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Abstract
The proliferation of Large Language Models
(LLMs) has raised concerns over training data pri-
vacy. Membership Inference Attacks (MIA), aim-
ing to identify whether specific data was used for
training, pose significant privacy risks. However,
existing MIA methods struggle to address the
scale and complexity of modern LLMs. This pa-
per introduces OR-MIA, a novel MIA framework
inspired by model optimization and input robust-
ness. First, training data points are expected to ex-
hibit smaller gradient norms due to optimization
dynamics. Second, member samples show greater
stability, with gradient norms being less sensitive
to controlled input perturbations. OR-MIA lever-
ages these principles by perturbing inputs, com-
puting gradient norms, and using them as features
for a robust classifier to distinguish members from
non-members. Evaluations on LLMs (70M to 6B
parameters) and various datasets demonstrate that
OR-MIA outperforms existing methods, achiev-
ing over 90% accuracy. Our findings highlight
a critical vulnerability in LLMs and underscore
the need for improved privacy-preserving training
paradigms.

1. Introduction
The rapid advancement of Large Language Models (LLMs)
has undeniably revolutionized numerous fields, offering un-
precedented capabilities in natural language understanding,
generation, and reasoning. These models, underpinning
applications from sophisticated chatbots to automated code
generation, derive their power from being trained on vast
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and diverse datasets. Yet, this reliance on extensive training
data, which often includes sensitive personal, proprietary,
or copyrighted information, casts a significant shadow: the
potential for privacy breaches. As LLMs become more inte-
grated into our digital lives, understanding and mitigating
their privacy vulnerabilities is paramount.

Among the most direct and concerning privacy threats are
Membership Inference Attacks (MIA). An MIA aims to de-
termine whether a specific data point was part of the training
set of a target model. A successful MIA can have severe
consequences, ranging from exposing sensitive individual
records used in training a healthcare LLM to revealing con-
fidential corporate documents or proprietary code. Such
breaches not only violate individual privacy and intellectual
property rights but also erode public trust in AI systems,
potentially hindering their adoption and societal benefit.
The development of robust MIA, therefore, serves a dual
purpose: it highlights existing vulnerabilities that need ad-
dressing and provides a crucial benchmark for evaluating
the efficacy of privacy-preserving techniques, guiding future
research in this area (Biderman et al., 2023a;b; Andonian
et al., 2023; Bertran et al., 2023).

Despite extensive research on MIA in traditional machine
learning, their application to modern LLMs presents unique
and formidable challenges. The sheer scale of LLM pa-
rameters, the massive size of their training corpora, and the
complexity of their architectures often render conventional
MIA techniques ineffective. For instance, methods based
on loss functions (Yeom et al., 2018), while foundational,
tend to perform poorly on large-scale datasets typical of
LLMs. Similarly, approaches leveraging model compres-
sion or intermediate feature extraction (Carlini et al., 2021),
or those utilizing prediction uncertainty (Shi et al., 2023),
have shown improvements but still struggle significantly
when applied to LLMs, often failing to achieve success rates
substantially better than random guessing (Carlini et al.,
2019; 2021; 2023). Even more recent LLM-specific MIA,
such as those employing model perturbations like MoPe
(Li et al., 2023) or self-prompt calibration techniques for
fine-tuned models like SPV-MIA (Fu et al., 2024), face lim-
itations in generalizability and consistent success across
diverse and complex LLM structures. Consequently, many
existing MIA strategies, including LOSS, Zlib, and Min-K,
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Figure 1. Framework of our proposed membership inference attack method OR-MIA. (a) Examples of inference tasks for LLMs. (b)
Perturbation via Gaussian noise to generate perturbed inputs. (c) Gradient norm analysis and SVM-based classification to distinguish
members from non-members.

alongside these newer approaches, have notable limitations
and are often insufficient to pose a substantial threat to large
pre-trained LLMs (Black et al., 2021; Brown et al., 2020;
Carlini et al., 2022).

Motivated by these limitations, this paper introduces OR-
MIA, a novel and theoretically-grounded MIA framework
designed to significantly enhance attack efficacy against
LLMs. Our method, visually outlined in Figure 1, leverages
two fundamental insights related to model optimization and
input robustness: first, data points seen during training (Fig-
ure 1(a)) are expected to yield smaller gradient norms due
to the model optimization state; and second, these member
samples tend to exhibit more stable gradient norms under
controlled input perturbations due to greater input robust-
ness compared to non-members. OR-MIA operationalizes
these principles by systematically generating a series of per-
turbed versions for each target input sample. For both the
original and each perturbed input, we compute the L2 norm
of the gradients of the model loss function (Figure 1(b)).
This sequence of gradient norms, which captures both the
initial optimization state and the stability of this state under
perturbation, forms a distinctive feature vector. This vector
is then fed into a supervised classifier, such as a Support
Vector Machine (SVM), to infer the membership status of a
sample (Figure 1(c)).

