Under review as a conference paper at ICLR 2025

METADD: BOOSTING DATASET DISTILLATION WITH
NEURAL NETWORK ARCHITECTURE-INVARIANT
GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset distillation (DD) entails creating a refined, compact distilled dataset from
a large-scale dataset to facilitate efficient training. A significant challenge in DD
is the dependency between the distilled dataset and the neural network (NN) archi-
tecture used. Training a different NN architecture with a distilled dataset distilled
using a specific architecture often results in diminished trainning performance for
other architectures. This paper introduces MetaDD, designed to enhance the gen-
eralizability of DD across various NN architectures. Specifically, MetaDD parti-
tions distilled data into meta features (i.e., the data’s common characteristics that
remain consistent across different NN architectures) and heterogeneous features
(i.e., the data’s unique feature to each NN architecture). Then, MetaDD employs
an architecture-invariant loss function for multi-architecture feature alignment,
which increases meta features and reduces heterogeneous features in distilled data.
As alow-memory consumption component, MetaDD can be seamlessly integrated
into any DD methodology. Experimental results demonstrate that MetaDD signif-
icantly improves performance across various DD methods. On the Distilled Tiny-
Imagenet with Sre2L. (50 IPC), MetaDD achieves cross-architecture NN accuracy
of up to 30.1%, surpassing the second-best method (GLaD) by 1.7%.

1 INTRODUCTION

Neural networks (NNs) rely heavily on data, and their performance is directly influenced by the
scale and quality of the data|Devlin et al.| (2018)); Ramesh et al.|(2022). However, as datasets grow,
the cost of training NN increases significantly. Dataset distillation (DD) |Cui et al.|(2022) addresses
this issue by compressing datasets, producing a smaller, distilled version that can serve as an effi-
cient substitute. This technique is particularly valuable in environments with limited memory and
computational resources, such as edge devices or real-time applications. With DD, researchers can
achieve competitive model performance while significantly reducing both data size and resource
consumption.

A significant challenge in DD is its limited transferability across different NN architectures. Dis-
tilled datasets tailored for specific NNs often experience notable performance drop when applied
to other architectures. Existing solutions to this cross-architecture gap have various shortcomings.
Some do not effectively integrate with vision transformers Zhong & Liu|(2023)), others only enhance
performance for the architectures directly involved in the distillation process|Zhou et al.[(2024a), and
some incur high memory costs due to reliance on image generators Cazenavette et al.|(2023). These
challenges underscore the need for more robust and versatile DD methods that can maintain strong
performance across diverse architectures.

To investigate the causes of DD’s cross-architecture gap, we visualize NN architecture biases in fea-
ture preferences using Class Activation Maps (CAMs) Zhou et al.| (2016); [Selvaraju et al|(2017).
CAMs highlight the image regions most relevant to a network’s predictions, revealing the key fea-
tures that drive its decision-making. We define the overlap between CAM regions from different
architectures as the shared decision-making consensus (meta features), while the non-overlapping
regions represent each architecture’s unique feature preference (heterogeneous features). Our in-
vestigation focuses on two key aspects: (1) why the original dataset shows better cross-architecture

Under review as a conference paper at ICLR 2025

Meta Heterogeneous Meta Heterogeneous
CAMs Feature Feature CAMs Feature Feature

Initial
-

DM

Same Same Same Same
Architecture Architecture Architecture Architecture

(a) Tiny ImageNet (b) ILSVRC-2012

Figure 1: Meta and heterogeneous features based on CAM. For Tiny-ImageNet, we utilize DM Zhao
and DC[Zhao et al|(2020), while MTT [Cazenavette et al(2022)) and Sre2L[Yin et al.
are employed for ISRL2012. The meta features of an image represent the overlapping areas
across different NN CAMs, whereas the heterogeneous features are the unique portions remaining
after the meta features are excluded. The synthetic images of every DD method are from the same
class as the initial images. ResNet18 is used for distillation, with GoogLeNet and AlexNet serving
as cross-structural models.

performance than the distilled dataset, and (2) why the distilled NN architecture outperforms other
architectures on the distilled dataset.

By exploring both differences, we find that distilled datasets have massive heterogeneous features
of the distilled architecture and rare meta features. As shown in Figure [I} (1) Original images
show substantial meta features across different architectures trained on the original dataset, whereas
distilled images show almost no meta features. This meta feature comparison explains why original
dataset performs more consistently across different NNs than distilled data. (2) Distilled images
have significantly more heterogeneous features with the same architecture used for DD compared to
crossed architectures. These heterogeneous features represent the same architecture can extract more
semantic information from distilled data, which crossed NN architecture cannot capture, leading to
cross-architecture gap.

Based on the above observations, we propose MetaDD to improve the cross-architecture general-
ization of DD. MetaDD begins with using an architecture-invariant loss to obtain and maximize
the exposure of diverse features across different NN architectures. Then, MetaDD decouples het-
erogeneous and meta features by transferring distilled data’s CAMs to a common space. By driv-
ing the evolution of distilled data towards maximizing meta features, MetaDD encourages to form
a generalized consensus cross different NN architectures. MetaDD maintains low memory con-
sumption by persistently freezing various NN architectures during DD. We conducted comprehen-
sive experiments using DC, DM, MTT, and Sre2L as baselines. Incorporating MetaDD improved
DD performance in cross-architecture training. MetaDD covers typical NN architectures, ensuring
that even unconsidered models benefit from the meta features generated. On Tinylmagenet and
ILSVRC-2012, MetaDD has an average accuracy increase of 1.6% and 1.0% compared with GlaD
|Cazenavette et al.[(2023).

