
CURRICULUM: A Broad-Coverage Benchmark for
Linguistic Phenomena in Natural Language Understanding

Anonymous ACL submission

Abstract

In the age of large transformer language mod-001

els, linguistic benchmarks play an important002

role in diagnosing models’ abilities and limita-003

tions on natural language understanding. How-004

ever, current benchmarks show some signifi-005

cant shortcomings. In particular, they do not006

provide insight into how well a language model007

captures distinct linguistic phenomena essen-008

tial for language understanding and reasoning.009

In this paper, we introduce CURRICULUM, a010

new large-scale NLI benchmark for evaluation011

on broad-coverage linguistic phenomena. We012

show that our benchmark for linguistic phenom-013

ena serves as a more difficult challenge for cur-014

rent state-of-the-art models. Our experiments015

also provide insight into the limitation of exist-016

ing benchmark datasets. In addition, we find017

that sequential training on selected linguistic018

phenomena effectively improves generalizing019

performance on adversarial NLI under limited020

training examples.021

1 Introduction022

With the rising power of pre-trained language mod-023

els, large-scale benchmarks serves as an important024

factor driving the future progress of NLP. These025

benchmarks can provide a tool for analyzing the026

strengths and weaknesses of pre-trained language027

models. In recent years, many benchmarks (Wang028

et al., 2019, 2020; Rajpurkar et al., 2018) have been029

proposed for diverse evaluation objectives. How-030

ever, criticisms have been made that these bench-031

marks do not formulate specific linguistic skills032

required for understanding(Raji et al., 2021). Thus,033

they do not explain how well a language model034

captures distinct linguistic phenomena essential to035

language understanding and reasoning.036

In this paper, we present the CURRICULUM037

benchmark: a large-scale collection of diverse nat-038

ural language inference (NLI) datasets for evaluat-039

ing how well a language model captures reasoning040

skills for distinct types of linguistic phenomena.041

Targeted linguistic phenomena in CURRICULUM 042

range from fundamental properties like named en- 043

tity and coreference to complex ones like common- 044

sense and deductive reasoning. With the CURRICU- 045

LUM benchmark, we aim to investigate the follow- 046

ing research questions: 047

• Q1: Do language models trained on benchmark 048

datasets have the ability to reason over a wide 049

range of linguistic phenomena? 050

• Q2: Are linguistic phenomena missing from the 051

training data recoverable through inoculation? 052

• Q3: Do language models learn a general reason- 053

ing skill of a phenomenon through inoculation? 054

• Q4: Can models generalize from linguistic phe- 055

nomena data to adversarial inference tests with 056

limited training examples? 057

To address the above questions, we empirically an- 058

alyze NLI models trained on popular benchmark 059

datasets through a zero-shot diagnostic test, inoc- 060

ulation by fine-tuning, hypothesis-only tests, and 061

cross-distribution generalization tests. In addition, 062

we closely study the low-data generalization perfor- 063

mance of models sequentially trained on selected 064

linguistic phenomena datasets. 065

For Q1, we observe that models trained on 066

benchmark datasets, including adversarial data, do 067

not have the reasoning ability for a large set of lin- 068

guistic phenomena. Our results show that training 069

on more datasets can help the model learn more 070

types of reasoning but does not help the model 071

acquire complex reasoning skills. Our benchmark 072

exposes multiple knowledge gaps in large NLI mod- 073

els regarding diverse linguistic phenomena. For 074

Q2, our analysis provides empirical evidence that 075

either exploits the lack of recoverable linguistic 076

phenomena in benchmark datasets or exposes mod- 077

els’ inability to learn certain linguistic phenomena. 078

We also show that, on some phenomena, models 079

may rely heavily on superficial cues or artifacts 080

existing in the hypothesis to reach high accuracy. 081

For Q3, Our experiments show that a model’s 082
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learning performance may not align with its gener-083

