et al. (2024) generates distilled datasets by aligning
distilled data with the original data using a specific NN. This alignment is achieved through various
techniques. For instance, model gradients Zhao et al. (2020) are used to adjust the distilled data
to match the gradient patterns of the original data. Similarly, the features Zhao & Bilen (2023)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Auxiliary

NN-1

Auxiliary

NN-2

Auxiliary

NN-n

Backbone NN

𝑳𝒂𝒊

Distillation

Loss

Synthetic Data
Backpropagation

…

Element-wise Align

…

CAM-n

…

𝐯𝐚𝐫 𝒄𝒔

Dataset Distillation

𝑳𝒌𝒍 𝑳𝒌𝒍 𝑳𝒌𝒍

𝑳𝒄𝒆𝑳𝒄𝒆𝑳𝒄𝒆

Auxiliary

Logits-n

Auxiliary

Logits-2

Auxiliary

Logits-1

…

Backbone

Logits

Backbone

Logits

Auxiliary

Logits-1

Auxiliary

Logits-2

Auxiliary

Logits-n

CAM-2

CAM-1

MetaDD

Figure 2: The framework of MetaDD. Our method is designed to supervise the synthesis of data
during training to ensure it exhibits low-variance CAMs across multiple pre-trained NNs.

extracted by the NN are aligned to ensure that the distilled data captures the same feature distribu-
tions as the original data. Moreover, parameter trajectories Cazenavette et al. (2022) are tracked and
matched, providing a dynamic way to align the evolving parameters during training. Additionally,
kernel ridge regression statistics of the NNs Nguyen et al. (2020; 2021) are aligned to refine the
distilled data further, ensuring that it statistically mirrors the original data from the kernel-based
perspective.

Furthermore, the creation of novel data augmentation components Zhao & Bilen (2021); Liu et al.
(2022a); Zhou et al. (2024c) significantly enhances the distilled datasets. These components intro-
duce new data transformations that enrich the variability of the distilled data. Reusable distillation
paradigms He et al. (2024); Yang et al. (2023); Shang et al. (2024) are also employed, which involve
extracting and transferring knowledge from multiple models or datasets into the distilled dataset,
thus improving its performance. Additionally, patches for fixing defects Lee et al. (2022); Cui et al.
(2023); Du et al. (2023); Zhao et al. (2023) are developed and applied, addressing any inconsisten-
cies or errors in the distilled data. These patches help maintain the distilled datasets’ integrity and
accuracy.

2.2 CLASS ACTIVATION MAPPING

CAM Kundu (2020); Wang et al. (2020a); Selvaraju et al. (2017); Fu et al. (2020); Jiang et al.
(2021); Wang et al. (2020b); Chattopadhay et al. (2018); Omeiza et al. (2019) algorithms constitute
an important class of methods in the field of deep learning, aimed at enhancing the interpretability of
NNs. The original CAM Zhou et al. (2016) involves modifying the network architecture to connect
directly from the global average pooling layer to the output layer, allowing the model to highlight
important areas of the image for predictions of specific classes. Subsequent developments, such as
Grad-CAM Selvaraju et al. (2017), offer a universal solution that does not require modifications to
the network architecture. Additionally, variants such as Grad-CAM++ Chattopadhay et al. (2018)
and Score-CAM Wang et al. (2020b) have further improved the accuracy and robustness of the
heatmaps.

Although CAM was initially designed for CNNs, researchers have begun exploring how similar
concepts can be applied to transformer-based visual models. To achieve this application, CAMs are
generated by analyzing the attention weights from the last layer Sun et al. (2023). Consequently,
researchers have begun developing new techniques and approaches to improve the vision trans-
former CAMZhu et al. (2023); Xu et al. (2022), for example, by adjusting or combining attention
weights from different layers, or developing specialized interpretative modules to produce clearer
and more meaningful visual explanations. facilitating further optimization of NN architectures and
interpretability improvements.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

In this section, we detail the generalization component proposed to mitigate cross-structural perfor-
mance losses in DD. An overview of our method is illustrated in Figure 2.

3.1 PRELIMINARIES

Suppose there is an original dataset T = {(x1, y1), . . . , (x|T |, y|T |)} with |T | pairs of train-
ing samples xt and corresponding labels yt. The goal of DD is to synthesize a dataset S =
{(x̂1, ŷ1), . . . , (x̂|S|, ŷ|S|)} where |S| ≪ |T |. The model trained on S is expected to perform
similarly to one trained on T . For a set of different NN architectures θ = {ϑ1, . . . , ϑ|M |}, we
define the performance loss when a distilled dataset S(ϑu) distilled on ϑu is used to train ϑv as
∆Acc(ϑv|ϑu) = AccS(ϑv)

ϑv − AccS(ϑu)
ϑv . AccS(ϑv)

ϑv denotes the accuracy obtained by dis-
tilling and training on the same model architecture ϑv . Our objective is to minimize the total cross-
structural performance loss for all ϑu, ϑv ∈ θ: min

∑|M |
i=1

∑|M |
j ̸=i ∆Acc(ϑv|ϑu).

