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ABSTRACT

Adversarial training significantly enhances adversarial robustness, yet superior
performance is predominantly achieved on balanced datasets. Addressing ad-
versarial robustness in the context of unbalanced or long-tailed distributions is
considerably more challenging, mainly due to the scarcity of tail data instances.
Previous research on adversarial robustness within long-tailed distributions has
primarily focused on combining traditional long-tailed natural training with exist-
ing adversarial robustness methods. In this study, we provide an in-depth analysis
for the challenge that adversarial training struggles to achieve high performance
on tail classes in long-tailed distributions. Furthermore, we propose a simple yet
effective solution to advance adversarial robustness on long-tailed distributions
through a novel self-distillation technique. Specifically, this approach leverages
a balanced self-teacher model, which is trained using a balanced dataset sam-
pled from the original long-tailed dataset. Our extensive experiments demonstrate
state-of-the-art performance in both clean and robust accuracy for long-tailed ad-
versarial robustness, with significant improvements in tail class performance on
various datasets. We improve the accuracy against PGD attacks for tail classes
by 20.3, 7.1, and 3.8 percentage points on CIFAR-10, CIFAR-100, and Tiny-
ImageNet, respectively, while achieving the highest robust accuracy.

1 INTRODUCTION

Recent studies have highlighted the vulnerabilities inherent in deep learning models when subjected
to adversarial attacks (Goodfellow et al., 2014; Carlini & Wagner, 2017; Madry et al., 2017; Athalye
et al., 2018). These attacks exploit subtle changes in input data that can lead to drastically incor-
rect predictions, undermining model reliability in critical applications (Ma et al., 2021; Grigorescu
et al., 2020; Wang et al., 2023). As a result, research efforts have focused on enhancing robustness
against such adversarial threats, with various strategies being explored (Das et al., 2017; Xie et al.,
2019; Cohen et al., 2019; Carmon et al., 2019; Zhang et al., 2022; Jin et al., 2023). Among these,
adversarial training (Goodfellow et al., 2014; Madry et al., 2017) has proven to be one of the most
effective methods for enhancing model robustness (Pang et al., 2020; Bai et al., 2021a; Wei et al.,
2023). However, many existing studies primarily validate their approaches on balanced datasets,
overlooking the practical scenarios where data is inherently imbalanced or long-tailed. This gap
underscores the need for novel adversarial training methodologies capable of addressing these more
complex data distributions effectively.

While numerous studies (Cao et al., 2019a; Cui et al., 2019; Kang et al., 2019; Zhou et al., 2020;
Li et al., 2021; Alshammari et al., 2022; Du et al., 2023) have addressed long-tailed distributions
without considering robustness, the intersection of adversarial training and long-tailed distributions
(Wu et al., 2021; Li et al., 2023; Yue et al., 2024) has received far less attention. Existing research in
this area primarily combines traditional long-tailed classification techniques with basic adversarial
training methods, such as PGD adversarial training (Madry et al., 2017) and TRADES loss (Zhang
et al., 2019) with balanced softmax (Wu et al., 2021; Yue et al., 2024). Despite combining such
methods, existing approaches still demonstrate low performance on tail classes with fewer samples
in long-tailed distributions. We find that their high robustness primarily stems from the improved
robustness of head classes, which have a larger number of samples. This highlights the need for
more advanced research on adversarial training in long-tailed distributions.
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Figure 1: (a) The overall clean accuracy and AutoAttack (Croce & Hein, 2020) accuracy of vari-
ous adversarial training methods (blue circles) and long-tailed adversarial training methods (green
circles) using the ResNet-18 (He et al., 2016a) architecture on CIFAR-100-LT (Krizhevsky et al.,
2009). (b) The clean accuracy and 20-step PGD attack (Madry et al., 2017) accuracy on tail classes
for the same set of methods. Our method (yellow star) surpasses all existing methods, achieving a
notable improvement on tail classes.

In this paper, we provide an in-depth analysis of why adversarial training in long-tailed distributions
is particularly challenging, focusing on the performance on tail classes. Through theoretical anal-
ysis, we show that adversarial training causes more severe performance degradation in tail classes
compared to natural training. This highlights the inherent difficulty of achieving high robustness
in long-tail distributions, especially for the tail classes. Building on these insights, we propose a
novel two-step framework designed to improve tail class robustness under adversarial training on
long-tailed distribution.

Our framework consists of constructing a balanced dataset from a given unbalanced dataset and
employing self-distillation. We first create a sub-dataset where each class contains an equal number
of data samples, referred to as the balanced sub-dataset. Then, we adversarially train a self-teacher
model on this balanced dataset, achieving higher robustness in tail classes than models trained on
the full long-tailed dataset. Subsequently, we apply self-distillation using the balanced self-teacher
model to improve tail class performance, resulting in significant gains over baseline models. As
shown in Figure 1a, our method achieves the highest accuracy against AutoAttack (Croce & Hein,
2020) and demonstrates significant performance improvements, particularly on tail classes as in
Figure 1b. Here are our key contributions:

• We conduct an in-depth analysis to explain why adversarial training on long-tailed datasets
results in poor tail class performance. Our findings show that, despite adversarial training,
tail class robustness is even lower than natural training.

• Based on these insights, we propose a novel two-step adversarial training approach specif-
ically designed for long-tailed datasets. This method improves upon baselines that merely
combine existing long-tailed classification techniques with adversarial training.

