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ABSTRACT

Replay is a powerful strategy to promote learning in artificial intelligence and the
brain. However, the conditions to generate it and its functional advantages have
not been fully recognized. In this study, we develop a modular reinforcement
learning model that could generate replay. We prove that replay generated in this
way helps complete the task. We also analyze the information contained in the
representation and provide a mechanism for how replay makes a difference. Our
design avoids complex assumptions and enables replay to emerge naturally within
a task-optimized paradigm. Our model also reproduces key phenomena observed
in biological agents. This research explores the structural biases in modular ANN
to generate replay and its potential utility in developing efficient RL.

1 INTRODUCTION

Experience replay (Lin, 1992) is an important technique for online reinforcement learning (RL). By
storing past experiences in a circular buffer and training the agent on these experiences repeatedly,
experience replay improves sample efficiency and training stability (Schaul et al., 2015), and suc-
cessfully improves the performance of RL algorithms (Mnih, 2013; Mnih et al., 2015). There are
several works on how to design more sophisticated experience replay mechanisms, like hyperpa-
rameter tuning (Fedus et al., 2020), prioritizing replay with higher temporal difference (TD) error
(Schaul et al., 2015), or developing a generative replay model (Van de Ven & Tolias, 2018). How-
ever, given the significant efficiency gap between biological and RL agents, we explore whether
replay algorithms can be further improved by drawing inspiration from brain structures.

In neuroscience, replay is the reactivation of a sequence of place cells that encode recently experi-
enced locations. It has been observed in many brain areas during rest or sleep, from the hippocampus
(Buzsáki, 1986; Nádasdy et al., 1999) to the neocortex, including the prefrontal cortex (Peyrache
et al., 2009; Kaefer et al., 2020), visual cortex (Ji & Wilson, 2007), and motor cortex (Eichenlaub
et al., 2020). Some people believe it represents the ”virtual trajectory” in the brain that primar-
ily serves two functions: memory consolidation (Foster & Wilson, 2006; O’Neill et al., 2010) and
planning (Pfeiffer & Foster, 2013; Widloski & Foster, 2022). Its dynamic properties and functional
diversity have attracted significant attention in neuroscience research.

There are currently two focuses in this field: the emerging condition of replay and the function of
replay. Many models have been proposed to explain these two aspects. Some biophysical models
suggest that replay arises from the combination of past experiences and specific neuronal network
connectivity rules, such as asymmetrical synaptic connections (Tsodyks et al., 1996) and short-term
depression (Romani & Tsodyks, 2015). In addition to connectivity rules, task optimization provides
another way to understand the emergence of replay. (Krishna et al., 2024) proved that denoising
dynamics under task optimization could lead to offline reactivation of past experiences. Levenstein
et al. (2024) verified that only the network trained on multi-step predictive learning with recur-
rent connection and head-direction input can generate offline trajectories resembling replay. These
models are illustrative in that they connect conditions like circuit structures, task optimization or pre-
dictive learning to the generation of replay. However, they fail to explain the functional importance
of replay in the task.

On the other hand, experience replay provides good evidence that replay does have some importance
and helps learning. However, this approach is not ideal for exploring the conditions under which
replay emerges, as all replay of stored experiences is hard-coded and predefined. The model never
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finds a way to organize experiences and perform efficient replay without force. The gap between
these two research fields leads to the natural question of whether we could find some conditions un-
der which a model could naturally generate adaptive replay sequences with functional importance.
Identifying such conditions could provide important insights on how to design new reinforcement
learning agents that quickly adapt to the environment, given the present low efficiency of RL algo-
rithms and the unique advantage of biological agents in learning new tasks.

Recently, some studies have attempted to approach this problem within the RL framework. For
example, Mattar & Daw (2018) propose that a special variable called the expected value of backup
(EVB) determines the replay priority of different experiences, and the replay is accompanied by
Bellman updates which are essential for learning the value function and policy for the task. However,
because we cannot know EVB until we perform value iteration for the whole environment, and after
value iteration it seems unnecessary to use replay at all, the generating condition in there are still
some hard-coded constraints in this method.

