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Abstract

We propose a novel algorithm for offline reinforcement learning using optimal
transport. Typically, in offline reinforcement learning, the data is provided by
various experts and some of them can be sub-optimal. To extract an efficient policy,
it is necessary to stitch the best behaviors from the dataset. To address this problem,
we rethink offline reinforcement learning as an optimal transport problem. And
based on this, we present an algorithm that aims to find a policy that maps states to
a partial distribution of the best expert actions for each given state. We evaluate
the performance of our algorithm on continuous control problems from the D4RL
suite and demonstrate improvements over existing methods.

1 Introduction

Deep reinforcement learning (RL) has shown remarkable progress in complex tasks such as strategy
games [51], robotics [37], and dialogue systems [39]. In online RL, agents operate in the environment
and receive rewards that are used to update policies. However, in some domains, such as healthcare,
industrial control, and robotics interactions with the environment can be costly and risky. For these
reasons, offline RL algorithms that use historical data of expert interactions with the environment are
more applicable. Given only a dataset of experiences, offline RL algorithms learn a policy without
any online actions [33].

Due to the off-policy nature of offline RL, naive training of online RL algorithms in offline settings
does not provide effective solutions [33]. This is primarily due to a distribution shift between the
learned and the behavior policy [15], which causes the instability of the critic function during off-
policy evaluation. To solve this problem and make actions of the learned policy more similar to the
one on which critic function was trained, a Behavior Cloning (BC) objectives was proposed [52, 33].

As an example of BC loss, Optimal Transport (OT) [50] distance has been introduced for RL. This
application of OT is particularly relevant because by minimizing the OT distance between policies, we
can efficiently clone the behavior [52, 11, 40, 34, 20, 9, 35]. But there is another problem, in offline
RL, the dataset often consists of various experts demonstrations. Some of these demonstrations may
be incorrect, or efficient only for certain parts of the environment. Consequently, cloning the behavior
policy in such scenarios may limit policy improvement [30]. To solve these types of problems, RL
algorithms need to apply stitching, which means that the algorithm selects the best action for each
state and recombines different trajectories provided by multiple experts [30].

In our paper, we rethink OT as a framework for offline reinforcement learning that aims to stitch the
best trajectories, rather than clone the policy. Unlike previous OT-based approaches in RL, we do
not introduce a new OT-based regularization or a reward function [11, 40]. Instead, we propose a
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novel perspective that views the entire offline RL problem as an optimal transport problem
between state and actions distribution (M3). By utilizing the Q-function as a transport cost and the
policy as an optimal transport map, we formalize offline reinforcement learning as a Maximin OT
optimization problem. This opens doors for applying recent advantages of OT methods to RL directly.
In particular, we propose an algorithm that trains a policy to identify the partial distribution of the
best actions for each given state.

Contribution: We proposed a novel optimal transport-based policy extraction method and provided
an analysis of its performance on various RL-based cost functions. The core of our method is the
Partial Policy Learning (PPL) algorithm, which efficiently identifies the best action for each state in
the dataset. We evaluated our method across various environments using the D4RL benchmark suite,
achieving superior performance compared to state-of-the-art model-free offline RL techniques.

2 Background and Related Work

2.1 Optimal Transport

Primal form of the optimal transport problem was first proposed by Monge [50]. Suppose there
are two probability distributions µ and ν over measurable spaces X and Y respectively, where
X ,Y ⊂ RD. We want to find a measurable map T : X → Y such that the mapped distribution is
equal to the target ν, for a cost function c : X × Y → R, the OT problem between µ, ν:

min
T♯µ=ν

Ex∼µ

[
c(x, T (x))

]
. (1)

where T♯ is the push forward operator and respectively T♯µ = ν represents the mass preserving
condition. Informally, we can say that the cost is a measure of how hard it is to move a mass piece
between points x ∈ X and y ∈ Y from distributions µ and ν correspondingly. That is, an OT
map T shows how to optimally move the mass of µ to ν, i.e., with the minimal effort. A widely
recognized alternative formulation for optimal transport was introduced by Kantorovich [22]. Unlike
the Monge’s OT problem formulation, this alternative allows for mass splitting. The Kantorovich OT
problem can be written as:

min
g∈Π(µ,ν)

E(x,y)∼g

[
c(x, y)

]
. (2)

In this case, the minimum is obtained over the transport plans g, which refers to the couplings Π with
the respective marginals being µ and ν. The optimal g∗ belonging to Π(µ, ν) is referred to as the
optimal transport plan.

