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ABSTRACT
Large Language Models(LLMs) can be leveraged to improve perfor-
mance in various stages of the search pipeline - index enhancement ,
query rewriting, and ranking or re-ranking. The latter two methods
involve using large language model calls during inference, adding
latency in fetching the final ranked list of documents. Index en-
hancement, on the other hand can be done in the indexing phase
in near real time, and can result in improved retrieval performance
while adding no or minimal additional latency during query-time
inference. Enhancing indexes with information generated by LLMs
is a promising mechanism to improve first stage retrieval results in
dense retrieval using bi-encoders, on par or exceeding the other two
approaches. In this work, we show that by using multiple indexes to
represent documents in different ways, where the representations
are generated by an LLM, and querying these indexes in parallel,
we can improve retrieval performance with almost no increase in
runtime latency. Our results are consistent across a number of pre-
trained bi-encoder models. We detail the implementation of such a
system in an industrial setting with AWS services in the customer
service domain to help retrieve the correct self-help content for an
amazon customer query.

CCS CONCEPTS
• Information Systems→ Information Retrieval.
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1 INTRODUCTION
Amazon customer service serves customers that contact Amazon
through various self service and automation tools. One of the fun-
damental applications in Amazon customer service is the document
retrieval service, which retrieves relevant content in response to
a customer query. Typically, a search pipeline involves 4 phases -
∗Both authors contributed equally to the paper.
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1. The indexing phase, where the documents from the corpus are
indexed. 2. The query understanding phase, where the query can
be expanded, transformed etc. 3. Scoring or retrieval phase, where
the document and query representations interact with each other
to generate scores in order to retrieve an initial list of candidates.
4. A re-ranking phase, where the results from phase 3 are further
refined. Recent work has shown that LLMs can be used in the query
understanding phase [3, 6, 11] to generate various runtime trans-
formations for the original query that help retrievers improve their
performance. For example, HyDe [3] transforms the query to the
document space by rewriting the query into a hypothetical docu-
ment. Similarly, Query2Doc [6, 11] generates runtime expansions
for the query with relevant terms in order to enrich the query. LLMs
have also been shown to be effective as the "reranker" to help suc-
cessfully re-rank results from the first stage retrieval in response to
a query [10]. These methods, while effective, have the downside of
involving an LLM call during query-time inference which is both
computationally expensive and incurs high latency.

In an industrial grade applications such as customer service AI
systems, where multiple models may be present in cascade, meth-
ods that leverage LLMs in a latency-friendly manner are desirable.
With RAG applications and vector search solutions exploding in
popularity, we believe that the use of LLMs to enhance and gener-
ate expansion terms for documents during indexing time has been
under-explored. This work discusses the use of LLMs to enhance
document indexes offline to improve retrieval performance. It also
provides the details of the setup and deployment of such a near-real
time system using AWS services. We show that by prompting LLMs
to generate various representations for documents, and maintain-
ing multiple indices for documents and querying them in parallel,
we are able to improve first-stage retrieval performance while in-
curring minimal additional latency. We compare our approach to
those that use LLMs in the query understanding phase, and in the
re-ranking phase. In both cases, we observe comparable or superior
performance of multi-index enhancement approaches but with the
added advantage of no or minimal additional latency. We present
both offline and online results for such a system that indexes pub-
licly available help content available on amazon.com.
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Our main contributions are as follows:
1. We demonstrate that by leveraging LLMs to enhance and main-
tain multiples indexes, we can get improvements in first stage
retrieval performance. Our results are consistent across multiple
bi-encoder models and various prompting strategies.
2. We detail the implementation of such a system using AWS ser-
vices and thus provide a template for a multi index system that
improves retrieval in an industrial setting.

2 METHODOLOGY

2.1 Embedding Model and Dataset Details
For the purpose of demonstrating the effectiveness of our approach,
we fine-tune bi-encoder models[8] for the customer service domain
and use that across all our approaches as the first stage retrieval.
All experiments are performed on publicly available self-help doc-
uments on the customer service tab on Amazon.com (example:
Track Your Package). Because these articles are far fewer than in a
web-scale setting, we use only a single stage of retrieval and some
lightweight re-ranking as detailed in section 2.3.

