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Abstract
Multimodal knowledge graphs inevitably contain numerous errors
due to the lack of human supervision in their automated construc-
tion and updating processes. These errors can significantly degrade
the performance of downstream applications that rely on them.
Existing researches on knowledge graph error detection primarily
focus on leveraging graph structural and textual information to
identify triplet errors in unimodal knowledge graphs. However,
unlike unimodal knowledge graphs, multimodal knowledge graphs
also suffer from mismatches between images and their correspond-
ing entities, referred to as modality errors. These modality errors
not only hinder the performance of downstream applications but
also impede our effective utilization of the abundant complementary
information provided by the visual modality for detecting triplet
errors. To this end, we introduce a novel task of multimodal knowl-
edge graph error detection (MKGED) in this paper, aiming at simul-
taneously identifying both modality errors and triplet errors. Given
the lack of datasets for evaluating this task, we first establish two
comprehensive MKGED datasets. Furthermore, we propose a novel
framework, KGDMC, to address the MKGED task. Within KGDMC,
we devise a disentanglement modality reconstruction (DMR) mod-
ule for modality error detection. This module disentangles each
original modality representation into two disjoint components:
modality-specific representations and modality-invariant represen-
tations, leveraging the cross-modality reconstruction process to
detect mismatched visual modalities. Additionally, for the triplet er-
ror detection, we propose a multi-grained triplet confidence (MTC)
module, incorporating local triplet confidence, global structure
confidence, and global path confidence, to collaboratively detect
mismatched triplets. Extensive experiments on our constructed two
datasets demonstrate the superiority of our proposed framework.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning; Probabilistic reasoning; • Information sys-
tems → Data cleaning.
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knowledge graph, multimodal information, error detection
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1 Introduction
Knowledge graphs (KGs), which provide relational information
between entities in the form of triplets (head entity, relation, tail
entity), play a key role in various knowledge-driven downstream
AI systems, such as recommendation systems [20, 48], question
answering [21, 33], and information retrieval [36, 50]. Most existing
KGs are constructed by extracting factual information from semi-
structured or unstructured web sources using heuristics algorithms,
such as Freebase [4], DBPedia [2], NELL [8] and Wikidata [37].

Given the exponential growth and incessant flux of web informa-
tion, the automated construction and updating of large KGs often
lack human supervision. This inevitably results in the introduction
of a substantial quantity of noisy triplets. For instance, the widely
used KG NELL exhibits a precision rate of 74% [7], indicating that
approximately 0.6 million of its triplets are inaccurate. These er-
roneous triplets result in substantial performance deterioration
within downstream tasks that rely on them. Thus, there is an ur-
gent need to delve into effective KG error detection, and numerous
approaches [3, 13, 23, 29, 31, 45, 51, 52] have been proposed for this
task. While these methods have achieved significant progress, they
are designed solely for graph structural and textual information.

However, with the rapid evolution of social media platforms,
images coupled with textual content have become the most preva-
lent form of web-based information. This promotes the rapid de-
velopment of multimodal knowledge graphs but also brings new
challenges to the task of KG error detection. As shown in Figure
1, multimodal KGs, akin to their traditional counterparts, harbor a
substantial quantity of triplet errors. Illustratively, errors in the in-
formation extraction process may lead to erroneous triplets such as
(Adam Pally, nationality, United Kingdom), and ineffective updates
to the KG may lead to another incorrect triplet, (Dennis Schröder,
play for, Los Angeles Lakers). In addition to triplet errors, multimodal
KGs frequently encounter modality errors during the process of
their automatic construction. The right part of Figure 1 is an exam-
ple. Accompanying images often align with the entire text content,
rather than being explicitly tied to a specific entity. This results in
a modality error where the image of Lebron James is incorrectly
associated with Dennis Schröder.

In this paper, we are the first to focus on these problems and in-
troduce a new task of multimodal knowledge graph error detection
(MKGED), accompanied by the construction of two comprehen-
sive datasets for its evaluation. MKGED mainly handles unique
challenges as follows: (1) Lacking labeled data. Automatically
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basketball player

Golden State WarriorsUnited States

Ayesha Curry

Adam Pally

actor

United Kingdom

occupation

occupation

nationality play for

wife

friend
Stephen Curry

nationality

nationality

play for

occupation

Entity Information

Dennis Schröder

Dennis Schröder born 15 

September 1993) is a German 

professional basketball player 

for the Brooklyn Nets of the 

National Basketball 

Association (NBA)…

Image Source 

Accompanying Text

Dennis Schröder

Dennis Schröder played 

very well tonight to help the 

team beat Jebron James…

Los Angeles Lakers

Germany

Figure 1: Examples of some multimodal KG errors. The left
part is a subgraph ofmultimodal KGs, errors in it are denoted
in red. The right part is an example of extracting images from
web sources to construct multimodal KGs.

constructed KGs inherently tend to be large and encompass a wide
variety of error types. Consequently, the process of manually la-
beling data is time-consuming and labor-intensive, and difficult to
cover all noise patterns. Thus, in real-world practice, MKGED often
necessitates the proactive detection of errors within multimodal
KGs, without relying on any labeled data during the training phase.
(2) Modality errors. Given the advanced maturity of informa-
tion extraction technology, prevalent modality errors encountered
in practical multimodal KGs arise from mismatched images that
are highly similar or relevant to their associated entities, posing
challenges in detecting such modality errors. (3) Triplet errors.
The distinctive image information within multimodal KGs provides
abundant additional complementary knowledge for triplet error
detection. However, erroneous image information not only fails to
contribute to this process but also introduces additional noise (e.g.
Dennis Schröder of (Dennis Schröder, play for, Los Angeles Lakers)),
ultimately diminishing the overall performance.

To address these challenges, we propose a novel multimodal
Knowledge Graph error detection framework with Disentangle-
ment VAE and Multi-grained triplet Confidence (KGDMC for short),
which utilizes an unsupervised learning way to solve the challenge
of lacking labeled data. To detect modality errors, we devise a dis-
entanglement modality reconstruction (DMR) module. This module
utilizes cross-modality reconstruction to comprehend noise pat-
terns and examine semantic coherence between modalities. It pro-
vides modality confidence for modality error detection. Considering
the challenge of high similarity or relevance between images and
their erroneously associated entities inmodality errors, DMR adopts
a disentanglement approach, which disentangles each modality in-
put data into separate modality-specific and modality-invariant
feature spaces to obtain more fine-grained semantic information. It
then explicitly utilizes accurate textual modality-invariant features
to guide the the cross-modality reconstruction process of suspicious
visual modality-specific information, ensuring adequate correla-
tion between modalities. To address triplet errors, we propose a
multi-grained triplet confidence (MTC) module. MTC tackles the
challenge posed by image noise in triplet error detection through
the utilization of weighted embedding based on modality confi-
dence. Additionally, MTC employs local triplet confidence, global

structure confidence, and global path confidence to assess the inter-
nal factual self-consistency of triplets, the consistency of aggregated
neighbor information, and the consistency of information propaga-
tion, respectively. The integration of these three distinct granularity
levels of confidence significantly enhances our capability to com-
prehensively detect triplet errors.

