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Abstract
We consider the problem of learning to rank from
pairwise comparisons in the presence of contex-
tual preference reversals. Preference reversal is a
phenomenon well studied in the social psychol-
ogy and cognitive science literature where users
are known to reverse their preference over a pair
of alternatives when a carefully chosen third al-
ternative is also presented in the list from which
they are required to make a choice. This perti-
nent effect has been largely ignored in standard
representation learning models for pairwise com-
parisons. In this work, we propose a flexible
pairwise comparison model capable of modeling
the preference reversal effect. We show that the
model is rich enough to capture intransitive pref-
erence relations that arise due to reversals. We
develop a coupled interpretable neural network
based algorithm that learns embeddings for the
items from pairwise comparisons. Our network
is interpretable as one part of the network learns
the standard transitive score based Bradley-Terry-
Luce (BTL) Model while the other part explicitly
learns the preference reversal effect. We perform
experiments to show the efficacy of the proposed
network on synthetic datasets against a standard
spectral ranking based algorithm and a standard
deep network in terms of prediction accuracy on
a held-out dataset and the ability of the model to
capture intransitive relationships.

1. Introduction
The problem of ranking a set of items from pairwise com-
parisons is a classical problem that has been studied in many
applications. It is used in sports (Cattelan et al., 2013) to
predict which team/player is more likely to win the tourna-
ment, aggregating social opinions, machine translation for
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ranking a set of hypothesized translations(Duh & Kirchhoff,
2008), in recommendation systems (Gleich & Lim, 2011)
and many others.

Formally, given a set of binary comparisons among n items
where for every pair (i, j) that is compared, item i is cho-
sen as the winner with probability Pij and the goal is to
infer a ranking that aggregates the given comparisons. The
matrix P ∈ [0, 1]n×n is the underlying probability prefer-
ence matrix. This matrix is generally unknown. The task
of obtaining optimal rankings is NP-Hard for general pref-
erence matrices, even in the case when the true underlying
preference matrix is known (Charbit et al., 2006). Being
an NP-Hard problem for a general P, previous works have
tried to impose various parametric assumptions on the pref-
erence matrix and then develop algorithms tailor-made for
such models.

Popular parametric pairwise comparison models include the
BTL Model (Bradley & Terry, 1952; Luce, 1959) and Thur-
stone Model (Thurstone, 1927) where Pij solely depends
on items i and j without taking into account the rest of the
items in the set. However, this may not always be true, and
it has been studied that the presence of more items in a set
indeed does affect the comparison between two particular
items. One such effect is the contextual preference reversal
effect, wherein a human choice maker reverses her prefer-
ence between two items when further options are added to
the set (Huber et al., 1982; Huber & Puto, 1983; Pettibone
& Wedell, 2007; Soltani et al., 2012).

The general setting considered for a preference reversal
involves every item having a two-dimensional embedding
[p, v] interpreted as the item having a value v with probabil-
ity p so that the expected value of the item is pv. There is a
taxonomy of contextual preference reversal effects based on
the relative positioning of the items on the p− v curve.

Attraction Effect(Howes et al., 2016a) occurs when there
is a relative increase in the selection of item A over item
B, in comparisons between A and B, despite both items
having the same expected value, when a third item C is
introduced that is dominated by item A in both attributes
but not by item B. Apparently, the presence of item C exerts
an attractive influence on the choice of item A.

Similarity Effect(Howes et al., 2016a) occurs when there

1



Learning from Pairwise Comparisons Under Preference Reversals

is a relative increase in the selection of item B over item A,
despite both items having the same expected value, when
a third item C, also with the same expected value, is intro-
duced but positioned closer to the item A.

2. Related Work
Preference Reversals: In cognitive science, there have
been many attempts to explain the phenomenon of prefer-
ence reversal from a psychological point of view. (Tversky
& Simonson, 1993) proposed an explanation by delineating
two psychological processes: a background process that in-
fluences decision-making by considering the overall context
and a comparison process that accounts for the immediate
local context.