3.2 HETEROGENEOUS AND META FEATURES

For data’s heterogeneous and meta features’ visual presence, we initially use Grad-CAM to capture

the CAM Cs =
|M |⋃
m
{cms } of the data x̂s across different pre-trained model architectures θ. We

then interpolate the CAMs of the data to the same size, and each matrix element of all CAMs is

normalized to a range from 0 to 1. The processed CAMs is C̃s =
|M |⋃
m
{c̃ms }. To mitigate the

influence of random factors, we disregard the low-confidence activation regions within the CAMs,
specifically those areas where the values are below 0.5. For high-confidence CAMs, we define the
pixel locations of the meta features as the overlapping sections across all NNs’ CAMs. The mask
representing the meta feature is denoted as :

µs =

|M |∏
m

H (c̃ms), H (c)i,j =

{
1 if ci,j ≥ 0.5

0 otherwise
(1)

Subtracting the common feature areas from each CAM yields each architecture’s heterogeneous
areas of focus. The mask of heterogeneous feature areas of the NN architecture ϑu in the distilled
image xs is represented as:

βm
s = H (c̃ms)− µs (2)

Other
Heterogeneous

Features

Self
Heterogeneous

Features

Original
Image

Meta

Feature

10

20

30

40

50

60

70

80

90

100 100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

19.16 21.1119.55 19.96 22.58

55.38

78.65

Figure 3: ViT’s validation accuracy on different erased
TinyImagenet. The numbers represent the difference in ac-
curacy between the erased and the original dataset.

Further experiments using TinyIma-
genet confirm that our defined het-
erogeneous and meta features re-
spectively exhibit specific and com-
mon preferences across different NN
architectures. We initially erase
the heterogeneous feature pixels cor-
responding to different pre-trained
NN architectures in TinyImagenet.
Architectures are ResNet34, Mo-
bileNetV2, GoogleNet, VGG19, Effi-
cientNet, and ViT. Then we train ViT
from scratch with the erased TinyIm-
agenet. The accuracy differenece in
Figure 3 indicates that ViT suffers the
most when losing self-heterogeneous
features and the least loss when los-
ing other architectures’ heterogeneous features. We perform the same experiment by erasing the
meta features of all architectures in TinyImagenet. Result shows ViT experience significant perfor-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Distilled ILSVRC-2012 with Sre2L or Sre2L+MetaDD.

(b) Distilled ILSVRC-2012 with MTT or MTT+MetaDD.

(c) Distilled Tiny-ImageNet with DM or DM+MetaDD.

(d) Distilled Tiny-ImageNet with DC or DC+MetaDD.

Figure 4: In each subplot, the first row displays images generated by the original DD algorithm,
while the second row presents images generated after integrating MetaDD.

mance drops after losing meta features. These experiments thoroughly illustrate the distinct natures
of heterogeneous and meta features and lay the empirical foundation for our method.

3.3 METADD

MetaDD define the NN used in the original DD method as the backbone NN ϑµ. To obtain a distilled
dataset that generalizes across architectures, MetaDD incorporates pre-trained NNs of various other
architectures, referred to as auxiliary networks:

θ = {ϑ1, . . . , ϑm, . . . , ϑ|M |} (3)

MetaDD employs an architecture-invariant loss function to backpropagate and obtain CAMs on
distilled data for different auxiliary networks and then normalizes these CAMs. By reducing the
variance at the same locations across these CAMs, the CAMs tend to be similar. Through multiple
rounds of updates, MetaDD enhances the test performance of the distilled dataset on other NNs.

Architecture-invariant Loss. We use a mixed loss function of cross-entropy and KL divergence to
obtain the Grad-CAM images, specifically expressed as:

Lai =
∑|M |

m
Lce (ϑm (x) , y) +

∑|M |

m
Lkd (ϑm (x) , ϑµ (x)) (4)

Lkd (ϑm (x) , ϑµ (x)) = ϑm (x) log
ϑm (x)

ϑµ (x)
(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 MetaDD Algorithm

Require: Training set T , Randomly initialized set of distilled samples S, backbone NN ϑµ, auxil-
iary NNs θ, training iterations K, learning rate η

1: for k = 0, . . . ,K − 1 do
2: Sample mini-batch pairs Bs ∈ S and Bt ∈ T
3: Compute Lall = Ldd(ϑµ, Bs, Bt)
4: Compute Lai(ϑm, Bs, θ) from Equation 4.
5: Lall = Lall + Lai(ϑm, Bs, θ)
6: for all (x̂s, ŷs) ∈ Bs do
7: c̃s ← ∅
8: for all ϑm ∈ θ do
9: Compute the cam c̃ms from Equation 6 or 8

