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Abstract

This paper focuses on improving the mathematical interpretability of convolutional neural
networks (CNNs) in the context of image classification. Specifically, we tackle the instability
issue arising in their first layer, which tends to learn parameters that closely resemble ori-
ented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions
with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts.
In this context, we establish conditions under which the max pooling operator approximates
a complex modulus, which is nearly shift invariant. We then derive a measure of shift in-
variance for subsampled convolutions followed by max pooling. In particular, we highlight
the crucial role played by the filter’s frequency and orientation in achieving stability. We
experimentally validate our theory by considering a deterministic feature extractor based
on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like
decomposition.

1 Introduction

Understanding the mathematical properties of deep convolutional neural networks (CNNs) (LeCun et al.,
2015) remains a challenging issue today. On the other hand, wavelet and multi-resolution analysis are built
upon a well-established mathematical framework. They have proven to be efficient for tasks such as signal
compression and denoising (Vetterli, 2001), and have been widely used as feature extractors for signal, image
and texture classification (Laine & Fan, 1993; Pittner & Kamarthi, 1999; Yen, 2000; Huang & Aviyente,
2008). There is a broad literature revealing strong connections between these two paradigms, as discussed
in Sections 1.1 and 1.2. Inspired by this line of research, the present paper extends existing knowledge
about CNN properties. Specifically, we assess the shift invariance of max pooling feature maps through both
theoretical and empirical approaches in the context of image classification, by leveraging the properties of
oriented band-pass filters.

1.1 Motivations and Main Contributions

CNNs process input images through convolutions and nonlinear pooling operations, transforming them into
high-level feature vectors that are subsequently used for the task at hand. In image classification, the feature
vectors are fed into a linear classifier. To achieve high classification accuracy, a convolutional network must
preserve discriminative image features while reducing intra-class variability (LeCun et al., 1998; Bruna &
Mallat, 2013). An important and often desired property of CNNs is their ability to remain invariant to small
input transformations, such as translations, rotations, distortions, or scaling (Liao & Peng, 2010; Bruna &
Mallat, 2013; Sifre & Mallat, 2013; Bietti & Mairal, 2017; Wiatowski & Bölcskei, 2018; Cahill et al., 2024).

In particular, an image in which the main subject is slightly shifted from its original position should retain its
initial classification. This property, known as translation invariance or shift invariance, is crucial for model
robustness, as its absence can negatively impact the model’s predictive performance. Desirable properties
such as shift invariance in deep learning models can be achieved either through extensive training and data
augmentation, or through careful architectural design. Relying on the former may result in increased com-
putational cost, reduced generalizability, and limited interpretability. In contrast, understanding when and
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why a model exhibits such properties by design can provide valuable insights that can guide the development
of more efficient and robust architectures. The main focus of this paper is to assess whether shift invariance
is inherently guaranteed by the model’s architecture. Since perfect invariance is rarely achieved, we also use
the term stability to refer to this behavior.

More specifically, we focus on a commonly observed phenomenon in CNNs when trained on image datasets:
many convolution kernels in the first layer resemble band-pass, oriented waveforms (Yosinski et al., 2014;
Rai & Rivas, 2020), referred to as Gabor-like filters. This class of filters is central to our analysis; for
mathematical tractability, a formal definition is provided in (11). Whether the features extracted by Gabor-
like filters remain stable under translations has been partly addressed by Azulay & Weiss (2019); Zhang
(2019), who highlight that strided convolution and pooling operations can significantly diverge from shift
invariance, due to aliasing effects when subsampling high-frequency signals. In response, Zhang (2019);
Karras et al. (2021); Vasconcelos et al. (2021); Zou et al. (2023) introduced antialiasing methods based on
low-pass filtering, improving both stability and predictive performance—albeit at the cost of some loss of
information.

In the current paper, we investigate shift invariance properties that are already present in standard CNN
architectures, even before the application of antialiasing techniques such as those mentioned above. Specif-
ically, we show that, under certain conditions that we establish, the max pooling operator can partially
restore shift invariance that is otherwise degraded by subsampled convolutions. We unveil a connection
between the output of the first max pooling layer and the pointwise magnitude of the convolution with
complex Gabor-like filters, a quantity known to be nearly shift invariant. This work offers a promising
direction for improving shift invariance in CNNs while preserving high-frequency information—unlike the
previously-mentioned approaches.

We note that this study primarily focuses on the first layer of CNNs, where a significant proportion of
learned convolution kernels typically resemble Gabor-like filters. Extending the analysis to deeper layers
would require a different theoretical framework which falls beyond the scope of this paper. Nevertheless,
early CNN layers play a critical role in model performance, as they extract low-level geometric features
essential for building more complex representations in subsequent stages (Oyallon et al., 2017). Furthermore,
as discussed in Section 7, instabilities introduced in the first layer can propagate through the network—a
phenomenon we empirically observed in a recent study published as a conference paper (Authors, 2024).

Before proceeding further, we emphasize that our study is not limited to purely convolutional architectures.
In recent years, self-attention mechanisms have gained significant interest in computer vision due to their
ability to model complex, long-range dependencies in image representations. Notably, the Vision Transformer
(ViT) (Dosovitskiy et al., 2021) and the Swin Transformer (Liu et al., 2021) adapt the Transformer (Vaswani
et al., 2017)—originally developed for natural language processing (NLP)—to computer vision tasks. Unlike
CNNs, these models operate without convolutional layers. Instead, input images are partitioned into fixed-
size patches that serve as tokens for the self-attention modules. However, more recent research has explored
hybrid architectures that integrate self-attention with convolutional components (Wu et al., 2021; Yuan et al.,
2021; Hassani et al., 2022; Li et al., 2023; Yin et al., 2024). This approach allows for reducing the amount of
labeled data required, while achieving faster training and improving generalizability. In particular, the first
layers of a CNN can be used as a “convolutional token embedding,” replacing the naive patch extraction
used in original models. The theoretical framework presented in this paper can also apply to such hybrid
architectures, providing a better understanding of the invariance properties of the inputs to self-attention
modules. Note however that we do not claim direct applicability to all hybrid CNN-Transformer models.
Any adjustments that may be needed in this context are left for future work.

1.2 Related Work

Analyzing the invariance properties of CNNs is critical as it enables to identify their shortcomings and
provides an opportunity to enhance their performance. In recent years, several works focused on this topic.
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1.2.1 Wavelet Scattering Networks

Most notably, Bruna & Mallat (2013) developed a family CNN-like architectures, named wavelet scattering
networks (ScatterNets), based on a succession of complex convolutions with wavelet filters followed by
nonlinear modulus pooling. They produce translation-invariant image representations which are stable to
deformation and preserve high-frequency information (Mallat, 2012; 2016; Czaja et al., 2024). A variation
has been proposed by Sifre & Mallat (2013) to include rotational invariance. ScatterNets achieve strong
performance on handwritten digits and texture datasets, but do not scale well to more complex ones. To
overcome this, Oyallon et al. (2017; 2018) introduced hybrid ScatterNets, where the scattering coefficients are
fed into a standard CNN architecture, showing that the network complexity can be reduced while keeping
competitive performance. Derived models include ScatterNets built upon the dual-tree complex wavelet
transform (Singh & Kingsbury, 2017), learnable and parametric ScatterNets (Cotter & Kingsbury, 2019;
Gauthier et al., 2022), geometric ScatterNets operating on Riemanian manifolds (Perlmutter et al., 2020),
and graph ScatterNets (Gama et al., 2019; Zou & Lerman, 2020). Also worth mentioning, Czaja & Li (2019;
2020) studied ScatterNets based on uniform covering frames, i.e., frames splitting the frequency domain into
windows of roughly equal size, much like the dual-tree complex wavelet packet transform (DT-CWPT), as
used in the present paper. Other works by Zarka et al. (2020; 2021) proposed to sparsify wavelet scattering
coefficients by learning a dictionary matrix, to learn 1 × 1 convolutions between feature maps of scattering
coefficients and to apply soft thresholding to reduce within-class variability.

ScatterNets are specifically designed to meet some desired properties. As deep learning architectures with
well-established mathematical properties, they are sometimes used as explanatory models for standard,
freely-trained networks. However, whether their properties are transferable to a broader class of models is
unclear, because the former rely on complex-valued convolutions whereas more conventional architectures
exclusively employ real-valued kernels. Moreover, the modulus operator is used as an activation and pooling
layer in ScatterNets, whereas standard CNNs implement pointwise nonlinear operators such as ReLU and
spatial pooling layers such as max pooling. This limitation has been pointed out by Tygert et al. (2016)
as an argument in favor of complex-valued CNNs. In this context, our work seeks evidence that properties
established for complex-valued networks are—to some extent—embedded in standard architectures.

1.2.2 Invariance Studies in CNNs

Wiatowski & Bölcskei (2018) considered a wide variety of feature extractors involving convolutions, Lipschitz-
continuous non-linearities and pooling operators. The paper shows that outputs become more translation
invariant with increasing network depth. Additionally, Cahill et al. (2024) designed a family of operators
called max filters, which encompass a wide variety of operators including, in specific cases, the max pooling
operator. Stability with respect to diffeomorphisms were established, following the ideas developed for scat-
tering networks. However, these results do not fully extend to the discrete framework, because subsampled
convolutions with band-pass real-valued filters can introduce aliasing artifacts, resulting in instability to
translations (Azulay & Weiss, 2019; Zhang, 2019). The current paper specifically addresses this issue.

Another line of work is focused on modeling and studying CNNs from the point of view of convolutional
kernel networks (Bietti & Mairal, 2019a;b; Scetbon & Harchaoui, 2020; Bietti, 2022; Chen, 2023). These
authors showed that certain classes of CNNs are contained in the reproducing kernel Hilbert space (RKHS)
of a multilayer convolutional kernel representation. As such, stability metrics are estimated, based on the
RKHS norm which is difficult to control in practice. Kernel representations do not seem to suffer from
aliasing effects; this can be explained by the Gaussian pooling layers that have been employed instead of
max pooling: by discarding high-frequency information, shift invariance is preserved.

Finally, some papers studied stability of CNNs in a broader sense, measured in terms of Lipschitz continuity
(Szegedy et al., 2014; Balan et al., 2018; Virmaux & Scaman, 2018; Pérez et al., 2020; Zou et al., 2020;
Gupta et al., 2022; Zühlke & Kudenko, 2024). However, the Lipschitz bounds, which have been obtained
theoretically, are generally several orders of magnitude higher than empirical results. This discrepancy may
be due to the fact that these bounds were obtained for generic situations and represent overly conservative
worst-case scenarios, rather than typical real-world situations. Furthermore, the specific case of convolutions
with band-pass Gabor-like filters have been overlooked, except for Pérez et al. (2020).
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In summary, we have identified the following blind spots in the literature, regarding the topic of studying
shift invariance in CNNs.

• The effect of the max pooling operator on network stability under small input shifts has not been
investigated, particularly when used in combination with Gabor-like convolutions.

• While the shift invariance of CNNs tends to increase with network depth in the continuous framework
(as formally introduced in Section 2.1), in the discrete case (as implemented in practice), the presence
of subsampled convolutions with oriented band-pass filters can lead to aliasing artifacts. To our
knowledge, the literature lacks theoretical studies that take these aliasing effects into account.

• Although extensive studies have been conducted on complex-valued convolutions followed by mod-
ulus, a link is missing to extend these results to standard CNNs, which implement real-valued
convolutions and spatial pooling operators.

All these points have been tackled in the present paper, from both theoretical and empirical perspectives.

1.3 Paper Outline

In what follows, l2R(Z2) and l2C(Z2) represent the discrete spaces of square-summable two-dimensional se-
quences with values in R and C, respectively. Let W ∈ l2C(Z2) denote a two-dimensional band-pass, oriented
and analytic Gabor-like filter, for which a formal definition will be provided in (11). We first consider an
operator, referred to as real-max-pooling (RMax), which computes the subsampled cross-correlation between
an input image X ∈ l2R(Z2) and the real part of W; then calculates the maximum value over a sliding discrete
grid:

Umax
m, q [W] : X 7→ MaxPoolq

((
X ∗ Re W

)
↓ m

)
, (1)

where m ∈ N \ {0} denotes a subsampling factor (corresponding to the stride of the convolution), V denotes
the “flipped” sequence for any given V ∈ l2R(Z2) or l2C(Z2), satisfying, for any n ∈ Z2,

V[n] := V[−n], (2)

and ∗, ↓ respectively refer to the convolution and subsampling operations, defined by

(X ∗V)[n] :=
∑

p∈Z2

X[p] V[n− p] and (Y ↓ m)[n] := Y[mn]. (3)

In the above expression, MaxPoolq selects the maximum value over a sliding grid of size (2q+ 1)× (2q+ 1),
with a subsampling factor of 2. More formally, for any Y ∈ l2R(Z2) and any n ∈ Z2,

MaxPoolq(Y)[n] := max
∥p∥∞≤q

Y[2n + p]. (4)

On the other hand, we consider an operator, referred to as complex-modulus (CMod), computing the modulus
of subsampled cross-correlation between X and W:

Umod
m [W] : X 7→

∣∣(X ∗W) ↓ (2m)
∣∣ . (5)

To improve readability and ease computations, we use standard convolution (∗) throughout the paper instead
of cross-correlation (⋆). This choice allows us to leverage well-known mathematical properties—most notably,
that the Fourier transform of a convolution between two functions or vectors equals the product of their
Fourier transforms.

First, we show that, under the hypotheses stated above, CMod is stable with respect to small input shifts
(Section 2, with main result stated in Theorem 1). We then establish conditions on the filter’s frequency and
orientation under which CMod and RMax produce comparable outputs (Section 3, with main result stated
in Theorem 2):

Umod
m [W] (X) ≈ Umax

m, q [W] (X). (6)
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We deduce a measure of shift invariance for RMax operators, which benefits from the stability of CMod
(Section 4, with main result stated in Theorem 3). Next, we extend our results to multichannel operators
(i.e., applied on RGB input images), such as implemented in conventional CNN architectures (Section 5,
Corollaries 2 to 4). Our framework therefore provides a theoretical grounding to study these networks.
Remark 1. In the above definitions, cross-correlations are computed with a subsampling factor which is
twice larger for CMod, compared to RMax. However, since max pooling is also computed with subsampling,
both operators have the same subsampling factor of 2m.

Finally, in Section 6, we assess our theoretical findings on a deterministic setting based on the dual-tree
complex wavelet packet transform (DT-CWPT), a particular case of discrete Gabor-like decomposition with
perfect reconstruction properties (Bayram & Selesnick, 2008). DT-CWPT spawns a set of convolution kernels
which tile the Fourier domain into square regions of identical size. Such kernels possess characteristics that
are comparable to those found in the first convolution layer of CNNs after training with image datasets such
as ImageNet (Russakovsky et al., 2015). More specifically, given an input image, we compute the mean
square error between the outputs of CMod and RMax, for each wavelet packet filter. We then observe that
shift invariance, when measured on RMax feature maps, is nearly achieved when they remain close to CMod
outputs. We therefore establish a domain of validity for shift invariance of the RMax operator.

This work builds upon an idea sketched by Waldspurger (2015, pp. 190–191), which suggests a potential
connection between the combinations “real wavelet transform→max pooling” on the one hand and “complex
wavelet transform→ modulus” on the other hand. Consequently, the former operator could inherit the shift-
invariance properties of the latter by leveraging the properties of the max pooling operator. The formulation,
however, was limited to continuous images and filters, and the max pooling layer operating over continuous
windows. Our study extends this idea to discrete convolutions and max pooling grids. As shown in this paper,
the initial principles do not fully extend to this more realistic framework. To address this limitation, we
adopted a probabilistic point of view. By doing so, we revealed that shift invariance is inherently dependent
on the filter’s frequency.

2 Shift Invariance of CMod Outputs

The primary goal of this paper is to theoretically establish conditions for near-shift invariance at the output
of the first max pooling layer. In this section, we start by proving shift invariance of CMod operators. Then,
in Section 3, we establish conditions under which RMax and CMod produce closely related outputs. Finally,
in Section 4, we derive a probabilistic measure of shift invariance for RMax.

2.1 Notations

The complex conjugate of any number z ∈ C is denoted by z∗. For any p ∈ R>0 ∪{∞}, x ∈ R2 and r ∈ R+,
we denote by Bp(x, r) ⊂ R2 the closed lp-ball with center x and radius r. When x = 0, we write Bp(r).

Continuous Framework Considering a measurable subset E of R2, we denote by L2
C(E) the Hilbert

space of square-integrable functions F : E → C. Whenever we talk about equality in Lp
C(E) or inclusion in

E, it shall be understood as “almost everywhere with respect to the Lebesgue measure.” Additionally, we
denote by L2

R(E) ⊂ L2
C(E) the subspace of real-valued functions. For any F ∈ L2

C(R2), F denotes its flipped
version: F (x) := F (−x).