• Our approach achieves state-of-the-art performance in adversarial training on long-tailed
datasets across various architectures, datasets, and imbalance ratios, leading to significant
enhancements in both clean and robust accuracy, with particularly notable improvements
on tail classes.
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2 RELATED WORKS

2.1 ADVERSARIAL TRAINING AND DISTILLATION

In response to adversarial attacks (Goodfellow et al., 2014; Carlini & Wagner, 2017; Madry et al.,
2017; Athalye et al., 2018), adversarial training (Goodfellow et al., 2014; Madry et al., 2017) em-
pirically stands out as one of the most effective. Adversarial training defines optimization as a min-
max problem, where inner maximization generates adversarial inputs, and outer minimization trains
the model on these adversarial samples. TRADES (Zhang et al., 2019) incorporates the Kullback-
Leibler (KL) divergence loss between the logits of clean and adversarial images. MART (Wang
et al., 2020) introduces per-sample weights based on the confidence of each sample. These two
methods are used as baseline methods for other recent adversarial training research (Qin et al.,
2019; Wu et al., 2020; Bai et al., 2021b; Jin et al., 2022; Tack et al., 2022; Jin et al., 2023; Wei et al.,
2023).

The superior performance of adversarial training is primarily observed in large architecture net-
works, motivating research efforts to improve performance in smaller architectures using techniques
such as distillation. Adversarial Robust Distillation (ARD) (Goldblum et al., 2020) proposes a
loss function that guides the adversarial output of the student model towards the natural output of
the teacher, similar to TRADES (Zhang et al., 2019). Robust Soft Labels Adversarial Distillation
(RSLAD) (Zi et al., 2021) leverages teacher logits to improve performance through inner maxi-
mization in adversarial training. Many other studies leverage the teacher’s logits (Zhu et al., 2021;
Maroto et al., 2022; Huang et al., 2023) and gradients (Lee et al., 2023) to distill robustness into the
student model.

While these adversarial training and distillation studies have achieved strong robustness, they have
only been conducted on balanced datasets where each class has an equal number of samples. This
differs significantly from the real-world data configurations we encounter, highlighting the necessity
of adversarial training or distillation for unbalanced datasets.

2.2 LONG-TAILED RECOGNITION

Extensive research has been conducted to address the performance imbalance inherent in long-tailed
distribution datasets. Prominent methods include oversampling the minority tail data (Chawla et al.,
2002; Han et al., 2005) and increasing the weight of the minority classes (Cui et al., 2019; Zhang
et al., 2021). Although these methods are intuitive, they pose a risk of overfitting on the tail classes
and can degrade feature extraction performance (Kang et al., 2019; Zhou et al., 2020). A more effec-
tive approach, decoupled learning (Kang et al., 2019; Zhou et al., 2020; Alshammari et al., 2022),
separates feature learning from classification to mitigate such issues. Moreover, logit compensa-
tion methods have been proposed recently, introducing relatively larger margins between different
classes based on prior class frequencies (Cao et al., 2019a; Kang et al., 2019; Menon et al., 2020;
Ren et al., 2020; Tan et al., 2020).

2.3 LONG-TAILED ADVERSARIAL TRAINING

RoBal (Wu et al., 2021) is the first paper to address adversarial robustness in long-tailed classifica-
tion. RoBal applies adversarial training with TRADES regularization (Zhang et al., 2019) alongside
long-tailed techniques such as balanced softmax (Ren et al., 2020) and class-aware margin (Cao
et al., 2019b). Moreover, it provides detailed insights into which modules are effective for long-
tailed adversarial training. REAT (Li et al., 2023) aimed to achieve balanced performance by uti-
lizing class-wise weights to generate adversarial examples and expanding the feature space of tail
class data. AT-BSL (Yue et al., 2024) revisited the RoBal paper to analyze the necessity of various
modules and concluded that only the balanced softmax loss (BSL) is sufficient without the need for
complex modules as follows:

LBSL(f(x
′), y) = − log

( ez
′
y+by∑

i e
z′
i+bi

)
, (1)

where x′ is an adversarially perturbed input of x, z′i = f(x′)i is i-th logits of the adversarial
input, bi = τ log(ni), τ is a hyperparameter and ni is the number of examples in the i-th class. The
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balanced softmax is a commonly used loss in addressing long-tail problems to boost the performance
of tail classes (Ren et al., 2020). However, its drawback lies in adjusting the importance of tail
classes based on the number of data. In other words, more than balanced softmax is needed to
address robustness concerns for tail classes adequately.

There has been no in-depth analysis of robustness degradation in tail classes compared to head
classes in adversarially robust long-tailed distributions. In this paper, we aim to improve the overall
performance of existing long-tailed adversarial training by achieving sufficient robustness of tail
classes.

3 ANALYSIS

3.1 PRELIMINARY

Let f represent the classification model, which maps the input data space X to the output label
space Y , i.e., f : X → Y . For specific instance of X and Y , we use x ∈ X and y ∈ Y and
x = (x1, x2, . . . , xn) where n is the dimension of x.
Definition 1. For a classifier f(·), the overall standard errorRstd(·) of classifier f(·) is defined as

Rstd(f) = Pr(f(x) ̸= y),

and its robust errorRrob(·) is

Rrob(f) = Pr(∃δ with ∥δ∥∞ ≤ ϵ s.t. f(x+ δ) ̸= y)

where Pr(·) means probability and ϵ is a non-negative perturbation boundary.

For simplicity, we denote by fnat(·) the natural classifier that minimizes standard error, and by
frob(·) the robust classifier that minimizes robust error. Additionally, we denote the standard error
and robust error for a given class k asRk

std(f) andRk
rob(f), respectively.