Dual form of optimal transport, following the Kantorovich-Rubinstein duality [49], can be obtained
from (2) and written as:

max
f

Ex∼µ

[
f c(x)

]
+ Ey∼ν

[
f(y)

]
, (3)

where f : X → R and f c(x)=min
y∈ν

[
c(x, y)−f(y)

]
is referred to as the c-transform of potential

f [50]. For cost function c(x, y) = ∥x−y∥2, the resulted OT cost is called the Wasserstein-1 distance,
see [50, M1] or [44, M1, 2]. It was shown that to compute Wasserstein-1 distance, instead of computing
conjugate function f c we can simply consider f to be from the set of 1-Lipschitz functions[50, 1].

Maximin formulation for simultaneously computing the OT distance and recovering the OT map
T was recently proposed. According to [27], by applying the Rockafellar interchange theorem [43,
Theorem 3A], we can replace the optimization over points y ∈ ν with an optimization over functions
T : X → Y , which reformulates the problem (3) as a saddle-point optimization problem for the
potential f and map T :

max
f

min
T

Ex∼µ

[
c(x, T (x))− f(T (x))

]
+ Ey∼ν

[
f(y)

]
(4)

Using this formulation, significant progress has been achieved in utilizing neural networks for
computing OT maps to address strong [36, 24, 18], weak [27], and general [2] OT problems. Our
work is inspired by these developments, as we leverage neural optimal transport methods to improve
offline reinforcement learning.

Partial OT: In cases where it is necessary to ignore some data and map the input to part of the target
distribution, techniques like unbalanced or partial optimal transport are commonly employed [12, 4,
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17]. For example, partial optimal transport is useful in resource allocation problems where only a
subset of resources needs to be optimally allocated to match a subset of demands [12].

In our paper, we consider the partial OT formulation proposed by [17]. This framework, named
extremal OT, solves the partial alignment between the full input distribution and part of the target
distribution. Essentially, for Euclidean cost functions such as ℓ2, partial transport maps can be seen as
a tool for finding nearest neighbors (maximally close) to the input samples from the target according
to the cost function. Please see Figure 1 in [17]. Formally, this method can be written as:

min
T♯µ≤wν

Ex∼µ

[
c(x, T (x))

]
. (5)

We can call w a coefficient of unbalance. The intuition behind this formulation is as follows: when
w = 1, the constraint T♯µ ≤ wν is equivalent to T♯µ = ν. This equivalence holds because there is
only one probability measure that is less than or equal to ν, and it is ν itself. However, with values of
w ≥ 1, the mass of the second measure is scaled. Consequently, it is sufficient to match µ only to part
of the second measure ν to transfer the full mass contained in µ. Since the cost c is our objective, T
will tend to map to the samples from ν that are closest to the input distribution. It was shown that this
formulation can also be considered in maximin settings [17], which is the core of our method (M3.2).

2.2 Offline Reinforcement Learning

Reinforcement Learning is a well-established framework for decision-making processes in environ-
ments modeled as Markov Decision Processes (MDPs). The MDP is defined asM = (S,A, P, r, γ)
by the state space S, action space A, transition probability P (s′ | s, a), reward function r(s, a), and
discount factor γ. The goal in RL is to find a policy π(a|s) that maximizes the expected cumulative

reward over time t: J(π)
def
= Eπ[

∑∞
t=0 γ

tr(st, at)]. Also we define the distribution over the state
space following policy π as dπ(s). To estimate of the expected cumulative reward following a given
policy π the critic function Qπ is used:

Qπ (s, a) = r (s, a) + γEs′∼T (s,a),a′∼π(s′) [Q
π (s′, a′))

]
. (6)

In deep RL neural networks are used to parameterize critic Qπ
ϕ(s, a) and policy πθ. Critic can

be learned by minimizing the mean squared Bellman error over the experience replay dataset
D = {(si, ai, s′i, ri)}, which consist of trajectories implied by policy π:

min
Qπ

ϕ

E(s,a,s′)∼D

[(
r(s, a) + γEa′∼πθ(s′)

[
Qπ

ϕ(s
′, a′)

]
−Qπ

ϕ(s, a)
)2]

. (7)

Using a trained critic function we can recover a near-optimal policy, for example, using Deterministic
Policy Gradient (DPG) [45] or its improved version named Twin Delayed Deep Deterministic Policy
Gradient (TD3) [15].