In this article, we propose a model to circumvent hard-coded settings, provide some conditions as
a natural explanation for the emergence of replay, and then show the functional importance of our
generated replay sequences. In summary,

1. Based on two straightforward conditions, we develop a model capable of generating offline
replay activation.

2. Throughout the entire learning process of the flexible navigation task, the evolution of
replay spatial distribution of our model resembles that observed in real animals.

3. Through ablation experiments, we verify the functionality of replay by showing that the
exploration efficiency of our model surpasses that of models without replay.

4. We analyze the information that replay flow carries, and explain how replay can promote
efficient learning.

2 METHODS

Conditions to generate instrumental replay What could these conditions possibly be? The main
areas where replay occurs are the prefrontal cortex (PFC) and hippocampal formation (HF), usually
modeled as policy network and world model respectively due to their unique functions. Replay in
these two individual areas is often observed to be coordinated (”phase-lock”) when a new environ-
ment learning task is presented (Place et al., 2016). We hypothesize that communication between
these two areas is crucial for the generation of instrumental replay. Therefore, we propose two
conditions that could be implemented in RL agents:

Condition 1: Replay serves for reward maximization.
Condition 2: Replay is accompanied by communication between PFC and HF.

(1)

To achieve Condition 1, we employ the end-to-end RL framework without hard-coded design. For
Condition 2, our RL agent has a world model and a policy model, representing HF and PFC re-
spectively, and we add an additional information passage between these two models that is trained
alongside the policy network. This setting allows the agent to adjust the information communication
flow based on its influence on actions and expected rewards. Discussions about the plausibility of
these settings can be found in section 4.1.

Principle of designing different modules We preface the introduction of model structure with
key biological biases that we incorporate into our design.

Biologically, HF has abundant recurrent connections in its CA3 area (Le Duigou et al., 2014), which
is also thought to be a major area generating replay. Thus we implement a gated recurrent unit
(GRU) for HF. Besides, there are two main functions for HF. First, the HF is good at encoding the
environment structure (i.e. cognitive map) which can serve as a basis for path integration and flexible
navigation (Whittington et al., 2018). In our setting, the HF module learns to do this by predicting
the next location (path integration) and reward, based on history (hidden state) and environmental
information (input) (Figure 1A). The HF is also thought to store episodic memory (Whittington
et al., 2018; Battaglia et al., 2011), and in our model, it learns to memorize past reward history.
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Figure 1: A-C. Model structure. A The HF GRU module completes the task of path integration
and episodic memory. The PFC RNN module is responsible for decision-making. The information
passage between the PFC and HF only opens at rest. B. During mobility, the information passage
remains closed, and the HF and PFC modules operate independently. The place cell activation
reflects the real present locations. C. During immobility, the information passage opens. The HF
and PFC modules start to communicate with each other. The activated place cell output constituted
a replay sequence. D-F. Task setting. D. The agent should start from S, first get to checkpoint
C, consume a small amount of reward (0.5), and then arrive at goal G to get a large reward (1.0).
Directly moving to G will cause no rewards. E. A representative trajectory generated by the trained
RL agent. First, it reaches C and gets the small reward. The replay happens at this time. F. The
replay event in E.

The PFC is also modeled as a recurrent network (Figure 1A) due to the recurrent nature of the
real prefrontal cortex. The prefrontal cortex is thought to be the center for decision-making (Barra-
clough et al., 2004) and value encoding (Padoa-Schioppa & Assad, 2006), and in our task, it learns
to estimate values and select actions to maximize the expected reward using the hidden state and
environmental information.

To handle high-dimensional visual inputs, we use an ancillary Encoder module modeled by a con-
volutional neural network (CNN), simulating the sensory cortex (Figure 1A). Regarding replay, we
establish an information passage between HF and PFC. Because replay is only detected when the
subject receives a reward and stops to consume it (Igata et al., 2021), the information passage re-
mains closed during movement (Figure 1B) and opens when the agent receives a reward (Figure 1C).
During the agent’s movement, the PFC decides the agent’s next action (i.e., up, down, left, or right)
based on the input of environmental representation processed by the Encoder module. At this time,
it does not communicate with the HF module. Meanwhile, the HF maintains its own dynamics for
correct place cell activation and recent episodic memory (Figure 1B). When the agent receives a
reward, the two modules interact for several steps and influence each other through the information
passage. The reactivation of place cells in the HF is then probed and analyzed as replay.