The 2D Fourier transform of any F ∈ L2
C(R2) is denoted by F̂ ∈ L2

C(R2), such that

∀ν ∈ R2, F̂ (ν) :=
∫∫

R2
F (x)e−i⟨ν, x⟩ d2x. (7)

For any ε > 0 and ν ∈ R2, we denote by V
(
ν, ε

)
⊂ L2

C(R2) the set of functions whose Fourier transform is
supported in a square region of size ε× ε centered in ν:

V
(
ν, ε

)
:=
{
Ψ ∈ L2

C(R2)
∣∣∣ supp Ψ̂ ⊂ B∞(ν, ε/2)

}
. (8)
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Figure 1. Spatial (left) and Fourier (right) representations of convolution kernels in the first layer of AlexNet, after
training with ImageNet ILSVRC 2012-2017 (Russakovsky et al., 2015). Each kernel connects the 3 RGB input
channels to one of the 64 output channels.

ν and ε are respectively referred to as characteristic frequency and bandwidth. Finally, for any h ∈ R2, we
consider the translation operator, denoted by Th, defined by

ThF : x 7→ F (x− h). (9)

Discrete Framework We denote by l2C(Z2) the space of 2D complex-valued square-summable sequences,
represented by straight capital letters. Indexing is made between square brackets: ∀X ∈ l2C(Z2), ∀n ∈
Z2, X[n] ∈ C, and we denote by l2R(Z2) ⊂ l2C(Z2) the subset of real-valued sequences. For any V ∈ l2C(Z2),
V denotes its “flipped” version as defined in (2). The convolution and subsampling operators, respectively
denoted by ∗ and ↓, are defined in (3). 2D images, feature maps and convolution kernels are considered as
elements of l2C(Z2). Additionally, multichannel arrays of 2D sequences are denoted by bold straight capital
letters, for instance: X := (Xk)k∈{0, ..., K−1}. Note that indexing starts at 0 to comply with practical
implementations.

The 2D discrete-time Fourier transform of any X ∈ l2C(Z2), denoted by X̂ ∈ L2
C([−π, π]2), is defined by

∀θ ∈ [−π, π]2 , X̂(θ) :=
∑

n∈Z2

X[n]e−i⟨θ, n⟩. (10)

For any κ ∈ ]0, 2π] and θ ∈ B∞(π), we denote by J
(
θ, κ

)
⊂ l2C(Z2) the set of 2D sequences whose Fourier

transform is supported in a square region of size κ× κ centered in θ:

J
(
θ, κ

)
:=
{

W ∈ l2C(Z2)
∣∣∣ supp Ŵ ⊂ B∞(θ, κ/2)

}
. (11)

As in the continuous framework, θ and κ are respectively referred to as characteristic frequency and band-
width. The elements of J

(
θ, κ

)
are designated as Gabor-like filters.

Remark 2. The support B∞(θ, κ/2) actually lives in the quotient space [−π, π]2 /(2πZ2). Consequently,
when θ is close to an edge, a fraction of this region is located at the far end of the frequency domain. From
now on, the choice of θ and κ is implicitly assumed to avoid such a situation.

2.2 Intuition

In many CNNs for computer vision, input images are first transformed through subsampled (or strided)
convolutions. For instance, in AlexNet, convolution kernels are of size 11× 11 and the subsampling factor is
equal to 4. Figure 1 displays the corresponding kernels after training with ImageNet. This linear transform
is generally followed by rectified linear unit (ReLU) and max pooling.
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(a) (b) (c) (d)

Figure 2. (a), (b): Real and imaginary parts of a Gabor-like filter W as defined in (12). (c), (d): Magnitude spectra
(modulus of the Fourier transform) of V and W, respectively.

We can observe that many kernels display oscillating patterns with well-defined orientations (Gabor-like
filters). We denote by V ∈ l2R(Z2) one of these “well-behaved” filters. Its Fourier spectrum roughly consists
in two bright spots which are symmetric with respect to the origin.1 Next, we consider a complex-valued
companion W ∈ l2C(Z2) such that

Ŵ(ω) :=
(
1 + sgn⟨ω, u⟩

)
· V̂(ω) ∀ω ∈ [−π, π]2 , (12)

where u denotes a unit vector orthogonal to the filter’s orientation.

We can show that V is the real part of W, and that W = V + iH(V), where H denotes the two-dimensional
Hilbert transform as introduced by Havlicek et al. (1997). It satisfies

Ĥ(V)(ω) := −i sgn⟨ω, u⟩ V̂(ω). (13)

As a consequence, Ŵ is equal to 2V̂ on one half of the Fourier domain, and 0 on the other half. Therefore,
only one bright spot remains in the spectrum. We refer the reader to Figure 2 for visual example of complex-
valued Gabor-like filter. It turns out that such complex filters with high frequency resolution produce stable
signal representations, as we will see in Section 2. In the subsequent sections, we then wonder whether this
property is kept when considering the max pooling of real-valued convolutions.

In what follows, W will be referred to as a discrete Gabor-like filter, and the coefficients resulting from the
convolution with W will be referred to as discrete Gabor-like coefficients. The aim of this section is to show
that, if the convolution kernels W ∈ l2C(Z2) belong to J

(
θ, κ

)
as introduced in (11), then CMod is nearly

shift-invariant. To clarify, we establish that

Umod
m [W] (X) ≈ Umod

m [W] (TuX), (14)

for “small” translation vectors u ∈ R2, where a formal definition of the translation operator will be defined
in (28). This result is hinted by Kingsbury & Magarey (1998) but not formally proven.

2.3 Continuous Framework

We introduce several results regarding functions defined on the continuous space R2. Near-shift invariance
on discrete 2D sequences will then be derived from these results by taking advantage of sampling theorems.
Lemma 1 below is adapted from Waldspurger (2015, pp. 190–191).
Lemma 1. Given ε > 0 and ν ∈ R2, let Ψ ∈ V

(
ν, ε

)
denote a complex-valued filter such as defined in

(8). Next, for any real-valued function F ∈ L2
R(R2), we consider the complex-valued function F0 ∈ L2

C(R2)
defined by

F0 : x 7→ (F ∗ Ψ)(x) ei⟨ν, x⟩. (15)

Then F0 is low-frequency. Specifically,
supp F̂0 ⊂ B∞(ε/2). (16)

Proof. See Appendix A.1.
1Actually, the Fourier transform of any real-valued sequence is centrally symmetric: V̂(−ω) = V̂(ω)

∗
. The specificity of

well-oriented filters lies in the concentration of their power spectrum around two precise locations.
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On the other hand, the following proposition provides a shift invariance bound for low-frequency functions
such as introduced above.
Proposition 1. For any F0 ∈ L2

R(R2) such that supp F̂0 ⊂ B∞(ε/2), and any h ∈ R2,

∥ThF0 − F0∥L2 ≤ α(εh) ∥F0∥L2 , (17)

where we have defined

α : τ 7→
∥τ∥1

2 . (18)

Proof. See Appendix A.2.

2.4 Adaptation to Discrete 2D Sequences

Given κ ∈ ]0, 2π] and θ ∈ B∞(π), let W ∈ J
(
θ, κ

)
denote a discrete Gabor-like filter such as defined in

(11). For any image X ∈ l2C(Z2) with finite support and any subsampling factor m ∈ N \ {0}, we express
(X ∗W) ↓ m using the continuous framework introduced above, and derive an invariance formula.

For any sampling interval s ∈ R>0, let Φ(s) ∈ L2
R(R2) denote the Shannon scaling function parameterized by

s, such that
Φ̂(s) := s1B∞(π/s). (19)

This 2D function is a tensor product of scaled and normalized sinc functions. For any n ∈ Z2, we denote by
Φ

(s)
n a shifted version of Φ(s), satisfying

Φ(s)
n (x) := Φ(s)(x− sn). (20)

Then,
{
Φ

(s)
n

}
n∈Z2 is an orthonormal basis of

V(s) :=
{
F ∈ L2

C(R2)
∣∣ supp F̂ ⊂ B∞(π/s)

}
. (21)

Then, using the notation introduced in (8), we have V(s) = V(0, 2π/s).

We now consider the following lemma.
Lemma 2. Let s > 0. For any F ∈ V(s) and any ξ ∈ B∞(π/s), we have

F̂ (ξ) = s X̂(sξ), (22)

where X ∈ l2C(Z2) is a uniform sampling of F , defined such that X[n] := s F (sn), for any n ∈ Z2. Moreover,
we have the following norm equality:

∥F∥L2 = ∥X∥2 . (23)

Proof. See Appendix A.3.

We then get the following proposition, which draws a bond between the discrete and continuous frameworks.
Proposition 2. Let X ∈ l2R(Z2) denote an input image with finite support, and W ∈ J

(
θ, κ

)
. Considering

a sampling interval s ∈ R>0, we define FX and ΨW ∈ V(s) such that

FX :=
∑

n∈Z2

X[n]Φ(s)
n and ΨW :=

∑
n∈Z2

W[n]Φ(s)
n . (24)

Then,
ΨW ∈ V

(
θ/s, κ/s

)
. (25)

Moreover, for all n ∈ Z,
X[n] = s FX(sn); W[n] = s ΨW(sn), (26)
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and, for a given subsampling factor m ∈ N \ {0},(
(X ∗W) ↓ m

)
[n] =

(
FX ∗ ΨW

)
(msn) . (27)

Proof. See Appendix A.4.

Proposition 2 introduces a latent subspace of L2
R(R2) from which input images are uniformly sampled. This

allows us to define, for any u ∈ R2, a translation operator Tu on discrete sequences, even if u has non-integer
values:

TuX[n] := s TsuFX(sn), (28)
where FX is defined in (24). We can indeed show that this definition is independent from the choice of
sampling interval s > 0. Moreover, given X ∈ l2R(Z2), we have

∀p ∈ Z2, TpX[n] = X[n− p]; (29)
∀u, v ∈ R2, Tu(TvX) = Tu+vX, (30)

which shows that Tu corresponds to the intuitive idea of a translation operator. Expressions (29) and (30)
are direct consequence of the following lemma, which bonds the shift operator in the discrete and continuous
frameworks.
Lemma 3. For any X ∈ l2R(Z2) and any u ∈ R2,

FTuX = TsuFX. (31)

Proof. See Appendix A.5.

We now consider the following corollary to Proposition 2.
Corollary 1. For any shift vector u ∈ R2, we have(

(TuX ∗W) ↓ m
)

[n] =
(
TsuFX ∗ ΨW

)
(msn) . (32)

Proof. Applying (27) in Proposition 2 with X← TuX, we get(
(TuX ∗W) ↓ m

)
[n] =

(
FTuX ∗ ΨW

)
(msn) , (33)

and Lemma 3 concludes the proof.

2.5 Shift Invariance in the Discrete Framework

We consider the CMod operator defined in (5). For the sake of conciseness, in what follows we will write
Umod

m instead of Umod
m [W], when no ambiguity is possible. First, we state the following lemma.

Lemma 4. For any input image X ∈ l2R(Z2) with finite support, and any Gabor-like filter W ∈ J
(
θ, κ

)
, we

consider the low-frequency function

F0 : x 7→ (FX ∗ ΨW)(x) ei⟨θ/s, x⟩, (34)

with FX and ΨW satisfying (24). If κ ≤ π/m, then

F0 ∈ V(s′). (35)

Moreover, for any h ∈ R2, ∑
n∈Z2

∣∣∣ThF0(s′n)− F0(s′n)
∣∣∣2 = 1

s′2 ∥ThF0 − F0∥2
L2 , (36)

9
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where we have denoted s′ := 2ms. Finally,∥∥Umod
m X

∥∥
2 = 1

s′ ∥F0∥L2 . (37)

Proof. See Appendix A.6.

We are now ready to state the main result about shift invariance of CMod outputs.
Theorem 1 (Shift invariance of CMod). Let W ∈ J

(
θ, κ

)
denote a discrete Gabor-like filter and m ∈ N\{0}

denote a subsampling factor. Then, under the following condition:

κ ≤ π/m, (38)

we have, for any input image X ∈ l2R(Z2) with finite support and any translation vector u ∈ R2,∥∥Umod
m (TuX)− Umod

m X
∥∥

2 ≤ α(κu)
∥∥Umod

m X
∥∥

2, (39)

where α has been defined in (18).

Proof. See Appendix A.7.

Interestingly, the reference value used in Theorem 1, i.e.,
∥∥Umod

m X
∥∥

2, is fully shift-invariant, as stated in the
following proposition.
Proposition 3. Let W ∈ J

(
θ, κ

)
and m ∈ N \ {0}. Under condition (38), we have, for any X ∈ l2R(Z2)

and any u ∈ R2, ∥∥Umod
m (TuX)

∥∥
2 =

∥∥Umod
m X

∥∥
2. (40)

Proof. See Appendix A.8.

3 From CMod to RMax

CMod operators are found in ScatterNets and complex-valued convolutional networks (Tygert et al., 2016).
However, they are absent from conventional, freely-trained CNN architectures. Therefore, Theorem 1 cannot
be applied as is. Instead, the first convolution layer contains real-valued kernels, and is generally followed
by ReLU and max pooling. As shown in Section 5, this process can be described with RMax operators, such
as defined in (1).

As explained in Section 1.1, an important number of trained convolution kernels exhibit oscillating patterns
with well-defined frequencies and orientations. To elaborate, let V ∈ l2R(Z2) denote such a trained kernel,
and consider W ∈ l2C(Z2) as the complex-valued companion of V satisfying (12). Then, W has its energy
concentrated in a small region of the Fourier domain. We thus state the hypotheses that W ∈ J

(
θ, κ

)
(11)

for a certain value of θ ∈ [−π, π]2 and κ ∈ ]0, 2π]. For the sake of conciseness, from now on we write Umax
m, q

instead of Umax
m, q [W], when no ambiguity is possible. In what follows, we establish conditions on W under

which CMod (5) and RMax (1) operators produce comparable outputs. The final goal, achieved in Section 4,
is to provide a shift invariance bound for RMax.

To give an intuition about why RMax may act as a proxy for CMod, we place ourselves in the continuous
framework. Consider the real-valued wavelet transform output ReF1 := F ∗ReΨ , employed in RMax, as the
real part of the complex-valued wavelet transform output F1 := F ∗ Ψ , used in CMod. At a given location
x ∈ R2, the corresponding imaginary part may carry a large amount of information, which somehow needs
to be retrieved. The key idea is that, if Ψ is sufficiently localized in the Fourier domain, then only the phase
of F1 significantly varies in the vicinity of x, whereas its magnitude remains nearly constant. Therefore,
finding the maximum value of ReF1 within a local neighborhood around x is nearly equivalent to shifting

10
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the phase of F1(x) towards 0. The resulting value then approximates |F1(x)|. To put it differently, max
pooling pushes energy towards lower frequencies, in a similar way as the modulus does for complex-valued
transforms (Bruna & Mallat, 2013). This result is hinted in Section 3.1.

Regretfully, things do not work so smoothly in the discrete case. At first glance, this is surprising because
Shannon’s sampling theorem allows to cast discrete problems into the continuous framework, as done in
Section 2.4. However, as explained in Section 3.2, max pooling operates over a discrete grid instead of
a continuous window. Consequently, in some situations, the maximum value may fall far away from any
zero-phase coefficient. Taking into account this behavior, we adopt a probabilistic point of view, as detailed
in Section 3.4. Then, we provide in Section 3.5 an upper bound for the expected gap between CMod and
RMax outputs.

3.1 Continuous Framework

This section, inspired from Waldspurger (2015, pp. 190–191), provides an intuition about resemblance be-
tween RMax and CMod in the continuous framework. As will be highlighted in Section 3.2, adaptation to
discrete 2D sequences is not straightforward and will require a probabilistic approach.

We consider an input function F ∈ L2
R(R2) and a band-pass filter Ψ ∈ V

(
ν, ε

)
. Let us also consider

G : (x, h) 7→ cos
(
⟨ν, h⟩ −H(x)

)
, (41)

where H : R2 → [0, 2π[ denotes the phase of F ∗ Ψ . Lemma 1 introduced low-frequency functions F0, with
slow variations. In a nutshell, since suppF0 ⊂ B∞(ε/2), we can write

∥h∥2 ≪ λF0 =⇒ F0(x + h) ≈ F0(x), (42)

where we have defined λF0 := 2π/ε. Therefore, according to Proposition 4 below, we get the following
approximation of F ∗ ReΨ in a neighborhood around any point x ∈ R2:

∥h∥2 ≪ λF0 =⇒ (F ∗ ReΨ)(x + h) ≈
∣∣(F ∗ Ψ)(x)

∣∣G(x,h). (43)

Proposition 4. For any h ∈ R2,∣∣(F ∗ ReΨ)(x + h)−
∣∣(F ∗ Ψ)(x)

∣∣G(x,h)
∣∣ ≤ ∣∣F0(x + h)− F0(x)

∣∣. (44)

Proof. See Appendix A.9.

On the one hand, we consider a continuous equivalent of the CMod operator Umod
m [W] as introduced in (5).