The main contributions of this paper are summarized as follows:
• To the best of our knowledge, we are the first to introduce

the novel multimodal knowledge graph error detection task,
which aims to simultaneously detect both modality errors
and triplet errors in multimodal knowledge graphs.

• For modality error detection, we devise a DMR module that
leverages disentanglement VAE for cross-modality recon-
struction. This approach effectively captures fine-grained
semantic consistency across modalities.

• For triplet error detection, we propose a MTC module,
which integrates the internal factual self-consistency of
triplets, the consistency of aggregated neighbor informa-
tion, and the consistency of information propagation to
collaboratively estimate comprehensive triplet confidence.

• We compare our KGDMC with state-of-the-art baselines
on two real-world multimodal knowledge graph datasets,
which we construct to incorporate multiple types of errors.
Extensive experimental results demonstrate the effective-
ness of our proposed framework.

2 Related Work
2.1 Knowledge Graph Error Detection
Traditional knowledge graph error detection mainly focuses on
graph structure and textual information, with this area of research
witnessing substantial progress and thorough exploration in recent
years. Knowledge graph error detection methods can be roughly
divided into two groups: rule-based methods and embedding-based
methods. Rule-based methods analyze the commonalities present
within triplets through the mining of association rules [1]. Triplets
that fail to adhere to these rules are subsequently identified and
considered as errors. AMIE [17] formulates a suite of golden rules
via path exploration and rule pruning processes. PaTyBRED [31]
utilizes heuristic approaches to explore the paths search space and
select relevant type and path information for each relation. GRR
[10] explores the graph-repairing rules of implication, consistency,
and termination. KGIST [3] inductively summarizes knowledge
graph to derive a set of soft rules, which describe normal conditions
within a KG. However, given the inherent diversity in rules across
different KGs and the fact that these methods primarily target
specific error categories, their applicability lacks generalizability.

Consequently, most of recent works focus on embedding-based
methods, which predict the plausibility between entity and relation
representations in low-dimensional vector space. CKRL [45] is the
first to introduce triplet confidence, which incorporates both local
and global path information, to guide models to pay more attention
to convincing triplets. KGTtm [23] integrates entity correlation, re-
lation invariance, and path reachability to predict triplet plausibility.
KGClean [18] utilizes active learning to train a classification model
to identify and repair erroneous triplets based on a small number of
labeled data. CAGED [51] employs contrastive learning to capture
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consistency between different triplet hyper-views of a knowledge
graph. HEAR [52] leverages the hierarchical path structure within
knowledge graphs to detect noise. KAEL [13] assembles a set of
advanced KG error detectors through ensemble learning and trains
them by active learning to label a small number of samples. CCA
[29] utilizes prompt learning to reconstruct textual and structural
information to better detect semantically similar noise.

Although these methods have achieved significant progress, they
are designed solely for graph structural and textual information,
thereby rendering them ineffective in leveraging abundant comple-
mentary information of visual modality within multimodal KGs.
Additionally, these methods face limitations in addressing modality
errors, which frequently occur in multimodal KGs. Therefore, we
propose the MKGED task, which aims not only to detect modality
errors but also to efficiently utilize complementary visual informa-
tion to detect triplet errors in the presence of modality noise.

2.2 Multimodal Knowledge Graph Embedding
Multimodal knowledge graph embedding (MKGE) typically har-
nesses triplet structure and multimodal information to embed en-
tities and relations. Subsequently, it defines score functions to
measure the plausibility of triplets. IKRL [46] is the first MKGE
model, which learns structural and visual information separately
based on TransE [5]. Based on IKRL, Mousselly et al. [35] and
TransAE [44] integrate visual and structural representations into
unified embeddings. RSME [43] utilizes a forget gate to ignore
irrelevant image information to obtain better embeddings. Subse-
quently, MMKRL [30] and OTKGE [6] exhibit enhanced capabilities
in aligning multimodal embeddings and integrating multimodal
knowledge, facilitated respectively by component alignment and
optimal transport. CMGNN [16] employs contrastive learning to
achieve multi-modal and high-order structural modeling within
graph neural networks. VISTA [27] integrates visual and textual
representations of entities and relations by leveraging transformers
for entity encoding, relation encoding, and triplet decoding. These
MKGE methods have achieved remarkable success in a diverse
range of multimodal knowledge graph related tasks, including but
not limited to multimodal knowledge graph completion and triplet
classification. However, they assume that all triplet facts within
multimodal KGs are completely correct, thereby constraining the
efficacy of multimodal KG error detection.

3 Problem Statement
A multimodal knowledge graph can be depicted or formulated as
G = (E,R,T ,I,D), where E = {𝑒1, 𝑒2, ..., 𝑒𝑚}, R = {𝑟1, 𝑟2, ..., 𝑟𝑛}
respectively denote the sets of entities and relations. I and D re-
spectively contains visual images and textual descriptions for all
entities. T ⊆ E×R×E is the set of triplets. Each triplet comprises a
head entity ℎ, a relation 𝑟 , and a tail entity 𝑡 , articulated in the form
of (ℎ, 𝑟, 𝑡 ). Multimodal knowledge graph errors involve modality
errors and triplet errors. For modality errors, given an entity 𝑒𝑖 ac-
companied by its description inD and image in I, if the image fails
to associate with the entity, then the entity 𝑒𝑖 is a modality error.
Regarding triplet errors within multimodal KGs, for a given triplet
(ℎ, 𝑟, 𝑡 ), we define the error as the mismatch that arises between
its head entity ℎ, tail entity 𝑡 , and corresponding relation 𝑟 . Two

distinct types of mismatch can occur: entity mismatch, where the
head entity ℎ and tail entity 𝑡 are irrelevant, and relation mismatch,
where relevant entities are erroneously connected through inappro-
priate relations. For multimodal knowledge graph error detection,
given a noisy multimodal KG G, our goal is to rank all entities
and triplets according to their respective suspicious scores. These
scores, spanning from 0 to 1, serve as indicators of the likelihood
of an error existing within the respective entity or triplet. Entities
and triplets that exhibit higher scores are designated as errors.