Design of the HF Module The update formula of the HF module can be written as:
ht = fHF(Whht−1 + (1− Ireplay)Wh,in[ot, rt−1, at−1] + IreplayWh,rθt−1), (2)

[r̂t−k:t, Ĝ(s = 1 : m)t] = σ(Wh,outht). (3)
h is the hidden state of HF. Input consists of ot, rt−1, and at−1, which are the current partially
observable state, the previous reward and the previous action, respectively. Wh, Wh,r, Wh,in, and
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Wh,out are trainable parameters of neural networks. θ is the hidden state of the PFC. Ireplay indicates
the beginning of the rest period when replay and communication happens and input stops. fHF is
the activation function for the HF module. The HF module then anticipates a Gaussian distribution
peaked at the next location as well as rewards for recent steps r̂t−k:t. m = 5 × 5 is the number of
locations in this grid world. k = 10 is the length of the reward history the agent needs to remember.

The loss for structural learning can be written as the cross-entropy between the softmax output,
Ĝ(s)), and the real distribution, G(s): Lpred−loc,t = −

∑m
s=1 Ĝ(s) logG(s). To equip the HF

module with the reward structure of the environment, it predicts the reward of the next step, rt, with
the loss written as Lpred−r,t = |r̂t − rt|. The loss of memorizing rewards is calculated as the L1
difference between the remembered rewards and the actual rewards: Lmemory−r,t =

∑k
i=1 |r̂t−i −

rt−i|.

Design of the PFC Module The update formula of PFC could be written as

θt = fPFC(Wθθt−1 + (1− Ireplay)Wθ,in[ot, rt−1, at−1] + IreplayWθ,rht−1) (4)
[at, vt] = Wθ,outθt. (5)

θ is the hidden state of the PFC module. Input [ot, rt−1, at−1] and the indicator Ireplay are the same
as in Equation 2. Wθ, Wθ,r, Wθ,in, and Wθ,out are trainable parameters of neural networks. fPFC

is an activation function. The state value vt is also estimated by the PFC for training purposes. We
can see that replay is optimized because it changes the hidden state θt of the PFC and thus affects
the expected reward.

Training and Test Paradigm We first pre-train the world model HF and the Encoder using ran-
dom trajectories. Then the weights of the Encoder and HF are frozen, and we start training the PFC
module by proximal policy optimization (PPO) to maximize the reward. We conduct the following
analysis with all model weights fixed.

The reward settings during pre-training and training are the same. The reward is randomly chosen
from one of the nine locations in the center of the room, and the location is reset at a probability =
0.1 so that memorizing reward locations is helpful to finish the task. However, in the test stage, the
reward is the same as in the biological experiment.

3 RESULTS

3.1 BIOLOGICALLY SIMILAR REPLAY SEQUENCES EMERGE AFTER TRAINING

Task setting We use the animal experiment from (Igata et al., 2021) as a reference, in which a
rodent was trying to navigate to a dynamically changing reward location in an open area (Figure 1D).
First, the animal learned to run from the starting point S to checkpoint 1 (C1) to get a small reward,
and then run from C1 to G to get a large reward. Violation of the order would cause no return
at all (Figure 1D). When the stage of pre-learning was finished, the small reward was relocated to
checkpoint 2 (C2, Figure 2B), requiring the animal to learn a new optimal path (S-C2-G). This was
the beginning of the learning stage. Initially, the animal continued to take the path S-C1-G followed
by G-C2-G after failing to receive a reward at G. It then realized the existence of a shortcut (S-C2)
and gradually settled on it. The aim was to investigate changes in the relative amount of replay
sequences representing different parts of the room (”replay distribution” in this paper) during the
learning stage when the animal was trying to adapt to the change of reward location. They found
that the amount of replay of the original trajectory (S-C1, C1-G) decayed rapidly, while the shortcut
(S-C2) increased even before the agent adopted it (Figure 2C). This result could be evidence that
replay supports flexible navigation by exploring possible paths and strengthening better ones.