3.2 THEORETICAL ANALYSIS

Let the long-tailed dataset for a binary classification task data S with imbalance ratio r ≥ 1, i.e., the
ratio of the number of instances in the head class (y = +1) to the number of instances in the tail
class (y = −1) is r. We assume Gaussian mixture distribution, which is similar to Xu et al. (2021);
Lee et al. (2024) as follows.

y =

{
+1, w.p r

r+1

−1, w.p 1
r+1

, x1, · · · , xn
i.i.d∼ N (ηy, 1), (2)

where η > ϵ is a constant that determines the standard deviation of the Gaussian distribution. We
address a binary classification problem on the above dataset, and then we obtain the following linear
function fw,b(·), with weight w with bias b.

fw,b(x) = sign

(
n∑

k=1

wkxk + b

)
. (3)
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Figure 2: Logistic regression on binary data in Equation (2) with different imbalance ratio (IR).
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According to Lemma 1 and Lemma 2 in Appendix A, each weight w1, w2, · · · , wn of optimal (nat-
ural, robust) classifier has the same weight, i.e., w1 = w2 = · · · = wn. We derive the standard and
robust error for the tail class of each optimal classifier as follows.
Theorem 1. For a data distribution S, the optimal natural classifier f∗

nat and robust classifier
f∗
rob exhibit the following standard and robust errors for the tail class −1 with perturbation margin
0 < ϵ < η, respectively:

R−1
nat(f

∗
nat) = Φ

(
−
√
nη +

ln r

2
√
nη

)
, R−1

rob(f
∗
nat) = Φ

(
−
√
n(η − ϵ) +

ln r

2
√
nη

)
, (4)

R−1
nat(f

∗
rob) = Φ

(
−
√
nη +

ln r

2
√
n(η − ϵ)

)
, R−1

rob(f
∗
rob) = Φ

(
−
√
n(η − ϵ) +

ln r

2
√
n(η − ϵ)

)
.

(5)

A detailed proof of Theorem 1 can be found in Appendix A. From Theorem 1, we can easily infer
that both the natural and robust errors of the tail class for both the natural and robust classifiers
increase monotonically with respect to the imbalance ratio r. Building upon this, we present the
following corollary:
Corollary 1. Adversarial training on long-tailed datasets exacerbates the vulnerability of the tail
class, making them even less robust than under natural training :

R−1
rob(f

∗
rob) > R−1

rob(f
∗
nat). (6)

A proof of Corollary 1 is trivial according to eq. (4) and eq. (5) in Theorem 1.

3.3 EMPIRICAL ANALYSIS
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Figure 3: Tail class natural and robust
accuracy with respect to natural and ad-
versarial training with different imbal-
ance ratios (IR) in Figure 2.

In Figure 2, we present a visualization of the theoretical
analysis in a 2-dimensional space. The data were sam-
pled from Gaussian distributions with η = 1 and n = 2
following Equation (2), considering three different imbal-
ance ratios (IR=1, 2, 5). The figure highlights the decision
boundaries formed by both natural and adversarial train-
ing (ϵ = 0.5). As the imbalance ratio increases, the deci-
sion boundary of the adversarially trained model becomes
more distorted, reflecting the model’s increased sensi-
tivity to adversarial perturbations in the minority class.

Figure 3 shows the test accuracy of the tail class (y = −1)
of the logistic regressions. The results indicate a clear
trend: as the imbalance ratio grows, the test accuracy
for the tail class drops across both natural and adversar-
ial training scenarios. More notably, adversarial train-
ing consistently produces more robust errors than natural
training. These results align with our theoretical predic-
tions: imbalanced data amplifies clean and robust errors
for the tail class, and adversarial training further exacer-
bates robust errors.
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Figure 4: Clean and robust accuracy of natural and
robust models.

We further experiment on a long-tailed CIFAR-
10 dataset on various imbalance ratios. We con-
duct both standard and PGD-adversarial train-
ing and compare the robust accuracy against
PGD attack with ϵ = 2/255 of the entire and
tail classes. As shown in Figure 4a, the ro-
bust performance of the adversarially-trained
model across various imbalance ratios is su-
perior to that of the naturally-trained model,
which shows trivial results. However, in Fig-
ure 4b, the natural model exhibits better ro-
bust performance than the adversarially-trained
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Algorithm 1 Main Algorithm
Input: Long-tailed dataset D, batch size N , epochs T , learning rate µ, hyperparameters α, γ,

and balanced self-teacher training parameters (batch size NB , epochs TB , and learning rate µB)
Output: Robust model f on long-tailed dataset D

# balanced self-teacher training
Make balanced dataset DB by re-sampling D with hyperparameter γ
Randomly initialize θB , the weights of balanced self-teacher fB
for epoch = 1 to TB do

for mini batch {xi, yi}NB
i=1 in DB do

for i = 1 to NB do
x′
i = PGD(xi, yi) # PGD attack

end for
θB ← −µB

1
NB

∑NB

i=1∇θBLCE(fB(x
′
i), yi)

end for
end for

# main training
Randomly initialize θ, the weights of training model f
for epoch = 1 to T do

for mini batch {xi, yi}Ni=1 in D do
for i = 1 to N do
x′
i = PGD(xi, yi) # PGD attack

end for
θ ← −µ 1

n

∑n
i=1∇θ

[
LBSL(f(x

′
i), yi) # Balanced softmax loss

+α · LKD(f(x′
i), fB(xi))

]
# Self-distillation

end for
end for

model in the tail classes. This experiment supports the results of Corollary 1, which clearly demon-
strates that while adversarial training generally helps to improve robustness, it could exacerbate
performance degradation in the tail classes of long-tailed distributions.

4 METHOD

We examine the impact of unbalanced datasets on performance disparity, particularly noting that this
disparity becomes more pronounced during robust training compared to natural training. To address
this issue, we propose a simple yet effective self-distillation framework.