Such an operator, denoted by Umod[Ψ ], is defined, for any F ∈ L2
R(R2), by

Umod[Ψ ] (F ) : x 7→
∣∣(F ∗ Ψ)(x)

∣∣ . (45)

On the other hand, we consider the continuous counterpart of RMax as introduced in (1). It is defined as
the maximum value of F ∗ ReΨ over a sliding spatial window of size r > 0. This is possible because F and
ReΨ both belong to L2

R(R2), and therefore F ∗ ReΨ is continuous. Such an operator, denoted by Umax
r [Ψ ],

is defined, for any F ∈ L2
R(R2), by

Umax
r [Ψ ] (F ) : x 7→ max

∥h∥∞≤r
(F ∗ ReΨ)(x + h). (46)

For the sake of conciseness, the parameter between square brackets is ignored from now on. If r ≪ λF0 , then
(43) is valid for any h ∈ B∞(r). Then, using (45) and (46), we get

r ≪ λF0 =⇒ Umax
r F (x) ≈ UmodF (x) max

∥h∥∞≤r
G(x,h). (47)

Using the periodicity of G, we can show that, if r ≥ π
∥ν∥2

, then h 7→ G(x,h) necessarily reaches its maximum
value (i.e., 1) on B∞(r). We therefore get

π

∥ν∥2
≤ r ≪ 2π

ε
=⇒ Umax

r F (x) ≈ UmodF (x). (48)

11
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3.2 Adaptation to Discrete 2D Sequences

As in Section 2.4, we consider an input image X ∈ l2R(Z2), a complex, analytic convolution kernel W ∈
J
(
θ, κ

)
, a subsampling factor m ∈ N \ {0} and an integer q ∈ N \ {0}, referred to as a half-size, such that

max pooling operates on a grid of size (2q + 1)× (2q + 1). We seek a relationship between

Ymax := Umax
m, q [W] (X) and Ymod := Umod

m [W] (X), (49)

where Umax
m, q [W] (RMax) and Umod

m [W] (CMod) have been respectively defined in (1) and (5). As before, in
what follows we omit the parameter between square brackets.

We now use the sampling results from Proposition 2. Let FX and ΨW ∈ V(s) denote the functions satisfying
(24). Recall that the continuous versions of CMod and RMax operators have been defined in (45) and (46),
respectively. On the one hand, we apply (27) with m← 2m to Ymod. For any n ∈ Z2,

Umod
m X[n] = (FX ∗ ΨW)(xn) (50)

= UmodFX(xn), (51)

with xn := 2msn. On the other hand, we postulate that

Umax
m, q X[n] = Umax

r FX(xn) (52)

for a certain value of r ∈ R>0. Then, (48) implies Ymod ≈ Ymax. However, as explained hereafter, (52) is
not satisfied, due to the discrete nature of the max pooling grid. According to (1) and (4), we have

Umax
m, q X[n] = max

∥p∥∞≤q
Re
((

X ∗W
)
↓ m

)
[2n + p]. (53)

Therefore, according to (27) in Proposition 2, we get

Umax
m, q X[n] = max

∥p∥∞≤q
(FX ∗ ReΨW) (xn + hp) , (54)

with
xn := 2msn and hp := msp. (55)

By considering rq := ms
(
q + 1

2
)
, we get a variant of (52) in which the maximum is evaluated on a discrete

grid of (2q + 1)2 elements, instead of the continuous region B∞(rq), as defined in (46) with r ← rq. As a
consequence, (47) is replaced in the discrete framework by

q ≪ 2π/(mκ) =⇒ Umax
m, q X[n] ≈ Umod

m X[n] max
∥p∥∞≤q

GX
(
xn, hp

)
, (56)

where we have introduced, similarly to (41),

GX : (x, h) 7→ cos
(
⟨ν, h⟩ −HX(x)

)
, (57)

with
ν := θ/s and HX := ∠

(
FX ∗ ΨW

)
, (58)

where ∠ : C→ [0, 2π[ denotes the phase operator. Unlike the continuous case, even if the window size rq is
large enough, the existence of p ∈ {−q, . . . , q}2 such that GX

(
xn, hp

)
= 1 is not guaranteed, as illustrated

in Figure 3 with q = 1. Instead, we can only seek a probabilistic estimation of the normalized mean squared
error between Ymax and Ymod.

Approximation (56) implies

q ≪ 2π/(mκ) =⇒
∥∥Umod

m X− Umax
m, q X

∥∥
2 ≈ ∥δm, qX∥2 , (59)

where δm, qX ∈ l2R(Z2) is defined such that, for any n ∈ Z2,

δm, qX[n] := Umod
m X[n]

(
1− max

∥p∥∞≤q
GX
(
xn, hp

))
. (60)

12
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Expression (59) suggests that the difference between the left and right terms can be bounded by a quantity
which only depends on the product mκ (subsampling factor × frequency localization) and the grid half-
size q. In what follows, we establish a bound characterizing this approximation, which will be provided in
Proposition 5.

For the sake of conciseness, we introduce the following notations:

AX : (x, h) 7→ (FX ∗ ReΨW)(x + h); (61)
ÃX : (x, h) 7→

∣∣(FX ∗ ΨW)(x)
∣∣GX(x,h). (62)

We now consider, for any n ∈ Z2, the vectors hmax
n and h′max

n ∈ ms {−q, . . . , q}2 achieving the maximum
value of AX(xn, hp) and ÃX(xn, hp) over the max pooling grid, respectively. They satisfy

Amax
X (xn) := AX

(
xn, hmax

n

)
= max

∥p∥∞≤q
AX(xn, hp); (63)

Ãmax
X (xn) := ÃX

(
xn, h′max

n

)
= max

∥p∥∞≤q
ÃX(xn, hp). (64)

Then, according to (50) and (54), we get, for any n ∈ Z2,

Amax
X (xn) = Umax

m, q X[n]; (65)
Ãmax

X (xn) = Umod
m X[n] max

∥p∥∞≤q
GX
(
xn, hp

)
, (66)

and (56) becomes
q ≪ 2π/(mκ) =⇒ Amax

X (xn) ≈ Ãmax
X (xn). (67)

Remark 3. Expression (43) implies that, if q ≪ 2π/(mκ), then AX(xn, hp) ≈ ÃX(xn, hp) for all p ∈
{−q, . . . , q}2. However, this property does not guarantee that AX and ÃX reach their maximum in the same
exact location; i.e., that hmax

n = h′max
n .

The following lemma provides a bound for approximation (67).
Lemma 5. For any x ∈ R2,∣∣∣Amax

X (xn)− Ãmax
X (xn)

∣∣∣ ≤ max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣. (68)

Proof. See Appendix A.10.

Before stating Proposition 5, we consider the following hypothesis:
Hypothesis 1. There exists h0 ∈ R2 with ∥h0∥2 =

√
2qms, such that∑

n∈Z2

max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 ≤ ∑

n∈Z2

∣∣∣F0(xn + h0)− F0(xn)
∣∣∣2. (69)

The underlying idea is explained as follows. The absolute difference between F0(xn +h) and F0(xn) is more
likely to increase with the norm of h. For any given n ∈ Z2, we have, by construction, ∥hmax

n ∥2 ≤
√

2qms
and

∥∥h′max
n

∥∥
2 ≤
√

2qms. Therefore, we can expect to observe

max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 ≤ ∣∣∣F0(xn + h0)− F0(xn)

∣∣∣2. (70)

While this might occasionally not be true, Hypothesis 1 postulates that, when summing over all the data-
points, the inequality holds.

We now formally state the result characterizing approximation (59).

13
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Figure 3. Search for the maximum value of h 7→ GX(x, h) over a discrete grid of size 3 × 3, i.e., q = 1. This figure
displays 3 examples with different frequencies ν := θ/s and phases HX(x). Hopefully the result will be close to the
true maximum (left), but there are some pathological cases in which all points in the grid fall into pits (middle and
right).

Proposition 5. We assume that condition (38) is satisfied: κ ≤ π/m. Then, under Hypothesis 1,∥∥Umod
m X− Umax

m, q X
∥∥

2 ≤
∥∥δm, qX

∥∥
2 + βq(mκ)

∥∥Umod
m X

∥∥
2, (71)

where βq : R+ → R+ is defined by
βq : κ′ 7→ qκ′. (72)

Proof. See Appendix A.11.

We now seek a probabilistic estimation of
∥∥δm, qX

∥∥
2. For this purpose, we first reformulate the problem

using the unit circle S1 ⊂ C, before introducing a probabilistic framework in Section 3.4.

3.3 Notations on the Unit Circle

In what follows, for any z ∈ C \ {0}, we denote by ∠z ∈ [0, 2π[ the argument of z. For any z, z′ ∈ S1, the
angle between z and z′ is given by ∠(z∗z′). We then denote by [z, z′]S1 ⊂ S1 the arc on the unit circle going
from z to z′ counterclockwise:

[z, z′]S1 :=
{
z′′ ∈ S1 ∣∣ ∠(z∗z′′) ≤ ∠(z∗z′)

}
. (73)

We remind readers that xn and hp ∈ R2 have been defined in (55). By using the relation cosα = Re(eiα),
(57) becomes, for any n ∈ Z2 and any p ∈ {−q, . . . , q}2,

GX
(
xn, hp

)
= Re

(
Z∗

X(xn)Zp(mθ)
)
, (74)

where we have defined the following functions with outputs on the unit circle:

ZX : x 7→ ei HX(x) and Zp : ω 7→= ei⟨ω, p⟩, (75)

where HX denotes the phase of FX ∗ ΨW as introduced in (58). On the one hand, ZX(xn) is the phase
(represented on the unit circle S1) of the complex wavelet transform FX ∗ ΨW at location xn. On the other
hand, Zp(mθ) approximates the phase shift between any two evaluations of FX ∗ΨW at locations x, x′ such
that x′−x = hp. This however is only true if we assume that ΨW exhibits slow amplitude variations. Then,
GX
(
xn, hp

)
approximates the cosine of the phase of FX ∗ ΨW at location xn + hp.

According to (56), max∥p∥∞≤q GX
(
xn, hp

)
approximates the ratio between RMax and CMod outputs at

discrete location n ∈ Z2. The intuition behind this is that max pooling seeks a point in a discrete grid
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around xn where the phase of FX ∗ ΨW is the closest to 1, thereby maximizing the amount of energy on the
real part of the signal. Assuming slow amplitude variations of ΨW, the result therefore approximates the
modulus of the complex coefficients.

To get an estimation of δm, qX[n] (60), we will exploit the following property. If the phases Zp(mθ) for
p ∈ {−q, . . . , q}2 are well distributed on the unit circle, then the values of GX

(
xn, hp

)
are evenly spread

out on [−1, 1]. Therefore, its maximum value is more likely to be close to 1, and (60) becomes

δm, qX[n]≪ Umod
m X[n] ∀n ∈ Z2. (76)

Let nq := (2q + 1)2 denote the number of evaluation points for the max pooling operator. For any
ω ∈ R2, we consider a sequence of values on S1, denoted by

(
Z

(q)
i (ω)

)
i∈{0, ..., nq−1}, obtained by sorting

{Zp(ω)}p∈{−q, ..., q}2 (75) in ascending order of their arguments:

0 = H
(q)
0 (ω) ≤ · · · ≤ H(q)

nq−1(ω) < 2π, (77)

where H
(q)
i (ω) denotes the phase of Z(q)

i (ω). In addition, we close the loop with H
(q)
nq (ω) := 2π and

Z
(q)
nq (ω) := 1. Then, we split S1 into nq arcs delimited by Z(q)

i (ω):

A
(q)
i (ω) :=

{[
Z

(q)
i (ω), Z(q)

i+1(ω)
]
S1

if H(q)
i+1(ω)−H(q)

i (ω) < 2π;
S1 otherwise.

(78)

Finally, for any i ∈ {0, . . . , nq − 1}, we denote by

δH
(q)
i : ω 7→ H

(q)
i+1(ω)−H(q)

i (ω) (79)

the function computing the angular measure of arc A
(q)
i (ω), for any ω ∈ R2.

3.4 Probabilistic Framework

From now on, input X is considered as a discrete 2D stochastic process. In order to “randomize” FX
introduced in (24), we define a continuous stochastic process from X, denoted by FX, such that

∀x ∈ R2, FX(x) :=
∑

n∈Z2

X[n]Φ(s)
n (x). (80)

Next, we consider the following stochastic processes, which are parameterized by X:

MX := |FX ∗ ΨW|; HX := ∠(FX ∗ ΨW); ZX := eiHX , (81)

and, for any p ∈ {−q, . . . , q}2,

GX, p := Re
(
Z∗

X Zp(mθ)
)
; Gmax

X := max
∥p∥∞≤q

GX, p, (82)

where the deterministic function Zp has been defined in (75).
Remark 4. By continuous extension, HX(x) and ZX(x) are uniquely defined at x such that MX(x) = 0.

For any x ∈ R2, FX(x) (24) and HX(x) (58) are respectively drawn from FX(x) and HX(x). Then, ZX(x)
(75) is a realization of ZX(x). Consequently, according to (74), GX

(
x, hp

)
is a realization of GX, p(x).

Furthermore, according to the definition of CMod in (5) and xn in (55), Proposition 2 with m← 2m implies
that

MX(xn) = Umod
m X[n]. (83)
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We remind that θ ∈ [−π, π]2 and κ ∈ ]0, 2π] respectively denote the center and size of the Fourier support
of the complex kernel W ∈ J

(
θ, κ

)
. To compute the expected discrepancy between Ymax and Ymod such as

introduced in (49), we assume that

∥θ∥2 ≫ 2π/N ; (84)
∥θ∥2 ≫ κ, (85)

where N ∈ N\{0} denotes the support size of input images. These assumptions exclude low-frequency filters
from the scope of our study. We then state the following hypotheses, for which a justification is provided in
Appendix B.
Hypothesis 2. For any x ∈ R2, ZX(x) is uniformly distributed on S1.
Hypothesis 3. For any n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2, the random variables MX(yi) for i ∈
{0, . . . , n− 1} are jointly independent of ZX(x).

3.5 Expected Quadratic Error between RMax and CMod

In this section, we propose to estimate the expected value of the stochastic quadratic error P̃2
X, defined such

that
P̃X :=

∥∥Umod
m X− Umax

m, q X
∥∥

2/
∥∥Umod

m X
∥∥

2. (86)

According to (49), this is an estimation of the relative error between Ymod and Ymax.

First, let us reformulate δm, qX, introduced in (60), using the probabilistic framework. According to (74)
and (82), we have, for any n ∈ Z2,

δm, qX[n] := Umod
m X[n]

(
1− Gmax

X (xn)
)
. (87)

We now consider the stochastic process
QX := 1− Gmax

X , (88)
and the random variable

Q̃X := ∥δm, qX∥2 /
∥∥Umod

m X
∥∥

2. (89)

The next steps are as follows: (1) at the pixel level, show that E[QX(x)2] depends on the subsampling factor
m and the filter frequency θ, and remains close to zero with some exceptions; (2) at the image level, show
that the expected value of Q̃2

X is equal to the latter quantity; (3) use Proposition 5, which implies that
P̃X ≈ Q̃X, to deduce an upper bound on the expected value of P̃2

X.

The first point, which is established in Proposition 6 below, is a key result of this paper. It will be used to
prove Theorem 2, which corresponds to the two remaining points.
Proposition 6. Assuming Hypothesis 2, the expected value of QX(x)2 is independent from the choice of
x ∈ R2, and

E
[
QX(x)2] = γq(mθ)2, (90)

where we have defined

γq : ω 7→

√√√√3
2 + 1

4π

nq−1∑
i=0

(
sin δH(q)

i (ω)− 8 sin δH
(q)
i (ω)
2

)
, (91)

with δH(q)
i (ω) ∈ [0, 2π] (79) being the length of arc A

(q)
i (ω).

Proof. For the sake of readability, in this proof we omit the argument of functions Zp (75), Z(q)
i , H(q)

i (77),
A

(q)
i (78), and δH

(q)
i (79); we assume they are evaluated at ω ← mθ. We consider the “Lebesgue” Borel

σ-algebra on S1 generated by
{

[z, z′]S1

∣∣ z, z′ ∈ S1} ∪ {S1}, on which we have defined the angular measure
ϑ such that ϑ(S1) := 2π, and

∀z, z′ ∈ S1, ϑ ([z, z′]S1) := ∠(z∗z′). (92)
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(a) General case (b) Pathological case

Figure 4. Top: 2D representation of h 7→ GX(xn, h) (57), for two different values of θ ∈ R2, q = 1 and arbitrary
values of m ∈ N \ {0} and s ∈ R \ {0}. Assuming the plots are centered around h = 0, each point materializes a
location hp in the max pooling grid, for p ∈ {−q, . . . , q}2. The desirable situation occurs when one of these locations
falls near a ridge (bright areas), in which case the outputs produced by RMax and CMod are similar—see (56).
Each number i ∈ {0, . . . , 8} represents the rank of Zp ∈ S1 (75), when these values are sorted by ascending order
of their arguments (77). If location hp gets ranked i, then we have Zp = Z

(q)
i . Bottom: polar representations of

gmax : S1 → [−1, 1] (93), corresponding to the same settings. The closer the curve is from the outer ring, the more
likely some points hp will fall near a ridge of GX. (a) Case where the values Zp are roughly evenly distributed on S1.
(b) Case where these values are concentrated in a small portion of the unit circle. The most extreme cases occurs
when Zp = 1 for any p. Figure 3 (middle and right) depicts two such situations.