Offline RL is a fully data-driven approach for decision-making problems. Conventional offline RL
algorithms use the (7) formula to recover the Q function, using data D collected according to the
expert policy β. However, due to distribution shift between actions from D and those induced by
policy π, the Q function may suffer from inefficiency and overestimation bias during evaluation [15].
To mitigate this issue, various offline RL algorithms with behavior cloning objectives was proposed.
See the related work section (M6) for more details.

OT in offline RL has been proposed primarily for efficient behavior cloning. Compared to BC/KL,
OT offers more flexibility, while including many building blocks to properly consider the geometry of
the problem. The simplest method of integrating OT into offline RL is by utilizing the Wasserstein-1
distance as the measure of dissimilarity between the learned and expert policies. This method is
known as the W-BRAC algorithm [52]. Given the critic function Q(s, a), the Wasserstein-1 distance
defined by f , and the behavior cloning coefficient α, we have
minπ max∥f∥L≤1 Es∼D,a∼π(s)

[
−Qπ(s, a)︸ ︷︷ ︸

Critic

]
+ α

(
E(s,a)∼D

[
f(s, a)

]
− Es∼D,a∼π(s)

[
f(s, a)

]︸ ︷︷ ︸
Wasserstein-1 distance

)
(8)

In real-world applications, collecting large and high-quality datasets may be too costly or impractical.
Due to that, the provided data it is often collected by many expert playing several near-optimal policies
and only a single expert can be optimal in dataset D. The formulation (8) has no mechanism to infer
the importance of each action, its just clone the entire data. Moreover, the problem is that computing
Wasserstein-1 distance is typically complicated [25], because the potential f is required to satisfy the
1-Lipschitz condition [1]. It is also important to note that the coefficient α is task-dependent[6].
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Algorithm 1 Partial Policy Learning
Input: Dataset D(s, a, r, s′)
Initialize Qϕ, πθ, fω , β
for k in 1...N do
(s, a, r, s′)← D: sample a batch of transitions from the dataset.
Qk+1 ← Update cost function Qπ

ϕ using the Bellman update in (2).
fk+1 ← Update fω using outputs of πθ and samples from dataset:
argminf −Es∼D,a∼πk(s)[f

k(s, a)] + wEs,a∼D[f
k(s, a)]

πk+1 ← Update policy πθ as a transport map: argminπ Es∼D,a∼πk(s)[−Qk(s, a)− fk(s, a)].
end for

3 Rethinking OT in RL

3.1 Considering RL as OT problem

To extend a connection and apply OT methods in RL, we can view the entire offline RL prob-
lem as an optimal transport problem. For this purpose, let’s consider (1). By replacing the cost
function c(x, y) with the critic Qπ(s, a) and treating our policy π as a map that moves mass
from the state distribution dβ(s), (d(s) for shorthand), to the corresponding distribution of ac-
tions given by the behavior policy β(·|s), we obtain a primal state-conditional Monge OT problem.
Es∼D,a∼π(s) minπ♯d(s)=β(·|s)[−Qπ(s, a)] which is equal to:

min{
π♯d(s)=β(·|s)

}Es∼D,a∼π(s)

[
−Qπ(s, a)

]
. (9)

The objective is to minimize the expectation of the negative critic function Qπ , (we can also consider
Qβ) while mapping exclusively to the distribution of actions given by the expert policy β.

Remark 1: In this formulation, the imposed equality constraints force the policy to mimic the
behavior of the expert policy. However, since the provided dataset often contains sub-optimal paths,
this formulation remains inappropriate for avoiding inefficient actions provided by the expert policy.

In the following subsection, we introduce an algorithm that integrates Partial Optimal Transport [17]
for deep RL.

3.2 Stitching with Partial OT

In many real-world applications, collecting high-quality datasets may be costly or impractical.
Therefore, offline RL algorithms need to select the best actions provided by the experts and ignore
sub-optimal ones. Our idea is that partial OT can help us deal with sub-optimal trajectories by
mapping states only to the most relevant parts of the action distribution with respect to the critic
function Q To obtain partial formulation of 3, instead of equality constraints, we need to consider
optimization problem with the following inequality constraints [17]:

min{
π♯d(s)≤w(β(·|s))

}Es∼D,a∼π(s)

[
−Qπ(s, a)

]
. (10)

As discussed in (M2.1), the parameter w scales the mass contained in the target distribution. For
values of w ≥ 1, the mass of the second measure is increased. Consequently, it is not necessary to
cover the full distribution β(·|s) to transport the Dirac mass given by d(s). As a result, a learned
policy (map) matches the state only to part of the action distribution β(·|s). This is particularly
relevant for offline RL, as the resulting policy will not clone all actions but will select only the most
optimal ones, where optimality is defined by the critic function Q.