4.1 LIMITATIONS OF EXISTING BALANCED SOFTMAX APPROACHES

Balanced softmax (Wu et al., 2021; Yue et al., 2024) is a powerful method that effectively addresses
the issue of tail-class robustness under adversarial training. These works demonstrate that applying
Balanced Softmax improves tail-class robustness. However, as shown in Table 6, while Balanced
Softmax prevents the robustness of tail classes, it still falls short compared to naive PGD training on
a balanced dataset in terms of tail-class robustness. Moreover, our experiments in Table 1, Table 2,
and Table 3 demonstrate that tail-class robustness under adversarial attacks remains notably lower
than that of head classes. This observation underscores the necessity of additional strategies to
explicitly improve tail-class robustness.

4.2 TRAINING SELF-TEACHER TO GUIDE TAIL CLASS ROBUSTNESS

To address the limitations of Balanced Softmax and improve tail-class robustness, we construct a
balanced sub-dataset DB by up-sampling tail classes and down-sampling head classes. Specifically,
suppose the number of samples of each class in D is n1 < n2 < · · · < nC , then we construct
a new dataset where each class contains γ · n1 where γ > 1 is a hyperparameter of adjusting the

6
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Table 1: The clean accuracy and robustness for various algorithms using ResNet-18 on CIFAR-10-
LT. T-Clean and T-PGD are clean and PGD-20 accuracy on tail class.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

PGD-AT 52.71 29.30 27.57 12.7 1.0 56.39 26.98 25.81 20.8 2.2
TRADES 45.79 28.66 27.01 6.7 0.8 47.10 28.00 26.45 6.4 0.6
MART 44.03 29.36 27.59 5.0 0.5 47.33 28.08 26.55 10.9 1.0
AWP 51.69 32.42 30.35 5.3 0.2 51.89 32.42 30.35 10.9 0.6

RoBal 70.54 35.33 28.83 70.4 33.1 72.80 28.04 25.00 67.7 15.9
REAT 68.34 35.98 32.45 69.5 29.1 68.32 28.67 26.68 55.7 11.6
AT-BSL 68.43 35.87 32.27 63.2 22.0 67.60 29.40 27.46 50.1 8.7
Ours 70.81 38.85 34.32 73.8 36.9 71.74 37.80 33.74 74.7 36.2

number of DB . Using DB , we perform robust training with PGD, resulting in a self-teacher model
that is more robust to tail classes compared to models trained on imbalanced datasets. The balanced
self-teacher transfers its tail robustness to the student model via adversarial knowledge distillation
Lee et al. (2023), as detailed in Algorithm 1. Through this process, the proposed method addresses
the insufficient tail-class robustness of Balanced Softmax, enhancing the model’s robustness on tail
classes while maintaining overall robustness.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Dataset. We conducted experiments using long-tailed distribution datasets: CIFAR-10-LT, CIFAR-
100-LT (Krizhevsky et al., 2009), and Tiny-ImageNet-LT (Le & Yang, 2015), with various imbal-
ance ratios (IR), primarily set at 50 for CIFAR-10-LT, 10 for CIFAR-100-LT and Tiny-ImageNet-LT.
Random crop and random horizontal flip were applied, while other augmentations were not utilized
unless specified.

Training details. We employed ResNet-18 (He et al., 2016a) and WideResNet-34-10 (Zagoruyko
& Komodakis, 2016) architectures for CIFAR-10/100-LT, and results for WideResNet-34-10 are
included in the appendix. For Tiny-ImageNet-LT, we employed PreActResNet-18 (He et al., 2016b).
Initially, we trained a balanced self-teacher using the same model architecture for 30 epochs using
a batch size of 32 with a balanced dataset, resampled by the original long-tailed dataset with γ =
IR/2. In the main training phase, we trained for 100 epoch using a batch size of 128 with self-
distillation from the balanced self-teacher. We utilized SGD optimization to train both the balanced
self-teacher and the main model, setting the learning rate to 0.1 and weight decay to 5× 10−4. We
used an epsilon boundary of 8/255, a commonly used setting in adversarial training, and employed
a 10-step PGD attack during training.

Comparison models. As comparison models, we utilized PGD-AT (Madry et al., 2017), TRADES
(Zhang et al., 2019), MART (Wang et al., 2020), and AWP (Wu et al., 2020), representing prominent
approaches of AT. Additionally, we followed RoBal (Wu et al., 2021), REAT (Li et al., 2023), and
AT-BSL (Yue et al., 2024), which focus on long-tailed adversarial training. For long-tailed AT
implementation, we meticulously followed the setting of existing methods such as learning rate,
batch size, weight decay, etc.

Evaluation. Evaluation metrics included clean accuracy, accuracy under a 20-step PGD attack,
and AutoAttack (AA) accuracy (Croce & Hein, 2020). Additionally, we assessed clean and 20-step
PGD attack accuracy specifically for tail classes, denoted as T-Clean and T-PGD, respectively. In
CIFAR-10-LT, the performance evaluation focused on the last class, while CIFAR-100-LT and Tiny-
ImageNet-LT evaluated the performance of the tail 10 and 20 classes out of 100 and 200 classes,
respectively. We measured performance at both the best and last epoch based on the accuracy under
the 20-step PGD attack.
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Table 2: The clean accuracy and robustness for various algorithms using ResNet-18 on CIFAR-100-
LT. T-Clean and T-PGD are clean and PGD-20 accuracy on the tail class group.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

PGD-AT 42.73 17.31 15.44 20.4 7.7 43.09 15.07 14.05 22.4 6.7
TRADES 38.83 19.05 16.06 16.5 7.3 39.63 18.86 16.18 16.1 6.8
MART 38.57 19.90 17.10 16.6 7.7 40.31 17.07 15.21 19.5 7.2
AWP 40.46 21.85 18.58 16.2 8.5 40.15 21.71 18.33 16.2 8.6