For any p ∈ N \ {0}, we compute the p-th moment of Gmax
X (x) defined in (82). By considering

gmax : S1 → [−1, 1]
z 7→ max

∥p∥∞≤q
Re
(
z∗Zp

)
, (93)

we get Gmax
X (x) = gmax(ZX(x)). A visual representation of gmax is provided in Figure 4, for two different

values of θ. According to Hypothesis 2, ZX(x) follows a uniform distribution on S1. Therefore,

E [Gmax
X (x)p] = 1

2π

∫
S1
gmax(z)p dϑ(z), (94)

which proves that E [Gmax
X (x)p] does not depend on x. Let us split the unit circle S1 into the arcs

A
(q)
0 , . . . , A

(q)
nq−1 such as introduced in (78):

E [Gmax
X (x)p] = 1

2π

nq−1∑
i=0

∫
A

(q)
i

gmax(z)p dϑ(z). (95)
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Let i ∈ {0, . . . , nq − 1}. We show that

∀z ∈ A
(q)
i , gmax(z) = max

(
Re
(
z∗Z

(q)
i

)
, Re

(
z∗Z

(q)
i+1
))
. (96)

Let z ∈ A
(q)
i and i′ /∈ {i, i+ 1}. We prove that

Re
(
z∗Z

(q)
i′

)
≤ Re

(
z∗Z

(q)
i

)
or Re

(
z∗Z

(q)
i′

)
≤ Re

(
z∗Z

(q)
i+1
)
. (97)

On the one hand, we assume that ∠
(
z∗Z

(q)
i′

)
≤ π. By design of

(
Z

(q)
i

)
i∈{0, ..., nq−1}, we have

Z
(q)
i+1 ∈

[
z, Z

(q)
i′

]
S1 . (98)

Therefore, by definition of arcs on the unit circle (73), we get

∠
(
z∗Z

(q)
i+1
)
≤ ∠

(
z∗Z

(q)
i′

)
. (99)

Then, since cos is non-increasing on [0, π], we get

cos∠
(
z∗Z

(q)
i+1
)
≥ cos∠

(
z∗Z

(q)
i′

)
, (100)

which yields the right part of (97). On the other hand, if ∠
(
z∗Z

(q)
i′

)
≥ π, a similar reasoning yields the left

part of (97). Then, (96) holds.

Next, we show that, as observed in Figure 4, gmax is piecewise-symmetric with respect to the center value
of each arc A

(q)
i , denoted by

Z
(q)
i :=

√
Z

(q)
i Z

(q)
i+1. (101)

Let z1, z2 ∈ A
(q)
i which are symmetric with respect to Z

(q)
i . Therefore, there exists z′ ∈ S1 such that

z1 = Z
(q)
i z′ and z2 = Z

(q)
i z′∗. We now prove that

gmax(z1) = gmax(z2). (102)

A simple calculation yields

z∗
1Z

(q)
i+1 = z′∗Z̃

(q)
i and z∗

2Z
(q)
i =

(
z′∗Z̃

(q)
i

)∗
, (103)

with
Z̃

(q)
i :=

(
Z

(q)
i

∗
Z

(q)
i

)
=
(
Z

(q)
i

∗
Z

(q)
i+1
)
. (104)

Therefore,
Re
(
z∗

1Z
(q)
i+1
)

= Re
(
z∗

2Z
(q)
i

)
. (105)

Since z1, z2 both belong to A
(q)
i , gmax(z1) and gmax(z2) satisfy (96). Then, by symmetry, (105) implies (102).

One can observe from Figure 4 that gmax reaches its local minimum at the center of arc A
(q)
i , i.e., Z(q)

i . This
corresponds to a point where gmax is non-differentiable.

We denote by A
(q)
i :=

[
Z

(q)
i , Z

(q)
i

]
S1 the first half of arc A

(q)
i . Then,

∀z ∈ A
(q)
i , gmax(z) = Re

(
z∗Z

(q)
i

)
. (106)

As a consequence, using symmetry, we get∫
A

(q)
i

gmax(z)p dϑ(z) = 2
∫
A

(q)
i

gmax(z)p dϑ(z)

= 2
∫
A

(q)
i

Re
(
z∗Z

(q)
i

)p dϑ(z).
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By using the change of variable formula (Athreya & Lahiri, 2006, p. 81) with z ← eiη, we get

∫
A

(q)
i

gmax(z)p dϑ(z) = 2
∫ H

(q)
i

H
(q)
i

cosp
(
η −H(q)

i

)
dη, (107)

where H(q)
i :=

(
H

(q)
i + H

(q)
i+1
)
/2 denotes the argument of Z(q)

i . Then, the change of variable η′ ← η −H(q)
i

yields ∫
A

(q)
i

gmax(z)p dϑ(z) = 2
∫ δH

(q)
i

/2

0
cosp η′ dη′. (108)

Next, we insert (108) into (95), and compute E [Gmax
X (x)p] for p← 1 and p← 2:

E [Gmax
X (x)] = 1

π

nq−1∑
i=0

sin δH
(q)
i

2 ;

E
[
Gmax

X (x)2] = 1
2 + 1

4π

nq−1∑
i=0

sin δH(q)
i .

We recall that QX := 1− Gmax
X . By linearity of E, we get

E
[
QX(x)2] := 3

2 + 1
4π

nq−1∑
i=0

(
sin δH(q)

i − 8 sin δH
(q)
i

2

)
, (109)

which concludes the proof.

We consider an ideal scenario where
(
Z

(q)
i (mθ)

)
i∈{0, ..., nq−1} are evenly spaced on S1. Then, an order 2

Taylor expansion yields
γq(mθ) = o(1/q2), (110)

providing an order-two-polynomial decay rate for QX(x), when the grid half-size q increases. Figure 5
displays θ 7→ γq(mθ)2 for θ ∈ [−π, π]2, with m = 4 and q = 1 as in AlexNet. We notice that, for the major
part of the Fourier domain, γq remains close to 0. However, we observe a regular pattern of dark regions,
which correspond to pathological frequencies where the repartition of

(
Z

(q)
i (mθ)

)
i∈{0, ..., nq−1} is unbalanced.

So far, we established a result at the pixel level. Before stating Theorem 2, which extends the result to the
image level, we need the following intermediate statement.
Proposition 7. We consider the random variable

S̃X :=
∥∥Umod

m X
∥∥

2. (111)

Under Hypothesis 3, for any x ∈ R2,

• ZX(x) is independent of S̃X;

• ZX(x), MX(x) are conditionally independent given S̃X.

Proof. See Appendix A.12.

Finally, Propositions 6 and 7 yield the following theorem. It provides an upper bound on the expected value
of the normalized mean squared error P̃2

X, such as defined in (86).
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Figure 5. γ(mθ)2 as a function of the kernel characteristic frequency θ ∈ [−π, π]2. According to Theorem 2, this
quantity provides an approximate bound for the expected quadratic error between RMax and CMod outputs. The
subsampling factor m has been set to 2 as in ResNet (left), and 4 as in AlexNet (right). The bright regions correspond
to frequencies for which the two outputs are expected to be similar. However, in the dark regions, pathological cases
such as illustrated in Figure 3 are more likely to occur.

Theorem 2 (MSE between CMod and RMax). Let W ∈ J
(
θ, κ

)
denote a discrete Gabor-like filter, m ∈

N \ {0} a subsampling factor and q ∈ N \ {0} a grid half-size. We consider a stochastic process X whose
realizations are elements of l2R(Z2). We assume that condition (38) is satisfied: κ ≤ π/m. Then, under
Hypotheses 1 to 3,2

E
[
P̃2

X
]
≤
(
βq(mκ) + γq(mθ)

)2
, (112)

where P̃2
X (86) denotes the stochastic quadratic error between CMod and RMax outputs. We remind that βq

and γq have been introduced in (72) and (91), respectively.

Proof. See Appendix A.13.

Let us analyze the bound obtained in (112). The first term, βq(mκ), accounts for the localized property
of the convolution filter W. This term decreases linearly with the product mκ. In the limit case where
κ = 0 (infinite, nonlocal filter), we get βq(mκ) = 0. Note that a smaller subsampling factor m allows for
a larger bandwidth κ. Moreover, βq(mκ) increases linearly with the size of the max pooling grid, which is
characterized by q. The second term, γq(mθ), accounts for the discrete nature of the max pooling grid. It
strongly depends on the characteristic frequency θ, as illustrated in Figure 5. According to (110), this term
has a polynomial decay when q increases. However, increasing the size of the max pooling grid also results
in increasing the term βq(mκ), as explained above. Therefore, a tradeoff must be found to get an optimal
bound.

4 Shift Invariance of RMax Outputs

In this section, we present the main theoretical claim of this paper. Based on the previous results, we provide
a probabilistic measure of shift invariance for RMax operators. First, we state the following lemma.
Lemma 6. If Hypotheses 2 and 3 are satisfied, then they are also true with X← TuX, for any u ∈ R2.

Proof. See Appendix A.14.

We are now ready to state the main result about shift invariance of RMax outputs.
2We can easily prove that these properties are independent from the choice of sampling interval s > 0.
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Theorem 3 (Shift invariance of RMax). We assume that the requirements stated in Theorem 2 are satisfied.
Additionally, given a translation vector u ∈ R2, we consider the following random variable:

R̃X, u :=
∥∥Umax

m, q (TuX)− Umax
m, q X

∥∥
2/
∥∥Umod

m X
∥∥

2. (113)

Then, under condition (38), we have

E
[
R̃X, u

]
≤ 2

(
βq(mκ) + γq(mθ)

)
+ α(κu), (114)

where α, βq and γq are defined in (18), (72) and (91), respectively.

Proof. See Appendix A.15.

In the bound established in (114), the sum βq(mκ) + γq(mθ) accounts for the discrepancy between RMax
and CMod outputs, as stated in Theorem 2, whereas the term α(κu) characterizes the stability of CMod
outputs, as stated in Theorem 1. If κ is sufficiently small, then α(κu) and βq(mκ) become negligible with
respect to γq(mθ), and the bound can be approximated by 2 γq(mθ). Theorem 3 therefore provides a validity
domain for shift invariance of RMax operators, as illustrated in Figure 5 with q = 1.
Remark 5. The stochastic discrepancy introduced in (113) is estimated relatively to the CMod output.
This choice is motivated by the perfect shift invariance of its norm, as shown in Proposition 3.
Remark 6. In practice, most of the time max pooling is performed on a grid of size 3× 3; therefore q = 1.
For the sake of conciseness, we shall sometimes drop q in the notations, which implicitly means q = 1.

5 Adaptation to Multichannel Convolution Operators

In this section, we adapt Theorems 1 to 3 to multichannel inputs (e.g., RGB images), employed in conven-
tional CNNs such as AlexNet or ResNet.

First, we define multichannel RMax and CMod operators relatively to (1) and (5). We denote by K and
L ∈ N\{0} the number of input and output channels, respectively. Additionally, we consider a multichannel
convolution tensor

W := (Wlk)l∈{0, ..., L−1}, k∈{0, ..., K−1} ∈
(
l2C(Z2)

)L×K
. (115)

Multichannel RMax and CMod operators take as input images, denoted by

X := (Xk)k∈{0, ..., K−1} ∈
(
l2R(Z2)

)K
. (116)

They are defined, for any given output channel l ∈ {0, . . . , L− 1}, by

Umax
m, q, l[W] : X 7→ MaxPoolq

(
K−1∑
k=0

(
Xk ∗ Re Wlk

)
↓ m

)
; (117)

Umod
m, l [W] : X 7→

∣∣∣∣∣
K−1∑
k=0

(Xk ∗Wlk) ↓ (2m)
∣∣∣∣∣ , (118)

wherem, q ∈ N\{0} respectively denote a subsampling factor and the max pooling grid half-size. Analogously
to (49) for single-channel inputs, we now consider

Ymax
l := Umax

m, q, l[W] (X) and Ymod
l := Umod

m, l [W] (X). (119)

Again, in what follows we omit the parameter between square brackets. To apply Theorems 1 to 3 to the
current setting on the l-th output channel, we need the following hypotheses.
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Hypothesis 4 (Monochrome filters). Let

W̃l := 1
K

K−1∑
k=0

Wlk (120)

denote the mean kernel of the l-th output channel. Then, there exists µl ∈ RK such that

∀k ∈ {0, . . . , K − 1} , Wlk = µlkW̃l. (121)

Hypothesis 5 (Gabor-like filters). There exists a bandwidth κ > 0 satisfying κ ≤ π/m and a frequency
vector θl ∈ [−π, π]2 such that

W̃l ∈ J
(
θl, κ

)
. (122)

Note that the bandwidth κ is not indexed by l, because it shall later be assumed to be shared across the
output channels. Then, under Hypothesis 4, Ymax

l and Ymod
l are the outputs of single-channel RMax and

CMod operators, as introduced in (1) and (5):

Ymax
l = Umax

m, q

[
W̃l

](
Xlum

l

)
and Ymod

l = Umod
m

[
W̃l

](
Xlum

l

)
, (123)

where Xlum
l ∈ l2R(Z2) (“luminance” image) is defined as the following linear combination:

Xlum
l :=

K−1∑
k=0

µlkXk. (124)

The results established for single-channel inputs can therefore be extended to multichannel operators. Specif-
ically, we get the following corollaries to Theorems 1 to 3.
Corollary 2 (Shift invariance of CMod). For a given output channel l ∈ {0, . . . , L− 1}, we postulate
Hypotheses 4 and 5. Then, for any input image X ∈

(
l2R(Z2)

)K with finite support and any translation
vector u ∈ R2, ∥∥Umod

m, l (TuX)− Umod
m, l X

∥∥
2 ≤ α(κu)

∥∥Umod
m, l X

∥∥
2, (125)

where α has been defined in (18).
Corollary 3 (MSE between CMod and RMax). As in Corollary 2, we postulate Hypotheses 4 and 5. Again,
we assume that condition (38) is satisfied: κ ≤ π/m. Additionally, we consider X as a stack of K discrete
stochastic processes, and assume Hypotheses 1 to 3 with X← Xlum

l and W← W̃l. Then,

E
[
P̃2

X, l

]
≤
(
βq(mκ) + γq(mθl)

)2
, (126)

where we have defined the following random variable:

P̃X, l :=
∥∥Umod

m, l X− Umax
m, l X

∥∥
2/
∥∥Umod

m, l X
∥∥

2. (127)

Corollary 4 (Shift invariance of RMax). We assume that the requirements stated in Corollary 3 are satisfied.
Then, for any translation vector u ∈ R2,

E
[
R̃X, u, l

]
≤ 2

(
βq(mκ) + γq(mθl)

)
+ α(κu), (128)

where we have defined the following random variable:

R̃X, u, l :=
∥∥Umax

m, l (TuX)− Umax
m, l X

∥∥
2/
∥∥Umod

m, l X
∥∥

2. (129)

Remark 7. In the above results, we used a translation operator on multichannel tensors, obtained by
applying Tu, as defined in (28), to each channel Xk.
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6 A Case Study Implementing the Dual-Tree Complex Wavelet Packet Transform

In this section, we experimentally validate the results stated in Theorems 1 to 3. To this end, we consider
a fully-deterministic scenario implementing the dual-tree complex wavelet packet transform (DT-CWPT),
which exhibit characteristics akin to those observed in the initial convolution layer of freely-trained CNNs
such as AlexNet or ResNet. In particular, as stated in Section 6.1, DT-CWPT achieves subsampled con-
volutions with oriented band-pass filters tiling the Fourier domain into overlapping square windows. As
such, it provides a convenient framework to experimentally validate our theoretical findings in a controlled
environment. Then, in Section 6.2, we build CMod and RMax operators based on DT-CWPT convolution
kernels.

6.1 Main Properties

In what follows, we outline the principal characteristics of DT-CWPT. A detailed description of the trans-
form itself is provided in Appendix C.1, whereas the results presented hereafter are formally established in
Appendices C.2 and C.3.