alization ability. Models fail to generalize across084

different difficulty distributions on many phenom-085

ena, suggesting the lack of a general reasoning skill.086

Models can generalize across distributions only on087

a limited number of phenomena. For Q4, we find088

that sequential training on selected linguistic phe-089

nomena can help the model efficiently generalize090

to the adversarial test sets under limited training091

examples. Compared to models trained on large-092

scale NLI datasets (MNLI and SNLI), linguistic-093

phenomena-based sequential training shows a more094

significant performance gain and is a more efficient095

method. Overall, our proposed benchmark system-096

atically maps out a wide range of specific linguistic097

skills required for language understanding and in-098

ference. We envision linguistic-phenomena-based099

evaluation to be an integral component of general100

linguistic intelligence. We hope CURRICULUM can101

serve as a useful evaluation tool and learning scaf-102

fold for more complex language understanding.103

2 Related Work104

NLU Benchmarks In recent years, multiple105

large-scale benchmarks for evaluating models’ gen-106

eral language understanding performance have107

been proposed. Similar to our benchmark’s task108

format, SNLI (Bowman et al., 2015) and MultiNLI109

(Williams et al., 2018) are the two common110

benchmarks for Natural Language Inference (NLI).111

GLUE and SuperGLUE are the two most popular112

benchmarks that aim to provide a straightforward113

comparison between task-agnostic transfer learn-114

ing techniques. They cover various task formats,115

task domains, and training volumes, with datasets116

all collected from publicly available sources. The117

construction of our benchmark is similar in that118

we also collect linguistic phenomena datasets from119

published papers. Adversarial NLI (ANLI) was a120

new benchmark collected "via an iterative, adver-121

sarial human-and-model-in-the-loop procedure."122

(Nie et al., 2020). ANLI was shown to be a more123

difficult challenge than previous benchmarks. A124

part of our study focuses on the low-data gener-125

alization performance on ANLI. Different from126

these benchmarks, our work aims to map out and127

evaluate specific linguistic skills a model needs for128

language understanding.129

Challenge Datasets for NLU Many challenge130

datasets have been developed to evaluate models on131

specific linguistic skills for understanding. These132

Figure 1: Linguistic Phenomena Ontology for the CUR-

RICULUM benchmark. Abbreviation for each phenom-

ena, used in this paper, is listed in the parenthesis.

datasets are in different formats such as NLI, Ques- 133

tion Answering (QA), and Reading Comprehen- 134

sion (RC). They target a large set of skills includ- 135

ing monotonicity (Yanaka et al., 2019a), deduc- 136

tive logic (Liu et al., 2020), event semantics (Han 137

et al., 2021), physical and social commonsense 138

(Sap et al., 2019; Bisk et al., 2019), defeasible rea- 139

soning (Rudinger et al., 2020), and more. Our work 140

brings together a set of challenge datasets to build 141

a benchmark covering a large set of specific lin- 142

guistic skills. We also merge different evaluation 143

methods proposed by these works into a complete 144

evaluation pipeline for our benchmark. 145

Evaluation on Linguistic Phenomena Our work 146

is mostly related to the DNC (Poliak et al., 2018a) 147

benchmark that also provides a collection of 148

datasets focusing on distinct linguistic phenom- 149

ena. Several datasets in the syntactical and seman- 150

tic categories come directly from this collection. 151

DNC includes many different recast NLI datasets 152

(White et al., 2017) which are converted automat- 153

ically from other NLU datasets with little human 154

effort. We follow their idea and automatically con- 155

vert several datasets from the QA and RC domain 156

into recast NLI datasets to cover phenomena like 157

commonsense and deductive reasoning. Our bench- 158

mark covers a wider range of linguistic phenom- 159

ena from richer categories than DNC. In particular, 160

our benchmark contains semantic phenomena and 161
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Category Description

Lexical Testing a model’s Word-level reasoning skill on lexical semantic and direct or transitive lexical relationships.

Syntactic Testing a model’s reasoning skill on syntactic structure and compositionality.

Semantic
Testing a model’s reasoning skill on sentence-level reasoning involving diverse semantic properties:

entity relations, context, events, subjectivity, and semantic proto roles.

Logical Testing a model’s reasoning skill on logical operations: propositional structure, quantification, and monotonicity.

Analytical
Testing a model’s knowledge exploitation ability: drawing accurate conclusions based on

domain-specific knowledge, symbolic knowledge, and interpretable reasoning steps.

Commonsense Testing a model’s reasoning skill on commonsense knowledge independent of cultural and educational background.

Comprehension Testing a model’s reasoning skill on complex reasoning types targeted by different reading comprehension challenges.

Special Testing a model’s reasoning skill on non-monotonic and spatial-temporal reasoning.