4 Dataset Construction
In recent years, multiple real-world multimodal knowledge graph
datasets have been widely used. However, these datasets lack ex-
plicit labels for errors or noises. Furthermore, with the maturity
of multimodal information extraction technology, the errors en-
countered in real-world multimodal KGs frequently exhibit a high
degree of semantic similarity with their accurate counterparts. Con-
sequently, to effectively evaluate the performance of MKGED, we
construct datasets by adding various types of noise to simulate
the real-world multimodal KGs constructed automatically without
human supervision. There are three types for modality errors:

• Random noise, originating from a uniform distribution
that is independent of the data and inherently unpredictable,
is generated by randomly substituting the images.

• Intra-modality similar noise simulates real-worldmodal-
ity errors arising from high similarities or correlations
among images. To generate them, we first utilize ViT [14]
to obtain visual features of all entity images. Subsequently,
for a given entity, we compute the distance between its
corresponding visual feature and those of other entities.
Based on the distance, we select the image exhibiting the
highest degree of similarity for replacement.

• Inter-modality similar noise simulates modality errors
stemming from high semantic similarities between tex-
tual content and erroneous images. Given the remarkable
modality alignment capabilities of vision-and-language pre-
trained models, we employ CLIP [32] to extract visual and
textual features of images and entity descriptions. Subse-
quently, for a given entity, we compute the distance be-
tween its textual feature and the visual features of other
entities to replace with highly relevant images.

For triplet errors, following [29], we also contain three types of
noise to simulate real-world multimodal KGs:

• Randomnoise akin to the random noise of modality errors.
Given a correct triplet (ℎ, 𝑟, 𝑡 ), we randomly substitute either
one of the entities or the relation within it to generate noise.

• Semantic similar noise mimics real-world triplet errors
stemming from high semantic similarities between enti-
ties. Given a triplet (ℎ, 𝑟, 𝑡 ), we employ BERT [12] to extract
textual features of the tail entity 𝑡 and other tail entities
associated with the relation 𝑟 . Then, we calculate the dis-
tance between them to replace 𝑡 by tail entities that exhibit
a high degree of semantic similarity.

• Adversarial noise is adversarially generated by leveraging
knowledge graph embedding models, which are frequently
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Figure 2: Overview of our KGDMC framework, which contains three modules: feature extraction, disentanglement modality
reconstruction (DMR) for modality error detection, and multi-grained triplet confidence (MTC) for triplet error detection.

employed to assess the plausibility of triplets. We first gen-
erate a substantial quantity of error triplets through random
substitution. Then, we train a TransE [5] model to select
the most plausible triplets from this set as noise.

5 Methodology
Figure 2 illustrates the overall architecture of our proposed KGDMC
framework. Initially, we extract textual and visual features for en-
tities in triplets. Subsequently, we utilize disentanglement varia-
tional autoencoder (VAE) to decompose each modality into distinct
modality-specific and modality-invariant subspaces through dis-
tribution alignment and disentanglement constraints. To capture
fine-grained semantic consistency between modalities, we explic-
itly integrate accurate textual modality-invariant information and
potentially suspicious visual modality-specific information, guid-
ing the model to cross-reconstruct accurate textual features. This
consistency provides the modality confidence scores for detecting
modality errors. Based on the modality confidence, we derive entity
embeddings by weighting textual and visual features. Finally, we
calculate triplet confidence scores from different views with multi-
ple granulations to assess three critical aspects: the internal factual
self-consistency of triplets, the consistency of aggregated neighbor
information, and the consistency of information propagation. By
integrating these scores, we effectively detect triplet errors.

5.1 Feature Extraction
To extract meaningful textual features, following [29], we employ
pre-trained BERT [12] as our textual encoder. Specifically, for each
entity 𝑒𝑖 , the input sequence is constructed in the following for-
mat: [CLS] 𝑡𝑖𝑡𝑙𝑒 [SEP] 𝑑𝑒𝑠 [SEP], where 𝑡𝑖𝑡𝑙𝑒 and 𝑑𝑒𝑠 refer to the
word-piece tokens of the entity title and description, respectively.
Subsequently, these inputs are fed into BERT to extract textual
features 𝒕𝒆𝒊 , which are the vectors in the last hidden layer corre-
sponding to the position of [CLS] tokens.

To capture expressive visual features, we employ pre-trained
Vision Transformer (ViT) [14] as our visual encoder. Given an image
associated with the entity 𝑒𝑖 , we initially resize it to 𝐶 × 𝐻 ×𝑊
pixels, where 𝐶 is the number of channels, and 𝐻 ×𝑊 refers to
the image resolution. Then we reshape it into 𝐻 ×𝑊 /𝑃2 flattened
two-dimensional patches, where 𝑃 represents the patch size. Similar

to the textual feature extraction, we feed them into ViT to obtain
the hidden state of the [CLS] as our visual features 𝒗𝒆𝒊 .

5.2 Disentanglement Modality Reconstruction
In multimodal KGs, heterogeneous modalities of entities typically
encompass diverse aspects of information (e.g. visual line and color,
textual detailed description) alongside shared aspects of information
(e.g. the characteristics and categories of entities). Disentangling
modalities can empower the model to delve into fine-grained se-
mantic nuances, thereby facilitating the acquisition of semantic con-
sistency across modalities. Therefore, we utilize disentanglement
VAE [22], which is the extension of VAE [26], for disentanglement.