For a given decomposition depth J ∈ N \ {0}, DT-CWPT achieves subsampled convolutions with 4 × 4J

oriented band-pass filters that tile the Fourier domain into overlapping square windows of size

κJ := π/mJ , with mJ := 2J−1. (130)

More specifically, considering an input image X ∈ l2R(Z2), it produces a set of 4× 4J output feature maps

D(J) :=
(
D↗(J)

l , D↘(J)
l , D↙(J)

l , D↖(J)
l

)
l∈{0, ..., 4J −1}, (131)

where each arrow points to the Fourier quadrant where the feature map’s energy is concentrated. Moreover,
as stated in Proposition 10, for any l ∈

{
0, . . . , 4J − 1

}
, there exists W↗(J)

l ∈ l2C(Z2) such that

D↗(J)
l =

(
X ∗W↗(J)

l

∗)
↓ 2J . (132)

An interesting property is that each kernel W↗(J)
l approximately satisfies

W↗(J)
l ∈ J

(
θ

(J)
l , κJ

)
(133)

for a certain characteristic frequency θ
(J)
l ∈ [0, π]2. In other words, it approximately behaves as a Gabor-like

filter in the discrete framework (11). Moreover, each kernel corresponds to a different frequency, thereby
covering the top-right quadrant of the Fourier domain. Similar results can be established for the other
three Fourier quadrants. Graphical representations of W↗(J) :=

(
W↗(J)

l

)
l∈{0, ..., 4J −1} and W↘(J) :=(

W↘(J)
l

)
l∈{0, ..., 4J −1} are provided in Figure 6 with J = 2 (Figure 6a, 32 filters) and J = 3 (Figure 6b, 128

filters).

The RMax and CMod operators implemented in our experiments respectively satisfy (1) and (5) with with
W ← W↗(J)

l or W↘(J)
l , and m ← mJ . Note that increasing the decomposition depth J , and therefore

the subsampling factor mJ , results in a decreased Fourier support size κJ , therefore matching the condition
stated in (38) κ← κJ and m← mJ .

Remark 8. Because X is real-valued, the feature maps D↙(J)
l and D↖(J)

l are the respective complex
conjugates of D↗(J)

l and D↘(J)
l , and thus do not need to be explicitly computed. Then, we can easily show

that W↙(J)
l and W↖(J)

l are also the complex conjugates of W↗(J)
l and W↘(J)

l , respectively.
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(a) J = 2

(b) J = 3
Figure 6. Real part of the convolution kernels W↗(J), W↘(J), with J = 2 (32 filters, mJ = 2) and J = 3 (128 filters,
mJ = 4), respectively. The kernels have been computed using Q-shift orthogonal QMFs of length 10 (Kingsbury,
2003). The kernels have been respectively cropped to size 11 × 11 and 19 × 19, for the sake of legibility. Note that
the filters displayed in (a) and (b) share similarities with those found in, respectively, ResNet (m = 2) and AlexNet
(m = 4), after training with ImageNet.

6.2 DT-CWPT-Based RMax and CMod Operators

According to (130), (132), and (133), we can apply Theorems 1 to 3 to the dual-tree framework. More
precisely, for any output channel l ∈

{
0, . . . , 4J − 1

}
, we consider the following RMax and CMod operators:

Umax↗
l : X 7→ MaxPool

((
X ∗ Re W↗(J)

l

)
↓ 2J−1

)
; (134)

Umod↗
l : X 7→

∣∣∣(X ∗W↗(J)
l

)
↓ 2J

∣∣∣. (135)

Using the notations introduced in (5) and (1), we have

Umax↗
l = Umax

mJ

[
W↗(J)

l

]
and Umod↗

l := Umod
mJ

[
W↗(J)

l

]
, (136)

where we have defined mJ := 2J−1. Note that, following Remark 6, we have omitted the grid half-size q,
which is equal to 1 (max pooling operates on a grid of size 3× 3). Furthermore, for the sake of brevity, we
have omitted the depth J in the above notations.
Remark 9. Both Umax↗

l and Umod↗
l are implemented using DT-CWPT with J decomposition stages.

However, in (134), the subsampling factor is equal to 2J−1, instead of 2J , as stated in (132). In order
to accommodate this property of RMax operators, the last stage of DT-CWPT decomposition is carried
out without subsampling, resulting in higher redundancy. This is similar to the concept of stationary
wavelet transform as described by Nason & Silverman (1995). Furthermore, only the real component of the
wavelet feature maps is preserved. On the other hand, Umod↗

l implements a fully-decimated wavelet packet
transform, and keeps both real and imaginary parts. Figure 7 illustrates these technical details.
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(a) RMax (b) CMod

Figure 7. Detailed illustration of the RMax (a) and CMod (b) operators based on DT-CWPT, with J = 3 decom-
position stages. The numbers between modules correspond to the number of feature maps, height and width. The
orange modules represent subsampled convolutions using one of the four 2D filter banks G[0−3], such as introduced
in (243). The FB index is indicated between square brackets. The RMax model (a) only computes the real part
of the dual-tree coefficients, and the last stage of decomposition is performed without subsampling (red modules).
Additionally, the blue modules represent linear combinations of feature maps such as described in (248).

6.3 Experiments and Results

We implemented the RMax and CMod operators Umax↗
l and Umod↗

l , as introduced in (134) and (135),
with both J = 2 and 3 stages of wavelet packet decomposition. To cover the whole frequency plane,
we also implemented similar operators, denoted by Umax↘

l and Umod↘
l . They are associated with the

convolution filters W↘(J)
l , introduced in Proposition 10, with energy being located in the bottom-right

quadrant. However, as explained in Remark 8, we did not need to deal with the two other quadrants
(negative x-values). Using the validation set of ImageNet-1K (Russakovsky et al., 2015), (N := 50 000
images), we measured the mean discrepancy between RMax and CMod outputs, and evaluated the shift
invariance of both models. Dual-tree decompositions have been performed with Q-shift orthogonal filters of
length 10 (Kingsbury, 2003).

6.3.1 MSE between RMax and CMod

Each image n ∈ {0, . . . , N − 1} in the dataset was converted to grayscale, from which a center crop of
size 224 × 224 was extracted. We denote by Xn ∈ l2R(Z2) the resulting input feature map. For any l ∈{

0, . . . , 4J − 1
}

, corresponding to a specific area in the Fourier plane, we denote by

Ymax↗
nl := Umax↗

l (Xn) and Ymod↗
nl := Umod↗

l (Xn) (137)

the outputs of the l-th RMax and CMod operators as defined in (134) and (135), respectively. We adopt
similar notations for the bottom-right Fourier quadrant. Then, the normalized mean squared error between
Ymod↗

nl and Ymax↗
nl was computed. It is defined by the square of

ρ↗
nl :=

∥∥Ymod↗
nl −Ymax↗

nl

∥∥
2/
∥∥Ymod↗

nl

∥∥
2. (138)

Finally, the for each output channel l, an empirical estimate for E
[
P̃2

X
]
, introduced in (86), was obtained by

averaging ρ↗2
nl over the whole dataset. We denote by ρ̃↗2

l the corresponding quantity.

Since Umax↗
l and Umod↗

l are parameterized by W↗(J)
l , it follows that ρ̃↗2

l depends on the filter’s character-
istic frequency θ

(J)
l (133). According to Proposition 11, these frequencies form a regular grid in the top-right
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Figure 8. Empirical estimates of the normalized mean squared error between RMax and CMod outputs, computed
on ImageNet-1K (validation set), for each filter frequency. For each channel l ∈

{
0, . . . , 4J − 1

}
, ρ̃↗2

l is plotted
as a grayscale pixel centered in θ

(J)
l such as introduced in eq. (133) (top-right quadrant). Similarly, ρ̃↘2

l is plotted
in the bottom-right quadrant. Finally, the bottom- and top-left quadrants (ρ̃↙2

l and ρ̃↖2
l ) are simply obtained by

symmetrizing the figures. Since the subsampling factor mJ is equal to 2J−1, these experimental results can be
compared with the left and right parts of Figure 5. Note that the low-pass filters have been discarded because they
are outside the scope of this study.

(a) RMax operators

(b) CMod operators

Figure 9. Shift invariance of RMax and CMod outputs, computed on ImageNet 2012 (validation set), for each filter
frequency. For each l ∈

{
0, . . . , 4J − 1

}
, ρ̃max↗

l (Figure 9a) and ρ̃mod↗
l (Figure 9b) are plotted by applying the same

procedure as in Figure 8.
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quadrant of Fourier domain. This provides a visual representation of ρ̃↗2
l , as shown in Figure 8. This

figure also displays ρ̃↘2
l , corresponding to the bottom-right quadrant. The half-plane of negative x-values

has simply been symmetrized, following Remark 8. We can observe a regular pattern of dark spots. More
precisely, high discrepancies between max pooling and modulus seem to occur when the energy of W↗(J)

l

or W↘(J)
l overlaps a dark region of Figure 5. This result corroborates Theorem 3, which states that high

discrepancies are expected for certain pathological frequencies, due to the search for a maximum value over
a discrete grid.

6.3.2 Shift invariance

For each input image previously converted to grayscale, two crops of size 224×224 were extracted, such that
the corresponding sequences Xn and X′

n are shifted by one pixel along the x-axis. From these inputs, the
following quantity was then computed:

ρmax↗
nl :=

∥∥Ymax′↗
nl −Ymax↗

nl

∥∥
2 /
∥∥Ymod↗

nl

∥∥
2, (139)

where Ymax′↗
nl satisfies (136) with Xn ← X′

n. Finally, for each output channel l ∈
{

0, . . . , 4J − 1
}

, an
empirical estimate for E

[
R̃X, u

]
, satisfying (113) with u = (1, 0)⊤, was obtained by averaging ρmax↗

nl over
the whole dataset. We denote by ρ̃max↗

l the corresponding quantity. We point out that shift invariance is
measured relatively to the norm of the CMod output, as explained in Remark 5.

On the other hand, the same procedure was applied to the CMod operators:

ρmod↗
nl :=

∥∥Ymod′↗
nl −Ymod↗

nl

∥∥
2 /
∥∥Ymod↗

nl

∥∥
2, (140)

and ρ̃mod↗
l was obtained as before by averaging ρmod↗

nl over the whole dataset.

A visual representation of ρ̃max↗
l and ρ̃mod↗

l are provided in Figure 9 (as well as the other Fourier quadrants).
Two observations can be drawn here.

(1) When the filter is horizontally oriented, the corresponding output is highly stable with respect to
horizontal shifts. This can be explained by noticing that such kernels perform low-pass filtering
along the x-axis. The exact transposed phenomenon occurs for vertical shifts.

(2) Elsewhere, we observe that high discrepancies between RMax and CMod outputs (Figure 8) are
correlated with shift instability of RMax (Figure 9, top). This is in line with (112) and (114) in
Theorems 2 and 3. Note that CMod outputs are nearly shift invariant regardless the characteristic
frequency θ

(J)
l (Figure 9, bottom), as predicted by Theorem 1 (39).

To conclude this experimental study, we note that the plots from Figures 8 and 9 remarkably align with
Figure 5, where the term γ(mθ) is represented as a function of the filter’s frequency. This term, appearing in
Theorems 2 and 3, plays a crucial role in determining the discrepancies between RMax and CMod outputs,
which in turn dictate shift invariance for RMax. The dark regions in Figure 5 correspond to the frequencies
where this operator is expected to be less stable, which is consistent with our experimental findings.

7 Discussion and Conclusion

In this paper, we conducted a theoretical and empirical study on the shift invariance properties captured
by the max pooling operator, when applied to a convolution layer with Gabor-like kernels. We established
a validity domain for near-shift invariance and confirmed our predictions through an experimental setting
based on the dual-tree complex wavelet packet transform. Our results indicate that the RMax operator
inherits the shift-invariance properties of CMod—except at certain filter frequencies regularly scattered in
the Fourier plane, where potential degeneracies may arise after max pooling.

In this context, a follow-up study applying these principles to real-world architectures was published as a
conference paper, and is included as supplementary material for anonymization purposes (Authors, 2024).
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In this companion paper, we empirically demonstrated that replacing RMax by CMod in the first layer of
AlexNet and ResNet architectures improves both shift invariance and prediction accuracy, while reducing
computational costs and memory footprint. We thus evidenced that instability at early stages can propagate
through deeper layers and have visible impact on the network’s overall behavior. We emphasize that this
companion paper is not a prior version of the present submission but rather an application of its principles.

Before wrapping up, we would like to discuss three potential limitations to this study.

• Our results primarily apply to early layers in CNNs, where the learned filters are known to resemble
Gabor-like waveforms. While this may seem overly restrictive, we point out that the behavior of
these layers can have a significant influence on the overall network stability, as discussed in the
previous paragraph. Aliasing and shift sensitivity in deeper layers are important issues as well, but
they require a different analytical approach that falls beyond the scope of this work. Nevertheless, we
believe that our study provides a partial but significant understanding of shift invariance properties
in CNNs, which is grounded in wavelet and image processing theory.

• This study is limited to Gabor-like filters; yet in practice, not all convolution kernels exhibit this
property, as observed in Figure 1. However, many of those filters have their spectrum localized in
the lower frequencies, and therefore do not suffer from aliasing effects. A few remaining kernels
may be more challenging to study from a shift invariance perspective, but we purposely left them
outside the scope of our study. Generally speaking, while simplifying assumptions were required for
mathematical tractability, they offered a solid framework to understand some properties that are
truly observed in CNNs and, to our knowledge, had not been previously documented.

• In recent years, the use of large convolution kernels and max pooling layers has declined in favor of
smaller kernels and alternative downsampling strategies. However, relatively large 7× 7 convolution
kernels—similar to those used in ResNet—have been reintroduced in modern CNN architectures
(Liu et al., 2022; Woo et al., 2023), partly motivated by the localized self-attention windows used
in the Swin Transformer architecture. Even setting these recent examples aside, we argue that
a theoretical study primarily focused on legacy architectures that have been proven successful in
the past can offer new insights into their underlying mechanisms, guide architectural choices, and
inspire future research—especially in a field where empirical innovations often precede theoretical
understanding. In particular, our finding that RMax exhibits instability at certain filter frequencies
may help explain recent shifts in architectural trends.

A link was missing between real- and complex-valued convolutions in CNNs. By comparing the outputs of
CMod and RMax operators, we established a connection between these two worlds, creating opportunities
for extensions of the results obtained for complex wavelet transforms. To paraphrase Tygert et al. (2016),
the correspondence between standard real-valued CNNs (using max pooling) and complex wavelets is no
longer “just a vague analogy.”
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A Appendix – Proofs

A.1 Proof of Lemma 1

Proof. Applying the Fourier transform on (15) yields, for any ξ ∈ R2,

F̂0(ξ) = ̂(F ∗ Ψ)(ξ − ν) = Tν

(
F̂ Ψ̂

)
(ξ). (141)

By hypothesis on Ψ , we have
supp(F̂ Ψ̂) ⊂ supp Ψ̂ ⊂ B∞(−ν, ε/2). (142)

The translation operator Tν shifts the support with respect to ν, which yields (16).
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A.2 Proof of Proposition 1

Proof. Using the 2D Plancherel formula, we compute

∥ThF0 − F0∥2
L2 = 1

4π2

∥∥∥T̂hF0 − F̂0

∥∥∥2

L2

= 1
4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 ∣∣∣e−i⟨h, ξ⟩ − 1

∣∣∣2 d2ξ

= 1
4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 (2− 2 cos ⟨h, ξ⟩

)
d2ξ

≤ 1
4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 |⟨h, ξ⟩|2 d2ξ,

because cos t ≥ 1 − t2

2 . Note that the integral is computed on a compact domain because, according to
Lemma 1, supp F̂0 ⊂ B∞(ε/2). Next, we use the Cauchy-Schwarz inequality to compute:

∀ξ ∈ B∞(ε/2), |⟨h, ξ⟩| ≤ ∥h∥1 · ∥ξ∥∞

≤ ε

2 ∥h∥1 .

Therefore,
∥ThF0 − F0∥2

L2 ≤
ε

4 ∥h∥
2
1 ∥F0∥2

L2 , (143)

which yields the result.

A.3 Proof of Lemma 2

Proof. Since F ∈ V(s), the two-dimensional version of Shannon’s sampling theorem (Mallat, 2009, Theo-
rem 3.11, p. 81) yields

F =
∑

n∈Z2

X[n]Φ(s)
n , and F̂ =

∑
n∈Z2

X[n] Φ̂(s)
n . (144)

Moreover, using (19), we can show that, for any ξ ∈ B∞(π/s),

Φ̂
(s)
n (ξ) = Φ̂(s)(ξ) e−i⟨sξ, n⟩ = s e−i⟨sξ, n⟩. (145)

Therefore, plugging (145) into (144) proves (22).

Then, by combining (22) with the Plancherel formula, we get

∥F∥2
L2 = 1

4π2

∥∥F̂∥∥2
L2

= 1
4π2

∫∫
B∞(π/s)

∣∣F̂ (ξ)
∣∣2 d2ξ

= 1
4π2

∫∫
B∞(π/s)

∣∣s X̂(sξ)
∣∣2 d2ξ.