Our contributions are threefold:

• A Novel Optimization and Robustness-Informed MIA
Methodology: We introduce OR-MIA, a theoretically-
grounded attack framework that uniquely synergizes in-
sights from model optimization and input robustness. By
systematically analyzing the L2 norm of gradients under a
sequence of controlled input perturbations, OR-MIA con-
structs a highly discriminative feature signature to identify
training data membership, moving beyond traditional re-
liance on static output statistics.

• Extensive Empirical Validation and Superior Perfor-
mance: We conduct comprehensive experiments across
a diverse suite of Large Language Models, ranging
from 70M to 6B parameters, and on multiple real-world
datasets. Our results consistently demonstrate that OR-
MIA significantly outperforms existing state-of-the-art
membership inference attacks, achieving substantial im-
provements in both attack accuracy and sample efficiency,
thereby establishing a new, more potent benchmark for
LLM privacy evaluation.

• In-depth Ablation Studies Yielding Novel Insights:
Through rigorous ablation studies, we meticulously dis-
sect the components of OR-MIA, empirically validating
our core hypotheses regarding the individual and com-
bined efficacy of gradient norm analysis and perturbation-
based robustness signals. These studies not only confirm
the mechanisms behind the success of OR-MIA but also
provide novel insights into LLM vulnerabilities, such as
layer-specific sensitivities to membership signals, deepen-
ing the understanding of how and where privacy leakage
manifests in these complex architectures.

2. Problem Setup
Membership Inference Attack (MIA), which poses a sig-
nificant privacy threat to machine learning models, aims
to determine whether a given data sample x was part of
the training dataset Dtrain used to train a target model fθ,
without direct access to Dtrain. In the context of LLMs, the
data sample x = (x1, x2, . . . , xT ) is a sequence of tokens
representing text or code, the label y is the next token to
be predicted, and fθ is an auto-regressive language model
that outputs a predicted probability of the next token given
a prefix, denoted as p(xt|x1, . . . , xt−1; fθ). Formally, the
MIA problem is a binary classification task: Given a data
sample x and access to the target LLM fθ, the attacker aims
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to predict a membership label z where z = 1 indicates x is a
member ofDtrain and z = 0 indicates it is not. Typically, the
attacker constructs a MIA score function s(x, fθ) based on
the behavior of the target LLM fθ to predict membership:

ẑ = I(s(x, fθ) < τ) . (1)

Here, τ is a decision threshold, which is optimized on a
separate validation set, Dval, to minimize the MIA error
rate. Obviously, the design of the function s(x, fθ) and the
selection of the threshold τ are critical for the efficacy of an
MIA. Of note, in this setting, we are assumed to have the
access to the parameter θ and the corresponding gradient of
the target LLM fθ, resulting from the increasing prevalence
of open-sourced LLMs.

Despite recent advancements on MIA, existing methods like
(Yeom et al., 2018; Carlini et al., 2021; Shi et al., 2023; Li
et al., 2023; Fu et al., 2024) often overlook the direct link
between a sample and the optimization state of the target
model, or how model robustness to input variations differs
for members versus non-members. Our approach, OR-MIA,
is designed to leverage these underexplored signals.

3. Optimization and Robustness-Informed
Membership Inference Attack

Our approach, OR-MIA (see Figure 1), is built upon two
complementary principles designed to probe the relationship
between a data sample and a trained LLM. We first take the
gradient norm as a direct indicator of the model optimization
state with respect to the sample (Sec. 3.1). We then assess
the model robustness to input perturbations, hypothesizing
that training samples exhibit more stable behavior (Sec.
3.2). These principles guide the design of our membership
inference algorithm (Sec. 3.3).

3.1. Gradient Norm as a Probe for Optimization State

Our first principle leverages the gradient norm,
∥∇θℓ(fθ(x), y)∥2, as a direct probe into the optimization
state of the model fθ concerning a specific input x. This
offers a more fundamental and dynamic signal compared
to static model outputs like loss or probabilities. While
outputs merely reflect the final fit and can be misleadingly
similar for members and well-generalized non-members
(making them inherently ambiguous), the gradient norm
captures the dynamics of optimization. Specifically, it
quantifies the model sensitivity to x and the magnitude of
the parameter update that would be driven by that sample,
revealing its potential influence on θ.

This sensitivity is intrinsically tied to the training history.
Gradient-based optimization methods (e.g., SGD, AdamW
(Loshchilov & Hutter, 2019)), which underpin most LLM
training, iteratively adjust parameters θ to minimize a loss

function ℓ. As formalized in Theorem 3.1, a necessary con-
dition for reaching a local minimum θ∗ is that the gradient
vanishes,∇θℓ(θ

∗) = 0.

Theorem 3.1. Let ℓ(θ) be a continuously differentiable
function. A point θ∗ is a local minimizer of ℓ if and only if:

∇θℓ(θ)
∣∣
θ=θ∗ = 0 . (2)

For a sample (x, y) present in the training set (Dtrain), the
optimization process directly aims to reduce ℓ(fθ(x), y).
Consequently, for a well-trained model, the parameters θ
have been specifically adjusted to accommodate these train-
ing samples. A direct consequence is that the gradient norm
computed for these samples is expected to be significantly
smaller than for unseen samples, approaching the zero con-
dition dictated by optimality:∥∥∇θℓ(fθ(x), y)

∥∥
2
≈ 0 for x ∈ Dtrain ,∥∥∇θℓ(fθ(x), y)

∥∥
2
> ϵ for x /∈ Dtrain .