Table 1: Descriptions of each category in the CURRICULUM benchmark

includes phenomena from fundamental linguistic162

properties to complex reasoning types. In addition,163

the evaluation methodology for our benchmark pro-164

vides more in-depth analysis of model behaviors.165

3 The CURRICULUM Benchmark166

3.1 Benchmark Construction167

Our benchmark aims to map out a specific set of lin-168

guistic skills required for language understanding.169

The targeted linguistic skills should range from170

fundamental linguistic properties to complex rea-171

soning types. Our linguistic phenomena selection172

is motivated by three benchmarks: GLUE Diagnos-173

tic, Rainbow, and DNC. In addition, we include174

many more phenomena focusing on complex rea-175

soning types such as deductive logic and analytical176

thinking. Our finalized benchmark covers eight177

categories of linguistic phenomena. We briefly de-178

scribe the types of reasoning skill each category179

focus on in Table 1. Appendix A and B shows a list180

of references and dataset details for the train and181

test datasets used for each linguistic phenomenon.182

3.2 Dataset Selection183

We collect many challenge NLI or NLU datasets184

and filter them individually with the following crite-185

ria: (1) We focus on datasets that evaluate a specific186

or a set of specific linguistic phenomena. (2) We187

focus on English monolingual datasets that are in-188

stitutional and publicly available. (3) We exclude189

datasets that require domain-specific knowledge190

not given by the premise, such as medical knowl-191

edge. We finalize our selection with 36 datasets.192

Figure 1 shows a detailed ontology of our selected193

linguistic phenomena and their abbreviations.194

P Iv P Iv P Iv

lex-ent 0.31 transit 0.41 hyper -0.99

hypo -0.10 ner 0.19 vbn 0.55

vbc -0.40 syn-alt 0.10 syn-var 0.11

bool 1.12 cond 1.13 cont 0.75

comp 0.98 negat 1.13 quant 0.78

monot -1.57 kg-rel 0.05 coref -0.38

senti 0.42 ctx-align -0.79 puns 0.14

sprl -0.11 ent-tree 0.50 analytic 0.00

temp 0.10 spat 0.49 counter 0.47

defeas -0.39 social -0.40 physic -0.17

swag -0.66 cosmo -0.57 drop 0.19

ester -0.10 logi -0.71 control -0.07

Table 2: Dataset difficulty measured by the amount

of usable information (Iv) from input data instances.

The lower Iv is the more difficulty a dataset will be for

the model. P here are the abbreviations of linguistic

phenomena listed in Figure 1.

3.3 Unified Task Format 195

We unified the task formats into a single linguistic 196

task, Natural Language Inference (NLI). We select 197

NLI as the universal task format because NLI often 198

serves as a general evaluation method for models 199

on different downstream tasks. A model would 200

need to handle nearly the full complexity of natural 201

language understanding in order to solve the NLI 202

task (Poliak et al., 2018b). Our benchmark contains 203

two types of NLI problems: (1) the 3-way NLI with 204

Entailment, Contradiction, and Neutral; (2) 205

the 2-way NLI with Entailed and Not-Entailed. 206

Each example has a premise and a hypothesis with 207

2-way or 3-way labels. 208

3.4 Automatic Recast 209

To convert non-NLI datasets into the NLI task for- 210

mat, we follow the dataset recast procedure (Poliak 211

et al., 2018b): automatically convert from non-NLI 212

datasets with minimum human intervention. We 213
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design algorithmic ways to generate sentence pairs214

from the input text and convert the original labels215

into the NLI labels. Question Answering (QA)216

and Reading Comprehension (RC) are the two ma-217

jor tasks we need to convert. In QA datasets, if218

choices are given as declarative statements, we con-219

sider them as hypotheses and the question context220

as the premise. If choices are given as phrases an-221

swering the question, we concatenate the context222

and question to form a premise and consider the an-223

swers as hypotheses. Several datasets are tasks with224

free-response problems, and an answer can only be225

converted to an entailed hypothesis. To generate226

non-entailed hypotheses, we use several techniques227

during recasting, whose details are described in228

Appendix C. We randomly sample a subset of ex-229

amples for each recast dataset and conduct human230

verification to ensure the conversion does not create231

artifacts in hypotheses for models to leverage. Our232

hypothesis-only bias analysis shows that most of233

our recast datasets have low hypothesis-only bias.234

3.5 Dataset Controlled Split235

We split each dataset along the pointwise difficulty236

dimension. The point-wise difficulty is measured237

by the pointwise V-information (Ethayarajh et al.,238

2021). The pointwise V-information (PVI) is a239

framework for measuring the degree of usable in-240

formation in individual data examples. The higher241

the PVI, the more usable information a data exam-242

ple contains, the easier that example is for a model.243

Given input data X, output Y, and the model family244

V , the PVI is computed as:245

PVI(x → y) = −log2g[∅](y) + log2g
′[x](y)246

We first calculate the PVI for each phenomenon247

dataset, then we split each dataset into two portions:248

simple and hard, based on each example’s PVI.249

3.6 Dataset Difficulty250

To enhance our benchmark to provide more infor-251

mation on each dataset for in-depth evaluation and252

analysis, we provide each phenomenon a difficulty253

level. The V-information framework can also serve254

as a difficulty measurement for datasets and can be255

computed explicitly by averaging over PVI:256

Iv(X → Y) =
1

n

∑

i

PVI(xi → yi)257

As Table 2 shows, the difficulty level ranges from258

negative to positive. The higher the V-information259

is, the easier a dataset is for the model.260

Name Model Train/Test Accuracy

roberta-mnli
RoBERTa

MNLI/MNLI 90.2%
(Liu et al., 2019c)