2 RELATED WORK

2.1 DATASET DISTILLATION

DD |Liu et al.[(2023); |Sajed: et al.| (2023); Du et al.| (2024) generates distilled datasets by aligning

distilled data with the original data using a specific NN. This alignment is achieved through various
techniques. For instance, model gradients [Zhao et al.| (2020) are used to adjust the distilled data
to match the gradient patterns of the original data. Similarly, the features [Zhao & Bilen| (2023))

Under review as a conference paper at ICLR 2025

Dataset Distillation

Backbone NN

Backbone Distillation
Logits Loss

F —;‘ Auxiliary ‘ Aucxiliary '
NN-1 Logits-1 !
: ' [L] [Lce] [Lce]
T
- Auxiliary Auxiliary |_ Auxiliary Auxiliary Auxiliary
NN-2 Logits-2 : Logits-1 Logits-2 Logits-n
| 1 1 1
I
e (] (]
: T x x
- : - Auxiliary Auxiliary |- 2 Backbone
Element-wise Align NN-n Logits-n g

Figure 2: The framework of MetaDD. Our method is designed to supervise the synthesis of data
during training to ensure it exhibits low-variance CAMs across multiple pre-trained NNs.

extracted by the NN are aligned to ensure that the distilled data captures the same feature distribu-
tions as the original data. Moreover, parameter trajectories|Cazenavette et al.[(2022) are tracked and
matched, providing a dynamic way to align the evolving parameters during training. Additionally,
kernel ridge regression statistics of the NNs [Nguyen et al| (2020; [2021) are aligned to refine the
distilled data further, ensuring that it statistically mirrors the original data from the kernel-based
perspective.

Furthermore, the creation of novel data augmentation components Zhao & Bilen| (2021)); |Liu et al.
(2022a); |Zhou et al.| (2024c) significantly enhances the distilled datasets. These components intro-
duce new data transformations that enrich the variability of the distilled data. Reusable distillation
paradigms He et al.|(2024); Yang et al.| (2023)); Shang et al.|(2024) are also employed, which involve
extracting and transferring knowledge from multiple models or datasets into the distilled dataset,
thus improving its performance. Additionally, patches for fixing defects [Lee et al.| (2022);|Cui et al.
(2023)); |Du et al.| (2023); [Zhao et al.| (2023)) are developed and applied, addressing any inconsisten-
cies or errors in the distilled data. These patches help maintain the distilled datasets’ integrity and
accuracy.

2.2 CLASS ACTIVATION MAPPING

CAM |Kundu| (2020); Wang et al.| (2020a); |Selvaraju et al.| (2017); |[Fu et al.| (2020); Jiang et al.
(2021)); |Wang et al.| (2020b); |(Chattopadhay et al.| (2018));|Omeiza et al.| (2019) algorithms constitute
an important class of methods in the field of deep learning, aimed at enhancing the interpretability of
NNs. The original CAM [Zhou et al.| (2016) involves modifying the network architecture to connect
directly from the global average pooling layer to the output layer, allowing the model to highlight
important areas of the image for predictions of specific classes. Subsequent developments, such as
Grad-CAM Selvaraju et al.| (2017), offer a universal solution that does not require modifications to
the network architecture. Additionally, variants such as Grad-CAM++ Chattopadhay et al.| (2018))
and Score-CAM |Wang et al.| (2020b) have further improved the accuracy and robustness of the
heatmaps.

Although CAM was initially designed for CNNs, researchers have begun exploring how similar
concepts can be applied to transformer-based visual models. To achieve this application, CAMs are
generated by analyzing the attention weights from the last layer Sun et al.| (2023)). Consequently,
researchers have begun developing new techniques and approaches to improve the vision trans-
former CAMZhu et al.| (2023); Xu et al.| (2022), for example, by adjusting or combining attention
weights from different layers, or developing specialized interpretative modules to produce clearer
and more meaningful visual explanations. facilitating further optimization of NN architectures and
interpretability improvements.

Under review as a conference paper at ICLR 2025

3 METHOD

In this section, we detail the generalization component proposed to mitigate cross-structural perfor-
mance losses in DD. An overview of our method is illustrated in Figure[2]

3.1 PRELIMINARIES

Suppose there is an original dataset ' = {(x1,y1),..., (2|, y 7))} With |T'| pairs of train-
ing samples x; and corresponding labels y;. The goal of DD is to synthesize a dataset S =
{(@1,91),...,(Z5,9)s))} where |S| < |T'|. The model trained on S is expected to perform
similarly to one trained on 7". For a set of different NN architectures 0 = {01,...,75}, we
define the performance loss when a distilled dataset S(¢,,) distilled on 9, is used to train ¢, as
AAcc(V,]0,) = Accs(9,)? — Accs(9,)7". Accs(d,)” denotes the accuracy obtained by dis-
tilling and training on the same model architecture ¥J,,. Our objective is to minimize the total cross-

structural performance loss for all 9,,, 1, € 6: min Zy\ﬂ LJ:Q AAcc(V,]9,,).