10: c̃s := c̃ms ∪ c̃s
11: Compute Lpos from Equation 9
12: Compute var (c̃s) from Equation 11
13: Lall = Lall + var (c̃s) + Lpos

14: Update Bs ← Bs − η ∂Lall

∂Bs

return S

Compared to solely utilizing cross-entropy loss for backpropagation to obtain CAMs from auxil-
iary NNs and aligning these CAMs, the architecture-invariant Loss, which includes an additional
KL divergence loss, offers significant advantages: the CAMs generated by architecture-invariant
loss reflect the distilled data features that need to be focused on when transferring knowledge from
the auxiliary NNs to the main NN. Consequently, architecture-invariant loss maximumly displays
heterogeneous features antagonistic to the main NN, which will be transferred to meta features.

Modified Class Active Map. We utilize a modified Grad-CAM Selvaraju et al. (2017) to obtain
activation maps from various convolutional NNs. We initially perform a forward pass to acquire
the unflattened feature maps A from the last fully connected layer. Let Ak represent the feature
map activations of the k-th channel for A. Then MetaDD computes the gradient of Lai, concerning
feature map activations Ak. These gradients flowing back are global-average-pooled to obtain the
neuron importance weights αc

k. Then, the linear combination of these weighted activation maps
gives the class-discriminative localization map c used to highlight the important regions.

αk =
1

I ∗ J

I∑
i

J∑
j

∂Lai

∂Ak
ij

, c =

(∑
k

αkA
k

)
(6)

where i and j are the spatial dimensions of the feature map, and Z is the total number of elements
in the feature map.

For Vision Transformers, we consider the output of the last transformer layer A ∈ RN×D, where N
is the number of patches and D is the dimension of features per patch. The class token’s output Z is
utilized by an MLP head to generate class predictions yc. Attention scores are computed as:

Wagg =
∑
heads

Whead[cls, :] (7)

where Q and K are the query and key matrices from the multi-head self-attention mechanism. The
CAM is generated by:

Wagg =
∑
heads

Whead[cls, :], c = (Wagg · Z) (8)

where Wagg is the aggregated attention across heads. More different from Grad-CAM, we do not
employ the ReLU function in Equation 6 and 8. This is because the negative parts of the activation
maps are also essential for our optimization. Meanwhile, we ensure that the positive values in all
different CAMs are maximized as much as possible:

Lpos =
∑

i

∑
j
ci,j (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The cross-architecture generalization experiments on ILSVRC-2012 and Tiny-ImageNet.
Lai is DD using architecture-invariant loss function without generating CAMs.

ILSVRC-2012 (IPC = 10)

Method Component
Auxiliary/Seen Unseen

AverageResNet34 MobileNetV2 GoogleNet ViT-B-16 AlexNet ResNet50 Vgg19 Swin-S

TesLa

none 11.8±1.3 9.6±1.1 10.8±0.6 11.2±1.7 9.2±1.2 11.7±0.6 10.8±0.9 10.3±0.7 10.6
Dream Liu et al. (2023) 12.1±1.1 9.9±1.2 10.9±0.3 11.4±1.2 9.6±0.7 11.4±0.3 10.3±0.7 10.6±0.4 10.8

GLaD Cazenavette et al. (2023) 12.8±1.1 11.1±0.6 11.9±1.1 12.1±0.3 11.7±1.2 12.4±1.3 12.9±0.6 11.7±1.1 12.1
MetaDD 13.1±0.3 13.4±0.2 14.2±0.3 12.9±0.6 12.4±0.2 13.2±0.1 13.7±0.2 11.9±0.5 13.1

Sre2L

none 13.3±0.1 12.1±0.3 12.7±0.3 13.7±0.3 12.9±0.8 11.8±0.2 11.9±0.2 13.1±0.6 12.9
Dream Liu et al. (2023) 13.5±0.7 12.3±0.5 12.9±0.3 13.7±0.5 13.2±0.7 12.2±0.3 12.2±0.3 13.3±0.5 13.2

GLaD Cazenavette et al. (2023) 14.6±0.2 13.8±0.2 14.2±0.2 14.6±1.2 13.6±0.2 12.9±1.2 13.9±1.2 14.2±0.3 13.9
MetaDD 14.8±0.3 14.9±0.1 13.8±0.6 14.2±0.4 14.8±0.4 13.9±0.2 15.8±0.7 15.9±0.1 14.6

(a) ILSVRC-2012

Tiny-ImageNet (IPC = 50)