bart-mnli
BART

MNLI/MNLI 89.9 %
(Lewis et al., 2020)

roberta-anli-mix RoBERTa
SNLI, MNLI,

53.7 %FEVER, ANLI/
ANLI

xlnet-anli-mix
XLNet

SNLI, MNLI
55.1 %FEVER, ANLI/

(Yang et al., 2019) ANLI

Table 3: Details on models used in our experiments. All

four models are large models and publicly available.

4 Evaluation Methodology 261

We define an evaluation process for the CURRICU- 262

LUM benchmark that aims to bring different types 263

of evaluation and diagnosing methods used by pre- 264

vious challenge NLI datasets. Following Raji et al. 265

(2021)’s suggestion, we want our evaluation pro- 266

cess to both to analyze the model output in detail 267

and explore which aspects of the inference problem 268

space remain challenging to current models. 269

Zero-shot Diagnostic Test This test is motivated 270

by the diagnostic test in GLUE. We focus on pro- 271

viding fine-grained analysis of zero-shot system 272

performance on a broad range of linguistic phe- 273

nomena. 274

Inoculation by Fine-tuning We use inoculation 275

(Liu et al., 2019a) to further analyze model fail- 276

ures on target linguistic phenomena. This method 277

fine-tunes the model on a down-sampled training 278

section of a phenomenon dataset (inoculation). One 279

can interpret inoculation performance in two ways: 280

1. Good performance: the original training set of 281

the model, prior to inoculation, did not suffi- 282

ciently cover the target phenomenon, but it is 283

recoverable through inoculation. 284

2. Poor performance: there exists a model weak- 285

ness to handle the target phenomenon. 286

Hypothesis-only Bias Analysis We train a 287

hypothesis-only baseline (Poliak et al., 2018b) for 288

each phenomenon to verify whether the model’s 289

good performance is from leveraging artifacts in 290

the hypotheses. We want to ensure that models’ 291

improved performance after inoculation is due to 292

their ability to reason about a hypothesis and the 293

given context together. We also use the baselines 294

to assure dataset quality by observing the amount 295

of hypothesis-only bias each dataset contains. 296

Cross-Distribution Generalization We conduct 297

the cross-distribution generalization test Rozen 298
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Figure 2: Zero-shot system performance on the CURRICULUM benchmark.