3.2 HETEROGENEOUS AND META FEATURES

For data’s heterogeneous and meta features’ visual presence, we initially use Grad-CAM to capture
|M]
the CAM C; = |J {c¢I"} of the data & across different pre-trained model architectures 6. We

m
then interpolate the CAMs of the data to the same size, and each matrix element of all CAMs is

~ [M]

normalized to a range from O to 1. The processed CAMs is Cs; = |J {¢7"}. To mitigate the
m

influence of random factors, we disregard the low-confidence activation regions within the CAMs,

specifically those areas where the values are below 0.5. For high-confidence CAMs, we define the
pixel locations of the meta features as the overlapping sections across all NNs’ CAMs. The mask
representing the meta feature is denoted as :

| M|

. 1 ife; > 0.5
wo=[[H @ >7H<c>m-={ :
m

0 otherwise

(D

Subtracting the common feature areas from each CAM yields each architecture’s heterogeneous
areas of focus. The mask of heterogeneous feature areas of the NN architecture ¥,, in the distilled
image x4 is represented as:

B = H (") — ps 2

Further experiments using TinyIma-
genet confirm that our defined het-
erogeneous and meta features re- 19-151 19-551 21,11] 19-951 ZZ-SSI
spectively exhibit specific and com-
mon preferences across different NN
architectures. ~ We initially erase
the heterogeneous feature pixels cor-
responding to different pre-trained
NN architectures in Tinylmagenet.

Architectures are ResNet34, Mo-
bileNetV?2, GoogleNet, VGG19, Effi- Af Q Q £, Q Q @ ﬂ

cientNet, and ViT. Then we train ViT T omer = o -
from scratch with the erased TinyIm- Cmage. Heterogeneous Heterogeeous pegtre
agenet. The accuracy differenece in

Figure[§lindicates that ViT suffers the Figure 3: ViT’s validation accuracy on different erased
most when losing self-heterogeneous TinyImagenet. The numbers represent the difference in ac-
features and the least loss when los- curacy between the erased and the original dataset.

ing other architectures’ heterogeneous features. We perform the same experiment by erasing the
meta features of all architectures in TinyImagenet. Result shows ViT experience significant perfor-

55.38
78.65

3

Under review as a conference paper at ICLR 2025

Sre2L or Sre2L+MetaDD.

ity
-y
1f

(d) Distilled Tiny-ImageNet with DC or DC+MetaDD.

Figure 4: In each subplot, the first row displays images generated by the original DD algorithm,
while the second row presents images generated after integrating MetaDD.

mance drops after losing meta features. These experiments thoroughly illustrate the distinct natures
of heterogeneous and meta features and lay the empirical foundation for our method.

3.3 METADD

MetaDD define the NN used in the original DD method as the backbone NN 4,,. To obtain a distilled
dataset that generalizes across architectures, MetaDD incorporates pre-trained NNs of various other
architectures, referred to as auxiliary networks:

0= {01,. .. 0y Oar} 3)

MetaDD employs an architecture-invariant loss function to backpropagate and obtain CAMs on
distilled data for different auxiliary networks and then normalizes these CAMs. By reducing the
variance at the same locations across these CAMs, the CAMs tend to be similar. Through multiple
rounds of updates, MetaDD enhances the test performance of the distilled dataset on other NNs.

Architecture-invariant Loss. We use a mixed loss function of cross-entropy and KL divergence to
obtain the Grad-CAM images, specifically expressed as:

Loi =3 Lee (B (@)) + Y0 Lia (9 () 9, () @

Lia (Vm (2), Uy (z)) = U () log ©)

Under review as a conference paper at ICLR 2025

Algorithm 1 MetaDD Algorithm

Require: Training set 7', Randomly initialized set of distilled samples .S, backbone NN ¥,,, auxil-
iary NNs 6, training iterations K, learning rate n

1: fork=0,..., K —1do

2: Sample mini-batch pairs B; € S and B, € T

3 Compute Lqy = Lqq(¥,, Bs, Bt)

4: Compute Lg; (9, Bs, 0) from Equation [4]

5: Loy = Loy + Laz(ﬁmv 9)

6.

7

8

for all (Z,,9;) € B;s do

Cs
: for all ¥,,, € 6 do
9: L Compute the cam ¢J* from Equation[6]or[§]
10: Cs i = c U Cs
11: Compute L]m,S from Equation
12: Compute var (¢;) from Equation [11]
13: . Lay = Loy + var() + Lpos
14: Update B; < B, — naaL—é’S”
return S

Compared to solely utilizing cross-entropy loss for backpropagation to obtain CAMs from auxil-
iary NNs and aligning these CAMs, the architecture-invariant Loss, which includes an additional
KL divergence loss, offers significant advantages: the CAMs generated by architecture-invariant
loss reflect the distilled data features that need to be focused on when transferring knowledge from
the auxiliary NNs to the main NN. Consequently, architecture-invariant loss maximumly displays
heterogeneous features antagonistic to the main NN, which will be transferred to meta features.

Modified Class Active Map. We utilize a modified Grad-CAM [Selvaraju et al,| (2017) to obtain
activation maps from various convolutional NNs. We initially perform a forward pass to acquire
the unflattened feature maps A from the last fully connected layer. Let A* represent the feature
map activations of the k-th channel for A. Then MetaDD computes the gradient of L,;, concerning
feature map activations A*. These gradients flowing back are global-average-pooled to obtain the
neuron importance weights «f,. Then, the linear combination of these weighted activation maps
gives the class-discriminative localization map c used to highlight the important regions.

aLaz
I*JZZ dAE cz(;a’“Ak> ©

where 7 and j are the spatial dimensions of the feature map, and Z is the total number of elements
in the feature map.