Method Component
Auxiliary/Seen Unseen

AverageResNet34 MobileNetV2 GoogleNet ViT-B-16 AlexNet ResNet50 Vgg19 Swin-S

DC

none 11.2±0.4 10.8±0.1 9.9±0.4 11.7±0.4 11.0±0.1 10.8±0.1 10.2±0.1 11.4±0.7 10.9
DreamLiu et al. (2023) 11.5±0.7 11.0±0.5 10.2±0.4 12.1±0.6 11.4±0.2 11.3±0.1 10.5±0.7 11.7±0.5 11.1

GLaD Cazenavette et al. (2023) 13.4±0.3 13.5±0.1 12.8±0.1 12.1±0.2 12.3±0.1 12.2±0.1 11.0±0.2 12.4±0.1 12.5
MetaDD 13.6±0.1 14.1±0.1 14.7±0.2 14.7±0.1 13.8±0.4 14.9±0.3 12.6±0.1 13.7±0.6 13.8

DM

none 10.9±0.2 11.4±0.1 10.6±0.7 11.3±0.2 11.9±0.3 10.1±0.4 10.7±0.4 11.8±0.4 11.2
Dream Liu et al. (2023) 11.2±0.2 11.6±0.4 10.9±0.3 11.5±0.4 12.1±0.5 10.4±0.3 10.9±0.5 12.0±0.6 11.4

GLaD Cazenavette et al. (2023) 11.6±0.1 11.9±0.4 11.2±0.1 11.8±0.2 12.1±0.2 11.1±0.3 11.8±0.5 12.6±0.2 11.9
MetaDD 12.1±0.1 12.4±0.3 12.5±0.2 14.3±0.7 13.2±0.2 14.1±0.5 14.2±0.2 15.1±0.4 13.5

(b) Tiny-ImageNet

CAM Variance Loss. After obtaining the heterogeneous CAMs of all auxiliary networks relative to
the backbone network, we interpolate and normalize these CAMs to the same size and range:

c̃ms =
P (cms)−minP (cms)

maxP (cms)−minP (cms)
(10)

P () is the interpolating operation. We then calculate the variance at the same positions in the
processed heterogeneous CAMs:

var (c̃s) =
1

I ∗ J
∑I

i

∑J

j

(
1

M

∑|M |

m
c̃ms,i,j − c̃ms,i,j

)2

(11)

By minimizing the variance across all positions, the heterogeneous CAMs will tend to be similar. In
the process of becoming similar, the features of the data distilled by the backbone NN will be more
acceptable to other network architectures. The final loss function of MetaDD is:

Lall(xs) = Ldd + Lai + var (c̃s) + Lpos (12)

Ldd is DD method loss function. Through MetaDD, we ensure that the distilled data features are as
universal as possible rather than heterogeneous. The process of MetaDD is shown in Algorithm 1.

During the process of obtaining heterogeneous CAMs, the parameters of all different pre-trained
NN architectures are frozen. Using pre-trained models with frozen parameters implies low VRAM
consumption. Thus, while encompassing multiple different pre-trained NNs, MetaDD still saves
computational resources. As a low computational consumption component, MetaDD can be com-
bined with various DD methods to achieve optimal cross-structural training generalization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluated our method (MetaDD) for DD from CIFAR-10 at a resolution of 32 x 32, Tiny-
ImageNet Le & Yang (2015) at 64 x 64, and ILSVRC-2012 Deng et al. (2009) at 224 x 224. Our
experimental code is based on open-source repositories for DC, DM, Tesla, MTT, and Sre2L. Tesla
represents a memory-optimized version of MTT. For each method, we directly integrated MetaDD
into the existing codebases. While keeping the hyperparameters of the existing methods unchanged.
We show part of distilled images in Figure 4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: CIFAR10 cross-architecture average accuracy.

CIFAR10

Method Component
Auxiliary/Seen (Average) Unseen (Average)

IPC = 1 IPC = 10 IPC = 1 IPC = 10

DC

none 17.6±1.1 38.1±0.3 16.1±1.2 39.7±1.1
DreamLiu et al. (2023) 17.8±1.0 38.5±0.7 16.5±1.1 39.9±1.0

GLaD Cazenavette et al. (2023) 21.2±0.4 39.1±1.2 20.9±1.2 39.8±1.2
MetaDD 22.1±1.1 42.2±1.1 21.3±1.2 40.3±0.6

DM

none 18.9±1.2 40.1±1.4 17.8±0.8 39.8±0.6
Dream Liu et al. (2023) 18.9±0.9 40.6±1.1 17.9±0.7 40.3±0.4

GLaD Cazenavette et al. (2023) 19.2±0.3 41.2±0.5 18.9±1.2 40.1±1.2
MetaDD 20.1±1.2 42.3±0.7 19.2±0.7 40.3±1.2

MTT

none 37.2±1.2 52.1±2.1 36.2±0.4 50.9±0.2
Dream Liu et al. (2023) 37.6±1.0 52.3±2.2 36.7±0.1 51.2±0.4