et al. (2019) to verify if the model learns a general299

reasoning skill from inoculation. The good inocula-300

tion performance does not ensure that the model’s301

learned skill is generalizable. The model can likely302

over-fit the dataset distribution by adopting superfi-303

cial cues. We evaluate the model’s generalization304

ability by training and testing the model on differ-305

ent distributions within the same phenomenon.306

4.1 Experiment Setup307

For the zero-shot test, we test a model on each308

test set without additional fine-tuning. We select309

NLI models with top performance on NLI bench-310

marks MNLI and ANLI. We list these models in311

Table 3. We follow the GLUE diagnostic dataset312

and use the Matthews correlation coefficient as the313

evaluation metric. For inoculation, we fine-tune314

models on training examples with a size ranging315

from 10 to 1000 examples per label. For the cross-316

distribution generalization test, we first create vari-317

ant data distributions for train and test sets using the318

controlled split method from Section 3.5. We split319

each dataset into two portions (simple and hard) ac-320

cording to the point-wise V information. Next, we321

either train and test the model on the same difficulty322

distribution or train it on one portion and test it on323

a different portion. In the inoculation, hypothesis-324

only, and generalization experiments, we all use325

roberta-anli-mix as our NLI model because its train-326

ing set covers all the major NLI training datasets:327

SNLI, MNLI, FEVER (Thorne et al., 2018), and328

ANLI. We use accuracy as our evaluation metric329

for all these three experiments.330

5 Empirical Analysis331

5.1 Zero-shot Linguistic Phenomena Diagnose332

First, we report the results on zero-shot diagnostic333

evaluation for each baseline model. From Figure334

2, we observe that both contextualized and genera-335

tive models trained on MultiNLI show a negative 336

correlation in the majority of linguistic phenom- 337

ena. Meanwhile, anli-mix models (roberta-anli- 338

mix, xlnet-anli-mix) are positively correlated on 339

most (77.8 %) of the phenomena and they show 340

high correlation (> 0.50) on 27.8 % of the phe- 341

nomena. On average, models trained on the large 342

dataset mixture show better performance than mod- 343

els trained on MultiNLI alone, suggesting that train- 344

ing on more datasets help models capture more 345

types of linguistic phenomena. However, most of 346

the phenomena captured by the anli-mix models are 347

easier to learn (higher V information). On harder 348

phenomena, models did not benefit from the train- 349

ing dataset mixture. For instance, both the anli-mix 350

models have a low correlation on deductive and 351

analytical reasoning. Overall, the zero-shot eval- 352

uation shows that a benchmark with a wide range 353

of linguistic phenomena can evaluate a model’s 354

specific linguistic skills. 355

5.2 Inoculation 356

Based on Figure 3, the model can reach high ac- 357

curacy on about 64 % of the phenomena as the 358

training examples accumulate. Most of these phe- 359

nomena have higher V information (> 0.0) that 360

should relatively be easier to learn. We are sur- 361

prised that for some hard phenomena (≤ 0.0) such 362

as commonsense contextual reasoning (cosmo, - 363

0.67), the model’s performance improved after in- 364

oculation. The improvement shows an gap in the 365

original training data mixture. 366

On 25 % of the phenomena, the model’s perfor- 367

mance did not improve significantly after inocu- 368

lation, meaning that it fails to learn the reasoning 369

skills for these phenomena. Most of these phenom- 370

ena are difficult, with a low V information, such as 371

monotonicity(mono) and deductive (logi) reason- 372

ing. The accuracy is consistently low when train- 373
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Figure 3: Inoculation by fine-tuning (top) vs Hypothesis-only analysis (bottom). The X-axis of the top plot represents

training examples per label. Both plots’ Y-axis show the accuracy. Models used in these two experiments are both

the roberta-anli-mix model, introduced in Section 4.1.

ing examples accumulate. We also observe that374

model struggles to learn phenomena that require375

complex reasoning, such as phenomena from the376

comprehension category. This trends show inher-377

ent weaknesses in the model or its training strategy378

that cause its failure to learn complex and hard379

phenomena. Overall, results from this experiment,380

combined with the zero-shot evaluation, suggest381

that many linguistic phenomena are missing from382

different large-scale NLI datasets but are recover-383

able through additional training examples. How-384

ever, the model fails to learn the skills for hard and385

complex phenomena.386

5.3 Hypothesis-only Bias387

To determine if models can leverage spurious arti-388

facts in the hypotheses of each phenomenon, we389

compare full models to hypothesis-only baselines.390

From Figure 3, we observe that hypothesis-only391

baseline performs poorly on a majority of the phe-392

nomena. This indicates that our benchmark gener-393

ally requires the model to learn an inference pro-394

cess between contexts and hypotheses for good395

performance. We observe that on 30.6% of the phe-396

nomena, the full-model can reach a high accuracy 397

while the baseline has low accuracy, suggesting the 398

model can learn the phenomenon without relying 399

on hypothesis artifacts. On 36 % of the phenomena, 400

the model does not show a significant performance 401

gain compared to the baseline. Most of these are 402

complex reasoning phenomena like deductive and 403

analytical reasoning. The result validates that the 404

model struggles more with complex linguistic phe- 405

nomena. On 33.3 % of the phenomena, both the 406

full-model and the baseline achieve high accuracy 407

showing the possibility that the model exploits spu- 408

rious artifacts from the hypothesis to reach high 409

accuracy. Overall, this experiment shows that the 410

hypothesis-only baseline effectively verifies the per- 411

formance from inoculation. These results also as- 412

sure the quality of our benchmark. 413

5.4 Generalization 414

As Figure 4 show, the model can adapt between 415

different distributions only on 22.2 % of the phe- 416

nomena. The model achieves high accuracy consis- 417

tently for all four categories in the generalization 418

matrix suggesting the learned skills are general- 419
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Figure 4: Generalization between controlled dataset splits. Here each heat-map shows the generalization performance

of the model fine-tuned and evaluated on different distributions within each linguistic phenomenon.