5.2.1 Disentanglement VAE. A standard VAE is typically dissected
into two components: an encoder, which extracts a low-dimensional
latent variable 𝒛 from the input data 𝒙 , and a decoder, which sub-
sequently reconstructs an output �̃� that approximates the original
data 𝒙 based on the latent variable 𝒛. In VAE, variational inference
is employed to find the true conditional probability distribution
𝑝𝜙 (𝒛 |𝒙) over the latent variable 𝒛. Given the intractability of the
true conditional distribution, an approximation way is to find its
closest proxy posterior, 𝑞𝜃 (𝒛 |𝒙), by minimizing their distance using
a variational lower bound. Thus, the objective function of VAE is
the variational lower bound on the marginal likelihood of 𝒙 :

L𝑉𝐴𝐸 (𝒙) = E𝑞𝜙 (𝒛 |𝒙 ) [log𝑝𝜃 (𝒙 |𝒛)] − 𝐷𝐾𝐿 (𝑞𝜙 (𝒛 |𝒙) | |𝑝 (𝒛)) (1)

where the initial term represents a reconstruction loss, and the last
term is the Kullback-Leibler (KL) divergence between conditional
probability distribution 𝑞𝜙 (𝒛 |𝒙) and the prior distribution 𝑝 (𝒛) of
𝒛. The prior distribution is predefined as a multivariate Gaussian
distribution. The encoder predicts mean 𝝁 and variance 𝚺 of the
distribution 𝑞𝜙 (𝒛 |𝒙) = N(𝝁, 𝚺) and then the latent variation 𝒛 is
generated by reparameterization strategy [26].

Disentanglement VAE extends VAE by a pair of encoders re-
sponsible for modeling modality-specific and modality-invariant
information as follows:

L𝐷𝑉𝐴𝐸 (𝒙) = E𝑞𝜙𝑆 ,𝜙𝐼 (𝒛𝑺 ,𝒛𝑰 |𝒙 ) [log𝑝𝜃 (𝒙 |𝒛𝑺 , 𝒛𝑰 )]
− 𝐷𝐾𝐿 (𝑞𝜙𝑆 (𝒛𝑺 |𝒙) | |𝑝 (𝒛𝑺 )) − 𝐷𝐾𝐿 (𝑞𝜙𝐼 (𝒛𝑰 |𝒙) | |𝑝 (𝒛𝑰 ))

(2)

where 𝜙𝑆 and 𝜙𝐼 represent the respective parameters of the en-
coder pairs: 𝐸𝑆 and 𝐸𝐼 . The latent variations 𝒛𝑺 and 𝒛𝑰 denote the
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modality-specific and modality-invariant representations, respec-
tively, extracted from the input data 𝒙 . Furthermore,𝑞𝜙𝑆 ,𝜙𝐼 (𝒛𝑺 , 𝒛𝑰 |𝒙)
characterizes the joint distribution of 𝒛𝑺 and 𝒛𝑰 conditioned on 𝒙 .
We obtain textual and visual disentanglement VAE by replacing 𝒙
with 𝒕𝒆 and 𝒗𝒆 respectively. Finally, the objective function of our
multimodal disentanglement VAE is formulated as follows:

L𝑀𝐷𝑉𝐴𝐸 = L𝐷𝑉𝐴𝐸 (𝒕𝒆) + L𝐷𝑉𝐴𝐸 (𝒗𝒆) (3)

5.2.2 Distribution Alignment and Disentanglement Constraints. A
pivotal character of our disentanglement VAE lines in the con-
struction of modality-invariant and modality-specific subspaces.
The modality-invariant subspace focuses on information describ-
ing the shared aspects across modalities. To achieve this, we add a
distribution alignment loss constraint. Following [34], we utilize
the Wasserstein distance between the latent multivariate Gaussian
distributions. Given two distributions 𝑎 and 𝑏, the 2-Wasserstein
distance [19] is formulated as:

𝑊𝑎𝑏 = ( | |𝝁𝒂 − 𝝁𝒃 | |22 + ||𝚺𝒂
1
2 − 𝚺𝒃

1
2 | |2Frobenius)

1
2 (4)

We construct the modality-invariant subspace by minimizing the
distance between textual and visual distributions within this sub-
space: L𝐷𝐴 =𝑊𝑡𝐼 𝑣𝐼 . Furthermore, to construct modality-specific
subspaces, we design two constraints for the intra-modality dis-
entanglement and inter-modality disentanglement, respectively.
These constraints aim to avoid modality-specific representations
carrying the information of shared aspects. For intra-modality, our
objective is to ensure that disentangled modality-invariant and
modality-specific representations are distinct in the latent space.
We achieve this by maximizing the distance between disentangle-
ment distributions of each modality: L𝐼𝑛𝑡𝑟𝑎𝐷𝐷

= −(𝑊𝑡𝐼 𝑡𝑆 +𝑊𝑣𝐼 𝑣𝑆 ).
For inter-modality, we strive to make the modality-specific repre-
sentations of different modalities as disparate as possible. To this
end, we maximize the distance between textual and visual specific
distributions: L𝐼𝑛𝑡𝑒𝑟𝐷𝐷

= −𝑊𝑡𝑆 𝑣𝑆 . Finally, the distribution con-
straint loss of our disentanglement VAE is constructed as follows:

L𝐷𝐶 = L𝐷𝐴 + 𝛼L𝐼𝑛𝑡𝑟𝑎𝐷𝐷
+ 𝛽L𝐼𝑛𝑡𝑒𝑟𝐷𝐷

(5)

where 𝛼 and 𝛽 are hyperparameters to control the strength of intra-
modality disentanglement and inter-modality disentanglement.

5.2.3 Cross-Modality Reconstruction. Intuitively, features of the
same entity without any modality errors are semantically consis-
tent even though they come from different modalities. Therefore,
after obtaining fine-grained semantic information of each modality
by disentanglement VAE, we cross-reconstruct modalities to cap-
ture this consistency for the detection of modality errors. Given the
accuracy of textual modality, we utilize textual modality-invariant
representation as guidance to reconstruct potentially suspicious
visual modality-specific representation into accurate textual fea-
tures. In contrast to solely relying on visual representations, the
incorporation of textual modality-invariant representations signif-
icantly enhances the efficiency of cross-modality reconstruction.
To this end, we concatenate 𝒛𝒕𝑰 and 𝒛𝒗𝑺 to feed into cross-modality
decoder 𝐷𝑐𝑟𝑜𝑠𝑠 to reconstruct 𝒕𝒆 . The modality confidence score is:

𝑆𝑀 = | |𝒕𝒆 − 𝐷𝑐𝑟𝑜𝑠𝑠 (𝒛𝒕𝑰 , 𝒛𝒗𝑺 ) | |22 (6)

To mitigate the negative effects of erroneous entities and pay more
attention to those more convincing entities, we utilize the modality

confidence score to generate adaptive pseudo-labels to guide the
model training: 𝐶𝑀 (𝑒𝑖 ) = 1 − (𝑆𝑀 (𝑒𝑖 ) − min(𝑆𝑀 )/(max(𝑆𝑀 ) −
min(𝑆𝑀 )). Our cross-modality reconstruction loss is formulated as:

L𝐶𝑅 =
∑︁
𝑒𝑖 ∈E

𝑆𝑀 (𝑒𝑖 ) ·𝐶𝑀 (𝑒𝑖 ) (7)

Finally, the objective function of our DMR module is to jointly
optimize the above loss functions as follows:

L𝐷𝑀𝑅 = L𝑀𝐷𝑉𝐴𝐸 + L𝐷𝐶 + L𝐶𝑅 (8)

5.3 Multi-Grained Triplet Confidence
Considering the negative effect of modality errors, we weight tex-
tual and visual features to obtain each entity embedding as:

𝑤𝑖 = (max(𝑆𝑀 ) − 𝑆𝑀 (𝑒𝑖 ))/max(𝑆𝑀 ), 𝒆𝒊 = 𝒕𝒆𝒊 +𝑤𝑖𝒗𝒆𝒊 (9)

Given a triplet 𝑇𝑖 , we obtain its embedding (𝒉𝒊, 𝒓 𝒊, 𝒕𝒊) via Eq. 9 and
the textual content of 𝑟𝑖 . To comprehensively detect triplet errors,
unlike previous works that only involve partial views, we integrate
multi-grained triplet confidence from three different views.

Local triplet confidence is employed to measure the internal
factual self-consistency within triplets. To achieve this, we utilize
the TransE [5], where relations are interpreted as translations be-
tween head entities and tail entities. The greater alignment a triplet
exhibits with the translation assumption, the higher the likelihood
of its correctness. Thus, our local triplet confidence score is defined
as: 𝑆𝐿𝑇 (𝑇𝑖 ) = | |𝒉𝒊 + 𝒓 𝒊 − 𝒕𝒊 | |2.

Global structure confidence is employed to measure the con-
sistency of aggregated neighbor information. Following [51], we
regard each triplet as a node and obtain its embedding by concate-
nating internal embeddings of the triplet: 𝑻𝒊 = [𝒉𝒊, 𝒓 𝒊, 𝒕𝒊]. Subse-
quently, we generate two subgraphs by connecting triplets adjacent
to head entities Tℎ and triplets adjacent to tail entities T 𝑡 , respec-
tively. The triplet set Tℎ represents triplets that share the same
head entity, i.e. Tℎ𝑖 = {𝑇𝑗 |ℎ 𝑗 = ℎ𝑖 ∨ 𝑡 𝑗 = ℎ𝑖 }. Similarly, the set T 𝑡
is defined as T 𝑡𝑖 = {𝑇𝑗 |ℎ 𝑗 = 𝑡𝑖 ∨ 𝑡 𝑗 = 𝑡𝑖 }. According to social com-
munity theory [40], correct triplets are those individuals who can
successfully integrate into society. Therefore, if a triplet is correct,
its embeddings aggregated from different neighbors of the two sub-
graphs should exhibit a high degree of consistency. To measure this
consistency, we utilize the graph attention network (GAT) [41] to
respectively weighted aggregate neighbors from the two subgraphs
to obtain 𝑻𝒉𝒊 and 𝑻 𝒕𝒊 . Then, our global structure confidence score
can be defined as: 𝑆𝐺𝑆 (𝑇𝑖 ) = | |𝑻𝒉𝒊 − 𝑻 𝒕𝒊 | |2.

Global path confidence is employed to measure the consistency
of information propagation. Between any two entities, multiple
paths may exist, each embodying a distinct process of information
propagation between them. If a triplet is correct, its relation will
be consistent with the comprehensive information conveyed by
the other paths. Initially, we utilize the depth-first search (DFS)
algorithm to retrieve the paths between head entities and their
corresponding tail entities in all triplets. Given that triplets adhere
to the translation assumption based on local triplet confidence,
we sum up the corresponding relation embeddings to obtain the
embedding of each individual path: 𝒑𝒐 =

∑𝑙
𝑗=1 𝒓𝒋 , where 𝑙 is the

number of relations within this path. Due to the existence of erro-
neous triplets, not all paths are reliable. We compute the average
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Table 1: Overall statistics of datasets. E. means the errors.

Datasets Entities Relations Triplets Entity E. Triplet E.

FB15K-237 14,541 237 326,437 727 16,321
WN18RR 40,943 11 97,897 2,047 4,894

local triplet confidence along the path to determine the path im-
portance: 𝐴𝑆 (𝑝𝑜 ) =

∑𝑙
𝑗=1 𝑆𝐿𝑇 (𝑇𝑗 ). The less likely it is that the

path contains incorrect triplets, the more important it is. Then,
we obtain the unified path embedding based on this importance:
𝑷𝒊 =

∑𝑂
𝑜=1

𝐴𝑆 (𝑝𝑜 )∑𝑂
𝑗=1𝐴𝑆 (𝑝 𝑗 )

𝒑𝒐 , where𝑂 is the number of paths between

ℎ𝑖 and 𝑡𝑖 . Similar to global structure confidence, our global path
confidence score is defined as: 𝑆𝐺𝑃 (𝑇𝑖 ) = | |𝒓 𝒊 − 𝑷𝒊 | |2.

Finally, we integrate these three confidence scores to determine
the ultimate suspicious score of triplets:

𝑆𝑇 = 𝑆𝐿𝑇 + 𝜆𝑆𝐺𝑆 + 𝛿𝑆𝐺𝑃 (10)

where 𝜆 and 𝛿 are hyperparameters to balance the scores. Similar
to modality error detection, we generate adaptive pseudo-labels𝐶𝑇
to guide the training process of triplet error detection. The ultimate
loss of our MTC module is calculated as follows:

L𝑀𝑇𝐶 =
∑︁
𝑇𝑖 ∈T

∑︁
𝑇 −
𝑖
∈T−

max(0, 𝛾 + 𝑆𝑇 (𝑇𝑖 ) − 𝑆𝑇 (𝑇 −
𝑖 )) ·𝐶𝑇 (𝑇𝑖 ) (11)

where 𝛾 is a margin hyperparameter, T represents all triplets. And
T − denotes negative triplets generated by randomly replacing head
or tail entities, as explicit negative triplets are not available.

6 Experiments
In this section, we conduct comprehensive experiments to suffi-
ciently verify the effectiveness of our proposed framework KGDMC.
We intend to investigate the following research questions (RQs):

• RQ1. How does the KGDMC perform compared with vari-
ous state-of-the-art baseline methods?

• RQ2. How does each individual component of KGDMC
contribute to enhancing its performance?