RoBal 44.27 19.67 16.78 18.4 8.0 46.46 16.28 14.73 23.3 6.7
REAT 45.73 18.22 15.82 32.2 11.4 45.53 15.64 14.27 33.0 10.5
AT-BSL 45.38 18.04 15.73 33.1 12.4 45.48 15.36 14.07 31.5 9.1
Ours 46.13 22.42 18.73 38.9 17.9 47.22 21.82 18.53 37.9 17.6

Table 3: The clean accuracy and robustness for various algorithms using PreActResNet-18 on Tiny-
ImageNet-LT.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

PGD-AT 34.89 14.17 10.98 15.8 5.4 36.55 9.69 8.45 23.2 5.0
TRADES 33.76 13.71 10.00 15.4 6.4 32.97 12.50 9.61 16.0 6.0
MART 31.15 15.45 11.94 14.4 6.0 32.91 12.42 10.32 17.8 7.6
AWP 32.28 15.09 11.27 14.2 5.6 32.13 13.95 11.10 14.4 6.6

RoBal 35.25 14.01 10.44 15.0 4.4 37.97 10.51 8.64 21.8 4.8
REAT 38.37 15.25 11.99 33.0 12.6 38.48 10.58 9.07 31.6 8.8
AT-BSL 38.38 15.39 11.85 30.8 13.0 38.41 10.25 8.90 32.4 7.0
Ours 38.44 17.02 12.57 36.6 16.0 49.37 14.09 11.15 33.8 12.6

5.2 MAIN RESULTS

We demonstrated excellent performance across all datasets, including CIFAR-10-LT, CIFAR-100-
LT, and Tiny-ImageNet-LT in Table 1, Table 2, and Table 3, respectively. The experimental results on
the WideResNet-34-10 architecture can be found in Table 7and Table 8 in the appendix. Particularly
noteworthy is the substantial improvement in performance for tail classes. When adversarial training
methods such as PGD-AT, TRADES, MART, and AWP are naively applied to long-tailed datasets,
overall performance remains reasonable compared to Robal, REAT, AT-BSL, but performance for
the tail classes notably suffers. For instance, while AWP exhibits superior performance compared
to RoBal, the clean accuracy and robust accuracy for tail classes are significantly low. Long-tailed
adversarial training methods such as RoBal, REAT, and AT-BSL show considerable improvement in
tail class performance compared to other adversarial training methods. However, when compared to
the performance of the entire class, it is still evident that the performance remains imbalanced. In
contrast, our method shows significant improvement in the performance of the tail classes, resulting
in minimal difference compared to the performance of the entire classes. Additionally, we achieved
overall better performance than the baseline at both the best and last checkpoints.

5.3 ABLATION

In this section, we conduct further experiments to corroborate our main contribution.

5.3.1 AUGMENTATION

Following the inclusion of various augmentation experiments outlined in AT-BSL, we conducted
experiments applying RandAugment (RA) (Cubuk et al., 2020) and AutoAugment (AuA) (Cubuk
et al., 2019) in Table 4. While applying augmentation led to overall performance improvements, the
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Table 4: The clean accuracy and robustness with augmentation using ResNet-18 on CIFAR-100-LT.
T-Clean and T-PGD are clean and 20-step PGD accuracy on the tail class group.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

Robal 44.27 19.67 16.78 18.4 8.0 46.46 16.28 14.73 23.3 6.7
Robal-RA 44.64 20.11 17.02 15.8 7.7 47.62 18.63 16.05 19.2 7.4
Robal-AuA 45.87 20.24 17.05 17.4 6.7 47.42 19.32 16.30 18.2 7.4

Reat 45.38 18.04 15.73 33.1 12.4 45.48 15.36 14.07 31.5 9.1
Reat-RA 46.94 21.71 18.02 33.3 14.9 50.41 20.33 17.46 36.6 14.7
Reat-AuA 47.86 23.09 19.43 34.0 16.7 50.56 22.20 18.60 36.5 16.5

AT-BSL 45.38 18.04 15.73 33.1 12.4 45.48 15.36 14.07 31.5 9.1
AT-BSL-RA 48.38 22.18 18.58 34.7 16.8 50.33 20.29 17.42 37.1 14.6
AT-BSL-AuA 47.30 22.78 18.66 34.2 16.4 50.57 21.98 18.45 36.8 16.3

Ours 46.13 22.42 18.73 38.9 17.9 47.22 21.82 18.53 37.9 17.6
Ours-RA 48.78 23.58 19.30 34.9 17.2 50.98 22.43 18.80 38.2 16.9
Ours-AuA 50.14 24.60 20.08 36.4 18.0 50.46 24.32 20.28 37.6 18.5

Table 5: The clean accuracy and robustness with different Imbalance Ratio(IR) using ResNet-18 on
CIFAR-100-LT. T-Clean and T-PGD are clean and 20-step of PGD accuracy on the tail class group.

IR Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

50

RoBal 33.52 14.56 12.27 1.9 0.9 34.81 12.16 11.02 4.6 1.7
REAT 26.62 13.73 10.64 9.2 4.1 36.51 12.28 11.15 19.1 4.4
AT-BSL 30.06 13.80 10.91 10.3 4.2 36.46 12.07 11.21 17.8 4.4
Ours 38.09 16.65 13.58 14.8 5.2 38.56 16.08 13.52 19.2 5.8

20

RoBal 40.08 16.91 14.28 12.1 5.4 41.28 13.96 12.70 15.5 5.1
REAT 33.17 15.82 13.01 20.0 9.2 41.73 13.79 12.58 29.8 7.7
AT-BSL 41.70 15.51 13.62 30.7 10.4 41.41 13.49 12.48 27.1 7.9
Ours 42.54 19.66 16.36 33.2 13.3 42.64 19.24 15.97 32.5 13.7