In order to fine-tune the model, we generate around 30K data
points in a self-supervised fashion by using the title of the docu-
ment and the body content of the document as a positive pair. To
this, we also include 10k queries mimicking the real customer input
(and the corresponding ground truth document) that were manually
labeled. In order to gather ground truth relevance information, we
presented the annotators with the query and the top-6 options as
picked from an LLM from an initial candidate pool of 15 candidates
that was a generated by a previously optimized BM25-style system.
It is worth noting that some of our annotators have previously
worked as Customer Service Representatives, and so are domain
experts in identifying the right document for a given customer
query.

We train the biencoder embedding model using the Multiple-
Negative ranking loss [5]. Our test set consists of 5K "difficult"
queries (and a single relevant document as a ground truth answer) as
rated by human annotators, that are representative of real customer
queries to Amazon. Throughout the remainder of the paper, we
present results with the MP-net model [9] that was pretrained on 1B
sentences and is optimized for semantic search/relevance (Huggig
Face model ID: sentence-transformers/all-mpnet-base-v2),
though our results are consistent across a variety of bi-encoder
models.

2.2 Multi-Index enhancement
Inspired by previous work [2], we hypothesize that for dense re-
trieval, the presence of varied, but highly relevant terms that rep-
resent the main themes in the document can generate a more rep-
resentative embedding than feeding in the entire document since
the document may also include individual sentences that are un-
helpful or not representative of the theme of the overall document
which may perturb the embeddings generated by Bi-encoder mod-
els. Accordingly, we prompt an LLM model to produce separate
5-6 sentence and 2-3 sentence summaries for every document in

the index. Also, inspired by past work [7], we recognize the im-
portance of having additional expansion terms in the document to
help BM25/biencoder models match the right document. We also
prompt the LLM to generate 5 queries in a doc2query style [4] and
5 high-level labels or "tags" for the document.

After experimenting with various index-forms, we empirically
zeroed-in on the following 5-index setup:
1) Content Index: This is the original HTML content of the docu-
ment.
2) LLM Summary Index: In this index, the LLM generates a concise
summary of the document in 6 sentences and that summary gets
indexed.
3) LLM Short Summary Index: In this index, the LLM generates a
highly concise summary of the document in 3 sentences and that
summary gets indexed.
4) LLM Questions and Tags Index: In this index, the LLM gener-
ates 4 key questions that can be answered by the document in the
doc2query style, and also 4 keywords or phrases that can describe
the document and these get indexed.
5)Metadata Index: In this index, the document category information
get indexed along with the title of the article.

Each entry in every index gets prefixed with the title of the
document. We’ve found the title of the document to be the single
most powerful signal in generating a representative embedding for
the document. This also follows from our self-supervised training
approach highlighted in the previous section.

2.3 Combining Results from Indexes
Reciprocal rank fusion [1] gives us a way to combine ranks from dif-
ferent indexes based on a document’s rank in individual indices. We
use a variant of reciprocal rank fusion that also takes into account
the presence of a document in the top-5 positions for that index -
we use the following empirical formulate to score the documents.
The final score for a document 𝑗 can be calculated as:

𝑠𝑐𝑜𝑟𝑒 𝑗 = (∑𝑖∈𝐼
𝑠𝑖𝑚𝑖 𝑗

𝑟𝑎𝑛𝑘𝑖 𝑗
) ∗ 𝑓 𝑟𝑎𝑐 𝑗

where 𝑓 𝑟𝑎𝑐 𝑗 is the fraction of indexes in which the document
𝑗 appears in the top-5 results, 𝑠𝑖𝑚𝑖 𝑗 is the cosine similarity score
between the embedding for the query and the document 𝑗 ′𝑠 repre-
sentation in index 𝑖 , 𝐼 represents the set of all indices and 𝑟𝑎𝑛𝑘𝑖 𝑗
represents the rank of document 𝑗 in index 𝑖 .