A =

For Vision Transformers, we consider the output of the last transformer layer A € RY*P where N
is the number of patches and D is the dimension of features per patch. The class token’s output Z is
utilized by an MLP head to generate class predictions y©. Attention scores are computed as:

dgé Z Whedd CIS (7)

heads

where Q and K are the query and key matrices from the multi-head self-attention mechanism. The
CAM is generated by:

Wage = Y Whea[cls,:], ¢ = (W - Z) (8)
heads

where W, is the aggregated attention across heads. More different from Grad-CAM, we do not
employ the ReLU function in Equation [|and[8] This is because the negative parts of the activation
maps are also essential for our optimization. Meanwhile, we ensure that the positive values in all
different CAMs are maximized as much as possible:

Lpos =D D> ¢ ©)

Under review as a conference paper at ICLR 2025

Table 1: The cross-architecture generalization experiments on ILSVRC-2012 and Tiny-ImageNet.
L,; is DD using architecture-invariant loss function without generating CAMs.

ILSVRC-2012 (IPC = 10)

| | Auxiliary/Seen | Unseen |

Method | Component | ResNet34 MobileNetV2 GoogleNet VIT-B-16 | AlexNet ResNetS0 Vggl9 Swin-s | Average

none 11813 9.6+L1 108£0.6 [1.2+17 | 92412 117406 108£0.9 10307 | 10.6

Dream|Liu et al.|(2023) 21511 99412 109403 114£12 | 96+07 114+03 10307 10.6£0.4 | 10.8

TesLa | GLaD|Cazenavetie el al[(2023] | 12.8+1.1 111£0.6 119411 120403 | I1L7£1.2 124413 129406 117411 | 12.1

Me@DD 1304503 134202 142403 129406 | 12402 132401 137402 119405 | 13.1

none 133£01 121203 127403 137403 | 129+08 118402 11.9£02 13106 | 129

Dream|Liu et al|2023) 135407 123405 129403 137405 | 132407 122403 122403 133205 | 132

Sreal | GLaD[Cazenavette et al2023] | 14.6402 138402 142402 146412 | 136402 12912 139412 142303 | 139

Me@aDD 14803 149401 138406 142304 | 14804 139402 158407 159+0.1 | 146

(a) ILSVRC-2012

Tiny-ImageNet (IPC = 50)

| | Auxiliary/Seen | Unseen |

Method | Component | ResNet34 MobileNetV2 GoogleNet VIT-B-16 | AlexNet ResNetS0 Vggl9 Swin-s | Average

none 112404 108£01 99+04 [1.7£04 | 110501 108+0.1 10201 11407 | 10.9

Drean{Liu et al.|(2023} 115507 110405 102404 12106 | 114£02 113201 105407 11.7£05 | 111

DC | GLaD|Cazenavetic ctal.[(2023] | 134+0.3 135401 128+0.01 120402 | 123£0.1 122301 11.0£02 124+0.1 | 125

Me@aDD 136501 141501 147402 147+0.1 | 13804 149403 12.6:01 137406 | 138

none 109502 114201 106507 11302 | 119503 101404 10.7£0.4 11804 | 11.2

Dream|Liu et al|2023) 112402 116404 109503 115404 | 121405 104403 10.9£0.5 120406 | 114

DM | GLaD|Cazenavetie et al.[(2023] | 11.6:0.1 119404 11240.1 118402 | 121402 111+03 [1.8£0.5 126502 | 11.9

Me@aDD 1214600 12403 125402 14307 | 132402 14105 142402 151304 | 135

(b) Tiny-ImageNet

CAM Variance Loss. After obtaining the heterogeneous CAMs of all auxiliary networks relative to
the backbone network, we interpolate and normalize these CAMs to the same size and range:
Em — P (c:;n) — min P (c;n) (10)

* max P (¢?) —min P (¢™)

P () is the interpolating operation. We then calculate the variance at the same positions in the
processed heterogeneous CAMs:

2
i 1 oIt (1 =Ml
var (Cs) = I*Jzi Zj (M Zm Coli _cs7i7j> 11

By minimizing the variance across all positions, the heterogeneous CAMs will tend to be similar. In
the process of becoming similar, the features of the data distilled by the backbone NN will be more
acceptable to other network architectures. The final loss function of MetaDD is:

Lall(ms) = de + Lai + var (Es) + Lpos (12)

L 44 is DD method loss function. Through MetaDD, we ensure that the distilled data features are as
universal as possible rather than heterogeneous. The process of MetaDD is shown in Algorithm [T}

During the process of obtaining heterogeneous CAMs, the parameters of all different pre-trained
NN architectures are frozen. Using pre-trained models with frozen parameters implies low VRAM
consumption. Thus, while encompassing multiple different pre-trained NNs, MetaDD still saves
computational resources. As a low computational consumption component, MetaDD can be com-
bined with various DD methods to achieve optimal cross-structural training generalization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluated our method (MetaDD) for DD from CIFAR-10 at a resolution of 32 x 32, Tiny-
ImageNet |Le & Yang| (2015) at 64 x 64, and ILSVRC-2012 Deng et al.| (2009) at 224 x 224. Our
experimental code is based on open-source repositories for DC, DM, Tesla, MTT, and Sre2L. Tesla
represents a memory-optimized version of MTT. For each method, we directly integrated MetaDD
into the existing codebases. While keeping the hyperparameters of the existing methods unchanged.
We show part of distilled images in Figure [4]

Under review as a conference paper at ICLR 2025

Table 2: CIFARI10 cross-architecture average accuracy.