(3)

Therefore, the L2 norm of the model gradients serves as a
theoretically-backed measure reflecting whether a sample
actively shaped the model parameters during training. This
provides our first key signal for distinguishing members
from non-members.

3.2. Perturbation as a Probe for Input Robustness

Our second principle leverages input robustness as a dis-
tinguishing characteristic between training members and
non-members. While LLMs trained on vast datasets achieve
remarkable generalization, the nature of their learned repre-
sentations and decision boundaries can differ significantly
for data seen during training versus unseen data. We are
motivated by manifold learning, i.e., machine learning mod-
els, including LLMs, implicitly learn a lower-dimensional
manifold on which the training data predominantly lies (Gor-
ban & Tyukin, 2018; Narayanan & Mitter, 2010). We hy-
pothesize that member samples, having directly shaped this
learned manifold and driven the optimization process, re-
side in regions of the input space where the model behavior
is inherently more stable and its decision function locally
smoother (Neyshabur et al., 2015). Consequently, when
subjected to controlled input perturbations, the model sensi-
tivity to its parameters, as quantified by the gradient norm,
should exhibit greater stability for these member samples.
Small perturbations are likely to keep members within or
near these well-characterized regions of the learned mani-
fold, leading to consistent gradient responses. In contrast,
non-member samples, which may lie further from this core
manifold, in sparser regions, or near more complex or irreg-
ular parts of the decision boundary, are anticipated to elicit
more volatile and erratic gradient norm responses under
similar perturbations, as the model navigates less familiar
or less smoothly defined input territories.
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Figure 2. Kernel Density Estimation (KDE) plots of decision scores for members (blue) and non-members (orange) for various MIA
methods on The Pile dataset using 3B. OR-MIA demonstrates significantly better separation between member and non-member
distributions compared to LOSS, Zlib, and Min-k, indicating a more effective decision boundary.

To operationalize this principle, we introduce controlled per-
turbations and observe the resulting gradient norm changes:

(a) Generate Perturbed Inputs. For a given input sample
x, we create a sequence of N slightly modified versions xi

(i = 1, . . . , N ). This is achieved by adding Gaussian noise
ξi ∼ N (0, σ2I) with increasing scale: xi ← x+ (i− 1)ξi.
In our experiments, we use N = 10 and σ = 0.1 (see
Appendix A.1). Note that x1 corresponds to the original,
unperturbed input (i = 1, scale is 0).

(b) Compute Perturbed Gradient Norms. For each per-
turbed sample xi, we compute the L2 norm of the gradients
with respect to the model parameters, using the original
label or target sequence y: gi = ∥∇θℓ(fθ(xi), y)∥2. This
yields a set of N gradient norms, G = {g1, g2, . . . , gN}.

This set G captures the change of gradient norms under
increasing input perturbation. According to our robustness
hypothesis, for member samples, we expect the values in
G (particularly g2, . . . , gN relative to g1) to exhibit less
variance or smaller magnitude changes compared to non-
member samples, which we will validate in our ablation
study in Appendix A.6. This stability profile therefore pro-
vides our second key signal.

3.3. Final Algorithm: Synergistic Classification

The OR-MIA framework synthesizes the insights derived
from both the optimization state (Section 3.1) and input
robustness (Section 3.2) into a unified membership inference
procedure. The core of the algorithm involves constructing a
feature representation based on the gradient norm dynamics
under perturbation and employing a supervised classifier to

distinguish between members and non-members.

Specifically, for each x, we first compute the sequence of N
gradient norms G = {g1, g2, . . . , gN} in Section 3.2. The
gradients used to compute these norms are derived from
a specific model layer (or set of layers) determined em-
pirically to maximize discriminability, typically selected
from the middle layers based on performance on a cali-
bration dataset, as informed by our ablation studies (Sec-
tion A.6). This sequence forms the basis of our feature
vector vx = (g1, g2, . . . , gN ) ∈ RN . This vector vx cap-
tures both the initial optimization state w.r.t. x (g1) and
the stability of gradient norm under increasing input per-
turbations (g2, . . . , gN ). We then frame MIA as a binary
classification problem, where the objective is to predict the
membership (member vs. non-member) of a sample x based
on its feature representation vx. For this purpose, we apply
Support Vector Machine (SVM), a well-established algo-
rithm effective for high-dimensional classification tasks. To
accommodate potentially complex and non-linear decision
boundaries in the feature space defined by vx, we utilize the
kernel trick within the SVM framework. Specifically, we
employ the RBF kernel:

k(vi,vj) = exp
(
−γ∥vi − vj∥22

)
, (4)

where γ is a kernel parameter. The RBF kernel allows the
SVM to implicitly map the feature vectors into a higher-
dimensional space, enabling the identification of non-linear
separation patterns between member and non-member rep-
resentations.