The integral is performed on B∞(π/s) because F ∈ V(s). Then, by applying the change of variable ξ′ ← sξ,
we get

∥F∥2
L2 = 1

4π2

∫∫
B∞(π)

∣∣X̂(ξ′)
∣∣2 d2ξ′

= 1
4π2

∥∥X̂
∥∥2

L2 = ∥X∥2
2 ,

hence (23), which concludes the proof.
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A.4 Proof of Proposition 2

Proof. First, FX and ΨW are well defined because X ∈ l2R(Z2) and W ∈ l2C(Z2). By construction, FX and
ΨW ∈ V(s). Therefore, according to Shannon’s sampling theorem (Mallat, 2009, Theorem 3.11, p. 81),

FX := s
∑

n∈Z2

FX(sn)Φ(s)
n and ΨW := s

∑
n∈Z2

ΨW(sn)Φ(s)
n . (146)

By uniqueness of decompositions in an orthonormal basis, we get (26). Moreover, using (22) in Lemma 2,
we get, for any ξ ∈ B∞(π/s),

Ψ̂W(ξ) = s Ŵ(sξ). (147)
Since Ψ̂W(ξ) = 0 outside B∞(π/s), (147) is true for any ξ ∈ R2. Therefore, by hypothesis on W,

supp Ψ̂W ⊂ B∞
(
θ/s, κ/(2s)

)
, (148)

which yields (25).

We now prove (27). For n ∈ Z2, we compute:

(FX ∗ ΨW) (msn) =
∫∫

R2
FX(msn− x)ΨW(x) d2x

=
∫∫

R2

∑
p∈Z2

X[p]Φ(s)
p (msn− x)ΨW(x) d2x

=
∑

p∈Z2

X[p]
∫∫

R2
Φ(s)

p (msn− x)ΨW(x) d2x.

The sum-integral interchange is possible because X has a finite support. Then:

(FX ∗ ΨW) (msn) =
∑

p∈Z2

X[p]
∫∫

R2
ΨW(x)Φ(s)(s(mn− p)− x

)
d2x (149)

=
∑

p∈Z2

X[p]
(
ΨW ∗ Φ(s))(s(mn− p)

)
(150)

Since {Φ(s)
n }n∈Z2 is an orthonormal basis of V(s), the definition of ΨW in (24) implies, for any p′ ∈ Z2,

W[p′] =
〈
ΨW, Φ

(s)
−p′

〉
=
(
ΨW ∗ Φ(s)

)
(sp′), (151)

because Φ(s) is even. Therefore, plugging (151) with p′ ← (mn− p) into (150) yields

(FX ∗ ΨW) (msn) =
∑

p∈Z2

X[p] W[mn− p] =
(
X ∗W

)
[mn], (152)

hence the result.

A.5 Proof of Lemma 3

Proof. Let u ∈ R2. By definition of FTuX and TuX,

FTuX = s
∑

n∈Z2

TsuFX(sn)Φ(s)
n . (153)

On the other hand, FX ∈ V(s) by construction. Therefore, TsuFX ∈ V(s). Then, according to Shannon’s
sampling theorem (Mallat, 2009, Theorem 3.11, p. 81), we get

TsuFX = s
∑

n∈Z2

TsuFX(sn)Φ(s)
n , (154)

which concludes the proof.
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A.6 Proof of Lemma 4

Proof. Let us write: ∑
n∈Z2

∣∣ThF0(s′n)− F0(s′n)
∣∣2 =

∑
n∈Z2

∣∣F1(s′n)
∣∣2 = 1

s′2 ∥X1∥2
2 , (155)

where we have denoted, for any n ∈ Z2,

F1 := ThF0 − F0 and X1[n] := s′F1(s′n). (156)

According to Proposition 2 (25), ΨW ∈ V
(
θ/s, κ/s

)
. Therefore, according to Lemma 1,

supp F̂0 ⊂ B∞

( κ
2s

)
. (157)

Moreover, by hypothesis, κ ≤ π/m; thus,

B∞

( κ
2s

)
⊂ B∞

( π
s′

)
, (158)

which yields (35), and F1 ∈ V(s′). Then, according to Lemma 2 (23) with X← X1, F ← F1 and s← s′,

∥X1∥2 = ∥F1∥L2 = ∥ThF0 − F0∥L2 . (159)

Therefore, plugging (159) into (155) yields (36).

Furthermore, according again to Lemma 2,

∥F0∥2
L2 = ∥X0∥2

2 , (160)

where we have defined, for any n ∈ Z2,
X0[n] := s′F0(s′n). (161)

Then,

∥X0∥2
2 = s′2

∑
n∈Z2

∣∣(FX ∗ ΨW
)
(s′n)

∣∣2 (acc. to (34))

= s′2
∑

n∈Z2

∣∣(X ∗W) ↓ (2m)[n]
∣∣2 (acc. to Proposition 2 with m← 2m)

= s′2 ∥∥Umod
m X

∥∥2
2. (acc. to (5))

Finally, plugging this result into (160) yields (37) and concludes the proof.

A.7 Proof of Theorem 1

Proof. As in Lemma 4, we consider the low-frequency function F0 satisfying (34), and denote s′ := 2ms. We
can write

|FX ∗ ΨW| = |F0| and |TsuFX ∗ ΨW| = |TsuF0|. (162)

Recall that Umod
m X =

∣∣(X ∗ W) ↓ (2m)
∣∣, such as defined in (5). According to Proposition 2 (27) and

Corollary 1 (32) with m← 2m, we therefore get

Umod
m X[n] = |F0(s′n)| ; (163)

Umod
m (TuX)[n] = |(TsuF0)(s′n)| . (164)
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Then, using (163), (164) and the reverse triangle inequality,∥∥Umod
m (TuX)− Umod

m X
∥∥2

2 =
∑

n∈Z2

∣∣∣∣∣(TsuF0)(s′n)
∣∣− ∣∣F0(s′n)

∣∣∣∣∣2
≤
∑

n∈Z2

∣∣∣(TsuF0)(s′n)− F0(s′n)
∣∣∣2.

Since condition (38) is satisfied, we can use Lemma 4 (36) with h← su:∥∥Umod
m (TuX)− Umod

m X
∥∥2

2 ≤
1
s′2 ∥TsuF0 − F0∥2

L2 (165)

Next, according to Proposition 1 with ε← κ/s and h← su, we then get the following bound:

∥∥Umod
m (TuX)− Umod

m X
∥∥2

2 ≤
α(κu)2

s′2 ∥F0∥2
L2 . (166)

Finally, using Lemma 4 (37) yields (39), which completes the proof.

A.8 Proof of Proposition 3

Proof. Let X ∈ l2R(Z2) and s > 0. We consider F0 ∈ L2
C(R2) as the “low-frequency” function satisfying (34).

Again, we introduce s′ := 2ms and X0 ∈ l2C(Z2) satisfying (161). Moreover, for any Y ∈ l2R(Z2), we denote
by F (s′)

Y the Shannon interpolation of Y parameterized by s′, analogously to (24):

F
(s′)
Y :=

∑
n∈Z2

Y[n]Φ(s′)
n . (167)

On the one hand, Lemma 4 provides (37). On the other hand, we seek a similar result with X← TuX. For
this purpose, (164) can be rewritten

Umod
m (TuX)[n] =

∣∣Ts′u′F0(s′n)
∣∣, (168)

with u′ := u/(2m). Furthermore, according to Lemma 4 (35), F0 ∈ V(s′). Therefore, Shannon’s sampling
theorem (Mallat, 2009, Theorem 3.11, p. 81) with s← s′ yields

F0 = s′
∑

n∈Z2

F0(s′n)Φ(s′)
n

=
∑

n∈Z2

X0[n]Φ(s′)
n = F

(s′)
X0

,

where we have used the notations introduced in (161) and (167). Then, using Lemma 3 with X ← X0,
u← u′ and s← s′, we get

F
(s′)
Tu′ X0

= Ts′u′F
(s′)
X0

= Ts′u′F0. (169)

Moreover, (26) (from Proposition 2) with X← Tu′X0 and s← s′ becomes

Tu′X0[n] = s′ F
(s′)
Tu′ X0

(s′n), (170)

and inserting (169) into (170) yields

Tu′X0[n] = s′ Ts′u′F0(s′n). (171)

Therefore, (168) and (171) imply ∥∥Umod
m (TuX)

∥∥
2 = 1

s′ ∥Tu′X0∥2 . (172)
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Moreover, since F0 ∈ V(s′), and according to (171), we can use Lemma 2 with s ← s′, F ← Ts′u′F0 and
X← Tu′X0. We get

∥Tu′X0∥2 = ∥Ts′u′F0∥L2 = ∥F0∥L2 , (173)

and plugging (173) into (172) yields

∥∥Umod
m (TuX)

∥∥
2 = 1

s′ ∥F0∥L2 . (174)

Finally, considering Lemma 4 (37) concludes the proof.

A.9 Proof of Proposition 4

Proof. Let us write:

(F ∗ ReΨ)(x + h)−
∣∣(F ∗ Ψ)(x)

∣∣G(x,h)

= Re
(
(F ∗ Ψ)(x + h)

)
−
∣∣(F ∗ Ψ)(x)

∣∣ Re
(

e−i⟨ν, h⟩ eiH(x)
)

= Re
(
(F ∗ Ψ)(x + h)

)
− Re

(∣∣(F ∗ Ψ)(x)
∣∣ eiH(x) e−i⟨ν, h⟩

)
= Re

(
(F ∗ Ψ)(x + h)

)
− Re

(
(F ∗ Ψ)(x) e−i⟨ν, h⟩

)
= Re

(
(F ∗ Ψ)(x + h)− (F ∗ Ψ)(x) e−i⟨ν, h⟩

)
.

Therefore,∣∣∣(F ∗ ReΨ)(x + h)−
∣∣(F ∗ Ψ)(x)

∣∣G(x,h)
∣∣∣ ≤ ∣∣∣(F ∗ Ψ)(x + h)− (F ∗ Ψ)(x) e−i⟨ν, h⟩

∣∣∣
=
∣∣∣F0(x + h) e−i⟨ν, x+h⟩ − F0(x) e−i⟨ν, x+h⟩

∣∣∣ ,
which yields (44) and concludes the proof.

A.10 Proof of Lemma 5

Proof. We apply Proposition 4 with h← hmax
n and h← h′max

n , respectively:

Amax
X (xn) ≤ ÃX

(
xn, hmax

n

)
+
∣∣F0
(
xn + hmax

n

)
− F0(xn)

∣∣ ; (175)
Ãmax

X (xn) ≤ AX
(
xn, h′max

n

)
+
∣∣F0
(
xn + h′max

n

)
− F0(xn)

∣∣ . (176)

By construction, we have, for any p ∈ {−q, . . . , q}2,

ÃX
(
xn, hp

)
≤ Ãmax

X (xn) and AX
(
xn, hp

)
≤ Amax

X (xn). (177)

Moreover, by definition, there exists p and p′ ∈ {−q, . . . , q}2 such that hmax
n = hp and h′max

n = hp′ .
Therefore, (175) and (176) yield, respectively,

Amax
X (xn) ≤ Ãmax

X (xn) +
∣∣F0
(
xn + hmax

n

)
− F0(xn)

∣∣ ; (178)
Ãmax

X (xn) ≤ Amax
X (xn) +

∣∣F0
(
xn + h′max

n

)
− F0(xn)

∣∣ , (179)

which yields (68) and concludes the proof.
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A.11 Proof of Proposition 5

Proof. Let us write:∥∥Umod
m X− Umax

m, q X
∥∥2

2 =
∑

n∈Z2

(
Umod

m X[n]− Umax
m, q X[n]

)2

=
∑

n∈Z2

(
Umod

m X[n]− Umod
m X[n] max

∥p∥∞≤q
GX
(
xn, hp

)
+Umod

m X[n] max
∥p∥∞≤q

GX
(
xn, hp

)
− Umax

m, q X[n]
)2

=
∑

n∈Z2

(
δm, qX[n] + Ãmax

X (xn)−Amax
X (xn)

)2
,

according to (60), (65) and (66). Then, using the triangle inequality, we get

∥∥Umod
m X− Umax

m, q X
∥∥

2 ≤
∥∥δm, qX

∥∥
2 +

(∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
)1/2

. (180)

Furthermore, Lemma 5 yields∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤
∑

n∈Z2

max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 (181)

≤
∑

n∈Z2

∣∣∣F0(xn + h0)− F0(xn)
∣∣∣2, (182)

according to Hypothesis 1. Next, since (38) is satisfied, we can use Lemma 4 (36) with h← h0. We get∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤ 1

4m2s2 ∥Th0F0 − F0∥2
L2

≤ α(κh0/s)2 1
4m2s2 ∥F0∥2

L2 (acc. to Proposition 1)

= α(κh0/s)2 ∥∥Umod
m X

∥∥2
2. (acc. to Lemma 4 (37))

Since, according to Hypothesis 1, ∥h0∥2 =
√

2qms, it comes that ∥h0∥1 = 2qms. Therefore,

α(κh0/s)2 = κ2 ∥h0∥2
1

4s2 = (qmκ)2, (183)

which yields ∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤ βq(mκ)2 ∥∥Umod

m X
∥∥2

2. (184)

Finally, plugging (184) into (180) concludes the proof.

A.12 Proof of Proposition 7

Proof. We suppose that Hypothesis 3 is satisfied and we consider x ∈ R2. For a given n ∈ N \ {0}, we
introduce the random variable

S̃X, n :=
√ ∑

∥p∥∞≤n

MX(xp)2. (185)

According to Hypothesis 3, ZX(x) is jointly independent of MX(xp) for p ∈ {−n, . . . , n}2. Therefore, by
composition, ZX(x) is also independent of S̃X, n. Moreover, according to (83) and (111), S̃X, n converges
almost surely towards S̃X, which proves independence between ZX(x) and S̃X.
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Next, we prove conditional independence between ZX(x) and MX(x) given S̃X. According to Hypothesis 3,(
MX(x), S̃X, n

)
⊥⊥ ZX(x), (186)

where ⊥⊥ stands for independence. This is because S̃X, n only depends on a finite number of MX(xp).
Therefore,

ZX(x) ⊥⊥ MX(x)
∣∣ S̃X, n. (187)

Finally, since S̃X, n converges almost surely towards S̃X, it comes that ZX(x) and MX(x) are conditionally
independent given S̃X.

A.13 Proof of Theorem 2

Proof. We consider n ∈ Z2. By construction, QX(xn) := 1−Gmax
X (xn) only depends on ZX(xn). Therefore,

under Hypothesis 3, Proposition 7 implies

QX(xn) ⊥⊥ MX(xn)
∣∣ S̃2

X and QX(xn) ⊥⊥ S̃2
X. (188)

Additionally, we introduce
∆̃X := ∥δm, qX∥2 , (189)

where δm, qX is defined in (87). Then, using the linearity of E, we get

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
=
∑

n∈Z2

E
[
δm, q[n]2

∣∣∣ S̃2
X = σ

]
=
∑

n∈Z2

E
[
Umod

m, l X[n]2
(
1− Gmax

X (xn)
)2
∣∣∣ S̃2

X = σ
]

=
∑

n∈Z2

E
[
MX(xn)2 QX(xn)2

∣∣∣ S̃2
X = σ

]
(acc. to (83) and (88))

=
∑

n∈Z2

E
[
MX(xn)2

∣∣∣ S̃2
X = σ

]
E
[
QX(xn)2] (acc. to (188)).

Using the monotone convergence theorem, we get

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= E

[∑
n∈Z2

MX(xn)2

∣∣∣∣∣ S̃2
X = σ

]
E
[
QX(xn)2]. (190)

According to (83) and (111), we have∑
n∈Z2

MX(xn)2 =
∥∥Umod

m X
∥∥2

2 = S̃2
X. (191)

Therefore, we get

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= E

[
S̃2

X

∣∣∣ S̃2
X = σ

]
E
[
QX(xn)2]

= σ · E
[
QX(xn)2].

Under Hypothesis 2, Proposition 6 yields

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= σ · γq(mθ)2. (192)

Moreover, we can reformulate Q̃X such as defined in (89): Q̃X = ∆̃X/S̃X. Therefore,

E
[
Q̃2

X

∣∣∣ S̃2
X = σ

]
= 1
σ
E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= γq(mθ)2. (193)
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According to (193), the conditional expected value of Q̃2
X remains the same whatever the outcome of S̃2

X.
Thus, the law of total expectation states that

E
[
Q̃2

X
]

= E
[
E
[
Q̃2

X
∣∣ S̃2

X
]]

= γq(mθ)2. (194)

Since we have assumed Hypothesis 1, we can apply Proposition 5. Using the definition of P̃X (86) and Q̃X
(89), we get

P̃X ≤ Q̃X + βq(mκ). (195)
Then,

E
[
P̃2

X
]
≤ E

[
Q̃2

X
]

+ 2βq(mκ)E
[
Q̃X
]

+ βq(mκ)2. (196)
According to Jensen’s inequality,

E
[
Q̃X
]
≤
√

E
[
Q̃2

X
]

= γq(mθ). (197)
Thus,

E
[
P̃2

X
]
≤ γq(mθ)2 + 2βq(mκ)γq(mθ) + βq(mκ)2, (198)

which yields (112).