Proposition 1: (Informal) for a critic-based cost function Qβ , an offline Policy trained by (10)
improves over the behavior policy β. Proofs are given an Appendix (M9.1).

To find a practical solution to the given problem using neural networks, we can also consider a
dual and maximin formulation for (10). The dual form for the partial transport problem[17] can be
expressed as

max
f≥0

Es∼D,a∼π

[
f c(s, a)

]
+ wEs∼D,a∼β

[
f(s, a)

]
. (11)
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To obtain the maximin formulation, we expand the c-transform (3) using the function Q as the cost
c. This operation can be represented as Es∼D,a∼π[f

c(s, a)] = Es∼D[mina {−Qπ(s, a)− f(s, a)}].
Subsequently, by applying the Rockafellar interchange theorem [43, Theorem 3A], we replace the
optimization over points a with an equivalent optimization over functions π : S → A. The solution
can be computed using neural approximations, which is useful for RL tasks

max
f≥0

min
π

Es∼D,a∼π(s)

[
−Qπ(s, a)︸ ︷︷ ︸

Cost

− f(s, a)
]
+ wE(s,a)∼D

[
f(s, a)

]︸ ︷︷ ︸
Constraints

. (12)

Remark 2: In the [17, Proposition 4] it was shown that f∗(s, a) = 0 vanishes on the outliers i.e
on the samples outside the scaled target distribution. The policy update in (12), can be written as
minπ Es∼D,a∼π(s)[−Q(s, a) − f(s, a)]. This reveals that if f(s, a) = 0 exclusively on the outlier
actions, it then applies extra weight to correct actions, which reduces the value of−Q(s, a)−f(s, a).

Remark 3: The value of w controls the size of the action space in which we map; the higher the
value of w, the smaller the subset[17]. When the actions are provided by a single expert, scaling w
can be detrimental to performance.

The primary distinction between our method (12), and previous OT for RL approaches, particularly
(8), is as follows:

• OT is not treated as a component of the problem or as a regularization term with a coefficient
of α. Instead, the entire policy optimization is considered as OT.

• Our formulation for computing OT does not necessitate 1-Lipschitz function constraints
on f , as it does not compute the Wasserstein-1 distance. Rather, it addresses a maxmin
OT problem with a critic-based cost function, where f can be any arbitrary scalar function
satisfying f ≥ 0.

• Unlike traditional OT approaches that fully aligns two distributions, our method maps only
to the part of the target distribution with the best actions with respect to the critic.

In practice, we use neural networks πθ : S → A and fω : S × A → R to parameterize π and f
respectively. These neural networks serve as approximators that can capture complex mappings of
states. We train these neural networks using stochastic gradient ascent-descent (SGAD) by sampling
random batches from the dataset D. At each training step, we sample a batch of transitions from the
offline dataset D and then adjust the value function Q, and the potential f , Then for the k update step,
given the last policy value function Qk, and fk, we update the policy, see Algorithm 1.

4 Toy Experiments

(a) (b) (c)
Figure 1: Toy experiments. (a) Left point S0 denoting start and ST is the only rewarded, target
location. Black curves visualize behavior trajectories β. (b) Best behavior policy β∗ according to the
data, and the optimal policy π∗ that provides the optimal (shortest path) solution. (c) Results of the
policy β trained by minimizing −Qβ(s, π(s))+BC and policy π trained by our algorithm 1.

To demonstrate the ability of our algorithm to extract the best policy from the sub-optimal behavior
trajectories, we constructed a simplified offline RL dataset. The goal is to find the shortest path from
a starting location S0 to a reward point ST , navigating through 50 intermediate states St uniformly
spaced along the x-axis from -1.3 to 0. The action space is continuous, with the agent’s task being to
determine the optimal y-values for the each x-coordinate. For the each intermediate state-action pair,
the reward is defined as negative Euclidean distance to the final state-action pair ST , AT .
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The offline RL dataset consisted of three sub-optimal expert trajectories, as shown in Figure 1(a).
The best policy that can be extracted by recombining the expert trajectories and an actual optimal
policy π∗ that provides the shortest path are highlighted in Figure 1(b).