The SVM is trained on a dedicated calibration dataset con-
taining samples with known membership status (i.e., con-
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Table 1. MIA success rates across datasets and model sizes. Our OR-MIA consistently achieves the highest accuracy, demonstrating the
effectiveness of combining optimization state and robustness signals. Sample size for calibration/testing is 30 per class per run. We use
bold and boxed value to denote the best and second best performance on each dataset while under the same model size.

Dataset Method Model Size

70M 160M 1B 3B 6B

Arxiv

LOSS 0.531± 0.069 0.544± 0.039 0.561± 0.038 0.573± 0.042 0.587± 0.084
Zlib 0.543± 0.068 0.544± 0.061 0.608± 0.062 0.609± 0.059 0.631± 0.064
Min-k 0.528± 0.064 0.537± 0.072 0.562± 0.058 0.556± 0.051 0.586± 0.063

MoPe 0.724 ± 0.078 0.720 ± 0.043 0.734 ± 0.044 0.740± 0.048 0.624± 0.059
SPV-MIA 0.531± 0.062 0.543± 0.071 0.561± 0.060 0.563± 0.048 0.589± 0.062

OR-MIA (ours) 0.927± 0.068 0.941± 0.058 0.933± 0.047 0.933± 0.052 0.874± 0.048

↪→ w/o Perturb. 0.663± 0.058 0.669± 0.062 0.692± 0.049 0.779 ± 0.030 0.812 ± 0.061

HackerNews

LOSS 0.544± 0.067 0.569± 0.033 0.591± 0.074 0.612± 0.029 0.623± 0.059
Zlib 0.553± 0.059 0.588± 0.038 0.617± 0.042 0.618± 0.048 0.634± 0.040
Min-k 0.558± 0.038 0.556± 0.059 0.607± 0.037 0.627± 0.018 0.622± 0.051

MoPe 0.694 ± 0.092 0.714 ± 0.039 0.735 ± 0.028 0.728± 0.033 0.612± 0.063
SPV-MIA 0.557± 0.036 0.555± 0.060 0.609± 0.039 0.627± 0.019 0.624± 0.052

OR-MIA (ours) 0.921± 0.069 0.943± 0.053 0.944± 0.058 0.940± 0.039 0.979± 0.019

↪→ w/o Perturb. 0.642± 0.048 0.691± 0.039 0.712± 0.044 0.752 ± 0.043 0.794 ± 0.039

The Pile

LOSS 0.514± 0.076 0.538± 0.075 0.569± 0.070 0.581± 0.051 0.591± 0.068
Zlib 0.522± 0.029 0.544± 0.073 0.569± 0.047 0.609± 0.041 0.615± 0.044
Min-k 0.531± 0.069 0.554± 0.043 0.559± 0.067 0.613± 0.046 0.591± 0.070

MoPe 0.713 ± 0.063 0.734 ± 0.041 0.739 ± 0.031 0.746± 0.052 0.612± 0.052
SPV-MIA 0.532± 0.071 0.551± 0.038 0.561± 0.069 0.607± 0.047 0.591± 0.066

OR-MIA (ours) 0.957± 0.032 0.951± 0.038 0.950± 0.048 0.960± 0.031 0.946± 0.041

↪→ w/o Perturb. 0.671± 0.052 0.681± 0.039 0.699± 0.038 0.781 ± 0.021 0.778 ± 0.028

firmed members from Dtrain and confirmed non-members).
During training, the SVM learns the optimal separating
hyperplane (in the kernel-induced feature space) that max-
imizes the margin between the two classes. Once trained,
the SVM classifier assigns a membership score to a new
sample x based on its feature vector vx. This score is from
the decision function of SVM, which typically corresponds
to the signed distance of the sample feature vector from
the learned hyperplane in the transformed space. A higher
score indicates a higher likelihood that the sample x was
part of the original training dataset Dtrain. This final score
effectively integrates the information from both the initial
gradient magnitude and its stability profile under perturba-
tion, as optimally weighted by the trained SVM classifier.

4. Experiments
In this section, we empirically validate the effectiveness
of OR-MIA, our proposed optimization and robustness-
informed membership inference attack. We conduct a com-
prehensive evaluation across diverse datasets and LLM ar-
chitectures of varying scales. Our experiments are designed
to: (1) demonstrate the superior performance of OR-MIA
compared to state-of-the-art MIA baselines, (2) analyze the
distribution separation achieved by different methods, high-
lighting the discriminative power of our approach, (3) assess

the sample efficiency of OR-MIA, and (4) perform ablation
studies to dissect the contributions of the core components
of our method, namely the gradient norm signal and the
perturbation-based robustness analysis. Experimental setup
is detailed in Appendix A.2.