• RQ3. How do the hyperparameters affect the error detec-
tion performance of our KGDMC?

• RQ4. How does the robustness of KGDMC and other base-
line methods in different noise types?

6.1 Experimental Setup
6.1.1 Datasets. In experiments, we select two widely-used real-
world knowledge graph datasets: FB15K-237 [38] andWN18RR [11].
They are derived from Freebase and WordNet, respectively. Since
both of these datasets are unimodal and lack visual information,
we first follow [43] to augment images for all entities. Then we
generate modality noise and triplet noise for each dataset in a
ratio of 1:1:1 for each noise type according to Section 4. Following
previous works [13, 29, 52], the ratio of total errors is set to 5%. The
overall statistics of our constructed datasets are shown in Table 1.

6.1.2 Baselines. We compare our KGDMC framework with various
competitive baselines. For modality error detection, we finetune
vision-and-language models that are widely used in multiple image-
text matching scenarios as our baselines, including CLIP [32], ViLT
[24], ALBEF [28], and METER [15]. For triplet error detection, we

utilize the following competitive methods for comparison. The first
type is the knowledge graph error detection methods, following
[29], including TransE [5], DistMult [47], ComplEx [39], KGTtm
[23], CAGED [51], KG-BERT [49], StAR [42], CSProm-KG [9], and
CCA [29]. Another type is the multimodal knowledge graph em-
bedding methods, including IKRL [46], RSME [43], and VISTA [27].

6.1.3 Evaluation Metrics. We employ ranking measures to assess
the efficacy of baselines and our proposed KGDMC. Specifically,
within a multimodal KG, we rank all entities and triplets based on
their modality and triplet confidence scores in descending order, re-
spectively. Entities or triplets that exhibit higher confidence scores
are more prone to being erroneous. Following [29, 51, 52], we adopt
precision@𝐾 and recall@𝐾 as evaluation metrics. Precision@𝐾 rep-
resents the proportion of false entities or triplets identified among
the top 𝐾 entities or triplets with the highest scores. Recall@𝐾 de-
notes the percentage of correctly identified false entities or triplets
relative to the total number of erroneous entities or triplets.

6.1.4 Implementation Details. In our experiments, we initialize
the weights of BERT and ViT by leveraging the pre-trained ver-
sions: BERT-base-cased and ViT-base-patch16-224-in21k, respec-
tively. The maximum length of the word sequence for textual input
is set to 128. Furthermore, all images are resized to a resolution
of 224 × 224, with a patch size 𝑃 of 16. We utilize the Adam [25]
optimizer with a batch size of 128 for optimizing. The margin pa-
rameter 𝛾 is empirically set to 1.0. Experiments were conducted on
a PC with 256 GB RAM, 4 Intel(R) Xeon(R) Gold 6226R CPUs and
an NVIDIA GeForce RTX A6000 GPU with 48 GB memory.

6.2 Experimental Results
6.2.1 Overall Performance (RQ1). Table 2 and Table 3 present the
experimental results of our KGDMC in comparison with baselines.
Formodality error detection, we find that these vision-and-language
baselines exhibit competitive results, especially CLIP. This benefits
from their pre-training in image-text matching using large-scale
image-text corpus. However, they indiscriminately consider the
entities with modality errors and lack fine-grained semantic con-
sistency mining, which limits their performance. Our KGDMC
significantly outperforms these baselines and achieves the best met-
rics on two datasets. Specifically, when 𝐾 equals to 5%, it achieves
11.2% and 9.9% absolute improvement on FB15K-237 and WN18RR,
respectively. This demonstrates the effectiveness of DMR module
design in KGDMC for addressing modality error detection.

For triplet error detection, we have the following observations.
First, traditional knowledge graph embedding models, such as
TransE, DistMult, and ComplEx, perform unsatisfactorily due to
their underlying assumption that all triplets are correct, thereby
failing to learn discriminative representations for normal and noisy
triplets. Second, text-based methods, including KG-BERT, StAR,
CSProm-KG, and CCA, exhibit notably superior performance com-
pared to structure-based knowledge graph error detection models
like KGTtm and CAGED. This is attributed to the benefits of incor-
porating additional factual knowledge obtained from large-scale
open-domain corpora through pre-trained language models, along
with the detailed information in textual descriptions. Third, multi-
modal knowledge graph embeddingmodels IKRL and VISTA exhibit
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Table 2: Experimental results of modality error detection. The results are averaged 5 runs using different random seeds.

Metrics Precision@𝐾 Recall@𝐾

Datasets FB15K-237 WN18RR FB15K-237 WN18RR

𝐾 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

CLIP 47.6 43.1 39.0 37.9 37.6 67.7 54.2 48.5 42.8 37.9 9.5 17.2 23.4 30.3 37.6 13.5 21.6 29.1 34.2 37.9
ViLT 29.7 27.2 26.8 27.0 26.4 48.2 38.6 34.2 31.4 30.6 5.9 10.9 16.1 21.6 26.4 9.6 15.4 20.5 25.1 30.6
ALBEF 42.1 37.6 36.9 35.1 34.8 63.1 50.5 45.7 40.2 36.1 8.4 15.0 22.1 28.1 34.8 12.6 20.2 27.4 32.1 36.1
METER 40.0 36.2 35.1 31.7 30.4 56.5 43.9 39.7 35.2 33.4 8.0 14.4 21.0 25.3 30.4 11.3 17.5 23.8 28.2 33.4

KGDMC 62.0 58.3 55.7 53.2 48.8 80.2 66.5 57.9 51.7 47.8 12.2 23.2 33.4 42.5 48.8 16.0 26.6 34.8 41.3 47.8

Table 3: Experimental results of triplet error detection. We report the results of some baselines according to CCA [29].