A.14 Proof of Lemma 6

Proof. First, we show that, for any x ∈ R2,

MTuX(x) = TsuMX(x); (199)
ZTuX(x) = TsuZX(x). (200)

According to Lemma 3, and since the convolution product commutes with translations, we have(
FTuX ∗ ΨW

)
(x) = Tsu

(
FX ∗ ΨW

)
(x). (201)

Then, using (81), the above expression becomes

MTuX(x)× ZTuX(x) = (TsuMX)(x)× (TsuZX)(x), (202)

which yields (199) and (200), by uniqueness of the magnitude-phase decomposition. Finally, we remind that

TsuMX(x) = MX(x− su) and TsuZX(x) = ZX(x− su). (203)

Then, considering hypotheses Hypotheses 2 and 3 with x← x− su yields the result.

A.15 Proof of Theorem 3

Proof. Using the triangle inequality, we compute∥∥Umax
m, q (TuX)− Umax

m, q X
∥∥

2

≤
∥∥Umod

m (TuX)
∥∥

2 P̃TuX +
∥∥Umod

m X
∥∥

2 P̃X +
∥∥Umod

m (TuX)− Umod
m X

∥∥
2, (204)

where P̃X and P̃TuX are defined in (86). According to (38), we can apply Proposition 3 on the first term of
(204): ∥∥Umod

m (TuX)
∥∥

2 =
∥∥Umod

m X
∥∥

2. (205)
Moreover, we can apply Theorem 1 to the third term of (204):∥∥Umod

m (TuX)− Umod
m X

∥∥
2 ≤ α(κu)

∥∥Umod
m X

∥∥
2. (206)

We therefore get ∥∥Umax
m, q (TuX)− Umax

m, q X
∥∥

2 ≤
[
P̃TuX + P̃X + α(κu)

] ∥∥Umod
m X

∥∥
2. (207)
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Then, by linearity of E, we get

E
[
R̃X, u

]
≤ E

[
P̃TuX

]
+ E

[
P̃X
]

+ α(κu), (208)

where R̃X, u has been introduced in (113).

For any stochastic process X′ satisfying Hypotheses 2 and 3, Theorem 2 and Jensen’s inequality yield:

E
[
P̃X′
]
≤ βq(mκ) + γq(mθ). (209)

According to Lemma 6, Hypotheses 2 and 3 are also satisfied for X ← TuX. Therefore, (209) is valid for
both X′ ← X and X′ ← TuX, and plugging it into (208) concludes the proof.

B Appendix – Theoretical Foundations for our Hypotheses

In this section, we provide theoretical arguments for justifying Hypotheses 2 and 3. As will be discussed,
these hypotheses rely on some degree of shift invariance for input images, which implies the notions of
stationarity and phase-shift-equivariance for stochastic processes.

B.1 Stationary and Local Stationarity

Given n ∈ N \ {0}, we define n-th order stationarity of a given stochastic process F as stated by Park
& Park (2018, p. 152): For any n′ ≤ n, (x0, . . . , xn′−1) ∈ (R2)n′ and h ∈ R2, the joint distribution
of
(
F(x0), . . . , F(xn′−1)

)
is identical to the one of

(
ThF(x0), . . . , ThF(xn′−1)

)
. Additionally, strict-sense

stationarity is defined as n-th order stationarity for any n ∈ N \ {0}.

Strict-sense stationarity suggests that any translated version of a given image is equally likely. However,
this property is seldom fully achieved for images (Tygert et al., 2016). First, X has fixed boundaries.
Consequently, any realization of FX(x) quickly vanishes as ∥x∥ tends to ∞. Furthermore, depending on
which category the image belongs to, the pixel distribution is likely to vary across various regions. For
instance, we can expect the main subject to be located at the center of the image. We refer readers to
Torralba & Oliva (2003) for more details on statistical properties of images from natural versus man-made
objects. For this reason, we introduce a notion of local stationarity as follows.
Definition 1. Given τ ≥ 0, a stochastic process F is τ -locally stationary to the n-th order if, for any
0 < n′′ ≤ n′ ≤ n, any (x0, . . . , xn′−1) ∈ (R2)n′ , any displacement vector h ∈ R2, and any pair of measurable
sets X, Y ⊂ Rn′′ × Rn′−n′′ ,∣∣∣∣P{(ThF(x0), . . . , ThF(xn′′−1)

)⊤
∈ X

∣∣∣ (ThF(xn′′), . . . , ThF(xn′−1)
)⊤
∈Y

}
−P
{(

F(x0), . . . , F(xn′′−1)
)⊤
∈ X

∣∣∣ (F(xn′′), . . . , F(xn′−1)
)⊤
∈Y

}∣∣∣∣ ≤ τ ∥h∥2 . (210)

Moreover, F is strict-sense τ -locally stationary if this property is satisfied for any n ∈ N.
Remark 10. The special case where τ = 0 corresponds to the standard definition of n-th order stationarity.
Additionally, the use of conditional probabilities is essential for defining local stationarity, as it helps prevent
instabilities that may arise when conditioning on low-probability events.

In what follows, we consider the following narrowband stochastic process:

F1, X : x 7→ (FX ∗ ΨW)(x). (211)

We assume that FX, and therefore F1, X, is nearly shift-invariant for displacement vectors that are much
smaller than the image “characteristic” size in the continuous domain, which is equal to sN , where, as a
reminder, N ∈ N denotes the support size of input images and s > 0 denotes the sampling interval. More
formally, F1, X is assumed to be strict-sense τ -locally stationary with

τ := 1
sN

. (212)
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B.2 Translations and Phase Shifts

We consider the following stochastic processes:

F0, X : x 7→ (FX ∗ ΨW)(x) ei⟨ν, x⟩ and F1, X : x 7→ (FX ∗ ΨW)(x). (213)

To justify our hypotheses, we also need to characterize ThF1, X as a function of F1, X. Having:

ThF1, X(x) = ThF0, X(x) e−i⟨ν, x⟩ ei⟨ν, h⟩, (214)

we get ∣∣ThF1, X(x)− F1, X(x) ei⟨ν, h⟩∣∣ =
∣∣ThF0, X(x)− F0, X(x)

∣∣. (215)

According to Lemma 1, the support of F̂0, X is contained within the ball B∞
(

κ
2s

)
. Intuitively, we can define

a “minimal wavelength” λ := 2πs/κ such that, if ∥h∥2 ≪ λ, we can approximate ThF0, X(x) ≈ F0, X(x), and
therefore

ThF1, X(x) ≈ F1, X(x) ei⟨ν, h⟩. (216)

If the two terms were strictly identical for any x ∈ R2, we would get, for any n ∈ N, (x0, . . . , xn) ∈ (R2)n,
and any measurable set X ⊂ Rn,(

F1, X(x0), . . . , F1, X(xn−1)
)⊤ ∈ A ⇐⇒

(
ThF1, X(x0), . . . , ThF1, X(xn−1)

)⊤ ∈ ei⟨ν, h⟩A, (217)

and therefore,

P
{(

F1, X(x0), . . . , F1, X(xn−1)
)⊤ ∈ A

}
= P

{(
ThF1, X(x0), . . . , ThF1, X(xn−1)

)⊤ ∈ ei⟨ν, h⟩A
}
. (218)

Instead, we relax the above equality (218) and introduce the following definition.
Definition 2. Given τ ≥ 0, a stochastic process F is τ -locally phase-shift-equivariant to the n-th order with
respect to the frequency vector ν ∈ R2 if, for any 0 < n′′ ≤ n′ ≤ n, any (x0, . . . , xn′−1) ∈ (R2)n′ , any
displacement vector h ∈ R2, and any pair of measurable sets X, Y ⊂ Rn′′ × Rn′−n′′ ,∣∣∣∣P{(ThF(x0), . . . , ThF(xn′′−1)

)⊤
∈ ei⟨ν, h⟩X

∣∣∣ (ThF(xn′′), . . . , ThF(xn′−1)
)⊤
∈ ei⟨ν, h⟩Y

}
−P
{(

F(x0), . . . , F(xn′′−1)
)⊤
∈ X

∣∣∣ (F(xn′′), . . . , F(xn′−1)
)⊤
∈Y

}∣∣∣∣ ≤ τ ∥h∥2 . (219)

Moreover, F is strict-sense τ -locally phase-shift-equivariant if this property is satisfied for any n ∈ N.

In what follows, we will assume that the stochastic process F1, X is nearly phase-shift-equivariant for dis-
placement vectors that are much smaller than the minimal wavelength λ. More formally, F1, X is assumed
to be strict-sense τ ′-locally phase-shift-equivariant with

τ ′ := 1/λ = κ

2πs . (220)

B.3 Justification for Hypothesis 2

We then consider the following proposition, which states that the probability measure of ZX(x) is nearly
invariant with respect to phase shifts.
Proposition 8. We assume that F1, X is τ -locally stationary (Definition 1) and τ ′-locally phase-shift-
equivariant with respect to ν (Definition 2), both to the first order. Then, for any measurable set A ⊂ S1,

∀ω ∈ [0, 2π] ,
∣∣µ(A)− µ(eiωA)

∣∣ ≤ 2π(τ + τ ′)/ ∥ν∥2 . (221)

where µ : A 7→ P {ZX(x) ∈ A} denotes the probability measure of ZX(x).
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Proof. Let ω ∈ [0, 2π]. We compute:∣∣µ(A)− µ(eiωA)
∣∣ =

∣∣P {ZX(x) ∈ A} − P
{

ZX(x) ∈ eiωA
}∣∣

=
∣∣∣P{ZX(x) ∈ A

}
− P

{
ZX(x) ∈ ei⟨ν, h⟩A

}∣∣∣ ,
where we have denoted h := ω ν/ ∥ν∥2

2. Then, using the triangle inequality,∣∣µ(A)− µ(eiωA)
∣∣ ≤ ∣∣∣P{ZX(x) ∈ A

}
− P

{
ThZX(x) ∈ ei⟨ν, h⟩A

}∣∣∣
+
∣∣∣P{ZX(x) ∈ ei⟨ν, h⟩A

}
− P

{
ThZX(x) ∈ ei⟨ν, h⟩A

}∣∣∣
=
∣∣∣P{F1, X(x) ∈ u−1(A)

}
− P

{
ThF1, X(x) ∈ u−1(ei⟨ν, h⟩A

)}∣∣∣
+
∣∣∣P{F1, X(x) ∈ u−1(ei⟨ν, h⟩A

)}
− P

{
ThF1, X(x) ∈ u−1(ei⟨ν, h⟩A

)}∣∣∣ ,
where we have denoted u : z 7→ ei∠(z). We can easily show that u−1(ei⟨ν, h⟩A

)
= ei⟨ν, h⟩u−1(A). Therefore,

the above expression can be re-written:

∣∣µ(A)− µ(eiωA)
∣∣ ≤ ∣∣∣P{F1, X(x) ∈ X

}
− P

{
ThF1, X(x) ∈ ei⟨ν, h⟩X

}∣∣∣
+
∣∣P{F1, X(x) ∈ X′}− P

{
ThF1, X(x) ∈ X′}∣∣ , (222)

where we have denoted X := u−1(A) and X′ := u−1(ei⟨ν, h⟩A
)
. Then, by applying (210) and (219) with

n′ = 1 to (222), we get: ∣∣µ(A)− µ(eiωA)
∣∣ ≤ (τ + τ ′) ∥h∥2 . (223)

Finally, using the definition of h and bounding ω by 2π yields the result.

If we replace τ and τ ′ in (221) by their respective values in (212) and (220), we get,

∀ω ∈ [0, 2π] ,
∣∣µ(A)− µ(eiωA)

∣∣ ≤ 2π
sN
× ∥ν∥−1

2 + κ

s
× ∥ν∥−1

2 . (224)

We recall that ν := θ/s. Then, by applying the constraints stated in (84) and (85), we get

∀ω ∈ [0, 2π] ,
∣∣µ(A)− µ(eiωA)

∣∣≪ 1. (225)

Therefore, µ is almost invariant to phase shifts. Since the only probability measure satisfying the phase-
shift invariance property is the uniform probability measure,3 we deduce that ZX(x) follows a near-uniform
distribution on S1. For the sake of simplicity, in Hypothesis 2 we have assumed a strictly-uniform distribution.

B.4 Justification for Hypothesis 3

Let n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2. To simplify notations, we consider the random vector

M :=
(
MX(y0), . . . , MX(yn−1)

)⊤ (226)

with outcomes in Rn
+. This section is organized as follows. Using reasoning similar to that in Proposition 8,

we show that, for any measurable subset S ⊂ Rn
+, ZX follows a near-uniform probability distribution

conditionally to M ∈ S. Since we already assumed that ZX follows an unconditional uniform distribution,
we deduce that ZX and M are nearly independent.

3Any probability measure defined on S1 is a Radon measure. Therefore, according to Haar’s theorem (Halmos, 2013), there
exists a unique probability measure on S1 satisfying the phase-shift invariance property, and it turns out that the uniform
probability measure is one such candidate.
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Proposition 9. We assume that F1, X is τ -locally stationary (Definition 1) and τ ′-locally phase-shift-
equivariant with respect to ν (Definition 2), both in the strict sense. Then, for any measurable sets A ⊂ S1

and S ⊂ Rn
+,

∀ω ∈ [0, 2π] ,
∣∣µS(A)− µS(eiωA)

∣∣ ≤ 2π(τ + τ ′)/ ∥ν∥2 . (227)

where µS : A 7→ P {ZX(x) ∈ A |M ∈S} denotes the conditional probability measure of ZX(x).

Proof. Let ω ∈ [0, 2π]. We compute:∣∣µS(eiωA)− µS(A)
∣∣ =

∣∣P{ZX(x) ∈ eiωA
∣∣ M ∈S

}
− P

{
ZX(x) ∈ A

∣∣ M ∈S
}∣∣

=
∣∣∣P{ZX(x) ∈ ei⟨ν, h⟩A

∣∣ M ∈S
}
− P

{
ZX(x) ∈ A

∣∣ M ∈S
}∣∣∣ ,

where we have denoted
h := ω ν/ ∥ν∥2

2 (228)

Then, using the triangle inequality,∣∣µS(eiωA)− µS(A)
∣∣

≤
∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A

∣∣ ThM ∈S
}
− P

{
ZX(x) ∈ ei⟨ν, h⟩A

∣∣ M ∈S
}∣∣∣

+
∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A

∣∣ ThM ∈S
}
− P

{
ZX(x) ∈ A

∣∣ M ∈S
}∣∣∣ , (229)

where we have denoted
ThM :=

(
ThMX(y0), . . . , ThMX(yn−1)

)⊤
. (230)

Let us split this expression for the sake of readability. The first term after the ≤ sign can be equivalently
written as follows:∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A

∣∣ ThM ∈S
}
− P

{
ZX(x) ∈ ei⟨ν, h⟩A

∣∣ M ∈S
}∣∣∣

=
∣∣∣P{ThF1, X(x) ∈ X′ ∣∣ (ThF1, X(y0), . . . , ThF1, X(yn−1)

)⊤ ∈Y
}

−P
{

F1, X(x) ∈ X′ ∣∣ (F1, X(y0), . . . , F1, X(yn−1)
)⊤ ∈Y

}∣∣∣ , (231)

where we have denoted
X′ := u−1(ei⟨ν, h⟩A

)
and Y := v−1(S), (232)

with
u : z 7→ ei∠(z) and v : (z0, . . . , zn−1)⊤ 7→ (|z0|, . . . , |zn−1|)⊤. (233)

Therefore, according the local stationarity hypothesis, we apply (210) to (231), which yields∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A
∣∣ ThM ∈S

}
− P

{
ZX(x) ∈ ei⟨ν, h⟩A

∣∣ M ∈S
}∣∣∣ ≤ τ ∥h∥2 . (234)

Next, the second term after the ≤ sign in (229) can be equivalently written as follows:∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A
∣∣ ThM ∈S

}
− P

{
ZX(x) ∈ A

∣∣ M ∈S
}∣∣∣

=
∣∣∣P{ThF1, X(x) ∈ u−1(ei⟨ν, h⟩A

) ∣∣ (ThF1, X(y0), . . . , ThF1, X(yn−1)
)⊤ ∈ v−1(S)

}
−P
{

F1, X(x) ∈ u−1(A)
∣∣ (F1, X(y0), . . . , F1, X(yn−1)

)⊤ ∈ v−1(S)
}∣∣∣ . (235)

As explained in the proof of Proposition 8, we have

u−1(ei⟨ν, h⟩A
)

= ei⟨ν, h⟩u−1(A). (236)
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Moreover, we can easily show that
v−1(S) = ei⟨ν, h⟩v−1(S). (237)

Therefore, (235) can be re-written:∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A
∣∣ ThM ∈S

}
− P

{
ZX(x) ∈ A

∣∣ M ∈S
}∣∣∣

=
∣∣∣P{ThF1, X(x) ∈ ei⟨ν, h⟩X

∣∣ (ThF1, X(y0), . . . , ThF1, X(yn−1)
)⊤ ∈ ei⟨ν, h⟩Y

}
−P
{

F1, X(x) ∈ X
∣∣ (F1, X(y0), . . . , F1, X(yn−1)

)⊤ ∈Y
}∣∣∣ , (238)

where we have denoted
X := u−1(A) and Y := v−1(S). (239)

Therefore, according the local phase-shift equivariance hypothesis, we apply (219) to (238), which yields∣∣∣P{ThZX(x) ∈ ei⟨ν, h⟩A
∣∣ ThM ∈S

}
− P

{
ZX(x) ∈ A

∣∣ M ∈S
}∣∣∣ ≤ τ ′ ∥h∥2 . (240)

Finally, plugging (234) and (240) into (229), using the definition of h in (228), and bounding ω by 2π, yields
the result.