4.1. Main Results

Superior Attack Accuracy. Table 1 presents the primary
MIA success rates across all datasets and model sizes. OR-
MIA consistently and significantly outperforms all baseline
methods, often achieving accuracy above 0.90, approach-
ing near-perfect inference in several settings (e.g., 0.979
on HackerNews with LLaMa-6B, 0.960 on The Pile with
LLaMa-3B). This substantial improvement underscores the
efficacy of our core principles. Baselines relying solely
on output statistics such as LOSS, Zlib, or Min-k struggle,
especially on larger models where generalization might ob-
scure membership signals in outputs alone. Methods like
MoPe and SPV-MIA show improvements but are still con-
siderably outperformed by OR-MIA. Crucially, OR-MIA
also demonstrates a large margin over the "No Perturbation"
baseline (e.g., 0.933 vs 0.779 on Arxiv 3B, 0.979 vs 0.794
on HackerNews 6B). This directly validates the hypothesis
that incorporating the stability of gradient norm under per-
turbation (Section 3.2) provides a powerful, complementary
signal to the initial gradient norm magnitude (Section 3.1).
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Figure 3. Comparison of sample-size efficiency on LLaMa-3B. OR-MIA achieves high accuracy with significantly fewer calibration
samples compared to what would be expected from lower-performing baselines.

The feature vector vx capturing both optimization state
and robustness, combined with the non-linear classifica-
tion power of the RBF-SVM (Section 3.3), proves highly
effective at distinguishing members from non-members.

Enhanced Distribution Separation. To gain deeper in-
sight into why OR-MIA performs better, we visualize the
distributions of the decision scores (or underlying features)
for members and non-members. Figure 2 shows the Kernel
Density Estimation (KDE) plots of the final SVM decision
scores for various methods on The Pile dataset. OR-MIA
exhibits a remarkably clear separation between the member
(blue) and non-member (orange) distributions, with minimal
overlap. This contrasts sharply with baselines like LOSS,
Zlib, and Min-k, which show significant overlap, indicat-
ing poor discriminative power. This superior separation
arises directly from our methodology. As hypothesized in
Section 3.1, members tend to have lower initial gradient
norms g1, pushing their feature vectors vx in one direction.
Furthermore, as validated by Figure 2, members exhibit
significantly smaller changes in gradient norm under pertur-
bation compared to non-members. This robustness signal
(captured by {g2, · · · , gN}) provides an orthogonal dimen-
sion for separation. The T-SNE visualization in appendix
Figure 6 vividly illustrates this: without perturbation (left),
member and non-member clusters show considerable mix-
ing; with perturbation (right, representing the feature space
used by OR-MIA), the clusters become much more distinct
and separable. The RBF-SVM effectively learns a non-
linear boundary in this enhanced feature space (Equation 4)
to exploit both the lower magnitude and higher stability of
gradient norms for members, resulting in the clean separa-
tion observed in the KDE plots.

High Sample Efficiency. In practical MIA scenarios, the at-
tacker may only have access to a limited number of samples
with known membership status for calibration. We evaluate
the sample efficiency by varying the number of calibration

samples used to train the SVM classifier. Figure 3 shows the
attack accuracy as a function of the calibration set size for
the LLaMa-3B model across the three datasets. OR-MIA
demonstrates remarkable sample efficiency. It achieves high
accuracy (often > 0.70) with as few as 10-20 known samples
per class. This efficiency stems from the strong and infor-
mative nature of the feature vector vx. The initial gradient
norm g1 provides a direct, potent signal related to the op-
timization state (Section 3.1), which is effective even with
few examples. The subsequent components {g2, · · · , gN}
add robustness information (Section 3.2), making the overall
signal statistically reliable and allowing the SVM to learn
an effective decision boundary quickly, even from limited
data. This makes OR-MIA particularly potent in realistic,
data-constrained attack scenarios.

5. Conclusion
In this work, we presented a novel membership inference
attack methodology for large language models (LLMs),
combining gradient norm analysis and perturbation con-
fidence to significantly enhance attack success rates. Our
findings demonstrate that this unified framework effectively
addresses the limitations of traditional methods, achieving
robust performance across diverse datasets and model scales.
This work highlights the urgent need for re-evaluating
privacy-preserving strategies in LLMs, with implications
for both theoretical advancements and practical defenses.
We hope this study inspires further research into balancing
model performance and privacy in the era of large-scale AI
systems.
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A. Appendix
A.1. Related Work

Traditional MIA and their Limitations with LLMs. The
foundational framework for membership inference attacks
(MIA) utilizes multiple shadow models to simulate target
model behavior and extract data for the attack (Shokri et al.,
2017). This approach, however, assumes attacker access
to datasets with distributions identical to the target model
training data, a condition rarely met in practice. It has been
shown that while traditional MIA perform well on smaller
models, they falter against large language models (LLMs),
particularly in short sequence analysis where member/non-
member distinctions blur (Duan et al., 2024). Traditional
MIA, focusing on model fit to training data, overlook chal-
lenges posed by LLMs’ large-scale datasets, often perform-
ing near chance levels. This underscores the need to reassess
how model memorization of training data is evaluated in
LLMs (Lukas et al., 2023; Magnusson et al., 2023; Mattern
et al., 2023).