izable. On 58.3 % phenomena, models can not420

generalize between different difficulty distributions.421

They show higher accuracy when trained and tested422

on the same distribution but low accuracy when the423

test distribution shifted. For example, on relational424

knowledge reasoning (kg-rel), the model achieves425

83% for simple → simple and 98 % for hard →426

hard. Nevertheless, the performance drops to 53427

% for hard → simple and 38 % for simple → hard.428

Notice that model’s good performance on inocula-429

tion does not align with its generalization ability.430

For example, the model reaches 90.9 % accuracy on431

kg-rel, but its generalization performance is poor.432

This behavior highlights a model weakness: can433

over-fit to a particular distribution but fail to learn a434

general reasoning skill for the target phenomenon.435

We observe an interesting behavior that mod-436

els struggle to generalize from hard to simple dis-437

tribution on about 14 % of the phenomena while438

showing good generalization from simple to hard439

distribution. We think the possible reason is that440

the hard distribution contains data with relatively441

low V information. A low amount of usable in-442

formation makes it hard for the model to learn the443

phenomena well enough to generalize to the simple444

distribution.445

6 Sequential Training On Curriculum446

This section studies the effectiveness of sequential447

training on linguistic phenomena for low-data gen-448

eralization to a target dataset. Sequential training449

(Liu et al., 2019b) first conducts multi-task training450

on multiple datasets (excluding the target dataset) 451

and then continues to fine-tune on the target dataset. 452

The goal is to transfer from intermediate datasets 453

to the target task to improve the performance. We 454

want to investigate whether a combination of lin- 455

guistic phenomena data can transfer well to the 456

ANLI dataset and thus improve a model’s low-data 457

generalization performance. 458

Setup We conduct a random search by sampling 459

a combination of phenomenon datasets from the 460

benchmark. We select RoBERTa-large as our 461

model following the ANLI paper. We first train the 462

model on the data combination of selected phenom- 463

ena. Next, we fine-tune the model on each round 464

of ANLI with limited data examples (≤ 2000) per 465

label. Through a random search, we have the ling 466

model in Figure 5 which shows the best perfor- 467

mance among other random selections. The phe- 468

nomena selected for ling include ester, drop, tem- 469

poral, and all the semantic phenomena. We create 470

an additional selection by adding lexical entailment 471

and syntactic variation to ling’s selection. Many 472

NLI datasets (Bowman et al., 2015; Marelli et al., 473

2014) have covered these two phenomena, which 474

could potentially improve the performance. The 475

model trained using this selection is ling+ in Figure 476

5. We select three baseline strategies for compar- 477

ison: direct, mnli, and snli. The direct strategy 478

fine-tunes the model on ANLI without sequential 479

training on any intermediate tasks. The other two 480

baselines are first trained on MNLI or SNLI before 481

fine-tuning on ANLI. 482
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Figure 5: Generalization performance on ANLI under low-data regime, with different sequential training strategies.

The model used is a pre-trained RoBERTa-large model. The X-axis represents the number of training examples

used. The Y-axis shows the accuracy. The accuracy reported here are the average of three trial runs.

Result As Figure 5 shows, sequential training on483

selected linguistic phenomena first (ling and ling+)484

indeed improve the low-data generalization perfor-485

mance on all three rounds of ANLI. The learning486

curves show that the performance of these two mod-487

els improves much faster, and overall they have488

higher accuracy than the baselines. This trend is489

more significant on ANLI round 1, where the data490

efficiency of ling and ling+ can increase at a much491

faster rate than the baselines.492

Note that the mnli and snli baselines are both493

trained with an extensive amount of examples be-494

fore fine-tuning on ANLI. However, they only show495

trivial improvements over direct. Models trained496

on linguistic phenomena perform better than base-497

lines, even with fewer intermediate training exam-498

ples. This suggests that sequential training on se-499

lected linguistic phenomena is more efficient than500

pre-training on large-scale benchmark datasets.501

Overall, our experiment highlights the benefit of502

sequential training on selected linguistic phenom-503

ena for learning adversarial NLI examples under a504

low-data regime. Many factors play an important505

role in sequential training, such as task selections,506

training strategies, and hyperparameters. Due to507

computational constraints, our random search can-508

not cover all possible settings. We encourage future509

work to examine a wide range of scenarios. That510

being said, we believe that linguistic phenomena511

can be potential learning scaffolds for NLI models.512

7 Conclusion and Future Work513

In this paper, we provide a comprehensive study514

on how well language models capture specific lin-515

guistic skills essential for understanding. We also516

explore the potential of linguistic phenomena as517

learning scaffolds to improve models’ generaliza-518

tion performance in the low-data regime. We intro-519

duce the CURRICULUM benchmark that covers 36520

types of linguistic phenomena ranging from funda- 521

mental properties to complex reasoning types. We 522

then defined an evaluation methodology that can 523

analyze model behavior in different aspects. Our 524

major findings include: 525

• Models trained on benchmark NLI datasets fail to 526

reason over a diverse set of linguistic phenomena. 527

• Good inoculation performance on some phenom- 528

ena results from the model leveraging superficial 529

artifacts in the hypothesis. 530

• The model tends to over-fit the dataset distribu- 531

tion without learning a general reasoning skill on 532

a majority of phenomena. 533

• Sequential training on selected linguistic phe- 534

nomena can effectively improve the model’s gen- 535

eralization performance on adversarial NLI under 536

low-data settings. 537

Overall, our benchmark effectively evaluates a 538

model on specific linguistic skills. We hope that 539

our benchmark and empirical findings can encour- 540

age the development of new datasets that cover 541

richer types of linguistic phenomena and language 542

models to handle more types of complex reasoning. 543

We plan to study more on phenomena selection 544

methods and training strategies that can improve 545

the few-shot performance on adversarial tests for 546

future work. We also plan to add more linguistic 547

phenomena and evaluation methods into our bench- 548

mark. 549
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A Linguistic Phenomena in CURRICULUM835