10

RoBal 44.27 19.67 16.26 16.7 7.6 46.46 16.28 14.73 23.3 6.7
REAT 45.73 18.22 15.82 34.4 12.2 45.53 15.64 14.27 33.0 10.5
AT-BSL 45.38 18.04 15.73 33.1 12.4 45.48 15.36 14.07 31.5 9.1
Ours 47.22 21.82 18.53 37.9 17.6 47.22 21.82 18.53 37.9 17.6

5

RoBal 49.49 21.66 18.59 26.1 11.9 51.56 18.15 16.58 34.7 9.9
REAT 49.48 21.95 18.98 39.3 18.3 49.76 18.19 16.65 40.7 14.1
AT-BSL 49.75 21.53 18.65 42.3 18.2 49.41 18.12 16.56 40.0 13.7
Ours 50.77 24.13 20.10 44.0 20.9 51.92 25.00 21.14 43.8 20.4

best results were achieved when augmentation was applied to our method. Our method consistently
outperformed baselines on robustness with augmentation setting including tail class performance
with augmentation.

5.3.2 DIFFERENT IMBALANCE RATIO

In Table 5, we conducted experiments using different imbalance ratios (IR). As the IR increases,
the number of tail classes decreases, leading to decreased robustness. In all cases, our method
outperforms the baseline in terms of both overall and tail robustness. This indicates that our proposed
framework generally performs well across different IR settings.

9
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Table 6: The clean accuracy and robustness using ResNet-18 on CIFAR-100-LT. T-Clean and T-
PGD represent clean and 20-step PGD accuracy on a tail class.

Dataset Method Clean PGD T-Clean T-PGD

D
Robal 44.27 19.67 18.4 8.0
Reat 45.73 18.22 32.2 11.4
BSL 45.38 18.04 33.1 12.4

DB PGD-AT 35.71 14.94 34.6 14.1

5.3.3 EFFECT OF BALANCED SUBSET

To evaluate the effect of the balanced subset DB , we compare the performance of mod-
els trained with PGD-AT on DB against Robal, Reat, and BSL trained on D, which in-
corporate techniques like balanced softmax to address long-tailed distributions. For simplic-
ity, we denote PGD-ATDB

as the model trained with PGD-AT on the balanced subset DB .

Robal Reat Bsl PGD_Db
Teacher

15

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)
Total clean acc
Tail clean acc
Total rob acc
Tail rob acc

Figure 5: Clean and robust accuracy ac-
cording to different teachers. Robal, Reat,
and Bsl were trained with 100 epochs, while
PGD-ATDB

used a teacher trained with 30
epochs.

As shown in Table 6, while the PGD-AT model
trained on DB achieved the lowest overall per-
formance, it demonstrated the best results for tail
classes, T-Clean and T-PGD. This suggests that even
with fewer training epochs, the balanced subset is
effective for improving performance on tail classes.
In Figure 5, we apply the same methods with dif-
ferent teachers where the performance is summa-
rized in Table 6. Interestingly, the best results
were achieved when we utilize PGD-ATDB

as the
teacher model, despite having the lowest overall per-
formance. Specifically, the performance on the tail
classes highlights the effectiveness of the teacher
trained on the balanced subset, as it demonstrates
superior performance on the tail class compared to
other methods. This underscores the utility of the
balanced subset in improving tail class performance.
Additionally, although we trained the teacher for
self-distillation using a simple method, PGD-AT, de-
veloping a more effective teacher remains an area for
future work.

6 CONCLUSION

Building on the observation that adversarial training methods inherently struggle with tail classes,
we propose effective strategies to address the lower performance on these classes. We first train a
balanced self-teacher and subsequently perform knowledge distillation from this self-teacher. This
approach leads to significant improvements in long-tailed adversarial training, enhancing both over-
all robustness and tail class robustness.

Discussion It is well known that adversarial training varies in difficulty across classes, and perfor-
mance also differs by class. This presents a fairness issue, indicating that in robustness, not only the
number of data points but also the intrinsic difficulty of each class plays a role. While this paper
focuses solely on data quantity, designing robust models that account for class-level fairness remains
an area for future work.
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A THEORITICAL PROOF

Lemma 1. Given the data distribution S, an optimal natural classifier that minimizes the overall
standard error has optimal weight that satisfies w1 = w2 = · · · = wn.

Proof. Let’s assume, for the sake of contradiction, that the optimal weights do not satisfy the given
condition. In other words, for some i ̸= j and i, j ∈ {1, 2, · · · , n}, we assume if there exist
wi < wj . Then, we obtain the following standard error

Rnat(f) = Pr(y = −1) · Pr

 n∑
k ̸=i,k ̸=j

wkN (−η, 1) + b+ wiN (−η, 1) + wjN (−η, 1) > 0


+ Pr(y = +1) · Pr

 n∑
k ̸=i,k ̸=j

wkN (+η, 1) + b+ wiN (+η, 1) + wjN (+η, 1) < 0


(7)

However, if we define a new classifier f ′, which has the same weight vector as classfier f but uses
wj to replace wi. The resulting standard error for the new classifier f ′ can be obtained as follows

Rnat(f
′) = Pr(y = −1) · Pr

 n∑
k ̸=i,k ̸=j

wkN (−η, 1) + b+ wjN (−η, 1) + wjN (−η, 1) > 0


+ Pr(y = +1) · Pr

 n∑
k ̸=i,k ̸=j

wkN (+η, 1) + b+ wjN (+η, 1) + wjN (+η, 1) < 0


(8)

Given that wi < wj , the f ′ has a smaller error than f , which contradicts the assumption that f is the
optimal classifier with the least error.

Lemma 2. Given the data distribution S, an optimal robust classifier that minimizes the robust
error has optimal weight that satisfies w1 = w2 = · · · = wn.

Similar to the Lemma 1, it can be easily proved with the same argument.