Gradient-based MIA and their Challenges in the LLM
Context. Gradient-based MIA have been proposed, achiev-
ing attacks by comparing gradient differences of jointly
distilled models (Carlini et al., 2021). While theoretically
promising, their practical application to LLMs has been
constrained by the massive scale and complexity of modern
models. More recently, GradDiff, a passive gradient-based
MIA, was introduced to federated learning and federated
distillation (Wang et al., 2024). Despite some improvements,
GradDiff struggles with the intricacies of LLMs, including
their highly structured and diverse input data. Gradient-
based methods often fail to capture the nuanced model be-
havior with respect to high-dimensional natural language.
The vast parameter spaces and sophisticated optimization
strategies in LLMs further complicate these methods, dimin-
ishing the directness and effectiveness of gradient informa-
tion for inferring specific data points (Meeus et al., 2023;
Min et al., 2023; Mireshghallah et al., 2022).

Emerging LLM-Specific MIA and their Current Fron-
tiers. Recent works have developed new MIA methods
specifically targeting LLMs. E.g., MoPe uses perturbations
to explore privacy leakage but faces limitations with com-
plex LLM structures (Li et al., 2023). SPV-MIA enhances at-
tack effectiveness on fine-tuned LLMs through self-prompt
calibration (Fu et al., 2024). However, challenges persist,
particularly with very large-scale LLMs and fine-tuning on
diverse task-specific datasets (Black et al., 2021; Brown
et al., 2020; Carlini et al., 2022). Concurrently, the aggre-
gation of MIA scores across multiple documents has been
demonstrated to successfully perform MIA at the dataset
level, offering a practical technique for broader inference
(Puerto et al., 2024). While these approaches advance MIA
research, they still encounter scalability issues and highlight

the need for further refinement to handle the complexity of
modern LLMs.

Addressing these limitations, this paper introduces a novel
gradient-based MIA enhanced by perturbation confidence.
We systematically perturb samples multiple times to amplify
prediction uncertainty, thereby exposing LLM sensitivity to
such changes. This approach aims to provide more reliable
insights into model memorization and significantly improve
attack efficacy against large-scale LLMs.

A.2. Experimental Setup

Datasets and Models. We evaluate MIA performance
on three widely used text corpora: Arxiv (scientific pa-
pers), HackerNews (online discussions), and The Pile (a
diverse large-scale dataset). We target LLMs from the Pythia
suite (Biderman et al., 2023b) with varying parameter counts
(70M, 160M, 1B) and LLaMa models (LLaMa-3B, LLaMa-
6B), representing a range of model capacities and architec-
tures prevalent in open-source LLMs.

Evaluation Metric. We report the standard MIA success
rate (Accuracy), defined as the proportion of samples cor-
rectly classified as either member or non-member. Results
are averaged over multiple runs (e.g., 5 runs), and we report
the mean ± standard deviation. A random guess corre-
sponds to an accuracy of 0.5.

Implementation Details. For OR-MIA, we generate N =
10 perturbed samples per input using Gaussian noise with
σ = 0.1, as detailed in Section 3.2. The feature vector is
computed using the L2 norm of gradients w.r.t. all model
parameters. We train a Support Vector Machine (SVM)
classifier with a Radial Basis Function (RBF) kernel (Equa-
tion 4) on a balanced calibration set of known members and
non-members (e.g., 1000 samples each). The number of test
sets is approximately between 10 and 100. Hyperparame-
ters for the SVM are tuned using cross-validation on the
calibration set.

A.3. Hyperparameters

The following hyperparameters were used in the training
and evaluation of the model:

• Random Seed (set_seed): The random seed was
set to 42 to ensure reproducibility of the experiments
across different runs.

• Model Name (model_name): The pre-trained model
stablelm-base-alpha-3b-v2was used for the
fine-tuning experiments.

• Maximum Sequence Length (max_length): The
maximum length for the tokenized input sequences was
set to 128, ensuring that input text sequences longer
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Figure 4. Layer-specific vulnerability to OR-MIA on Arxiv-3B. Attack accuracy is plotted as a function of the LLM layer from which
gradients are derived. The results demonstrate a non-monotonic relationship, with middle layers (e.g., 15th layer) exhibiting the highest
vulnerability, compared to shallower (e.g., 5th layer) or deeper (e.g., 30th layer) layers. Shaded areas indicate the max-min range over
runs.

than this value are truncated and shorter sequences are
padded accordingly.

• Batch Size (batch_size): A batch size of 8 was
used for both training and evaluation to balance be-
tween memory usage and computational efficiency.

• Learning Rate (lr): The learning rate for the Adam
optimizer was set to 1e-5, providing a fine-grained
adjustment of model weights during training.

• Number of Epochs (epochs): The model was
trained for 1 epoch. This number was chosen to ob-
serve the initial learning dynamics without overfitting
on a small dataset.