3 RESULTS
Recall performance is listed in Table 1 and the relative lifts in re-
call@k for various values of k and the different methods are pre-
sented in fig 2. As with re-ranking using LLMs, when relevance
identification is offloaded to the LLM, as expected, an LLM is highly
capable of identifying the top-1 and the top-2 results from the list of
top-5 results, however we observe diminishing gains for k>2. This
suggests that LLMs, while good at identifying the best of top-2 best
documents from a list, don’t particularly do well at exhaustively
ranking a list of results.

https://www.amazon.com/gp/help/customer/display.html?nodeId=GENAFPTNLHV7ZACW
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Figure 1: Software architecture of the indexing component
(1) AWS SQS queue collects newly modified documents (2) AWS Lambda processs the queued documents and orchestrates indexing steps 3-5 (3)
LLM in AWS Bedrock rewrites each input document in multiple forms (4) LLM model in AWS SageMaker produces an embedding for each
document rewrite (5) AWS OpenSearch builds an index for each style of rewriting

Figure 2: Recall@K performance comparison

Relative lift in Recall@k (%) over the baseline
Method k=1 k=2 k=3 k=4 k=5
HyDe 5.07 -2.97 -5.13 -7.37 -8.74
Query2Doc-CoT 5.67 -0.17 -2.74 -3.87 -4.85
Reranking-CoT 50.14 24.27 12.22 4.66 0.00
Multi-Index RRF
(ours)

13.78 8.21 9.78 9.55 7.31

Table 1: Relative Recall@K improvements of various meth-
ods

We find that our best performing single-index for dense retrieval
is indeed the short summary index that is produced by the LLM, in-
troducing highly relevant terms and brief sentences that are highly
representative of the high level semantic concepts in the document.
As an example, consider the query ’i am currently in school and
would like to try the amazon membership.’ Dense retrieval over the
default content index (baseline) ranks the ’Prime student’ document

and ’Join Prime student’ document in 1st and 3rd place respectively.
It ranks ’Sign up for Amazon Prime’ at the 2nd place.Whenmatched
with the short and long summary, the ’Join Prime student’ correctly
ranks in 1st place with a much higher score. This document also
ranks 1st in theQuestions and tags index and consequently is ranked
1st in the multi index setting. The text encoded as part of the Join
Prime Student document across all indices is shown below. The
embedding based on the summary of the document, and its tags
and questions is much more representative of the concept "joining
prime student", while in contrast, the embedding obtained from
the raw document content is closer to the concept "verify student
status" because of the nature of the exact text in the document. The
text in the document actually contains quite a few sentences dedi-
cated to verifying student status even though the high-level goal is
to list steps to join Amazon Prime Student. Here is the example of
the above self-help content represented across multiple indexes:

Content Index: Content at Join Prime Student

LLM Summary: Students can sign up for a free 6-month
trial of Amazon Prime Student membership. To join,
students go to the Prime Student website, fill out
a form, and verify their email. The trial includes free
2-day shipping and other benefits like streaming media,
music, photo storage, and discounts. Students can use
a non-.edu email but may need to resend a verification
email. Current Prime members get a refund for remaining
time and Prime Student benefits cannot be shared.

LLM Short Summary: The article explains how to sign
up for a free trial of Amazon Prime Student, which is
Amazon’s prime program tailored for students enrolled
in college. It includes free 2-day shipping and other
benefits like free streaming and gaming perks. To sign
up, students need to verify their status by submitting
proof of enrollment, a .edu email address, or documents

https://www.amazon.com/gp/help/customer/display.html?ref_=hp_left_v4_sib&nodeId=GWMNXPTL3482JPHC
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Figure 3: Software architecture of the inference component (4) LLM model in AWS SageMaker produces an embedding for the input customer
query (5) AWS OpenSearch retrieves candidate documents from multiple document indices (6) AWS Lambda re-ranks all the top candidates
using algorithms such as modified RRF (7) LLM model in AWS SageMaker paraphrases the best matching document into a coherent answer

showing their age.