A.1 PROOF OF THEOREM 1

Proof. By the Lemma 1, the optimal classifier fnat for standard error has optimal weight of w1 =
w2 = · · · = wn. For simplicity, we assume l2-norm of w = 1, i.e., w = (1/

√
n, 1/

√
n, . . . , 1/

√
n).

following existing works Xu et al. (2021); Lee et al. (2024). Then, the standard errors of fnat can
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be formulated as follows.

Rnat(fnat) = Pr(y = +1) · R+1
nat(fnat) + Pr(y = −1) · R−1

nat(fnat)

=
r

r + 1
Pr (f(x) ̸= y|y = +1) +

1

r + 1
Pr (f(x) ̸= y|y = −1)

=
r

r + 1
Pr

(
n∑

k=1

1√
n
N (+η, 1) + b < 0

)
+

1

r + 1
Pr

(
n∑

k=1

1√
n
N (−η, 1) + b > 0

)

=
r

r + 1
· Φ(−

√
nη − b) +

1

r + 1
· Φ(−

√
nη + b) (9)

Here, Φ represents the cumulative distribution function of the standard normal distribution. To
determine the optimal value of b, we solve the equation dRnat(fnat)/db = 0.

dRnat(fnat)

db
= − r

r + 1
· ϕ(−

√
nη − b) +

1

r + 1
· ϕ(−

√
nη + b) = 0

−r · ϕ(−
√
nη − b) + ϕ(−

√
nη + b) = 0

−r · exp
(
−1

2
(−
√
nη − b)2

)
+ exp

(
−1

2
(−
√
nη + b)2

)
= 0 (10)

Here, ϕ represents the standard normal distribution function. Therefore, the optimal b∗nat for natural
classifier is follows,

b∗nat =
ln r

2
√
nη

. (11)

By using the optimal natural classifier, the standard error of the tail class can be formulated as
follows,

R−1
nat(f

∗
nat) = Φ

(
−
√
nη +

ln r

2
√
nη

)
. (12)

Then, the robust error of the tail class with optimal natural classifier can be calculated as follows,

R−1
rob(f

∗
nat) = Pr(∃δ with ∥δ∥∞ ≤ ϵ s.t. f∗

nat(x+ δ) ̸= y|y = −1)

= Pr

(
n∑

k=1

1√
n
(xi + ϵ) + b∗nat > 0

)

= Pr

(
n∑

k=1

1√
n
N (−η + ϵ, 1) + b∗nat > 0

)
= Pr

(
N (0, 1) < −

√
n(η − ϵ) + b∗nat

)
= Φ

(
−
√
n(η − ϵ) +

ln r

2
√
nη

)
. (13)

Similarly, based on the Lemma 2, the optimal classifier frob for robust error has optimal weight of
w1 = w2 = · · · = wn = 1/

√
n. Therefore, the robust errors of frob can be formulated as follows

with adversarial noise ϵ satisfying 0 < ϵ < η

Rrob(frob) = Pr(y = +1) · R+1
rob(frob) + Pr(y = −1) · R−1

rob(frob)

=
r

r + 1
· Pr

(
n∑

k=1

1√
n
N (+η − ϵ, 1) + b < 0

)

+
1

r + 1
· Pr

(
n∑

k=1

1√
n
N (−η + ϵ, 1) + b > 0

)
=

r

r + 1
· Pr

(
N (0, 1) < −

√
n(η − ϵ)− b

)
+

1

r + 1
· Pr

(
N (0, 1) < −

√
n(η − ϵ) + b

)
=

r

r + 1
· Φ(−

√
n(η − ϵ)− b) +

1

r + 1
· Φ(−

√
n(η − ϵ) + b) (14)
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To determine the optimal value of b, we solve the equation dRrob(frob)/db = 0.

dRrob(frob)

db
= − r

r + 1
· ϕ(−

√
n(η − ϵ)− b) +

1

r + 1
· ϕ(−

√
n(η − ϵ) + b) = 0

−r · ϕ(−
√
n(η − ϵ)− b) + ϕ(−

√
n(η − ϵ) + b) = 0

−r · exp
(
−1

2
(−
√
n(η − ϵ)− b)2

)
+ exp

(
−1

2
(−
√
n(η − ϵ) + b)2

)
= 0 (15)

Therefore, the optimal b∗rob for robust classifier is follows,

b∗rob =
ln r

2
√
n(η − ϵ)

. (16)

Then, the standard and robust error of the tail class with optimal robust classfier can be formulated
as follows,

R−1
nat(f

∗
rob) = Φ

(
−
√
nη +

ln r

2
√
n(η − ϵ)

)
, (17)

R−1
rob(f

∗
rob) = Φ

(
−
√
n(η − ϵ) +

ln r

2
√
n(η − ϵ)

)
. (18)

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS ON ANOTHER ARCHITECTURE.

We conducted experiments using WideResNet-34-10. Similar to the results of ResNet-18 in the main
paper, our method consistently demonstrated superior performance. Notably, on both CIFAR-10-LT
and CIFAR-100-LT datasets, significant performance improvements were observed in both T-Clean
and T-PGD settings. While RoBal exhibited a marginally higher clean accuracy in the case of the
best checkpoint on CIFAR-10-LT, the difference compared to our method is negligible. However,
our method achieved approximately a 5% point improvement in robust accuracy against auto attack
on CIFAR-10-LT. In the CIFAR-100-LT dataset, our method demonstrated the best performance in
terms of both clean accuracy and robustness across all classes. Additionally, the improvements in T-
Clean and T-PGD demonstrate that our method is more suitable for handling long-tail distributions.