• Layer Freezing (freeze_all_layers): Initially,
all layers of the model were frozen to prevent weight
updates, and only specific layers were subsequently
unfrozen for training.

• Layer Unfreezing (unfreeze_layer): Specific
layers of the model were selectively unfrozen during
the evaluation process to assess their individual contri-
bution to model performance.

A.4. Justification for Fine-tuning on Preset Membership
Dataset

In this study, we fine-tune the model on a dataset of "preset
members" to ensure the model can properly identify whether
the data is part of the training set that the large language
model (LLM) was exposed to. This procedure is essential
for the following reasons:

Large Language Models May Not Contain Our "Mem-
ber" Data: When we load a pre-trained model from an
open-source platform, we are working with a model that has

been trained on a broad, general dataset, such as those col-
lected from web sources or public text. However, the data
we are interested in—referred to as "member" data—may
not be part of this pre-training dataset. This is because
the open-source model may have never been trained on
the specific dataset we are using. Consequently, without
fine-tuning, the model may not be capable of recognizing
or differentiating the "member" data, since it was never
exposed to this data during its original training.

The Role of Fine-tuning: Fine-tuning on a dataset con-
taining our "member" data allows the model to adjust its
weights to recognize patterns specific to this dataset. Even
though the pre-trained model has learned general language
patterns, fine-tuning enables the model to specialize in iden-
tifying whether a given input comes from the "member"
dataset or not. Without this fine-tuning step, the model will
lack the necessary internal representation to make accurate
membership determinations, as it was not trained on the
specific data that we consider as "members."

In summary, fine-tuning is essential to ensure the model
can distinguish between data that belongs to the training set
it was originally exposed to (i.e., "members") and data it
has never seen before. Open-source pre-trained models are
not guaranteed to have seen our specific data during their
original training process, so fine-tuning on a labeled dataset
is the only way to allow the model to identify membership
reliably.

A.5. Limitation

Despite the promising results presented by Normia, there
are several limitations that should be acknowledged. First,
while our method significantly enhances Membership In-
ference Attacks (MIA) on LLMs, it relies heavily on the
availability of a fully trained model, which may not always
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Figure 5. Impact of number of perturbation on OR-MIA accuracy
for HackerNews. Attack accuracy improves with increasing N ,
saturating around N = 10, validating the chosen number of per-
turbations. Shaded area indicates max-min range over runs.
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The Results ofArxiv on LLaMa-6B
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Figure 6. T-SNE of feature representations for members (blue) and
non-members (orange) on Arxiv-6B. Left: OR-MIA w/o perturba-
tion (using only g1). Right: OR-MIA (using {g1, · · · , gN}). The
feature vector incorporating perturbation stability leads to signifi-
cantly better separation in the learned feature space.

be practical or accessible in real-world scenarios. Addition-
ally, Normia focuses primarily on LLMs with a range of
parameter sizes, but it remains to be seen how it performs
across other types of models or in scenarios with extreme
data sparsity. Another limitation is the computational cost
associated with gradient norm calculations, which may in-
crease for larger models or datasets. Finally, although our
experiments demonstrate robust results across various set-
tings, further research is needed to assess the generalizabil-
ity of Normia to unseen types of LLMs and its ability to
withstand countermeasures designed to mitigate MIA.

A.6. Ablation Studies

To further understand the mechanisms behind the success
of OR-MIA, we conduct ablation studies focusing on the
key components of our method.

The Impact of Perturbation. We investigate the direct
impact of the perturbation strategy outlined in Section 3.2.
Specifically, we first examine the effect of the number of

perturbations N . Figure 5 plots the attack accuracy as N
increases from 1 (equivalent to "No Perturbation") to 15.
Accuracy rises sharply as the first few perturbations are
introduced, confirming that g2, · · · , gN add significant dis-
criminative information beyond g1. The performance tends
to saturate around N = 10, suggesting that this number of
perturbations adequately captures the relevant robustness
profile for distinguishing members from non-members, val-
idating our choice of N = 10 in the main experiments.
We then examine the T-SNE of feature representations of
our OR-MIA w/ vs. w/o perturbation for members and non-
members on Arxiv-6B in Figure 6 . The results show that the
feature space becomes more separable when perturbation
information is included, which strongly supports our hy-
pothesis in Section 3.2 that input robustness, measured via
gradient norm stability under perturbation, is a key differen-
tiator between members and non-members, and effectively
harnessing this signal is critical to the high performance of
OR-MIA.