Phenomena Train Reference Test Reference

Lexical Phenomena

Lexical Entailment Schmitt and Schütze 2021 Schmitt and Schütze 2021; Glockner et al. 2018

Hypernymy Richardson and Sabharwal 2020 Richardson and Sabharwal 2020

Hyponymy Richardson and Sabharwal 2020 Richardson and Sabharwal 2020

Named Entity Poliak et al. 2018a Poliak et al. 2018a

Veridicality and Transitivity Poliak et al. 2018a; Yanaka et al. 2021 Poliak et al. 2018a; Yanaka et al. 2021

Syntactic Phenomena

VerbNet Poliak et al. 2018a Poliak et al. 2018a

VerbCorner Poliak et al. 2018a Poliak et al. 2018a

Syntactic Variation Dolan and Brockett 2005 Dolan and Brockett 2005

Syntactic Alternations Kann et al. 2019 Kann et al. 2019

Semantic Phenomena

Coreference & Anaphora Sakaguchi et al. 2019; Wang et al. 2019; Webster et al. 2018 Sakaguchi et al. 2019; Wang et al. 2019; Webster et al. 2018

Sentiment Poliak et al. 2018a Poliak et al. 2018a

Relational Knowledge Poliak et al. 2018a Poliak et al. 2018a

Puns Poliak et al. 2018a Poliak et al. 2018a

Semantic Proto Label White et al. 2017 White et al. 2017

Context Alignment White et al. 2017 White et al. 2017; BIG-bench collaboration 2021

Logical Phenomena

Boolean Richardson et al. 2019 Richardson et al. 2019

Conditional Richardson et al. 2019 Richardson et al. 2019

Comparative Richardson et al. 2019 Richardson et al. 2019

Counting Richardson et al. 2019 Richardson et al. 2019

Quantifier Richardson et al. 2019 Richardson et al. 2019

Negation Richardson et al. 2019 Richardson et al. 2019

Monotonicity Yanaka et al. 2019b Yanaka et al. 2019a; Richardson et al. 2019

Analytic Phenomena

Entailment Tree Dalvi et al. 2021 Dalvi et al. 2021

Analytical Reasoning Zhong et al. 2021 Zhong et al. 2021

Commonsense Phenomena

Physical Bisk et al. 2019 Bisk et al. 2019

Social Sap et al. 2019 Sap et al. 2019

HellaSwag Sap et al. 2018 Sap et al. 2018

Contextual Commonsense Huang et al. 2019 Huang et al. 2019

Reasoning

Comprehension Phenomena

Deductive Reasoning Liu et al. 2020 Liu et al. 2020

Contextual Reasoning Liu et al. 2021 Liu et al. 2021

Event Semantic Reasoning Han et al. 2021 Han et al. 2021

Discrete Reasoning Dua et al. 2019 Dua et al. 2019

Special Reasoning Phenomena

Defeasible Reasoning Rudinger et al. 2020 Rudinger et al. 2020

Temporal Reasoning Weston et al. 2016 Weston et al. 2016

Spatio Reasoning Weston et al. 2016 Weston et al. 2016

Counterfactual Reasoning Patil and Baths 2020 Patil and Baths 2020

Table 4: A detailed list of training datasets and test datasets used for each linguistic phenomenon in our benchmark.

12



B CURRICULUM Dataset Details in CURRICULUM 836

Name |Train| |Dev| Original task

Lexical Entailment 6398 2964 NLI
Hypernymy 20000 8500 QA
Hyponymy 20000 8500 QA
Named Entity 50000 30000 NLI
Veridicality and Transitivity 20000 8788 NLI

VerbNet 1398 160 NLI
VerbCorner 110898 13894 NLI
Syntactic Variation 3668 408 SC
Syntactic Alternations 19990 8739 SC

Coreference & Anaphora 12135 5799 NLI/SC
Sentiment 4800 600 NLI
Relational Knowledge 21905 761 NLI
Semantic Proto Label 14038 1756 NLI
Puns 14038 1756 NLI
Context Align 14038 1756 NLI