By applying the constraints sated in (84) and (85), we get (see Appendix B.3),

∀ω ∈ [0, 2π] ,
∣∣µS(A)− µS(eiωA)

∣∣≪ 1. (241)

Therefore, ZX(x) follows a near-uniform conditional distribution on S1 given M ∈S.

Furthermore, according to Appendix B.3, ZX(x) also follows a near-uniform unconditional distribution.
Therefore, we get, for any measurable sets A ⊂ S1 and S ⊂ Rn

+,

P
{

ZX(x) ∈ A
∣∣ (M ∈S)

}
≈ P

{
ZX(x) ∈ A

}
. (242)

We deduce that ZX(x) and M are nearly independent. For the sake of simplicity, in Hypothesis 3 we have
assumed strict independence.

C Appendix – Details on DT-CWPT

A description of the transform itself is provided in Appendix C.1. Then, Appendix C.2 shows that DT-
CWPT performs convolutions with a subsampling factor mJ which depends on the decomposition depth J .
Finally, the Gabor-like nature of the convolution kernels is established in Appendix C.3.

C.1 Background

We provide a brief overview of the classical, real-valued 2D wavelet packet transform (WPT) algorithm
(Mallat, 2009, p. 377), before introducing the redundant, complex-valued and oriented DT-CWPT (Bayram
& Selesnick, 2008).

C.1.1 Discrete Wavelet Packet Transform

Given a pair of low- and high-pass 1D orthogonal filters h, g ∈ l2R(Z) satisfying a quadrature mirror filter
(QMF) relationship, we consider a separable 2D filter bank (FB), denoted by G := (Gl)l∈{0, ..., 3}, defined
by

G0 = h⊗ h; G1 = h⊗ g; G2 = g ⊗ h; G3 = g ⊗ g. (243)
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Let X ∈ l2R(Z). The decomposition starts with D(0)
0 = X. Given j ∈ N, suppose that we have computed 4j

sequences of wavelet packet coefficients at stage j, denoted by D(j)
l ∈ l2R(Z) for each l ∈

{
0, . . . , 4j − 1

}
.

They are referred to as feature maps.

At stage j + 1, we compute a new representation of X with increased frequency resolution—and decreased
spatial resolution. It is obtained by further decomposing each feature map D(j)

l into four sub-sequences,
using subsampled (or strided) convolutions with kernels Gk, for each k ∈ {0, . . . , 3}:

∀k ∈ {0, . . . , 3} , D(j+1)
4l+k =

(
D(j)

l ∗Gk

)
↓ 2. (244)

The algorithm stops after reaching the desired number of stages J > 0—referred to as decomposition depth.
Then,

D(J) :=
(
D(J)

l

)
l∈{0, ..., 4J −1} (245)

constitutes a multichannel representation of X in an orthonormal basis, from which the original image can
be retrieved.

C.1.2 Dual-Tree Complex Wavelet Packet Transform

Despite having interesting properties such as sparse signal representation, WPT is unstable with respect to
small shifts and suffers from a poor directional selectivity. To overcome this, Kingsbury (2001) designed a new
type of discrete wavelet transform, where images are decomposed in a redundant frame of nearly-analytic,
complex-valued waveforms. It was later extended to the wavelet packet framework by Bayram & Selesnick
(2008). The latter operation, referred to as dual-tree complex wavelet packet transform (DT-CWPT), is
performed as follows.

Let (h[0], g[0]) and (h[1], g[1]) denote two pairs of QMFs as defined in Appendix C.1.1, satisfying the half-
sample delay condition:

∀ω ∈ [−π, π] , ĥ[1](ω) = e−iω/2 ĥ[0](ω). (246)

Then, for any k ∈ {0, . . . , 3}, we build a 2D FB Gk := (Gk, l)l∈{0, ..., 3} similarly to (243):

Gk, 0 = hi ⊗ hj ; Gk, 1 = hi ⊗ gj ; Gk, 2 = gi ⊗ hj ; Gk, 3 = gi ⊗ gj , (247)

where i, j ∈ {0, 1} are defined such that k = 2× i+ j.4

Let J > 0 denote a decomposition depth. Using each of the four FBs G0−3 as defined above, we assume
that we have decomposed an input image X into four multichannel WPT representations D(J)

0−3, each of
which satisfies (244) and (245). Then, for any l ∈

{
0, . . . , 4J − 1

}
, the following complex feature maps are

computed: D↗(J)
l

D↘(J)
l

 =

1 −1

1 1

D[0](J)
l

D[3](J)
l

− i
1 1

1 −1

D[2](J)
l

D[1](J)
l

 . (248)

As explained in Appendix C.3, the feature maps of dual-tree coefficients have their Fourier transform re-
stricted to a compact region of the frequency plane, and as such can be considered as Gabor-like coefficients.
In the above expression, the arrow points to the Fourier quadrant where energy is concentrated. Further-
more, in the specific case where input images are real-valued, D↙(J)

l and D↖(J)
l are defined as the complex

conjugates of the above feature maps, and therefore do not need to be explicitly computed. Then,

D(J) :=
(
D↗(J)

l , D↘(J)
l , D↙(J)

l , D↖(J)
l

)
l∈{0, ..., 4J −1} (249)

constitutes a complex-valued, four-time redundant multichannel representation of X from which the original
image can be reconstructed.

4Actually, the FB design requires some technicalities which are not described here.

46



Under review as submission to TMLR

C.2 Convolution Operators

We now show that DT-CWPT performs subsampled convolutions with Gabor-like filters, whose character-
istics will be specified. First, we state the following lemma concerning the real-valued WPT algorithm, such
as introduced in Appendix C.1.1. It is a simple reformulation of the well-known result that two successive
convolutions can be written as another convolution with a wider kernel.
Lemma 7. For any l ∈

{
0, . . . , 4J − 1

}
, there exists V(J)

l ∈ l2R(Z2) such that

D(J)
l =

(
X ∗V(J)

l

)
↓ 2J . (250)

Proof. We introduce the upsampling operator: (X ↑ m)[n] := X[n/m] if n/m ∈ Z2, and 0 otherwise. We
also consider the “identity” filter I ∈ l2R(Z2) such that I[0] = 1 and I[n] = 0 otherwise. First, for any
U, V ∈ l2R(Z2) and any s, t ∈ N∗, we have

((U ↓ s) ∗V) ↓ t = (U ∗ (V ↑ s)) ↓ (st). (251)

Then, a simple reasoning by induction yields the result, with

V(0)
0 := I; V(j+1)

4l+k := V(j)
l ∗

(
Gk ↑ 2j

)
(252)

for any l ∈ {0, . . . , j − 1} and any k ∈ {0, . . . , 3}.

Based on Lemma 7, the following proposition introduces complex kernels characterizing DT-CWPT.
Proposition 10. For any l ∈

{
0, . . . , 4J − 1

}
, there exists W↗(J)

l ∈ l2C(Z2) such that (132) is satisfied.
Identical results are obtained with the three other Fourier quadrants.

Proof. For each of the four filter banks m ∈ {0, . . . , 3}, and any channel l ∈
{

0, . . . , 4J − 1
}

, Lemma 7
provides a convolution kernel V[m](J)

l ∈ l2R(Z2) such that

D[m](J)
l =

(
X ∗V[m](J)

l

)
↓ 2J . (253)

Then, the result is obtained by plugging (253) into (248) for all m ∈ {0, . . . , 3}, and by denotingW↗(J)l

W↘(J)l

 =

1 −1

1 1

V[0](J)
l

V[3](J)
l

+ i

1 1

1 −1

V[2](J)
l

V[1](J)
l

 . (254)

Remark 11. DT-CWPT, computed on a discrete image X, approximates the decomposition of a continuous
2D signal F ∈ L2

R(R2) into a tight frame

Ψ
(J)
C :=

4J −1⊎
l=0

(
Ψ

↗(J)
l, n , Ψ

↘(J)
l, n , Ψ

↙(J)
l, n , Ψ

↖(J)
l, n

)
n∈Z2 . (255)

In this context, the feature maps of dual-tree wavelet packet coefficients satisfy

D↗(J)
l [n] ≈

(
F ∗ Ψ↗(J)

l

∗)
(2Jn), with Ψ

↗(J)
l := Ψ

↗(J)
l, 0 . (256)

Expression (256) is only an approximation because of implementation technicalities that occur in practice.
A “perfect” dual-tree transform should be initialized with four different inputs X[0−3]. Instead, all four WPT
decompositions operate on the same input image X, leading to non-analytic outputs for small values of J .
In order to counterbalance this shortcoming, the first stage of DT-CWPT decomposition must be performed
with a special set of filters that satisfy the one-sample delay condition. We refer to Selesnick et al. (2005)
for more details on this matter.
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C.3 Gabor-Like Convolution Kernels

In this section, we show that the convolution kernels W↗(J)
l and W↘(J)

l , introduced in (132), approximately
behave as Gabor-like filters, as defined in (11). To begin with, we assume that h[0] is a Shannon filter,
which is associated with a sinc scaling function (Shannon, 1949). Let J ∈ N \ {0} denote the number of
decomposition stages. The following proposition states that DT-CWPT tiles the frequency plane with square
windows.
Proposition 11. There exists a permutation

(
σ

(J)
l

)
l∈{0, ..., 4J −1} of

{
0, . . . , 2J − 1

}2 such that, for any
l ∈
{

0, . . . , 4J − 1
}

,
Ψ

↗(J)
l ∈ V

(
θ

(J)
l , κJ

)
, (257)

where Ψ↗(J)
l has been introduced in Remark 11, and where we have defined

θ
(J)
l :=

(
σ

(J)
l + 1

2

)
π

2J
and κJ := π

2J
. (258)

We remind the reader that V
(
ν, ε

)
, defined in (8), denotes a space of Gabor-like filters in the continuous

framework.

Proof. The atoms Ψ↗(J)
l of the wavelet packet tight frame Ψ

(J)
C can be written as the tensor product of two

1D wavelet packets:
Ψ

↗(J)
l = ψ

(J)
l1
⊗ ψ(J)

l2
, (259)

for some indices l1 and l2 ∈
{

0, . . . , 2J − 1
}

. Moreover, for any l′ ∈
{

0, . . . , 2J − 1
}

, we have

ψ
(J)
l′ = ψ

[0](J)
l′ + i ψ

[1](J)
l′ , (260)

where ψ[0](J)
l′ ∈ L2

R(R) is an atom of the standard Shannon wavelet packet orthonormal basis, and ψ
[1](J)
l′ is

the one-dimensional Hilbert transform of ψ[0](J)
l′ . Therefore, since the Hilbert transform suppresses negative

frequencies, we get
ψ̂

(J)
l′ = 2 ψ̂[0](J)

l′ 1R+ . (261)
Consequently, according to the Coifman-Wickerhauser theorem (Mallat, 2009, pp. 384-385), there exists
k ∈

{
0, . . . , 2J − 1

}
such that

supp ψ̂(J)
l′ ⊂

[
kπ

2J
,

(k + 1)π
2J

]
. (262)

Finally, the tensor product (259) yields the result.

According to Proposition 11, each atom Ψ
↗(J)
l , for l ∈

{
0, . . . , 4J − 1

}
, is supported in a square window of

size κJ×κJ included in the top-right quadrant of the Fourier domain. Similar results can be obtained for the
three remaining quadrants, with Ψ↘(J)

l , Ψ↙(J)
l and Ψ↖(J)

l . We would like to deduce from Proposition 11 that
the discrete filter W↗(J)

l ∈ l2C(Z2) satisfies the Gabor property (133). However, as mentioned in Remark 11,
(256) is only an approximation. In fact, the Fourier support of W↗(J)

l is contained in four square regions
of size κJ (one in each quadrant), its energy becoming negligible outside the top-right quadrant when J
increases. Nevertheless, employing, in the first stage, a specific pair of low-pass filters satisfying the one-
sample delay condition (Selesnick et al., 2005) yields near-analytic solutions even for small values of J . We
therefore assume that (133) is a reasonable approximation if J ≥ 2.
Remark 12. Proposition 11 tiles the top-right Fourier quadrant with 4J square cells of size κJ := π/2J .
However, the Shannon wavelet is poorly suited for sparse image representations, because of its slow decay
rate. Moreover, it deviates from what is typically observed in freely-trained CNNs, because W↗(J)

l must
be approximated with very large filters to avoid numerical instabilities. Practical implementations of DT-
CWPT use fast-decaying filters such as these associated to Meyer wavelets (Meyer, 1985), or finite-length
filters that approximate the half-sample delay condition (Selesnick et al., 2005). Therefore, energy is leaking
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Depth J Bandwidth κJ Mean Std
2 π/2 0.98 0.00
3 π/4 0.95 0.02

Table 1. Energy concentration of the DT-CWPT filters within a Fourier window of size κJ × κJ , with κJ := π/2J−1.

outside the square cells tiling the Fourier domain. To counterbalance this, we increase the window size up
to

κJ := π

2J−1 = π/mJ , (263)

and suggest that (133) remains a reasonable approximation. Therefore, the conditions to apply Theorems 1
to 3 are approximately satisfied in this context.

In order to numerically assess this assumption, we measured the maximum percentage of energy within a
square window of size κJ × κJ in the Fourier domain:

ρ↗
l :=

maxθ∈[−π, π]2

∥∥∥1B∞(θ, κJ /2)Ŵ↗(J)
l

∥∥∥2

L2∥∥∥Ŵ↗(J)
l

∥∥∥2

L2

, (264)

where the l∞-ball B∞(θ, κJ/2) is defined in the quotient space [−π, π]2 /(2πZ2), as explained in Remark 2.
If (133) is perfectly satisfied, then ρ↗

l = 1. The statistics computed over the collection
(
ρ↗

l , ρ
↘
l

)
l∈{0, ..., 4J −1}

are reported in table 1.
Remark 13. For “boundary filters”, i.e., when

∥∥θ
(J)
l

∥∥
∞ =

(
1 − 2−(J+1))π, Remark 2 states that a small

fraction of the filter’s energy remains located at the far end of the Fourier domain—see also Bayram &
Selesnick (2008). Therefore, these filters do not strictly comply with the conditions of Theorems 1 to 3. We
nevertheless include them in our experiments.

49


	Introduction
	Motivations and Main Contributions
	Related Work
	Wavelet Scattering Networks
	Invariance Studies in CNNs

	Paper Outline

	Shift Invariance of CMod Outputs
	Notations
	Intuition
	Continuous Framework
	Adaptation to Discrete 2D Sequences
	Shift Invariance in the Discrete Framework

	From CMod to RMax
	Continuous Framework
	Adaptation to Discrete 2D Sequences
	Notations on the Unit Circle
	Probabilistic Framework
	Expected Quadratic Error between RMax and CMod

	Shift Invariance of RMax Outputs
	Adaptation to Multichannel Convolution Operators
	A Case Study Implementing DT-CWPT
	Main Properties
	DT-CWPT-Based RMax and CMod Operators
	Experiments and Results
	MSE between RMax and CMod
	Shift invariance


	Discussion and Conclusion
	Appendix – Proofs
	Proof of lemma:lowfreqfun
	Proof of prop:shiftinvariancecont
	Proof of lemma:fouriersampling
	Proof of prop:discrete2continuous
	Proof of lemma:commutinterptransl
	Proof of lemma:normequality
	Proof of th:shiftinvariancecmod
	Proof of prop:shiftinvariancenormcmod
	Proof of prop:approxperiodicfun
	Proof of lemma:trueversusfalsemaxvalues
	Proof of prop:diffmodpool
	Proof of prop:indep
	Proof of th:scdmomentnormdiffcmodrmax
	Proof of lemma:hypstranls
	Proof of th:shiftinvariancermax

	Appendix – Theoretical Foundations for our Hypotheses
	Stationary and Local Stationarity
	Translations and Phase Shifts
	Justification for hyp:uniformdist
	Justification for hyp:indepphasemodulus

	Appendix – Details on DT-CWPT
	Background
	Discrete Wavelet Packet Transform
	Dual-Tree Complex Wavelet Packet Transform

	Convolution Operators
	Gabor-Like Convolution Kernels