GLaD Cazenavette et al. (2023) 38.7±0.2 52.2±1.2 37.8±0.3 51.4±1.2
MetaDD 37.9±1.2 53.1±1.3 37.2±0.2 52.2±0.6

Sre2L

none 41.2±1.4 59.8±0.3 40.1±1.2 58.8±0.5
Dream Liu et al. (2023) 41.5±1.2 60.2±0.7 40.4±1.0 59.1±0.3

GLaD Cazenavette et al. (2023) 42.1±1.2 60.2±1.1 42.8±1.7 59.7±1.6
MetaDD 42.5±1.0 60.4±0.9 44.3±0.8 61.2±1.2

Baselines. In addition to MetaDD, we also report the performance of the existing component GLaD
Cazenavette et al. (2023) and Dream Liu et al. (2023). GLaD stores distilled data as feature vectors
and uses a generator to create high-definition images as inputs during NN training. Dream selects
representative original images for DD.

Neural Architecture. We employed the ConvNet Gidaris & Komodakis (2018) architecture as our
backbone NN for DC, DM, and MTT/Tesla. The Depth-n ConvNet consists of n blocks followed by
a fully connected layer. Each block comprises a 3x3 convolutional layer with 128 filters, instance
normalization[58], ReLU nonlinearity, and a 2x2 average pooling with a stride of 2. For Sre2L, we
use ResNet18 as our backbone NN. we use ResNet34 He et al. (2016), MobileNetV2 Sandler et al.
(2018), GoogleNet Szegedy et al. (2015), and ViT-B-16 Dosovitskiy et al. (2020) as our auxiliary
NN architectures. All auxiliary NNs are pre-trained using original datasets. We trained the distilled
dataset using 8 different NN architectures to test the algorithm’s cross-architecture generalizability.
In addition to the auxiliary NN architectures, the test also included four architectures not involved
in DD: AlexNet Krizhevsky et al. (2017), ResNet50, Vgg19 Simonyan & Zisserman (2014), and
Swin-S Liu et al. (2022b).

Evaluation Metrics. We evaluated the cross-architecture generalizability of the algorithm by aver-
aging the top-1 accuracy of NNs trained on the distilled dataset on the validation set. This average
accuracy measure is a robust indicator of the algorithm’s cross-architecture generalizability.

Training Paradigm. The training paradigm for all NNs and datasets is consistent: it includes
Stochastic Gradient Descent (SGD) with 0.9 momentum, 1e − 4 weight decay, followed by 500
rounds of linear warm-up and then 500 rounds of cosine decay. Each architecture employs an ap-
propriate (fixed) initial learning rate. The training process is repeated three times, and the average
validation accuracy ± one standard deviation is reported.

4.2 CROSS-ARCHITECTURE GENERALIZATION

We initially validated our algorithm’s capacity for enhancing cross-architecture generalization at
ILSVRC-2012 and Tiny-ImageNet. In Table 1, we employed GLaD, ModelPool, and MetaDD to
assist DD methods. The results from Table 1 demonstrate that MetaDD effectively reduces over-
fitting in the backbone NNs. Compared to other baselines, our method generally outperforms in
most cases. Moreover, NN architectures included in the auxiliary NN set show similar performance
to the unseen NN architectures. Hence, by incorporating specified NN architectures to MetaDD,
MetaDD can offer customized services tailored to situations with a specific focus on different NN
architectures. Following this, in Table 2, we distilled datasets of varying scales under CIFAR10 and
conducted analogous experiments. The results in Table 2 indicate that our method still helps mitigate
overfitting. Compared to distillation at higher resolutions, GLaD exhibits weaker performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Seen UnSeen

(a) Distilled ILSVRC-2012 with Sre2L

Seen UnSeen

(b) Distilled ILSVRC-2012 with Sre2L+MetaDD
Seen UnSeen

(c) Distilled ILSVRC-2012 with MTT

Seen UnSeen

(d) Distilled ILSVRC-2012 with MTT+MetaDD

Figure 5: Meta Features’ Contagious Generalizability visualization.

4.3 META FEATURES’ CONTAGIOUS GENERALIZABILITY

In the previous section, we demonstrated that MetaDD can enhance performance on NN architec-
tures not included in the auxiliary NNs (unseen NNs). This phenomenon, which we term ”con-
tagious generalizability”, is attributed to the universality of MetaDD. Figure 5 illustrates the meta
features of distilled data across both unseen and seen architectures. In every subfigure, the first im-
age in rows 1, 3, 5, and 7 shows distilled data, followed by CAMs from various architectures trained
on the dataset including the distilled data. In rows 1, 3, 5, and 7, CAMs two to five (‘seen’ frame)
correspond to auxiliary architectures used in MetaDD, while CAMs six to thirteen (‘unseen’ frame)
are from architectures not used. The first image in rows 2, 4, 6, and 8 presents meta features from all
architectures, with the following images showing heterogeneous features from architectures trained
on the distilled data above.