An alternative theory explaining preference reversals is pro-
vided by Decision Field Theory (Busemeyer & Townsend,
1993), which was initially developed as a framework for
explaining the process of deliberation and the gradual forma-
tion of preferences over time during decision-making. This
model was subsequently extended by (Roe et al., 2001) to
account for contextual preference reversals. The model uti-
lizes a connectionist network that progressively aggregates
preferences for each option while the decision maker’s focus
probabilistically transitions between the various options and
their respective attributes.

(Bhatia, 2013) introduces the associative accumulation
model, a process-oriented framework for decision-making
that accounts for several effects, including contextual pref-
erence reversals. This model attributes this to different de-
grees of association between a feature and an option. More
precisely, the model proposes that features closely tied to
options enhance their accessibility, exert a greater impact
on the decision-making process, and subsequently shape the
choices made.

(Howes et al., 2016a) explain the preference reversal as a
rational computational choice by showing that the choices
made are actually the ones that maximize the expected value
of a certain computational model when the observations
made are noisy.

Learning to Rank from Pairwise Comparisons:

(Negahban et al., 2017a) proposed Rank Centrality to learn
the parameters of the BTL Model. It is a spectral algorithm
that constructs a Markov chain based on empirical pairwise
comparison probabilities and outputs the stationary distribu-
tion of this Markov chain as the estimate for the true BTL
scores. They show that with O(n log n) pairs with each
pair being compared O(log n) times, the estmated score is
close to the true scores of with high probability. However,
the algorithm has guarantees only for BTL Model, which
is a stochastically transitive model that too when all the

comparisons are faithful to underlying scores.

Several attempts have been made to build parametric intran-
sitive models. (Chen & Joachims, 2016) introduce a para-
metric preference learning model called the Blade-Chest
Model that represents each item as a multi-dimensional
vector where different dimensions can be considered as
accounting for different aspects of each item. Each item
is represented using two n-dimensional vectors called the
blade vector and the chest vector. A notion of matchup
functions is introduced, which takes in the blade and chest
vectors of two items and outputs a number representing the
advantage of one item over the other. This number is then
turned into pairwise probabilities using the sigmoid func-
tion. They perform real-world experimentations to show the
model indeed captures intransitivity.

(Makhijani & Ugander, 2019) introduce a simple model
called the Majority-Vote model that is capable of exhibiting
intransitivity by also inferring a multidimensional embed-
ding for each object. Specifically, their investigation focuses
on the 3-dimensional majority vote model and demonstrates
its capability in effectively modeling long cycles and ar-
bitrary triplets. Here, the pairwise probability of an item
i beating an item j in comparison is the probability that
the difference vector of the attributes of the items plus a
nose term is positive in at least two dimensions. In addition,
they establish the non-concavity of the log-likelihood for
any pairwise comparison model that assumes a parametric
representation for each item with the power to exhibit an
intransitive cycle.

(Rajkumar & Agarwal, 2016a) show that preference matri-
ces that lead to low-rank matrices when transformed using a
link function can give to intransitive tournaments with BTL
preference matrices being a strict subset of rank 2 prefer-
ence matrices under logit transformation. Building on this,
(Veerathu & Rajkumar, 2021) characterize the rank 2 tour-
naments in terms of the nature of the tournaments it contains
and develop a polynomial time algorithm to obtain optimal
rankings for this class of tournaments. In addition, they
introduce a pairwise comparison model called the Block-
Rank2(BR2) model. This model basically divides items into
a certain number of partitions. Within each partition, the
preference matrix is rank 2 under logit transformation, and
between the partitions, it behaves as a standard BTL model.