We compared our method with the offline RL algorithm based on behavior cloning. For this, we
trained the critic Qβ by (2), using actions drawn from the observed behavior trajectories β presented
in the dataset D. Given Qβ , we minimize Es,a∼D[−Qβ(s, β(s)) + ∥β(s)− a∥2] to obtain the policy
β.1 Next, using the given critic function Qβ , we trained the policy π(s) using our algorithm with
parameter w = 8. Compared to offline RL 1(b), which produced average expert solutions, our
method demonstrated superior performance by extracting and exploiting the most strategic insights
from the data, maximizing the reward and ignoring all inefficient actions, see Figure 1(c)..

In all experiments, a single-layer neural network with 32 neurons and ReLU activation was used as
the configuration for both the critic and policy networks. For our method, we used a Lagrangian
network f(s, a) with similar parameters. There are 5000 steps was done for each network, with
Adam [23] optimizer with a learning rate (lr) of 1e-3.

5 D4RL Experiments

5.1 Benchmarks and Baselines

We evaluate our proposed method using the Datasets for Deep Data-Driven Reinforcement Learning
(D4RL) [13] benchmark suite, which is a collection of diverse datasets designed for training and
evaluating deep RL agents in a variety of settings. It includes tasks in continuous control, discrete
control, and multi-agent settings with a variety of reward structures and observation spaces. First, we
tested our method on the Gym’s MuJoCo-v2 environments, such as Walker, Hopper, and HalfCheetah.
We also tested our method on the complex Antmaze-v2 and Android-v1 environments.

To compare the performance of our proposed method, we selected four state-of-the-art offline RL
algorithms. These include Conservative Q-Learning (CQL) [32], Twin Delayed Deep Deterministic
Policy Gradient with behavior Cloning (TD3+BC) [14], Implicit Q-Learning IQL [28], ReBRAC [47],
and IQL with Optimal Transport Reward Labeling (IQL+OTR) [35]. More details on the methods are
given in (M6). The results of the supervised behavior cloning are also included.

5.2 Settings

We tested our method in conjunction with various algorithms that avoid overestimation of Q-function.
These overestimation-avoiding methods are used to obtain different types of cost functions in our
method, showing that our method can work efficiently with any of them.

PPL. First, to be consistent with Proposition 1, we considered our method in the One-Step RL
settings. Following the original setting provided by One-Step RL [6], we pre-trained β for 500k
steps. Next, we pre-trained Qβ for 2 million steps. Then, to avoid overestimation bias, we applied a
simplified conservative update to Qβ (see [32, Eq.1]). Finally, to improve beyond the behavior policy
β, we trained the policy π for the 100k steps using our method 1. For these experiments, a two-layer
feed-forward network with a hidden layer size of 1024 and a learning rate of 0.001 was used with
the Adam optimizer [23]. We tested this approach for the Mujoco environment see Table 4, for the
comparison with the OneStep RL method.

PPLCQL. Second, we tested our method in conjunction with the CQL method on the Antmaze
problems. In this setting, no pre-trained models were used; we used the code provided by the CORL
library [48], with all hyperparameters and architectures set identical to those originally used in CORL
for the CQL method. We trained the algorithm for 1M steps, with w set to 8 for all experiments. See
the comparison with CQL in Table 1.

PPLR. Finally, we coupled our method with the improved version of TD3+BC called ReBRAC [47].
In these experiments, for a cost function, the TD3+BC objective was used, which combines the Q
function with a supervised loss. The same hyperparameters proposed by the authors for ReBRAC
were kept in our experiments. No pre-trained models were used, we trained the agent from scratch for

1We also tested direct minimization of −Qβ(s, a). However, even in toy settings this method suffered from
overestimation bias, causing the resulting policy to consistently predict values equal to 1.
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1M steps. We have tested our method on the Mujoco, Android, and Antmaze datasets. While the
ReBRAC framework recommends task-specific hyperparameters [47], the results for the Antmaze
are also reported for the best w hyperparameter. The results can be found in the Tables 1, 2 and 3.

5.3 Results

In the Table 1 we consider a side-by-side comparison, and the color purple indicates the best results
between two columns. In the Tables 2 and 3 the color indicates the top 3 results. We compared the
results with those reported in the ReBRAC [47] and OTR+IQL papers [35]. For the Antmaze datasets,
the main comparison is with the oracle method to which our method is coupled. For comparison, we
reproduced the CQL and ReBRAC results using the code provided in CORL. The CQL score curves
are provided in Appendix 3. For completeness, IQL and OTR+IQL results are also included.

Table 1: Averaged normalized scores on Antmaze-v2 tasks. Reported scores are the results of the
final 100 evaluations and 5 random seeds.