Table 7: The clean accuracy and robustness for various algorithms using WideResNet-34-10 on
CIFAR-10-LT.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

PGD-AT 58.86 30.57 29.43 18.5 2.1 59.10 26.3 25.66 19.0 1.9
TRADES 51.93 30.45 29.20 4.5 0.3 55.36 27.62 26.99 19.2 2.9
MART 48.92 31.45 29.85 9.5 0.9 54.81 27.25 26.29 23.1 2.0
AWP 51.69 32.42 30.35 5.3 0.2 51.89 29.19 27.45 10.9 0.6

RoBal 74.46 32.82 25.72 71.5 22.8 70.03 24.74 23.09 50.6 5.7
REAT 73.16 33.45 28.71 66.4 20.8 64.11 25.90 25.00 31.7 3.6
AT-BSL 73.23 35.08 32.26 66.4 18.9 66.23 26.87 25.98 40.6 4.3
Ours 73.97 39.25 35.97 74.3 33.7 72.38 31.15 29.10 60.4 12.7

B.2 ADDITIONAL EXPERIMENT OF MORE TRAINING EPOCHS

Since we employed additional training epochs for self-distillation, we also trained the baselines with
more epochs and summarized the results in Table 9. The results showed that increasing the training
epochs for the baselines did not lead to performance improvements; in REAT, performance even
declined when more training epochs were utilized. As a result, it is clear that the efficacy of our
approach is not solely a consequence of increasing the number of training epochs.
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Table 8: The clean accuracy and robustness for various algorithms using WideResNet-34-10 on
CIFAR-100-LT.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

PGD-AT 47.48 19.36 17.79 25.4 8.7 46.09 16.51 15.67 24.3 7.2
TRADES 42.67 20.89 18.42 18.3 6.9 43.99 18.53 17.51 19.9 7.4
MART 41.54 21.52 18.83 19.2 9.2 43.08 17.00 15.84 22.8 7.8
AWP 45.53 23.23 19.92 20.4 7.9 47.05 21.97 19.21 23.1 8.8

RoBal 49.06 18.23 16.79 27.6 9.4 46.92 15.48 14.69 28.0 6.8
REAT 49.06 20.00 18.08 34.4 12.2 47.65 16.95 15.60 33.6 9.8
AT-BSL 50.05 18.96 17.10 38.3 13.3 47.95 16.40 15.31 32.2 9.5
Ours 50.55 23.43 20.16 38.4 19.5 50.87 22.21 19.44 42.5 18.4

Table 9: The clean accuracy and robustness for various algorithms using ResNet-18 on CIFAR-100-
LT. T-Clean and T-PGD are clean and PGD-20 accuracy on the tail class group.

Method Best Checkpoint Last Checkpoint

Clean PGD AA T-Clean T-PGD Clean PGD AA T-Clean T-PGD

RoBal (100 epochs) 44.27 19.67 16.78 18.4 8.0 46.46 16.28 14.73 23.3 6.7
RoBal (200 epochs) 44.20 19.70 17.01 17.5 8.1 45.60 15.06 14.03 24.1 6.7

REAT (100 epochs) 45.73 18.22 15.82 32.2 11.4 45.53 15.64 14.27 33.0 10.5
REAT (200 epochs) 44.67 16.48 14.53 29.6 10.3 44.80 14.86 13.64 28.9 7.9

AT-BSL (100 epochs) 45.38 18.04 15.73 33.1 12.4 45.48 15.36 14.07 31.5 9.1
AT-BSL (200 epochs) 45.01 17.19 14.56 28.9 9.7 44.04 14.23 13.23 28.5 7.2

Ours 46.13 22.42 18.73 38.9 17.9 47.22 21.82 18.53 37.9 17.6

B.3 SENSITIVITY OF HYPERPARAMETER

In Figure 6, we experiment with the sensitivity of the self-distillation weight parameter, α, and the
sampling rate, γ, where r is an imbalance ratio between the class with the largest number of samples
and the class with the smallest number of samples. We can see that as α increases, robustness
improves, but clean accuracy slightly decreases. This indicates a trade-off between robustness and
clean accuracy, which is expected given the use of adversarial distillation techniques. In the case of
γ, it did not significantly impact performance. However, when γ is larger—meaning more samples
are used to train the self-teacher—both clean accuracy and robustness showed improvement.

In Figure 7, we plot the tail class performance. In this case, we observed that as α increases, i.e., as
the weight of the loss for knowledge distillation from the balanced self-teacher increases, the clean
and robust performance of the tail class improves. The sensitivity to γ was not significant.

B.4 VARIANCE OF MULTIPLE RUNS

In Table 10, we conducted five experiments and computed the mean and standard deviation to as-
sess the impact of randomness. The results show that the standard deviations are relatively small,
indicating that the model’s performance is consistent across different runs. This suggests that the
observed improvements are robust and not significantly influenced by random fluctuations in the
training process.

B.5 CLASS-WISE ROBUSTNESS.

In Figure 8, we divided the classes of CIFAR-100 into 10 groups and measured the robustness
across them. As we move from class 0 to class 99, the number of data points decreases. Our
method demonstrated higher robustness across all class groups compared to the baseline. Notably,
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Figure 6: Hyperparmeter sensitivity of entire class
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Figure 7: Hyperparmeter sensitivity of tail class

it achieved the best performance in all groups except the first group. In contrast, Robal showed
strong performance on the first group (head classes) but the worst performance on the last group
(tail classes).
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Figure 8: Class-wise robustness.
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Table 10: The clean accuracy and robustness for various algorithms using ResNet18 on CIFAR-100-
LT.

Runs Clean PGD T-Clean T-PGD

1 46.13 22.42 38.9 17.9
2 46.57 22.23 37.5 17.7
3 46.47 22.27 37.8 17.8
4 46.59 22.12 38.8 17.8
5 46.01 22.52 38.9 18.0

Average 46.35 22.31 38.38 17.84
Standard deviation 0.27 0.15 0.68 0.11
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