The cognitive science literature has aimed to offer psycho-
logical explanations for the phenomenon of preference re-
versal. Rank centrality fails for intransitive models. While
some of the models discussed here demonstrate intransitiv-
ity, none of them adequately explain the preference reversal
phenomenon. In this study, our objective is to develop a
pairwise comparison model that provides an explanation for
this phenomenon and propose an algorithm for learning this
effect from empirical data.
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Table 1. Performance for Different Algorithms under Decoy Model (Equation 1)

PDA λ
% OF RECOVERED

3-CYCLES
FALSE 3-CYCLES

INDUCED

OUR COUPLED NETWORK 98 3.25 0.42 29

RANK CENTRALITY (NEGAHBAN ET AL.,
2017B) 240 NA 0 0

STANDARD DEEP NETWORK 752 NA 0.17 5094

Table 2. Performance for Different Algorithms under BTL Model

UNIFORM DISTRIBUTION GAUSSIAN DISTRIBUTION

PDA λ PDA λ

OUR COUPLED NETWORK 130 0.0015 63 0.026

RANK CENTRALITY (NEGAHBAN
ET AL., 2017B) 110 NA 91 NA

STANDARD DEEP NETWORK 224 NA 271 NA

Figure 1. A Coupled Neural Network for learning the preference
Model

3. Problem Setting
Given a set of binary comparisons among n items, the task is
to infer a ranking that aggregates the given comparisons. As
discussed, all the models in the literature assume that when-
ever a pair of items (i, j) is compared, item i is chosen as
the winner with probability Pij where matrix P ∈ [0, 1]n×n

is the underlying probability preference matrix. This setting
implicitly assumes that the result of a comparison is only
dependent on the two items being compared. But we con-
sider a general setting where the comparison between two
items may potentially depend on all other items in the set.

Decoy: An item i is a decoy for item j if xi < xj(Howes
et al., 2016a). Here the inequality is to be interpreted coor-
dinate wise.

We propose the following parametric pairwise comparison
model to capture the contextual preference reversal effect.

Pij = σ

(
log(Si/Sj)︸ ︷︷ ︸

1

+
∑

Sk=Si

log
( ||xi − xk||2

||xj − xk||2
)
1(Si = Sj)︸ ︷︷ ︸

2

+
∑

k is a decoy for i

||xi − xk||2︸ ︷︷ ︸
3

−
∑

k is a decoy for j

||xj − xk||2︸ ︷︷ ︸
4

)

(1)

Here each item i has an attribute vector xi ∈ Rn accounting
for different strengths of an item. Si is the overall score of
an item which we define as the product of coordinates of the
vector xi. One can also work with the sum of coordinates
as the overall score of an item, but here we use the product
interpretation. The first term in the above equation is the
standard BTL Model (Bradley & Terry, 1952; Luce, 1959),
and the second term in the equation takes into account the
similarity effect. The third term counters for the positive
attraction effect while as the 4th term handles the negative
attraction effect (Howes et al., 2016b).
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Figure 2. Pairwise Disagreement Error: (Left) When the underlying model is BTL (U(0, 1)) (Right) When the underlying model is
Equation 1 (a) Train (b) Validation

3.1. Evaluation Metric

We use the standard Pairwise Disagreement Error (PDA)
(Rajkumar et al., 2015) w.r.t underlying preference matrix
P to measure the quality of the ranking σ̂ outputted by an
algorithm defined as follows:

dis(σ̂,P) =
∑
i<j

1

(
(i ≻P j) ∧ (σ̂(i) > σ̂(j)

)
+ 1

(
(j ≻P i) ∧ (σ̂(i) < σ̂(j))

)
where i ≻P j ⇐⇒ Pij >

1

2

(2)

The above measure essentially computes the number of pairs
where the ranking σ̂ and the preference matrix P differ. A
pair (i, j) differs in σ̂ and P if i is ranked higher than j by
σ̂ but Pij < 1

2 or the other way around. The goal of any
ranking algorithm is to minimize this. For stochastically
transitive models, this can be as small as 0.

In general, the task of identifying an optimal ranking with
respect to the above metric is computationally challeng-
ing, even when the underlying probability distribution P is
known. This problem corresponds to the NP-hard minimum
feedback arc set problem. Therefore, achieving an optimal
ranking based on the above metric can only be expected
under specific restrictive conditions on P. Notably, all the
conditions examined in the study by (Rajkumar & Agarwal,
2016b) assumed that the underlying graph is acyclic.