Simulation result We create a similar simulation environment as in (Igata et al., 2021). The
animal is replaced by an RL agent moving in a 5 × 5 open arena. As in the animal experiment, we
put the small reward at C1 and then relocate it to C2. Without adjusting the network parameters, and
simply by modifying the hidden states of the RNNs, the RL agent successfully identifies the optimal
path to the new checkpoint. (Figure 3A).
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Figure 2: A. Performance for the RL agent in the test period. B. Legends for C and E. Different
colors represent different parts of the room. C. Change of replay distribution for different segments
in the animal data, adapted from (Igata et al., 2021). D. Distribution of distances between adjacent
replay steps. E. Change of replay distribution generated by the RL agent.

The locations of C1 and C2 are the same as in the original experiment (Figure 2B). We first measure
the distribution of distances of adjacent replay steps (Figure 2D). Compared with the random level
or the model without pretraining, the optimized model shows a significant tendency to generate
adjacent replay steps. Therefore, it tends to generate continuous trajectories rather than random
skipping points.

We attribute each replay trajectory to one of the four paths in Figure 2B and then calculate the
relative fraction of the four paths at each time step, as the ”replay distribution” (See subsection A.1
for calculation details). The change in replay distribution of the RL agent (Figure 2E) closely mirrors
that of the rodent (Figure 2C) in two important aspects. First, the amount of replay of C2-G increases
and then drops down. Second, the amount of replay of S-C2 increases. Recalling that the animal
first took path S-C1-G-C2-G and then S-C2-G, This trend possibly reflects the animal’s focus from
”finding a plausible path” to ”finding an optimal path”. These results prove that the conditions
proposed in 1 are sufficient to generate replay.

3.2 ABLATION STUDY DEMONSTRATES THAT REPLAY HELPS LEARNING

To prove replay is functionally important, first, we replace the signal in the information passage to
be random noise or an all-zero vector. Because the information exchange between HF and PFC is
bidirectional, we carry out this replacement in both directions respectively and find that the perfor-
mance is only impaired when the information from HF to PFC is replaced by meaningless signals.
The information in the reverse direction is of no use (Figure 3A). This interesting finding echoes
some neuroscientific discoveries that brain wave in HF leads that in PFC in the task encoding stage
when phase lock between these two brain areas happens (Jadhav et al., 2016; Spellman et al., 2015).

Second, we replace the multi-step information exchange process with one-step information emission
and retrain the RL part, i.e. the PFC network and information passage (Figure 3C, left). We measure
the number of exploration steps it takes to get to the reward at the time when it’s relocated but the
agent continues to follow the old path S-C1 and fails to find it. The original model demonstrates a
significantly lower number of exploration steps and higher exploration efficiency compared to the
ablation models (Figure 3C, right). This suggests that multi-step information emission is superior
to single-step emission. We further mask varying numbers of replay steps from the final decision
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Figure 3: A. The total reward decreases when the signal from HF to PFC is replaced by random
noise (left) or all-zero vectors (right). B. The different number of replay steps is masked (right), and
the performance decreases monotonically as we mask more steps (left). C. The number of steps it
takes to find the new reward increases when the multi-step information emission is replaced by one
step. D. The performance is impaired only a little when the order of information is shuffled.

point and replace them with random noise (Figure 3B, right). Performance decreases monotonically
as more replay steps are masked (Figure 3B, left). This proves that the information is incrementally
unrolled as a sequence during replay. When we shuffle the order of the messages sent during replay,
the performance is only slightly affected (Figure 3D), suggesting that the information may be sent
in the form of independent packages rather than a whole sequence.

3.3 INFORMATION FLOW DURING REPLAY ENTAILS INFORMATION ABOUT CONTEXT AND
ACTION PLAN

Thanks to the gray-box nature of AI, we can now extract the hidden states of each module and
analyze the information inside. We assume that, the PFC initially has no idea that the reward location
has switched from C1 to C2, but it changes its context encoding and gets to know this through replay.
To test this, we train a Gaussian Naı̈ve Bayes decoder to predict the reward location from the PFC’s
hidden states, and observe a gradual increase in decoding accuracy as the agent first encounters
the new reward location, which remains high with repeated encounters (Figure 4A, middle). The
analysis on HF hidden states has the same result (Figure 4A, left). This shows that replay helps
identify the new context quickly. Additionally, another decoder trained on the messages sent from
HF to PFC achieves high accuracy in predicting reward location. These results suggest that HF-PFC
information emission helps update memory.