CIFAR10

| | Auxiliary/Seen (Average) | Unseen (Average)
Method | Component | IPC=1 IPC=10 | IPC=1 IPC=10
none 17.6£1.1 38.1+03 | 16.1+£1.2 39.7+1.1
DreaniLiu et al.|(2023) 17.84£1.0 38.5+0.7 | 16.5+1.1 39.9+1.0
DC | GLaD[Cazenavette et al.|(2023) | 21.24+04 39.1£12 | 20.9+£12 39.8+1.2
MetaDD 221411 422411 | 21.3+12 40.3£0.6
none 189412 40.1+14 | 17.84£0.8 39.8+0.6
Dream|Liu et al.|(2023) 189409 40.6+1.1 17.940.7 40.3+0.4
DM | GLaD|Cazenavette et al.|(2023) | 19.2+0.3 41.2+0.5 189412 40.1+1.2
MetaDD 20.14+12 423407 | 19.2+0.7 40.3+1.2
none 372412 521421 | 362404 50.9+0.2
Dream|Liu et al.|(2023) 37.6£1.0 523422 | 36.7£0.1 51.240.4
MTT | GLaD|Cazenavette et al.[(2023) | 38.7+0.2 52.24+1.2 | 37.8+0.3 51.4+12
MetaDD 379412 531+13 | 372402 522406
none 412414 59.8+03 | 40.1+1.2 58.840.5
Dream|Liu et al.|(2023) 415412 602407 | 404+1.0 59.14+0.3
Sre2l. | GLaD[Cazenavette et al.[(2023) | 42.1+1.2 60.2+£1.1 42.8+1.7 59.7+1.6
MetaDD 425410 60.4+09 | 443+0.8 61.2+1.2

Baselines. In addition to MetaDD, we also report the performance of the existing component GLaD
Cazenavette et al.| (2023)) and Dream |Liu et al.| (2023)). GLaD stores distilled data as feature vectors
and uses a generator to create high-definition images as inputs during NN training. Dream selects
representative original images for DD.

Neural Architecture. We employed the ConvNet |Gidaris & Komodakis|(2018) architecture as our
backbone NN for DC, DM, and MTT/Tesla. The Depth-n ConvNet consists of n blocks followed by
a fully connected layer. Each block comprises a 3x3 convolutional layer with 128 filters, instance
normalization[58], ReLU nonlinearity, and a 2x2 average pooling with a stride of 2. For Sre2L, we
use ResNet18 as our backbone NN. we use ResNet34 He et al.| (2016), MobileNetV2 |Sandler et al.
(2018), GoogleNet Szegedy et al.[(2015), and ViT-B-16 |Dosovitskiy et al.| (2020) as our auxiliary
NN architectures. All auxiliary NNs are pre-trained using original datasets. We trained the distilled
dataset using 8 different NN architectures to test the algorithm’s cross-architecture generalizability.
In addition to the auxiliary NN architectures, the test also included four architectures not involved
in DD: AlexNet [Krizhevsky et al.| (2017), ResNet50, Vgg19 |Simonyan & Zisserman| (2014), and
Swin-S L1u et al.|(2022b).

Evaluation Metrics. We evaluated the cross-architecture generalizability of the algorithm by aver-
aging the top-1 accuracy of NN trained on the distilled dataset on the validation set. This average
accuracy measure is a robust indicator of the algorithm’s cross-architecture generalizability.

Training Paradigm. The training paradigm for all NNs and datasets is consistent: it includes
Stochastic Gradient Descent (SGD) with 0.9 momentum, le — 4 weight decay, followed by 500
rounds of linear warm-up and then 500 rounds of cosine decay. Each architecture employs an ap-
propriate (fixed) initial learning rate. The training process is repeated three times, and the average
validation accuracy & one standard deviation is reported.

4.2 CROSS-ARCHITECTURE GENERALIZATION

We initially validated our algorithm’s capacity for enhancing cross-architecture generalization at
ILSVRC-2012 and Tiny-ImageNet. In Table[I] we employed GLaD, ModelPool, and MetaDD to
assist DD methods. The results from Table [I] demonstrate that MetaDD effectively reduces over-
fitting in the backbone NNs. Compared to other baselines, our method generally outperforms in
most cases. Moreover, NN architectures included in the auxiliary NN set show similar performance
to the unseen NN architectures. Hence, by incorporating specified NN architectures to MetaDD,
MetaDD can offer customized services tailored to situations with a specific focus on different NN
architectures. Following this, in Table[2] we distilled datasets of varying scales under CIFAR10 and
conducted analogous experiments. The results in Table[2)indicate that our method still helps mitigate
overfitting. Compared to distillation at higher resolutions, GLaD exhibits weaker performance.

Under review as a conference paper at ICLR 2025

UnSeen UnSeen

ol
kd
[

5
o)
< "

LMl L8
MRS

EFEEECES
Lol fol e A

g 5
¥
]
B
o
B
%
%

(

(a) Distilled ILSVRC-2012 with Sre2L b) Di

@
=
=,
=
[¢]
o

ILSVRC-2012 with Sre2L+MetaDD

UnSeen

=
=
i
&
e
+
i

BEFECZETEN IR

= IR
IE %I@IE

IEIEIEIE
ENECECEE

Bl] KO R

A
P
ad
i
ks T
E.
E

L lg o g o

o

(c) Distilled ILSVRC-2012 with MTT (d) Distilled ILSVRC-2012 with MTT+MetaDD

Figure 5: Meta Features” Contagious Generalizability visualization.

4.3 META FEATURES’ CONTAGIOUS GENERALIZABILITY

In the previous section, we demonstrated that MetaDD can enhance performance on NN architec-
tures not included in the auxiliary NNs (unseen NNs). This phenomenon, which we term “con-
tagious generalizability”, is attributed to the universality of MetaDD. Figure [5] illustrates the meta
features of distilled data across both unseen and seen architectures. In every subfigure, the first im-
age inrows 1, 3, 5, and 7 shows distilled data, followed by CAMs from various architectures trained
on the dataset including the distilled data. In rows 1, 3, 5, and 7, CAMs two to five (‘seen’ frame)
correspond to auxiliary architectures used in MetaDD, while CAMs six to thirteen (‘unseen’ frame)
are from architectures not used. The first image in rows 2, 4, 6, and 8 presents meta features from all
architectures, with the following images showing heterogeneous features from architectures trained
on the distilled data above.