Images generated by the original DD method exhibit almost no meta features. However, with the
integration of MetaDD, the distilled images possess meta features recognizable by seen NNs and
unseen NNs. This indicates that the meta features introduced by MetaDD are typical and widely
applicable, further substantiating the efficacy of MetaDD in enhancing cross-architecture generaliz-
ability.

4.4 TRAINING COST ANALYSIS

Method Loss Accuracy

MTT

None 52.1± 2.1
with Lai 52.4± 1.3
with Lpos 52.3± 0.7
with var (c̃s) 52.9± 0.5

Sre2L

None 59.8± 0.3
with Lai 59.9± 1.1
with Lpos 60.2± 0.2
with var (c̃s) 60.4± 0.2

Table 3: Ablation Study on CIFAR10 with
IPC=10.

We compare the GPU memory consumption
of our method with that of GLaD. We kept
all other conditions identical between the two
methods. As shown in Table 4, on CIFAR-
10, our method reduces memory usage by 2̃x
compared to GLaD. The runtime is reduced by
0̃.3x. GLaD consumes a significant amount of
memory due to the use of generators, whereas
our method maintains low memory usage even
while accommodating 4 auxiliary NNs. Be-
cause the parameters of the auxiliary NNs are
always kept frozen, we can scale to a larger
number of auxiliary NNs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method(Dataset) Component Memory(GB) Time (Minutes)

MTT(CIFAR10)

- 19.9 98
MetaDD 22.6 107
GlaDCazenavette et al. (2023) 39.1 152
ModelPoolZhou et al. (2024b) 32.4 219

TesLa(ILSVRC-2012)

- 68.7 1538
MetaDD 76.4 1601
GlaDCazenavette et al. (2023) 119.1 1912
ModelPoolZhou et al. (2024b) 89.4 2125

Table 4: Memory cost and training time for different methods on CIFAR10 and ILSVRC-2012
datasets with ipc=10.

ILSVRC-2012 (IPC = 10)

Quantity Component
Auxiliary/Seen Unseen

AverageResNet34 MobileNetV2 GoogleNet ViT-B-16 AlexNet ResNet50 Vgg19 Swin-S

TesLa

none 11.8±1.3 9.6±1.1 10.8±0.6 11.2±1.7 9.2±1.2 11.7±0.6 10.8±0.9 10.3±0.7 10.7
1 12.1±1.1 10.2±0.6 11.3±1.1 11.7±0.3 11.7±1.2 12.1±1.3 11.4±0.6 10.8±1.1 11.5
2 12.4±1.1 11.4±0.6 12.1±1.1 12.1±0.3 11.9±1.2 12.5±1.3 11.9±0.6 11.2±1.1 12.3
3 12.7±0.2 12.1±0.3 13.8±0.4 13.1±0.5 12.0±0.1 12.9±0.1 12.7±0.2 11.5±0.5 12.8
4 13.1±0.3 13.4±0.2 14.2±0.3 12.9±0.6 12.4±0.2 13.2±0.1 13.7±0.2 11.9±0.5 13.4

Sre2L

none 13.3±0.1 12.1±0.3 12.7±0.3 12.3±0.3 12.9±0.8 11.8±0.2 11.9±0.2 13.1±0.6 12.5
1 13.9±0.2 12.7±0.2 12.7±0.2 12.9±1.2 12.7±0.2 13.2±1.2 12.9±1.2 13.9±0.3 13.1
2 14.1±0.2 13.3±0.2 13.0±0.2 13.2±1.2 13.3±0.2 13.6±1.2 13.4±1.2 14.2±0.3 13.8
3 14.5±0.3 14.3±0.3 13.4±0.4 13.5±0.2 14.0±0.3 13.9±0.1 14.3±0.4 15.1±0.3 14.6
4 14.8±0.3 14.9±0.1 13.8±0.6 14.2±0.4 14.8±0.4 13.9±0.2 15.8±0.7 15.9±0.1 14.9

Table 5: Effectiveness of cross-architecture training models demonstrated after sequentially adding
auxiliary NNs.

4.5 ABLATION STUDY

We distilled CIFAR-10 by adding different loss function components. From the experimental results
in Table 3, it can be seen that var (c̃s) has the greatest effect, while Lai, Lpos have the secondary
effect. The benefit of var (c̃s) comes from obtaining consistent features recognized by different
architectures, Lpos merely makes the CAM features more visible, and Lai enable the architecture to
benefit from knowledge transferring.