We also train a Ridge Classifier to predict actions from PFC hidden states, and find that decoding
errors decrease significantly as the agent gets to the new checkpoint repeatedly. This shows that
replay helps form future direction intentions (Figure 4B). It’s important to note that the weights are
fixed during the entire test period, so the model learns how to use replay to update memory and form
plans to complete the flexible navigation task.

In the end, we investigate how replay guides the update of hidden states in the PFC using a ”stop and
scan” paradigm. When replay ends, we pause the real-time clock and allow the agent to explore the
map randomly for 100 steps, recording the PFC’s value output as its estimation of every location.
Finally, we plot the values of different locations in the whole map (Figure 4C). As predicted, the
high-value area shifts from S-C1-G to S-C2-G after the change of reward location (Figure 4E, left
and right are for S-C and C-G respectively). We then convolve the value map with a Difference of
Gaussian (DoG) filter. The filter has a positive peak at C2 and a negative peak at C1, which could
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Figure 4: A. Decoding accuracy for the reward location by activities in HF (left), PFC (middle),
and information passage (right), respectively. The X-axis is composed of three parts: the initial
stage before replay, steps 1-4 during replay, and the output stage after replay. B. Decoding error for
correct future actions from PFC activities after replay. Red, orange, yellow, and brown denote the
first, second, third, and fourth future action following replay. In A-C, darker colors represent the
agent’s first getting the relocated reward, while lighter colors represent the second time. C. Value
map produced through the “stop and scan” method. The C1 map represents the value before the
checkpoint change, and the subsequent value maps are when the agent gets to C2 repeatedly. D.
Value advantages of checkpoint 2 over checkpoint 1, calculated by convolving the value map with
a Difference of Gaussian (DoG) filter. E. Left, value advantage calculated as the value of the path
S-C2 minus the value of S-C1. Right, the value of the path C2-G minus the value of C1-G.

measure the relative advantage of the area around C1 to C2. The result that the advantage changes
from negative to positive confirms the conclusion above (Figure 4D).

3.4 MANIFOLD ANALYSIS REVEALS THAT REPLAY FLOW BRIDGING BETWEEN CONTEXTS

To better visualize the dynamic changes in PFC activities, we perform a 3-dimensional principal
component analysis (PCA) on PFC hidden states during the whole trajectory (Figure 5A). Each
trajectory is composed of three stages: moving from the starting point to the checkpoint, getting the
reward and generating replay, and moving from the checkpoint to the goal. For visualization, we
only pick those stages that the animal finishes in four steps. Each step has a different color shown
at the bottom. We connect the centers of the data point groups of each step to form an average
trajectory. We use two distinct colors to differentiate activities during replay and the real movement.
For example, in the left figure, we use red to denote the PFC hidden states during movement and
green to denote hidden states during replay. The red continuous dots are separated by the green
dots just like how a real trajectory is separated by replay. We use gradually darker colors in each
trajectory to represent the gradually increased time steps, shown at the bottom. In the left and right
figures, the reward is at a known point, and we can see the PFC hidden states constitute an orbit.
In the middle figure, the agent first ”thinks” the reward is at C1, then changes its mind and starts to
explore, and finally finds C2, and the PFC hidden states settle on the new orbit. Replay connects
two low-dimensional context subspaces. The activities during random exploration when the animal
cannot find the reward are too dispersive to see clearly, so we don’t show them here.