4. Algorithm
We consider a neural network based approach as shown in
Figure 1. The input to our network is a pairwise comparison
between two items i and j, represented as an n-dimensional
vector with 1 and −1 at indices i and j respectively if i is
the winner and vice versa. Rest of the co-ordinates of the
input vector are 0. The network is split into two components
which we call as the BTL Network and Decoy Network.
Rather than using a standard deep network for learning the

preference model, the idea of using a coupled network is to
make the network results interpretable. The BTL network
will learn the first term of Equation 1 i.e. the standard
BTL part, and the Decoy Network will learn the rest of the
Equation 1. The Decoy Network is left flexible to infer from
the data whether to give importance to other items while
comparing two particular items or not. This is controlled
by the λ parameter by which we are weighting the output
of the Decoy Network. Here λ is a learnable parameter
and the overall network is expected to learn a small lambda
when the underlying comparisons depend only on the items
being compared and in the case when the comparisons are
indeed affected by the presence of other items in the set, the
network will learn a significant lambda.

5. Results
The results presented here correspond to the following con-
figurations. In the case of our coupled neural network, the
BTL network was implemented as a single-layer fully con-
nected network without a bias term to replicate the BTL
Model (Bradley & Terry, 1952; Luce, 1959). On the other
hand, the Decoy network was constructed as a two-layer
fully connected network. The standard deep network uti-
lized in our experiments consisted of three fully connected
layers. Cross-entropy was employed as the loss function
for both networks and Stochastic Gradient Descent with a
batch size of 8 as the optimizer. The learning rate was set to
0.045 for our coupled network and 0.015 for the standard
network. These specific configurations were selected based
on the minimal error achieved after hyperparameter tuning.

We evaluated our algorithm through experiments conducted
on two synthetic datasets. In the first dataset, the pair-
wise comparison data was generated following the standard
Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952;
Luce, 1959). We considered 2-dimensional embeddings
for the items. Both coordinates of the embeddings were
generated from a uniform distribution U(0, 1) for one exper-
iment, while for another, they were generated from a normal
distribution N (0, 1). To ensure positive scores in the Gaus-
sian case, the exponential function was applied to transform
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the scores into BTL scores. In the second dataset, data
was generated according to the preference reversal model
defined by Equation 1 with embeddings from a uniform
distribution U(0, 1). In both cases, the dataset consisted of
100 items. When data was generated based on Equation 1,
the parameter λ was set to 5. The coupled network and a
standard deep network were trained using a 30− 20− 50
train-validation-test split. This split was chosen to ensure
we only O(n log n) pairs for the training. Both the models
were trained for O(log n) epochs amounting to O(log n)
comparisons per pair. We consider the product interpreta-
tion of scores with the score Si of an item as the product of
the coordinates of its embeddings.

As we can see in Figure 2, the coupled network is flexible
enough to learn both types of pairwise comparisons with
better performance as compared to a standard deep network.
A similar trend was seen for Gaussian distribution, and plots
have been excluded for redundancy. Also, for the BTL case,
the λ value learned by the model was of the order −2, while
in the case of Preference Reversal, the λ value was of the
order 1. We note that a low value of λ indicates a diminished
weight assigned to the Decoy Network, while conversely, a
high value of λ signifies an increased weight on the Decoy
Network. In addition, we note that the Standard Network
was also able to decrease the PDA for the preference model,
but it was able to recover only 127, 3-cycles out of 735
cycles compared to 312 by the coupled network. Detailed
results are shown in Tables 1 and 2. We note that the input to
Rank Centrality were all

(
n
2

)
pairs, and the PDA in Tables 1

and 2 is on the held-out test-set for all algorithms, including
Rank Centrality.

6. Conclusion
The relative proportion of selection of an item with respect
to another item has been assumed to be independent of the
rest of the items in the set in current pairwise comparison
models. But there are many effects including the preference
reversal effect that defy this assumption. So there is a need
for learnable parametric pairwise comparison models that
rely on the context of other items as well while compar-
ing a pair of items. In this work, we introduce one such
model. We also built a coupled neural network that learns
the parameters of this model and is interpretable. We have
tested it on synthetic datasets. We were not able to test it on
real-world data because of the non-availability of the data.
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