Metrics Precision@𝐾 Recall@𝐾

Datasets FB15K-237 WN18RR FB15K-237 WN18RR

𝐾 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

TransE 94.6 77.4 60.6 49.8 42.3 69.0 57.6 50.1 43.7 40.0 18.9 31.0 36.4 39.9 42.3 13.8 23.1 30.0 35.0 40.0
DistMult 76.4 63.0 53.0 46.3 41.0 68.7 63.3 52.6 43.8 37.4 15.3 25.2 31.8 37.1 41.0 13.7 25.3 31.6 35.0 37.4
ComplEx 80.2 63.3 52.1 44.6 39.3 77.4 69.9 55.0 44.9 38.4 16.1 25.4 31.3 35.7 39.3 15.5 27.9 33.0 35.9 38.4
KGTtm 85.7 68.7 63.1 46.7 43.7 78.9 64.4 54.1 47.3 41.7 17.1 27.5 37.8 37.4 43.7 15.8 25.7 32.4 37.8 41.7
CAGED 86.3 66.6 60.2 54.3 46.7 75.3 62.0 53.6 47.0 42.1 17.3 26.6 36.2 43.5 46.7 15.0 24.8 32.1 37.6 42.1
KG-BERT 96.6 79.9 66.0 58.4 49.8 97.3 96.8 93.8 82.9 71.0 19.3 31.9 39.6 46.7 49.8 19.5 38.7 56.3 66.3 71.0
StAR 97.0 83.5 68.1 57.1 49.0 97.1 91.8 84.2 73.9 64.7 19.4 33.4 40.9 45.7 49.0 19.4 36.7 50.5 59.1 64.7
CSProm-KG 96.1 79.8 68.9 57.4 50.9 97.7 92.7 86.9 77.3 68.0 19.2 31.9 41.3 45.9 50.9 19.5 37.1 52.1 61.8 68.0
CCA 96.9 81.2 70.7 59.9 53.4 98.6 95.9 92.0 83.4 73.3 19.4 32.5 42.4 47.9 53.4 19.7 38.4 55.2 66.7 73.3
IKRL 94.7 76.3 65.2 56.8 47.4 95.9 86.9 77.3 67.7 60.0 18.9 30.5 39.1 45.4 47.4 19.2 34.8 46.4 54.2 60.0
RSME 96.4 80.3 67.6 58.2 49.8 97.2 92.9 89.8 78.4 69.3 19.3 32.1 40.6 46.6 49.8 19.4 37.1 53.9 62.7 69.3
VISTA 95.3 77.2 66.1 57.0 48.1 96.7 88.4 78.8 69.5 61.4 19.1 30.9 39.7 45.6 48.1 19.3 35.3 47.3 55.6 61.4

KGDMC 97.6 83.2 72.1 61.4 55.1 99.2 97.8 94.6 84.5 74.5 19.5 33.3 43.3 49.1 55.1 19.8 39.1 56.7 67.6 74.5

Table 4: Ablation study of precision/recall at top-𝐾 results
for modality error detection.

Models FB15K-237 WN18RR
𝐾=1% 𝐾=3% 𝐾=5% 𝐾=1% 𝐾=3% 𝐾=5%

KGDMC 62.0/12.2 55.7/33.4 48.8/48.8 80.2/16.0 57.9/34.8 47.8/47.8
w/o L𝐷𝐴 24.1/4.8 23.2/13.9 21.7/21.7 31.1/6.2 24.4/14.7 19.3/19.3
w/o L𝐼𝑛𝑡𝑟𝑎𝐷𝐷

57.2/11.4 54.6/32.7 48.1/48.1 75.3/15.1 57.2/34.3 47.4/47.4
w/o L𝐼𝑛𝑡𝑒𝑟𝐷𝐷

57.9/11.6 54.9/32.9 48.3/48.3 77.1/15.4 57.3/34.4 47.5/47.5
w/o 𝒛𝒕𝑰 54.5/10.9 52.5/31.5 47.1/47.1 73.8/14.8 55.9/33.6 46.7/46.7
w/o 𝐶𝑀 56.6/11.3 53.7/32.2 47.7/47.7 71.4/14.3 55.7/33.4 47.1/47.1

inferior performance compared to text-based methods. This indi-
cates that ignoring modality errors and directly utilizing visual
information will introduce additional noise, ultimately impairing
the effectiveness of triplet error detection. RSME employs a forget
gate to disregard irrelevant image information, which mitigates the
negative effects of modality errors to a certain degree. However,
it still assumes that both entities and triplets are correct, which
leads to its inferior performance compared to the state-of-the-art
text-based knowledge graph error detection model CCA. Finally,
our KGDMC outperforms all baselines on two datasets and achieves
new state-of-the-art performance. Specifically, when𝐾 equals to 5%,
KGDMC gains 1.7% and 1.2% absolute improvement on FB15K-237
and WN18RR, respectively. This clearly underscores the effective-
ness and superiority of our KGDMC in detecting triplet errors.

6.2.2 Ablation Study (RQ2). To better understand our proposed
KGDMC, we conduct a series of ablation studies, as presented in
Table 4 and Table 5. For modality error detection, we observe that
KGDMC significantly outperforms KGDMC w/o L𝐷𝐴 . The distri-
bution alignment constraint serves as a fundamental cornerstone of
our DMR module, constructing the modality-invariant subspaces.

Table 5: Triplet error detection results of ablation study.

Models FB15K-237 WN18RR
𝐾=1% 𝐾=3% 𝐾=5% 𝐾=1% 𝐾=3% 𝐾=5%

KGDMC 97.6/19.5 72.1/43.3 55.1/55.1 99.2/19.8 94.6/56.7 74.5/74.5
w/o 𝒗𝒆 97.0/19.4 70.9/42.5 54.2/54.2 99.1/19.8 92.8/55.7 73.9/73.9
w/o𝑤 96.7/19.3 68.6/41.2 51.6/51.6 98.3/19.6 91.3/54.8 71.8/71.8
w/o 𝑆𝐿𝑇 97.2/19.4 71.7/43.0 54.7/54.7 98.7/19.7 94.1/56.4 74.1/74.1
w/o 𝑆𝐺𝑆 97.3/19.5 71.3/42.8 53.9/53.9 99.1/19.8 93.7/56.2 73.3/73.3
w/o 𝑆𝐺𝑃 97.2/19.4 71.1/42.7 53.7/53.7 98.6/19.7 93.4/56.1 73.4/73.4
w/o 𝐶𝑇 96.7/19.3 70.1/42.1 53.3/53.3 98.1/19.6 91.8/55.1 72.2/72.2

Furthermore, KGDMC w/o L𝐼𝑛𝑡𝑟𝑎𝐷𝐷
and KGDMC w/o L𝐼𝑛𝑡𝑒𝑟𝐷𝐷

both result in a decrease in performance, confirming the effec-
tiveness of these two distribution disentanglement constraints to
facilitate the construction of modality-specific subspaces. We then
replace 𝒛𝒕𝑰 with 𝒛𝒗𝑰 in cross-modality reconstruction, which leads
to a significant performance drop. The accurate textual modality-
invariant representations can better guide the reconstruction pro-
cess. Finally, KGDMC w/o 𝐶𝑀 performs worse than KGDMC, em-
phasizing the necessity of adaptive confidence pseudo-labels to
help models mitigate the negative effects of noise interference.