Boolean 3000 1000 NLI
Conditional 3000 1000 NLI
Comparative 3000 1000 NLI
Counting 3000 1000 NLI
Quantifier 3000 1000 NLI
Negation QA 3000 1000 NLI
Monotonicity 35891 5382 NLI

Entailment Tree 1314 340 TG
Analytical Reasoning 3260 922 SC

Physical 10000 1838 QA
Social 6003 6003 QA
HellaSwag 20000 8518 QA
Contextual Commonsense Reasoning 9046 5452 RC

Deductive Reasoning 14752 2604 RC
Contextual Reasoning 6719 1604 RC
Event Semantics Reasoning 2800 662 RC
Discrete Reasoning 20000 13148 RC

Defeasible Reasoning 39036 9860 SC
Temporal Reasoning 4248 1174 NLI
Spatial Reasoning 10000 10000 QA
Counterfactual Reasoning 6062 3364 SC

Table 5: Overview of all the linguistic phenomena datasets in our benchmark. QA is short for Question Answering.

NLI is short for Natural Language Inference. SC is short for Sentence Classification. TG is short for Text Generation.

RC is short for Reading Comprehension.

13



C Data Recasting Details837

Here we provide more details on the major techniques we used to convert Question Answering (QA) and838

Reading Comprehension (RC) datasets into recast NLI datasets.839

C.1 Entity Swapping840

<Original>
Context: ...The Buccaneers tied it up with a 38-yard field goal

by Connor Barth, ... The game’s final points came

when Mike Williams of Tampa Bay caught a 5-yard pass...

Q: Who caught the touchdown for the fewest yard?

Answer: Mike Williams

<Recast>
Premise: ...The Buccaneers tied it up with a 38-yard field goal

by Connor Barth, ... The game’s final points came

when Mike Williams of Tampa Bay caught a 5-yard pass...

Hypothesis: Mike Williams caught the touchdown for the fewest yard

Label: Entailed
Hypothesis: Connor Barth caught the touchdown for the fewest yard

Label: Not-Entailed

Table 6: Example of converting an RC example from DROP (Dua et al., 2019) to NLI format. The entailed

hypothesis is a concatenation of question and answer. The non-entailed hypothesis is created by entity swapping on

the entailed one (Mike Williams → Connor Barth).

C.2 Question/Answer Concatenation841

<Original>
Context: The flash in the room that followed was proof of that assumption. The man grabbed his arm again.

"Please let go of my arm." He requested, his voice low. "Look."

Q: Why did the man grabbed his arm?

Choice 1: The man wanted to dance with him.
Choice 2: The man wanted to get his attention.
Choice 3: The man wanted to pull him closer so he can cry on this shoulder.
Choice 4: The man was angry with him and wanted to push him outside.

<Recast>
Premise: The flash in the room that followed was proof of that assumption. The man grabbed his arm again.

"Please let go of my arm." He requested, his voice low. "Look."

Hypothesis: The man wanted to get his attention.

Label: Entailed
Hypothesis: The man wanted to dance with him.

Label: Not-Entailed

Table 7: Example of converting an QA example from Cosmos QA (Huang et al., 2019) to NLI format. The entailed

hypothesis is the correct answer from the given choices. The non-entailed hypothesis is one of the false answers,

excluding the choice "None of the above choices".
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D Reproducibility 842

Implementation. All our experiments are implemented with models publicly available from Hugging- 843

face Transformers (Wolf et al., 2020). 844

Hyper-parameters We mainly follow the practice in (Nie et al., 2020). For all the experiments excluding 845

the zero-shot test in Section 5.1, we use a learning rate of 1e − 5 with a batch size of 8. We set the 846

number of warmup updates to be 1000. We set the epoch number to be 2. We evaluate the model on Ddev 847

every 200 steps for the inoculation and generalization experiments, and 500 steps for the hypothesis-only 848

experiment. For the low-data generalization on ANLI, we evaluate on the full-test set according to the 849

number of training examples listed in Figure 5. We use the AdamW (Loshchilov and Hutter, 2019) as our 850

optimizer. 851

Infrastructure All experiments are done with one single Geforce RTX 3090 (24GB). A single inocu- 852

lation or generalization job finishes within 0.5 hours on average. A single hypothesis-only job finishes 853

within 1-2 hours on average. A single job on sequential training and low-data fine-tuning finishes within 854

approximately 1.5 hours on average. 855

Number of Parameters. RoBERTa-large model contains 355 million parameters. BART-large model 856

contains 139 million parameters. BART-Large model contains 406 million parameters. XLNet-large 857

model contains 340 million parameters. 858
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