Dataset IQL OTR+IQL CQL PPLCQL(Ours) ReBRAC PPLR(Ours)
umaze 87.5 ± 2.6 83.4 ± 3.3 86.3 ±3.7 90±2.6 97.8 ± 1.0 98.0 ±14
umaze-diverse 62.2 ± 13.8 68.9 ± 13.6 34.6 ±20.9 40±2.6 88.3 ± 13.0 93.6±6.1
medium-play 71.2 ± 7.3 70.5 ± 6.6 63.0 ±9.8 67.3±10.1 84.0 ± 4.2 90.2 ±3.1
medium-diverse 70.0 ± 10.9 70.4 ± 4.8 59.6 ±3.5 65.3±8.0 76.3 ± 13.5 84.8 ±14.7
large-play 39.6 ± 5.8 45.3 ± 6.9 20.0 ±10.8 25.6±3.7 60.4 ± 26.1 76.8 ±4.0
large-diverse 47.5 ± 9.5 45.5 ± 6.2 20.0 ±5.1 23.6 ±11.0 54.4 ± 25.1 76.6 ± 7.4
Total 378 384 283.5 311.8 461.2 520

Table 2: Averaged normalized scores on MuJoCo tasks. Reported scores are the results of the final 10
evaluations and 5 random seeds.

Dataset BC One-RL CQL IQL OTR+IQL TD3+BC ReBRAC PPLR(Ours)

M
Half. 42.6 48.4 44.0 47.4 43.3 48.3 65.6 64.95±0.2
Hopper 52.9 59.6 58.5 66.3 78.7 59.3 102.0 93.49±7.2
Walker 75.3 81.1 72.5 78.3 79.4 65.5 82.5 85.66±0.6

MR
Half. 36.6 38.1 45.5 44.2 41.3 44.6 51.0 51.1±0.3
Hopper 18.1 97.5 95.0 94.7 84.8 60.9 98.1 100.0±2
Walker 26.0 49.5 77.3 73.9 66.0 81.8 77.3 78.66±2.0

ME
Half. 55.2 93.4 91.6 86.7 89.6 90.7 101.1 104.85±0.1
Hopper 52.5 103.3 105.4 91.5 93.2 98.0 107.0 109.0±1.2
Walker 107.5 113.0 108.8 109.6 109.3 110.1 112.3 111.74±1.1
Total 467.7 684.9 698.6 692.6 685.6 659.2 796.9 799.45

In offline RL, the problems are noisy, complex, and diverse, and task-specific hyperparameter search
is required. Despite this fact, our method shows promising results and consistently outperforms
methods on which it is based. Most importantly our method gives significant improvement in the
achieved scores for the Antmaze problems (Table 1). In particular, our method provides state-of-
the-art results for all datasets on this task, and gives a significant improvement of (+16) and (+21)
points for the complicated large-play-v2 and large-play-diverse-v2 environments. Importantly, we
consistently outperform the previous best OT-based offline RL algorithm, OTR+IQL.

We can interpret that our method lies between behavior cloning and direct maximization of the Q
function. Recent studies have shown that direct maximization can lead to sub-optimal results due to
overestimation bias [16]. Conversely, being too close to the expert’s policy prevents improvement [30].
Intuitively, our extremal formulation allows us to strike a balance, maximizing Q by actions from the
expert action distribution that are not radically different from those on which the Q was trained.

Our formulation aligns the state space with only a portion of the action space. This property is
particularly relevant for offline datasets that contain a mixture of expert demonstrations. Our method
can help to select the best possible action from a set of expert trajectories [33]. In other words,
optimal f is to encourage the discovery of new actions that can yield high rewards. To illustrate the
task-specific dependence of the parameter w, we performed an ablation for different values (M5.4).
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Table 3: Averaged normalized scores on Android tasks. Reported scores are the results of the final
10 evaluations and 5 random seeds.