Images generated by the original DD method exhibit almost no meta features. However, with the
integration of MetaDD, the distilled images possess meta features recognizable by seen NNs and
unseen NNs. This indicates that the meta features introduced by MetaDD are typical and widely
applicable, further substantiating the efficacy of MetaDD in enhancing cross-architecture generaliz-
ability.

4.4 TRAINING COST ANALYSIS

We compare the GPU memory consumption

of our method with that of GLaD. We kept Method | Loss Accuracy
all other conditions identical between the two None FD1E9.1
methods. As shown in Table @] on CIFAR- with Ly 594+ 1.3
10, our method reduces memory usage by 2z MTT with L, 5234 0.7
compared to GLaD. The runtime is reduced by with vzfr (é) 52.9+05
0.3z. GLaD consumes a significant amount of None 508 £ 0.3
memory due to the use of generators, whereas with L. : 59.94+1.1
our method maintai.ns low memory usage even Sre2LL with LZ; 60.2 + 0.2
while accommodating 4 auxiliary NNs. Be- with var (é,) 60.4 % 0.2

cause the parameters of the auxiliary NNs are

always kept frozen, we can scale to a larger Typle 3: Ablation Study on CIFARIO with
number of auxiliary NNs. IPC=10.

Under review as a conference paper at ICLR 2025

Method(Dataset) Component Memory(GB) Time (Minutes)
- 19.9 98
MetaDD 22.6 107

MTT(CIFAR10) GlaDCazenavette et al.|(2023) 39.1 152
ModelPoolZhou et al.|(2024b) 324 219
-) 68.7 1538
MetaDD 76.4 1601

TesLa(ILSVRC-2012) | 51 iCazenavette ot al.|(2023) 119.1 1912
ModelPoolZhou et al.|(2024b) 89.4 2125

Table 4: Memory cost and training time for different methods on CIFAR10 and ILSVRC-2012
datasets with ipc=10.

ILSVRC-2012 (IPC = 10)

| | Auxiliary/Seen | Unseen |
Quantity ‘ Component | ResNet34 MobileNetV2 GoogleNet ViT-B-16 | AlexNet ResNet50 Vggl9 Swin-S | Average

none 11.8+1.3 9.6£1.1 10.8+0.6 11.2+1.7 | 9.2+1.2 11.7+£0.6 10.8£0.9 10.3+0.7 10.7

1 12.1£1.1 10.240.6 11.3£1.1 11.7£0.3 | 11.7+1.2 12.1+1.3 11.4+0.6 10.8£1.1 11.5

TesLa 2 12.4+1.1 11.44+0.6 12.1+1.1 12.1+£0.3 | 11.941.2 125+1.3 119406 11.2+1.1 12.3
3 12.7+0.2 12.1+0.3 13.8+04 13.1£0.5 | 12.0£0.1 12.9+0.1 12.7+£0.2 11.5+0.5 12.8

4 13.1+0.3 13.440.2 14.2+03 12.9+0.6 | 124+0.2 13.2+0.1 13.7+0.2 11.9+0.5 134

none 13.31+0.1 12.1+0.3 12.7+0.3 12.3+0.3 | 1294+0.8 11.8+£0.2 11.9£0.2 13.1+0.6 12.5

1 13.9+0.2 12.7+0.2 12.7+£0.2 12941.2 | 127402 13.2+1.2 129+1.2 139403 13.1

Sre2l 2 14.1£0.2 13.34+0.2 13.0+£0.2 132+1.2 | 13.3+0.2 13.6+1.2 134+1.2 142403 13.8
3 14.5+0.3 14.3£0.3 13.4+04 13.5+0.2 | 14.0+0.3 13.9+0.1 143+04 15.1£0.3 14.6

4 14.8+0.3 14.9+0.1 13.8+0.6 14.2+04 | 14.84£04 13.9+0.2 158+0.7 15.9+0.1 14.9

Table 5: Effectiveness of cross-architecture training models demonstrated after sequentially adding
auxiliary NNs.

4.5 ABLATION STUDY

We distilled CIFAR-10 by adding different loss function components. From the experimental results
in Table [3] it can be seen that var (Cs) has the greatest effect, while L,;, Ly, have the secondary
effect. The benefit of var (¢;) comes from obtaining consistent features recognized by different
architectures, L, merely makes the CAM features more visible, and L; enable the architecture to
benefit from knowledge transferring.

4.6 How THE NUMBER OF AUXILIARY MODELS INFLUENCES METADD

In this subsection, we investigate the impact of varying the number of auxiliary models on the
efficacy of MetaDD. We sequentially add ResNet34, MobileNetV2, GoogleNet, and ViT-B-16 to
MetaDD without retrieval. With each addition of an auxiliary NN, we conduct cross-model gener-
alization experiments on ILSVRC-2012.

The experimental results, as shown in Table [5] indicate that as the number of auxiliary models
increases, the performance of MetaDD improves on both seen and unseen model architectures. The
improvement is particularly pronounced when adding models from the same series. Therefore, for
MetaDD, including a diverse set of auxiliary models with significant structural differences enhances
generalization.