LLM questions and tags: Queries: ’How do I sign up for
Amazon Prime Student?’, "I’m a student, can I join
Amazon Prime?", ’Is there a student discount for Amazon
Prime?’, ’I am in college and I would like to trial out
the Amazon Student Prime membership program’, ’tags’:
’Prime Student Membership’, ’Student Prime’, ’Amazon
Prime for Students’, ’Sign up for Amazon prime student’

Simulated Online Results - In an experiment simulating a
week-long traffic on amazon.com, we observed a 0.25% decrease in
average agent Contact Per Customer (CPC) in response to improved
ranking results for customer queries. Contact Per Customer (CPC)
is an important business metric that stands as one of the proxies
for the effectiveness of our automated solutions, ranked self help
content being one of them.

3.1 Comparison to other approaches
We compare our approach of index-enhancement to:
1. Using an LLM to augment the query at run-time by introducing
expansion terms, Query2Doc [6, 11].
2. Using an LLM to transform the query to document space , HyDE
[3].
3. Using an LLM to re-rank an initial set of results, Reranker [10].

For Query2Doc and Re-ranking, we use 5-shot CoT prompting
with an LLM to generate query expansion terms and re-ranked
results. Multi-Index RRF (using 5-shot prompting) outperforms all
the compared approaches for Recall@5 performance while being
highly amenable to a production setting. Crucially, by re-using the
query embedding across the indices and parallelizing AWS Open

Search calls to multiple indices, we achieve these gains at no ex-
tra latency (the latency overhead introduced by RRF/any heuristic
re-ranking or filtering is negligible in this case). While re-ranking
using an LLM shows superior recall@k performance for K<3, its
performance is ultimately bounded by the quality of first stage
retrieval. As such, each of the presented methods can be used in
conjunction with the multi-index approach. In an industrial set-
tings, there are strict constraints on latency for ranking/retrieval
systems, rendering methods like HyDE or re-ranking with LLMs
infeasible (refer the qualitative plot in fig 4). With 50B+ LLMs, it can
consistently take over 0.8 sec to produce query transformations/
re-ranking with CoT which may not satisfy the latency constraints.
The multi-index approach makes documents available to query in
near-real time and once indexed, adds nearly no additional latency
cost during query-time inference.

4 SYSTEM DETAILS
System details during indexing time and query time are shown in
figure 1 and figure 3 respectively. To keep the documents up-to-date
with Amazon’s latest policies and offerings, a team of specialized
authors in Amazon Customer Service compose new or update ex-
isting documents. With the help of AWS SQS and AWS Lambda,
we fetch these document changes (including creation, update, and
deletion) in a near-real-time fashion with a configurable delay in
minutes (Step 1). Upon receiving a change, we enrich the index by
sending the document to an LLM hosted in AWS Bedrock to pro-
duce the various forms of rewrite. With parallel invocation, it takes
about 3 seconds for the LLM to rewrite a single document (Step 3).
We maintain a separate index for different forms of rewrite. The
updated document, in multiple rewritten forms, are then converted
into embeddings by the same model hosted in AWS SageMaker
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Inference (Step 4). Note that this is not the exact system we use in
production, and the diagrams here are for illustration purposes only
to build out a system that is functionally capable of the components
described.
The embedding model, which is shared across indices, creates one
vector per document, per rewrite form, and the vectors are then
collected into their respective indices with AWS Open Search (Step
5). Overall, the indexing micro-services make the new documents
searchable in about 2 minutes. During inference, we compute the
embedding of the customer query only once (Step 4), broadcast the
query embedding across multiple Open Search indices, and retrieve
the results in parallel (Step 5). Each of the parallel call returns its
own ranking of candidate documents, and we truncate the rank-
ing with a preset relevance score threshold to reduce noise from
irrelevant documents during re-ranking.
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A APPENDIX
A.1 Latency-Performance Tradeoff Schematic

Figure 4: Latency-Performance tradeoff schematic in the search pipeline
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