Then we analyze the dimensions of different subspaces spanned by PFC hidden states. The dimen-
sion is defined as the first index of PC whose accumulated explained variance (AEV) reaches 70%.
Figure 5B is a representative AEV figure of PCs of PFC hidden states during replay when the agent
finds the relocated reward. The dimension of this subspace is 2. Similarly, we show the subspace
dimension of PFC hidden states only during replay (Figure 5C, left), or in the whole trajectory (Fig-
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Figure 5: Manifold analysis reveals the context-switch process in detail. A. The 3D embedding of
the “neural” manifold through dimension reduction of PFC activities when the small intermediate
reward stays at C1 (left), the agent meets the relocated reward at C2 for the first time (middle),
and the agent meets C2 for the second time (right). The highlighted trajectory represents the neural
manifold at the corresponding stage, but the other trajectories are also plotted for comparison. B.
AEV of different PCs of PFC activities during replay when the agent first finds the new reward. C.
Left, the dimension of the PFC activities during replay (virtual experience) when the threshold for
AEV is set to 70%. Right, the dimension of PFC activities during both movement and replay. The
results are the same. D. The mean square distance of data points to their KNN centroids calculated
from hidden states in HF and PFC during movement.

ure 5C, right). When the reward location changes, the all-state subspace dimension briefly increases
to 3 and then drops back to 2, indicating a more complex subspace during the context switch. If
we consider one ”context orbit” as a 2-dimensional circle, then switching between these two orbits
would produce a 3-dimensional curve, This is a rough and intuitive understanding.

We also evaluate the trajectory stability during the context switch. We first perform the K-Nearest
Neighbour (KNN, K = 20) algorithm on hidden states during movement to find the centroids for
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the data points. Then we calculate the mean square distance of data points from their KNN centroids
(Figure 5D) as the variance of the hidden states. The variance increases briefly during the context
switch and then drops back when the agent gets to C2 for a second time. K = 8 gives out the same
result. This shows that the first encounter of the new reward is accompanied by an unstable and
dispersive trajectory. And the trajectory becomes more stable in the following time.

4 DISCUSSION

In this article, we have demonstrated that biologically similar replay can emerge from the interaction
between the HF module and PFC module within a task-optimization framework. We show that
replay in our model is actually a form of multi-step information emission from HF to PFC. Then
we show that during replay, the context is updated both in HF and PFC, and the cognitive map and
future plan are updated in PFC. Therefore we describe how replay helps learning. At last, we plot
the manifold to give a more intuitive understanding. See Appendix A.3 for reproducibility results.

4.1 PLAUSIBILITY

Conditions Our two sufficient conditions (1) are inspired by neuroscientific research. For Con-
dition (1), studies have shown that blocking replay impairs spatial learning (Jadhav et al., 2012;
Girardeau et al., 2009; Ego-Stengel & Wilson, 2010). The presence of task-focused replay can pre-
dict the accuracy of following decisions (Ólafsdóttir et al., 2017). Replay is modulated by reward
(Ambrose et al., 2016; Liu et al., 2021; Michon et al., 2019), and is associated with reward-guided
updates of internal models based on past experiences (Carey et al., 2019).

For condition (2), the interaction between HF and PFC during replay is supported by a lot of evi-
dence. For example, replay is accompanied by sharp-wave ripples that synchronize the wave phases
of HF and PFC (Tang et al., 2017). Replay is thought to be the substrate of the continuous memory
transition from the hippocampus to the neocortex, namely memory consolidation(Kumaran et al.,
2016). Recent computational models also reveal that the communication between the world model
and policy network could help decision-making (Jensen et al., 2024).

However, there is some evidence that does not support this hypothesis as a generating condition
for replay. For example, Kaefer et al. (2020) reported PFC replay that is strongly associated with
rule-switching performance but is independent of HF replay. As we do not measure PFC replay, it
may be that not replay but other PFC activities in our model. Future work could design experiments
to make this clear.

The segregation of HF and PFC during movement The notion that the HF and PFC are entirely
segregated during movement may seem somewhat implausible. We acknowledge that this highlights
a limitation of our model’s fidelity to realistic biological settings. However, we focus on replay
which occurs only at rest. During mobility, the HF and PFC could communicate with each other
not by replay but by theta waves, which are thought to be mainly driven by external signals and
involve only nearby place cells’ firing, rather than a global sequence. Allowing the two modules
to communicate during movement might add unnecessary details less relevant to the problem we
want to analyze. However, it would also be exciting to see how adding biological details could still
produce the phenomena we want and how different factors interact with each other.