Dataset BC TD3+BC CQL IQL OTR+IQL ReBRAC PPLR(Ours)

Pen
Human 34.4 81.8 37.5 81.5 66.82 103.5 108.43
Cloned 56.9 61.4 39.2 46.8 78.7 91.8 113.97
Expert 85.1 146.0 107.0 133.6 - 154.1 152.33

Door
Human 0.5 -0.1 9.9 3.1 5.9 0.0 1.0
Cloned -0.1 0.1 0.4 0.8 0.01 1.1 0.44
Expert 34.9 86.4 101.5 105.3 - 104.6 104.66

Hammer
Human 1.5 0.4 4.4 2.5 1.79 0.2 2.0
Cloned 0.8 0.5 2.1 1.1 0.8 6.7 4.74
Expert 125.6 117.0 86.7 106.5 - 133.8 130.2

Relocate
Human 0.0 -0.2 0.2 0.1 -0.2 0.0 0.23
Cloned -0.1 -0.1 -0.1 0.2 0.1 0.9 0.45
Expert 101.3 107.3 95.0 106.5 - 106.6 92.99
Total 340.9 600.5 484.8 588.5 - 703.2 711.44

Run time: The code is implemented in the PyTorch [41] and JAX frameworks and will be publicly
available along with the trained networks. Our method converges within 2–3 hours on Nvidia
1080 (12 GB) GPU. We used WanDB [5] for babysitting training process. The code is available in
supplementary materials.

5.4 Parameter w

(a) umaze-v2 (b) umaze-diverse-v2 (c) medium-play-v2

(d) medium-diverse-v2 (e) large-play-v2 (f) large-diverse-v2

Figure 2: Exponential moving average (coef. 0.3) curves of the normalized score curves for the
Antmaze. Different colors of the curves represent results for w = 3, w = 5, w = 8, w = 12.

The parameter w influences the action selection process by determining the support range over which
the policy operates. With the parameter w equal to 1, our method considers all actions provided in the
dataset for each state. By increasing this value, we consider the smaller subspace of possible actions,
which can be useful when it is necessary to select the best one from the data. In a perfect scenario, we
want to find as few actions as possible that maximize the score, so we favor the higher values of w.

For some datasets, reducing the action subspace is unnecessary. We studied different parameters
w=[3,5,8,12] for the range of tasks, results for the Antmaze are presented in Figure 2. We can see
that the biggest effect of the parameter was accrued for the large-play and large-diverse tasks 2 (e).
This means that selecting the subspace of actions is important for this environments, and our method
allows for this nuanced control depending on the task.
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6 Related work
There is a rich family of offline RL algorithms. To solve the distribution shift problem, several
methods have been proposed [6, 29, 53, 7, 31, 14, 28]. The simplest approach is the behavior
regularized actor-critic (BRAC) [52]. Minimizing some divergence D, between the learned π and the
expert policy β, the BRAC framework can be written as distance regularized policy optimization:
Where D(π(·|s), β(·|s)) is BC loss. Based on BRAC framework [14] proposed a TD3+BC approach
that combines standard TD3 [15] with BC loss minimization between policy and expert actions, and
showed strong performance.

Policy Gradient from Arbitrary Experience via DICE [38] proposes to incorporate f -divergence
regularization into the critic function. Based on a similar concept, Conservative Q-Learning [32] and
Adversarial Trained Actor-Critic [8] extends the critic loss with pessimistic terms that minimize the
Q values on the samples of a learned policy and maximize the values of the dataset actions.

Methods such as one-step RL [6], solves stitching by approximating the behavior Qβ function and
extract the corresponding policy π by weighting actions using the advantage function Aβ(s, a) to
find the best action for the given state [46]. Based on this concept, Implicit Q-Learning (IQL) [28]
approximates the policy improvement step by treating the state value function V β(s) as a random
variable and taking a state-conditional upper expectile to estimate the value of the best actions.

Application of optimal transport in offline RL was wiedly explored for behavioral cloning. For
example it was used to construct a pseudo-reward function [11, 40, 34, 20, 9]. Primal Wasserstein
Imitation Learning [11] and Sinkhorn Imitation Learning [40] use the OT distance between the expert
and imitator to create a reward function. Recently, the Optimal Transport Reward Labeling (OTR)
method [35] was proposed to generate a reward-annotated dataset that can then be used by various
offline RL algorithms. However, like W-BRAC, these methods primarily use OT as an additional loss.

7 Conclusion and Discussion
In this paper, we have established the novel algorithm for offline reinforcement learning. Our work
introduces the concept using the action-value function and the policy as components of the OT
problem between states and actions. To demonstrate the potential of our formulation, we propose the
practical algorithm that penalize the policy to avoid inefficient actions provided in the dataset. By
applying partial optimal transport, our algorithm effectively selects and maps the best expert actions
for each given state, ensuring efficient policy extraction from noisy or sub-optimal datasets. The
limitation of our method is that parameter w is task dependent.