4.6 HOW THE NUMBER OF AUXILIARY MODELS INFLUENCES METADD

In this subsection, we investigate the impact of varying the number of auxiliary models on the
efficacy of MetaDD. We sequentially add ResNet34, MobileNetV2, GoogleNet, and ViT-B-16 to
MetaDD without retrieval. With each addition of an auxiliary NN, we conduct cross-model gener-
alization experiments on ILSVRC-2012.

The experimental results, as shown in Table 5, indicate that as the number of auxiliary models
increases, the performance of MetaDD improves on both seen and unseen model architectures. The
improvement is particularly pronounced when adding models from the same series. Therefore, for
MetaDD, including a diverse set of auxiliary models with significant structural differences enhances
generalization.

5 CONCLUSION

We introduce MetaDD, a new component specifically designed to enhance the cross-architecture
generalizability of DD. MetaDD delivers the dual advantages of minimal additional computational
overhead and improved performance. By delving into the factors that limit cross-architecture gener-
alizability, MetaDD uncovers the unique feature recognition mechanisms inherent to different neural
network architectures, which often prioritize diverse and heterogeneous features. However, these ar-
chitectures also adhere to certain shared aesthetic or structural standards. MetaDD enhances cross-
architecture generalizability by amplifying the representation of meta features that align with these
shared standards. It achieves this by synthesizing meta features through the integration of unified
CAM outputs from various neural networks, ensuring these meta features are broadly recognized
and effectively utilized across different architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

In this study, we adhere to the ICLR Code of Ethics, ensuring that all aspects of our research meet
ethical standards. Our research does not involve human subjects, thus no Institutional Review Board
(IRB) approval is required. The datasets utilized are publicly available, and we follow best practices
for data release, giving appropriate credit in our citations.

We acknowledge that machine learning models can introduce biases. Therefore, we have carefully
examined fairness and potential biases during model design and evaluation. Our experiments in-
clude a thorough analysis of model performance across diverse populations and conditions, with
discussions included in our results.

In summary, we are committed to conducting our research responsibly, ensuring that all processes
comply with research integrity and legal requirements.

7 REPRODUCIBILITY

We provide the hyperparameter settings for all dataset configurations in the appendix. And we will
release our code shortly.

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4750–4759, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Gener-
alizing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3739–3748, 2023.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE winter conference on applications of computer vision (WACV), pp. 839–847. IEEE, 2018.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark.
Advances in Neural Information Processing Systems, 35:810–822, 2022.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
1k with constant memory. In International Conference on Machine Learning, pp. 6565–6590.
PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumu-
lated trajectory error to improve dataset distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3749–3758, 2023.

Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset matching for dataset distillation.
Advances in Neural Information Processing Systems, 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and Biao Li. Axiom-
based grad-cam: Towards accurate visualization and explanation of cnns. arXiv preprint
arXiv:2008.02312, 2020.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4367–4375,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He, Lingao Xiao, Joey Tianyi Zhou, and Ivor Tsang. Multisize dataset condensation. arXiv
preprint arXiv:2403.06075, 2024.

Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layercam:
Exploring hierarchical class activation maps for localization. IEEE Transactions on Image Pro-
cessing, 30:5875–5888, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Soumya Snigdha Kundu. Is-cam: Integrated score-cam for axiomatic-based explanations. arXiv
preprint arXiv:2010.03023, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset conden-
sation with contrastive signals. In International Conference on Machine Learning, pp. 12352–
12364. PMLR, 2022.

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. Advances in neural information processing systems, 35:1100–1113, 2022a.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient
dataset distillation by representative matching. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17314–17324, 2023.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022b.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. arXiv preprint arXiv:2011.00050, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
wide convolutional networks. Advances in Neural Information Processing Systems, 34:5186–
5198, 2021.

Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldermariam. Smooth grad-
cam++: An enhanced inference level visualization technique for deep convolutional neural net-
work models. arXiv preprint arXiv:1908.01224, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Yuri A Lawryshyn, and Konstantinos N
Plataniotis. Datadam: Efficient dataset distillation with attention matching. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 17097–17107, 2023.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Yuzhang Shang, Zhihang Yuan, and Yan Yan. Mim4dd: Mutual information maximization for
dataset distillation. Advances in Neural Information Processing Systems, 36, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Tianli Sun, Haonan Chen, Yuping Qiu, and Cairong Zhao. Efficient shapley values calculation for
transformer explainability. In Asian Conference on Pattern Recognition, pp. 54–67. Springer,
2023.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Haofan Wang, Rakshit Naidu, Joy Michael, and Soumya Snigdha Kundu. Ss-cam: Smoothed score-
cam for sharper visual feature localization. arXiv preprint arXiv:2006.14255, 2020a.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops,
pp. 24–25, 2020b.

Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid Boussaid, and Dan Xu. Multi-class to-
ken transformer for weakly supervised semantic segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4310–4319, 2022.

Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset conden-
sation plugin and its application to continual learning. Advances in Neural Information Processing
Systems, 36, 2023.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
imagenet scale from a new perspective. Advances in Neural Information Processing Systems, 36,
2024.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pp. 12674–12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514–6523, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
condensation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7856–7865, 2023.

Xuyang Zhong and Chen Liu. Towards mitigating architecture overfitting in dataset distillation.
arXiv preprint arXiv:2309.04195, 2023.

Binglin Zhou, Linhao Zhong, and Wentao Chen. Improve cross-architecture generalization on
dataset distillation. arXiv preprint arXiv:2402.13007, 2024a.

Binglin Zhou, Linhao Zhong, and Wentao Chen. Improve cross-architecture generalization on
dataset distillation. arXiv preprint arXiv:2402.13007, 2024b.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(a) MTT (b) DC

Figure 6: The top-1 accuracy on the test set.

Muxin Zhou, Zeyuan Yin, Shitong Shao, and Zhiqiang Shen. Self-supervised dataset distillation: A
good compression is all you need. arXiv preprint arXiv:2404.07976, 2024c.

Lianghui Zhu, Yingyue Li, Jiemin Fang, Yan Liu, Hao Xin, Wenyu Liu, and Xinggang Wang.
Weaktr: Exploring plain vision transformer for weakly-supervised semantic segmentation. arXiv
preprint arXiv:2304.01184, 2023.

A APPENDIX

A.1 CROSS-ARCHITECTURE GENERALIZATION GAP PHENOMENON

Using DC and MTT with IPC=10, CIFAR10 was distilled based on VGG19, ResNet50, WRN50,
MobileNetV2, GoogleNet, ViT-B-16, and Swin-S. These NNs were then trained. As illustrated
in Figure 6, DC Zhao et al. (2020) and MTT Cazenavette et al. (2022) consistently exhibit a no-
table decline in performance during cross-architecture training on CIFAR10, especially for CNNs
and ViT Dosovitskiy et al. (2020). For instance, using a synthetic dataset based on ResNet18 to
train MobileNetV2 (a different architecture) yields significantly worse results compared to training
ResNet18 (the same architecture). Yet, when using the complete original dataset, MobileNetV2
tends to outperform ResNet18. The cross-architecture transfer gap is even more pronounced be-
tween ViT and CNN models than within CNN models alone.

A.2 HOW THE NUMBER OF AUXILIARY MODELS INFLUENCES METADD

In this subsection, we investigate the impact of varying the number of auxiliary models on the
efficacy of MetaDD. We sequentially add ResNet34, MobileNetV2, GoogleNet, and ViT-B-16 to
MetaDD without retrieval. With each addition of an auxiliary NN, we conduct cross-model gener-
alization experiments on TinyImageNet and ILSVRC-2012.

The experimental results, as shown in Table 5, indicate that as the number of auxiliary models
increases, the performance of MetaDD improves on both seen and unseen model architectures. The
improvement is particularly pronounced when adding models from the same series. Therefore, for
MetaDD, including a diverse set of auxiliary models with significant structural differences enhances
generalization.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

config value

optimizer Adam
base learning rate 0.01
momentum 0.9
weight decay 5e-4
batch size 200
learning rate schedule cosine decay
training iterator 1000
epoch per iterater 100
augmentation RandomCrop

(a) MetaDD in DC setting.

config value

optimizer Adam
base learning rate 0.01
momentum 0.9
weight decay 5e-4
batch size 200
learning rate schedule cosine decay
training iterator 500
epoch per iterater 100
augmentation RandomCrop

(b) MetaDD in DM setting.
config value

optimizer Adam
base learning rate 0.1
momentum 0.9
weight decay 5e-4
batch size 100
learning rate schedule cosine decay
training epoch 200
augmentation RandomCrop

(c) MetaDD in MTT setting.

config value

optimizer Adam
base learning rate 0.25
momentum 0.9
weight decay 5e-4
batch size 200
learning rate schedule cosine decay
training epoch 200
augmentation RandomCrop

(d) MetaDD in Sre2L setting.

Table 6: Hyper-parameter settings.

A.3 THE METADD HYPERPARAMETER IN DIFFERENT METHODS

As shown in Table 6, we provide hyper-parameter settings for MetaDD in different DD methods.

15

	Introduction
	Related Work
	Dataset Distillation
	Class Activation Mapping

	Method
	Preliminaries
	Heterogeneous and meta features
	MetaDD

	Experiments
	Experimental Setup
	Cross-Architecture Generalization
	Meta Features' Contagious Generalizability
	Training Cost Analysis
	Ablation Study
	How the Number of Auxiliary Models Influences MetaDD

	Conclusion
	Ethics Statement
	Reproducibility
	Appendix
	Cross-Architecture Generalization Gap Phenomenon
	How the Number of Auxiliary Models Influences MetaDD
	The MetaDD hyperparameter in Different Methods