The difference of PFC from the striatum Previous RL theories for animal behaviors also em-
phasize the striatum as the center for model-free learning. The dorsal lateral striatum (DLS) and the
ventral lateral striatum (VLS) correspond to the actor and critic parts in the classical Actor-Critic
algorithm. The dopamine serving as TD signal is calculated in the ventral tegmental area (VTA)
and drives synaptic plasticity in the whole network (Montague, 1999). Does this role of striatum
overlap with PFC? Wang et al. (2018) proposes a meta-reinforcement learning model where PFC is
the inner-loop ”fast” learner and the dopamine system is the ”slow” learner. We think it’s also useful
to consider the training process involved weight changes as a kind of dopamine learning, and later
context identifying and following decision-making involved hidden state changes as PFC learning.
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4.2 HOW REPLAY PROMOTES LEARNING

The classical view posits that replay aids value-based reinforcement learning (Liu et al., 2021; Foster
& Wilson, 2006; Mattar & Daw, 2018; Ambrose et al., 2016), and our model provides a concrete
implementation supporting this view. In our model, cognitive map modulation in the PFC changes
as a result of replay and then stabilizes (Figure 4). A value-modulated cognitive map in the PFC
is reminiscent of value and task structure representations in the orbitofrontal cortex (OFC) (?Zhou
et al., 2019; Padoa-Schioppa & Assad, 2006), a part of PFC. Our work suggests these representations
could combine as a value function (V function) to guide decision-making. Our PFC cognitive map
is formed with the help of HF, which also aligns with previous findings (Mızrak et al., 2021).

Despite those model-free components, our model should still be classified as model-based. The
main difference from AI model-based methods is that they sample from the distribution learned by
the world model and use these samples to improve the policy. The advantage is that it could provide
gradients for the sampling process and have the gradients of the reward loss directly back-propagated
to the policy network. Our method, however, doesn’t design how the world model should help the
policy network. The replay in our model is similar to a sampling process and maybe gradients are
propagated through this process but future work needs to make this clearer. Recently Jensen et al.
(2024) explores the model-based explanation of replay, but they also have an explicit design that the
samples from the world model are directly taken as input to the policy network.
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Figure 6: Calculation of replay distribution

A APPENDIX

A.1 CALCULATION OF REPLAY DISTRIBUTION

Replay is defined as the sequential activation of place cells. Therefore, a replay trajectory would
represent a path in the room. We determine the attribution of replay by calculating the overlapping of
our replay with different parts of the room (Figure 6 left). Equal overlapping would cause exclusion
of that trajectory. Finally, the numbers of replay trajectories representing each part of the room are
normalized to get the spatial distribution of replay, namely ”replay distribution”.

The rule we use is a little more complicated. Each part of the room is divided into two segments
with scores that equal to 1 and 0.5 respectively. subsection A.1 provides a concrete example. The
red trajectory is one replay.

A.2 ANNOTATION FOR FIGURES

All error bars indicate ±1 standard error.

In Figure 4, for all decoding tasks, 80% of the data is used for training and 20% for testing. The
Gaussian Naı̈ve Bayes and Ridge Regression methods are used to decode the reward location and
future directions respectively. Each step has an independent decoder, and they do not share training
sets.

In Figure 5C, measurements are repeated for 10 times with different seeds. The results are the same.

A.3 REPRODUCIBILITY

We repeat the experiments across different seeds, and the result has been presented in the main text.
Then we retrain the RL across different seeds and different numbers of replay steps, the result is
shown in Figure 7.

A.4 TRAINING CURVE OF MULTIPLE AGENTS

The RL agents are tested every 5000 steps. The training curves are shown in Figure 8. The model
without HF clearly receives fewer rewards than the other models.
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Figure 7: A-F. Changes of replay distribution across different seeds or different numbers of replay
steps, like in Figure 2E. They have the same trends that the replay of green parts first increases and
then decreases, and yellow parts keep increasing. A. Seed = 1. B. Seed = 2. C. Seed = 3. D. Seed
= 4. E. Number of replay steps = 2. F. Number of replay steps = 6. G. Exploration steps as in
Figure 3C. The model without replay suffers from lower exploration efficiency.
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Figure 8: Training curve of different models
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