This work is a step towards our larger vision towards deepening the connection between OT and
offline RL RL. Using our formulation other OT methods also can be integrated into RL. For example,
various regularizations [26, 10] and general costs [42, 2] can be used to incorporate task-specific
information into the learned map, which can be particularly relevant in hierarchical RL problems [3].
Additionally Weak Neural OT [27] can be relevant in RL where stochastic behavior is preferred for
exploration in the presence of multimodal goals [19].

7.1 Reproducibility

To reproduce our experiment we provide source code in https://github.com/machinestein/
PPL/. Details on used hyperparameters are presented in settings (M5.2).

7.2 Societal Impact

This paper presents research aimed at advancing the field of RL. While our work may have various
societal implications, we do not believe any particular ones need to be specifically emphasized here.
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9 Appendix

9.1 Proofs

Proposition 9.1 (Policy Improvement with Partial Policy Learning). For any policy π, let’s define

its performance as J(π)
def
= Eπ[

∑∞
t=0 γ

tr(st, at)] over the trajectories obtained by following the
policy π, (s0 ∼ S, at ∼ π(st), st+1 ∼ P (· | st, at)). Let β be the policy of an expert and π is the
solution to Eq. 10 with the Qβ cost function. Then it holds that:

J(π) ≥ J(β).

Proof. According to [21], to compare the performance of any two policies π and β we can use the
Performance difference lemma:

J(π)− J(β) =
1

1− γ
E

s∼dπ

[
Aβ(s, π)

]
(13)

By applying [17, Theorem 3], the solution of (10) as the parameter w → ∞, converges to the
solution of the following problem:

min{
π(·|s)⊂Supp(β(·|s))

}Es∼D,a∼π[−Q(s, a)]. (14)

Here support (Supp) is the set of points where the probability mass of the distribution lives. In our
settings Supp(β(·|s)) indicates the best action from β which maximizes Q.

Now, to show the improvement over the behavior policy, let’s consider the difference between the
behavior policy β and the new policy π obtained after the update of β using our Eq.14, then we have:

J(π)− J(β) =
1

1− γ
E

s∼dπ

[
Qβ(s, π)− V β(s)

]
= (15)

1

1− γ
E

s∼dπ
[Qβ(s, max

a⊂Supp(β(·|s))
[Qβ(s, a)])− Ea∼β(s)[Q

β(s, a)]] ≥ 0 (16)

Where in first we used the definition of π, and then noted that the maximum over the all actions given
by the expert is always greater than the average over some actions from the experts policy β. □

This result is analogous to the classic policy iteration improvements proof. The difference is that we
takes max over the Supp(β(·|s)) rather than max over the all possible actions A.

9.2 Additional Illustrations

For completeness, we provide an additional illustration of the results of the proposed method.
Specifically, we show the scores for the one-step settings Table 4 and in this subsection we show the
normalized score curves of the CQL and our method during training Figure 3.

Table 4: Averaged normalized scores on MuJoCo tasks. Results of the final 10 evaluations and 5
random seeds.

Dataset OneStep-RL PPL

Medium
HalfCheetah 48.4 51.4±0.2
Hopper 59.6 80.4±7.4
Walker 81.1 84.3±0.6

Medium-
Replay

HalfCheetah 38.1 44.8±0.5
Hopper 97.5 92.1±10.8
Walker 49.5 86.6±4.8

Medium-
Expert

HalfCheetah 93.4 74.4±17.0
Hopper 103.3 110.2±1.9
Walker 113.0 111.2±0.7

Parameters settings As mentioned, we considered different values of w for the ReBRAC-based
method. The parameters can be seen in the Table 5. For most tasks, higher values of w are preferable,
which means that some sort of suboptimal trajectories are present in the datasets.
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(a) Umaze-diverse (b) Medium-play (c) Medium-diverse

(d) Large-play (e) Large-diverse

Figure 3: Normalized score curves on the Antmaze tasks, IPLCQL algorithm is blue, CQL is red

w Environments
8 hopper-medium, pen-cloned, relocate-cloned,

relocate-expert, antmaze-large-diverse,
halfcheetah-medium, walker-medium,
halfcheetah-medium-replay, hopper-medium-replay,
walker-medium-replay, walker-medium-expert,
umaze, door-cloned, door-expert, hammer-cloned

12 hopper-medium, pen-cloned, relocate-cloned,
relocate-expert, antmaze-large-diverse

5 antmaze-large-play, antmaze-medium-play,
antmaze-medium-diverse, pen-expert, hammer-expert

3 umaze-diverse, pen-human, relocate-human
Table 5: Optimal w values for different environments
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