5 CONCLUSION

We introduce MetaDD, a new component specifically designed to enhance the cross-architecture
generalizability of DD. MetaDD delivers the dual advantages of minimal additional computational
overhead and improved performance. By delving into the factors that limit cross-architecture gener-
alizability, MetaDD uncovers the unique feature recognition mechanisms inherent to different neural
network architectures, which often prioritize diverse and heterogeneous features. However, these ar-
chitectures also adhere to certain shared aesthetic or structural standards. MetaDD enhances cross-
architecture generalizability by amplifying the representation of meta features that align with these
shared standards. It achieves this by synthesizing meta features through the integration of unified
CAM outputs from various neural networks, ensuring these meta features are broadly recognized
and effectively utilized across different architectures.

10

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

In this study, we adhere to the ICLR Code of Ethics, ensuring that all aspects of our research meet
ethical standards. Our research does not involve human subjects, thus no Institutional Review Board
(IRB) approval is required. The datasets utilized are publicly available, and we follow best practices
for data release, giving appropriate credit in our citations.

We acknowledge that machine learning models can introduce biases. Therefore, we have carefully
examined fairness and potential biases during model design and evaluation. Our experiments in-
clude a thorough analysis of model performance across diverse populations and conditions, with
discussions included in our results.

In summary, we are committed to conducting our research responsibly, ensuring that all processes
comply with research integrity and legal requirements.

7 REPRODUCIBILITY

We provide the hyperparameter settings for all dataset configurations in the appendix. And we will
release our code shortly.

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4750-4759, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Gener-
alizing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3739-3748, 2023.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE winter conference on applications of computer vision (WACV), pp. 839-847. IEEE, 2018.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation benchmark.
Advances in Neural Information Processing Systems, 35:810-822, 2022.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
1k with constant memory. In International Conference on Machine Learning, pp. 6565-6590.
PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumu-
lated trajectory error to improve dataset distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3749-3758, 2023.

Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset matching for dataset distillation.
Advances in Neural Information Processing Systems, 36, 2024.

11

Under review as a conference paper at ICLR 2025

Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and Biao Li. Axiom-
based grad-cam: Towards accurate visualization and explanation of cnns. arXiv preprint
arXiv:2008.02312, 2020.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4367-4375,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Yang He, Lingao Xiao, Joey Tianyi Zhou, and Ivor Tsang. Multisize dataset condensation. arXiv
preprint arXiv:2403.06075, 2024.

Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layercam:
Exploring hierarchical class activation maps for localization. IEEE Transactions on Image Pro-
cessing, 30:5875-5888, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84-90, 2017.

Soumya Snigdha Kundu. Is-cam: Integrated score-cam for axiomatic-based explanations. arXiv
preprint arXiv:2010.03023, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset conden-
sation with contrastive signals. In International Conference on Machine Learning, pp. 12352—
12364. PMLR, 2022.

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. Advances in neural information processing systems, 35:1100-1113, 2022a.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient
dataset distillation by representative matching. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17314-17324, 2023.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009-12019, 2022b.

Timothy Nguyen, Zhourong Chen, and Jachoon Lee. Dataset meta-learning from kernel ridge-
regression. arXiv preprint arXiv:2011.00050, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaechoon Lee. Dataset distillation with infinitely
wide convolutional networks. Advances in Neural Information Processing Systems, 34:5186—
5198, 2021.

Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldermariam. Smooth grad-
cam++: An enhanced inference level visualization technique for deep convolutional neural net-
work models. arXiv preprint arXiv:1908.01224, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Yuri A Lawryshyn, and Konstantinos N
Plataniotis. Datadam: Efficient dataset distillation with attention matching. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 17097-17107, 2023.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

12

Under review as a conference paper at ICLR 2025

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-

ization. In Proceedings of the IEEE international conference on computer vision, pp. 618-626,
2017.

Yuzhang Shang, Zhihang Yuan, and Yan Yan. Mim4dd: Mutual information maximization for
dataset distillation. Advances in Neural Information Processing Systems, 36, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Tianli Sun, Haonan Chen, Yuping Qiu, and Cairong Zhao. Efficient shapley values calculation for
transformer explainability. In Asian Conference on Pattern Recognition, pp. 54—67. Springer,
2023.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015.

Haofan Wang, Rakshit Naidu, Joy Michael, and Soumya Snigdha Kundu. Ss-cam: Smoothed score-
cam for sharper visual feature localization. arXiv preprint arXiv:2006.14255, 2020a.

Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops,
pp- 24-25, 2020b.

Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid Boussaid, and Dan Xu. Multi-class to-
ken transformer for weakly supervised semantic segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4310-4319, 2022.

Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset conden-
sation plugin and its application to continual learning. Advances in Neural Information Processing
Systems, 36, 2023.

Zeyuan Yin, Eric Xing, and Zhiqgiang Shen. Squeeze, recover and relabel: Dataset condensation at
imagenet scale from a new perspective. Advances in Neural Information Processing Systems, 36,
2024.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pp. 12674—12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514-6523, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
condensation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 78567865, 2023.

Xuyang Zhong and Chen Liu. Towards mitigating architecture overfitting in dataset distillation.
arXiv preprint arXiv:2309.04195, 2023.

Binglin Zhou, Linhao Zhong, and Wentao Chen. Improve cross-architecture generalization on
dataset distillation. arXiv preprint arXiv:2402.13007, 2024a.

Binglin Zhou, Linhao Zhong, and Wentao Chen. Improve cross-architecture generalization on
dataset distillation. arXiv preprint arXiv:2402.13007, 2024b.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921-2929, 2016.