For triplet error detection, visual modality provides abundant
complementary information, enabling KGDMC with visual modal-
ity to outperform its unimodal version KGDMC w/o 𝒗𝒆 . However,
the performance of KGDMC w/o𝑤 significantly drops and it even
underperforms the unimodal KGDMC w/o 𝒗𝒆 . This is consistent
with our claim that directly integrating erroneous visual infor-
mation not only fails to aid in detecting triplet errors but also
introduces additional noise, ultimately diminishing the overall per-
formance. Moreover, we find that the performance experiences
varying degrees of decline when separately removing each gran-
ularity of triplet confidence, confirming the effectiveness of these
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Figure 3: The precision@5% results of our KGDMC with varying hyperparameters on FB15K-237 and WN18RR.

Table 6: The precision@5% results of triplet error detection on various error types.

Models TransE DistMult ComplEx KGTtm CAGED KG-BERT StAR CSProm-KG CCA IKRL RSME VISTA KGDMC

FB15K-237
Random 72.6 66.2 73.4 73.0 75.8 67.4 72.8 73.2 76.8 70.3 72.5 71.1 77.4
Similar 30.4 32.8 30.6 31.8 33.1 33.6 37.1 41.9 45.3 35.5 41.6 38.7 50.2
Adversarial 12.5 12.5 15.0 12.8 12.6 19.9 16.4 21.1 24.0 17.2 20.6 18.3 31.4

WN18RR
Random 43.4 31.6 38.4 44.8 48.6 80.6 79.4 79.1 80.7 77.2 79.1 77.9 81.1
Similar 35.1 33.8 30.3 39.1 38.8 63.3 61.0 63.4 65.7 59.8 62.4 61.1 69.5
Adversarial 31.4 28.5 36.6 35.9 37.3 59.9 52.7 53.6 54.5 52.8 54.7 53.3 62.8

Table 7: Modality error detection on various error types.
Models CLIP ViLT ALBEF METER KGDMC

FB15K-237
Random 67.0 49.6 62.4 59.1 71.9
Intra similar 34.7 26.0 30.2 23.6 50.8
Inter similar 11.2 7.0 12.0 8.7 23.6

WN18RR
Random 64.4 52.6 60.9 60.7 70.2
Intra similar 39.6 32.7 37.2 30.6 53.5
Inter similar 9.8 6.5 10.3 8.9 19.4

three key components. They provide a variety of consistency infor-
mation from different views to collaboratively detect triplet errors.
Finally, similar to 𝐶𝑀 in modality error detection, the utilization
of 𝐶𝑇 guides models to focus more on convincing triplets, thereby
alleviating the negative effects of noisy triplets and ultimately im-
proving overall performance.

6.2.3 Hyperparameter Analysis (RQ3). To investigate the influence
of hyperparameters on the performance of our KGDMC, we vary
them on the two datasets, as illustrated in Figure 3. For modality er-
ror detection, we can observe that KGDMC has a similar sensitivity
to 𝛼 and 𝛽 on the two datasets. A small value may render our model
insufficient for effectively disentangling information, whereas an
excessively large one could degrade the quality of latent variables,
ultimately resulting in performance deterioration. When respec-
tively setting 𝛼 and 𝛽 as 0.005 and 0.01, our KGDMC gains the best
results. For triplet error detection, we can find that the required
number of neighbors and paths changes with different datasets,
which is reasonable since WN18RR is much sparser than FB15K-
237. Furthermore, increasing these numbers does not always lead
to improved performance. Excessive information aggregation and
passing can potentially exacerbate the negative effect of erroneous
triplets. Optimal performance is achieved by our KGDMC when
configured with 𝑁 = 120 and 𝑂 = 20 on FB15K-237, and 𝑁 = 60
and𝑂 = 10 on WN18RR. Finally, 𝜆 and 𝛿 are utilized to balance the
contribution of three confidence scores for triplet error detection.
Similarly, given that FB15K-237 exhibits a higher density, it tends to
aggregate a greater number of erroneous triplet neighbors, which
renders its 𝑆𝐺𝑆 less reliable compared to WN18RR. Consequently,
𝑆𝐺𝑆 has a smaller contribution on FB15K-237. When we set 𝜆 to 0.5
for FB15K-237 and to 1.0 for WN18RR, our KGDMC obtains optimal

results. However, we find that 𝑆𝐺𝑃 plays similar roles in the two
datasets, and our KGDMC gains the best results when 𝛿 = 1.5. This
is due to the fact that when obtaining the unified path embeddings,
we assign weights based on the local triplet confidence, thereby
mitigating the negative impact of erroneous triplets.

6.2.4 Perform on Different Error Types (RQ4). To investigate the ro-
bustness of our KGDMC against various types of noise, we add 5% of
each type noise to FB15K-237 and WN18RR separately. Table 6 and
Table 7 show the precision@5% results. For modality error detec-
tion, while CLIP exhibits satisfactory results when confronted with
random noise, it is far inferior to our KGDMC in addressing both
intra-modality and inter-modality similar noise. Our KGDMC cap-
tures fine-grained semantic consistency across modalities by lever-
aging modality disentanglement and reconstruction techniques,
enabling it to effectively identify highly similar erroneous enti-
ties. For triplet error detection, since baselines have distinguished
random noise well, our KGDMC only slightly improves their per-
formance. However, for semantic similar and adversarial noise, our
KGDMC significantly outperforms all baselines. This is because
the visual modality, coupled with multi-grained consistency from
various views, provides additional complementary information for
distinguishing these hard-to-detect noises.

7 Conclusion
In this paper, we are the first to introduce the novel multimodal
knowledge graph error detection task, which aims to simultane-
ously detect both modality errors and triplet errors. To address
this task, we propose a novel KGDMC framework. Specifically,
we design a disentanglement modality reconstruction module to
capture fine-grained semantic consistency across modalities to
identify modality errors. Furthermore, we propose a multi-grained
triplet confidence module to integrate the internal self-consistency
of triplets, the consistency of aggregated neighbor information,
and the consistency of information propagation, for triplet er-
ror detection. Experimental results on our constructed two multi-
modal knowledge graph datasets demonstrate the superiority of
our KGDMC. In the future, we will explore the use of KGDMC to
assist downstream tasks based on multimodal knowledge graphs.
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