The Effect of Layers. We investigate the role of model lay-
ers in membership inference attacks. Figure 4 demonstrates
that deeper layers consistently yield higher attack success
rates. However, an interesting phenomenon is observed: the
attack accuracy peaks in the middle layers of the model.
For instance, on Arxiv-3B, the accuracy increases from
0.68 in the 5th layer to 0.93 in the 15th layer, but declines
slightly to 0.87 in the 30th layer. This trend can be attributed
to the middle layers capturing the richest representations
during training, which facilitates better differentiation be-
tween member and non-member samples. The observed
phenomenon that middle layers exhibit higher attack accu-
racy can be attributed to the hierarchical nature of feature
learning in large language models. Prior studies, such as
on Transformer-based architectures, have demonstrated that
middle layers capture the richest and most abstract represen-
tations (Raganato & Tiedemann, 2018; Skean et al., 2024).
These representations provide better separability between
member and non-member samples, which explains the peak
accuracy of 0.93 at the 15th layer in Arxiv-3B, compared to
0.68 in the 5th layer and 0.87 in the 30th layer. This finding
underscores the importance of targeting middle layers to
maximize attack performance, as they encode more specific
information that is critical for distinguishing membership
status.

A.7. Justification for Fine-Tuning Membership Setup

In our experimental setup, we define member samples as
those included in a controlled fine-tuning dataset. This de-
sign choice arises from a practical constraint: the pretraining
data of open-source LLMs is typically massive, weakly doc-
umented, and inaccessible in labeled form. Therefore, it is
infeasible to obtain reliable membership ground truth from
the pretraining stage.
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Table 2. Runtime Cost Analysis of OR-MIA Across Model Sizes

Model Size Gradient Norm Calculation (s) SVM Training (s) Prediction (s) Total Runtime (s)

70M 115.23 1.01 0.67 116.91
160M 143.84 1.56 0.98 146.38
1B 178.56 3.12 1.42 183.10
3B 205.47 7.09 3.11 215.67
6B 263.23 14.52 5.35 283.10

To enable rigorous evaluation of membership inference at-
tacks, we simulate a realistic training scenario by fine-tuning
the target model on a known dataset and labeling those sam-
ples as members. Although these samples originate from
a fine-tuning stage, they fulfill the same functional role in
training as pretraining data in standard LLM pipelines —
they directly influence model parameters.

As a result, our OR-MIA attack does not merely probe fine-
tuning memorization; it targets the true training set of the
model under evaluation. The inference mechanism, based
on optimization and robustness signals, applies equally to
pretraining and fine-tuning members, provided that gradient
access is available and training exposure occurred. This
makes OR-MIA broadly applicable as a diagnostic tool for
detecting data leakage in both pretraining and fine-tuning
regimes.

A.8. Discussion: Potential Defenses

Although this work centers on exposing a novel vulnerability
in LLMs via optimization and robustness-informed mem-
bership inference, it is crucial to understand how existing or
prospective defenses might mitigate the threat.

Differential Privacy (DP). DP training algorithms, by de-
sign, introduce noise to gradients during model updates.
This noise could obfuscate the optimization signals (i.e.,
gradient norm magnitudes) that OR-MIA depends on, thus
potentially reducing attack effectiveness. However, strong
DP guarantees often come at the cost of model utility.

Gradient Clipping and Pruning. Techniques such as gra-
dient clipping or low-magnitude gradient pruning, widely
used in large-scale LLM training for stability, may inad-
vertently disrupt the gradient stability signals leveraged in
OR-MIA. These techniques could reduce the separability
between member and non-member features in our attack’s
embedding space.

While we do not evaluate these defenses empirically in this
work, they represent promising directions for mitigating
OR-MIA-style attacks. A comprehensive benchmark of
defense effectiveness remains an important avenue for future
research.

A.9. Runtime Cost Analysis

While the effectiveness of OR-MIA has been clearly demon-
strated, it is equally important to assess the computational
cost of the attack, especially as model size increases. This
section provides a quantitative analysis of the attack’s run-
time across various model sizes to better understand the
trade-offs between attack success and computational re-
sources.

We measure the runtime of the attack on models with pa-
rameter sizes ranging from 70M to 6B parameters. For
each model, we report the time taken to compute gradient
norms across a set of perturbed inputs, as well as the overall
time required for training the SVM classifier and making
membership predictions.

Experimental Setup. We evaluate the runtime of OR-
MIA on the following model sizes: 70M, 160M, 1B, 3B,
and 6B parameters. For each model, we calculate the time
taken to:

• Compute the gradient norms for each perturbed input
(using 10 perturbations per sample).

• Train the SVM classifier on a calibration set of 1000
samples.

• Make membership predictions for a test set of 5000
samples.

All experiments were conducted on a machine with an
NVIDIA A100 GPU and an Intel Xeon CPU.

Results. The following table summarizes the average run-
time (in seconds) for each of the components of OR-MIA
across different model sizes.

As shown in Table 2, the time required for gradient norm
calculation scales approximately linearly with the model
size, as expected, since the number of parameters influences
the complexity of gradient computation. Similarly, the time
required for training the SVM classifier and making predic-
tions also increases with model size, although the classifier
training time grows more rapidly for larger models due to
the increased number of feature vectors.
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Discussion. From the results in Table 2, it is clear that
OR-MIA remains computationally feasible for models up
to 1B parameters. However, as model size increases beyond
3B parameters, the runtime cost grows substantially. For
practical deployment, the attack could be computationally
expensive for very large models, such as 6B parameters,
especially if multiple attack iterations or a large number of
perturbations are needed.
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