13

Under review as a conference paper at ICLR 2025

80
\elepReR G fcP S 53.27 59.81 48.31 43.32 VGG19 |7 63.27 61.89 59.32 5832 43.77 41.79

ResNet50 kw2 48.53 57.21 54.21 ResNet50 61.2360.52 59.33 57.22 41.78 4222 °
LURUEWY 52.38 53.32 49.22 43.27 WRN50 59.88 61.32 59.42 58.22 46.78 43.92 60
MobileNetV2 IR RV RPN [K] 53.12 MobileNetv2 61.22 59.32 62.19 57.11 4123 4211 50
5 GoogleNet 58.22 60.21 57.33 59.67 ﬁ 4211 41.79 2

ViT_B_16 34.31 31.11 39.98 58.41 VIT_B_16- 52.21 51.22 52.12 51.11 523862.91
30

GoogleNet 57:338 53.62 WWZE 32.12 33.71

Trained Architecture
Trained Architecture

Swin_S EZRVANCER VARCUWERY NN 72.24 SwinS- 51.12 49.91 51.87 52.31 52.98 63.21 ﬁ
. 20
s 3 g3 & & g © s g 8 & ¥ &5 9
G) ko z Z = ! £ U] o z B 2 ! <
Q = € 4 2 = H o 2 4 2 T @, H
> 3§ = 3 3 (£ & ¢ £z & z 3 o @&
& : & 5 g ;8
] o S [}
= =
Distillation Architecture Distillation Architecture
(a) MTT (b) DC

Figure 6: The top-1 accuracy on the test set.

Muxin Zhou, Zeyuan Yin, Shitong Shao, and Zhigiang Shen. Self-supervised dataset distillation: A
good compression is all you need. arXiv preprint arXiv:2404.07976, 2024c.

Lianghui Zhu, Yingyue Li, Jiemin Fang, Yan Liu, Hao Xin, Wenyu Liu, and Xinggang Wang.
Weaktr: Exploring plain vision transformer for weakly-supervised semantic segmentation. arXiv
preprint arXiv:2304.01184, 2023.

A APPENDIX

A.1 CROSS-ARCHITECTURE GENERALIZATION GAP PHENOMENON

Using DC and MTT with IPC=10, CIFAR10 was distilled based on VGG19, ResNet50, WRNS50,
MobileNetV2, GoogleNet, ViT-B-16, and Swin-S. These NNs were then trained. As illustrated
in Figure [6] DC [Zhao et al| (2020) and MTT [Cazenavette et al.| (2022) consistently exhibit a no-
table decline in performance during cross-architecture training on CIFAR10, especially for CNNs
and ViT Dosovitskiy et al|(2020). For instance, using a synthetic dataset based on ResNet18 to
train MobileNetV?2 (a different architecture) yields significantly worse results compared to training
ResNet18 (the same architecture). Yet, when using the complete original dataset, MobileNetV2
tends to outperform ResNetl18. The cross-architecture transfer gap is even more pronounced be-
tween ViT and CNN models than within CNN models alone.

A.2 How THE NUMBER OF AUXILIARY MODELS INFLUENCES METADD

In this subsection, we investigate the impact of varying the number of auxiliary models on the
efficacy of MetaDD. We sequentially add ResNet34, MobileNetV2, GoogleNet, and ViT-B-16 to
MetaDD without retrieval. With each addition of an auxiliary NN, we conduct cross-model gener-
alization experiments on TinyImageNet and ILSVRC-2012.

The experimental results, as shown in Table [5] indicate that as the number of auxiliary models
increases, the performance of MetaDD improves on both seen and unseen model architectures. The
improvement is particularly pronounced when adding models from the same series. Therefore, for
MetaDD, including a diverse set of auxiliary models with significant structural differences enhances
generalization.

14

Under review as a conference paper at ICLR 2025

config | value
optimizer Adam
base learning rate 0.01
momentum 0.9
weight decay Se-4
batch size 200

learning rate schedule
training iterator

cosine decay
1000

epoch per iterater 100
augmentation RandomCrop
(a) MetaDD in DC setting.
config | value
optimizer Adam

base learning rate 0.1
momentum 0.9
weight decay Se-4
batch size 100

learning rate schedule
training epoch
augmentation

cosine decay
200
RandomCrop

(c) MetaDD in MTT setting.

config | value
optimizer Adam
base learning rate 0.01
momentum 0.9
weight decay Se-4
batch size 200

learning rate schedule
training iterator

cosine decay
500

epoch per iterater 100
augmentation RandomCrop
(b) MetaDD in DM setting.
config | value
optimizer Adam

base learning rate 0.25
momentum 0.9

weight decay Se-4
batch size 200

learning rate schedule
training epoch
augmentation

cosine decay
200
RandomCrop

(d) MetaDD in Sre2L setting.

Table 6: Hyper-parameter settings.

15

A.3 THE METADD HYPERPARAMETER IN DIFFERENT METHODS

As shown in Table[6] we provide hyper-parameter settings for MetaDD in different DD methods.

	Introduction
	Related Work
	Dataset Distillation
	Class Activation Mapping

	Method
	Preliminaries
	Heterogeneous and meta features
	MetaDD

	Experiments
	Experimental Setup
	Cross-Architecture Generalization
	Meta Features' Contagious Generalizability
	Training Cost Analysis
	Ablation Study
	How the Number of Auxiliary Models Influences MetaDD

	Conclusion
	Ethics Statement
	Reproducibility
	Appendix
	Cross-Architecture Generalization Gap Phenomenon
	How the Number of Auxiliary Models Influences MetaDD
	The MetaDD hyperparameter in Different Methods

