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Abstract

Artificial neural networks open up unprecedented machine learning capabilities at
the cost of ever growing computational requirements. Sparsifying the parameters,
often achieved through weight pruning, has been identified as a powerful technique to
compress the number of model parameters and reduce the computational operations
of neural networks. Less well studied are sparse activations for computational
efficiency, while omnipresent in both biological neural networks and deep learning
systems. Moreover, the interaction between sparse activations and weight pruning is
not fully understood. In this work, we demonstrate that activity sparsity can compose
multiplicatively with parameter sparsity in a recurrent neural network model based
on the GRU that is designed to be activity sparse. We achieve up to 20× reduction of
computation while maintaining perplexities below 60 on the Penn Treebank language
modeling task. This magnitude of reduction has not been achieved previously with
solely sparsely connected LSTMs, and the language modeling performance of
our model has not been achieved previously with any sparsely activated recurrent
neural networks or spiking neural networks. Neuromorphic computing devices are
especially good at taking advantage of the dynamic activity sparsity, and our results
provide strong evidence that making deep learning models activity sparse and porting
them to neuromorphic devices can be a viable strategy that does not compromise
on task performance. Our results also drive further convergence of methods from
deep learning and neuromorphic computing for efficient machine learning.

1 Introduction

As the available compute per energy unit grows, artificial neural networks (ANNs) become increasingly
popular for applications ranging from cloud services to mobile and edge systems. While task
performance is crucial for all applications, including on low-power environments such as mobiles,
the energy consumption of the system is critical to allow deployment in such environments. Many
tasks have additional latency requirements for safety reasons or to enhance the user experience. Hence,
enhancing ANNs inference efficiency is vital for deep learning application deployment.

The power and latency of deployed neural networks depends on the number of memory accesses
and the number of arithmetic and logic operations conducted by the system. While on-chip SRAM
access energy costs are comparable to arithmetic operations, DRAM access is orders of magnitude
more energy and latency intensive [20]. Hence, the key performance indicators for accelerating neural
network inference, energy and latency, are dominated by reading weights from DRAM. This issue
is intensified for the case of batch size 1 inference, a common setting for mobile applications, since
the cost of fetching weights cannot be spread across multiple samples.
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Compressing neural networks to reduce the energy and latency cost is an active area of research. The
most relevant techniques include (1.) sparse and low-rank weight matrices [19], and (2.) fixed-point
integer quantization to commonly 8-bit and below [48, 31]. Sparse and low-rank matrices reduce the
number of weights that have to be fetched from memory, while quantization reduces the number of
bits transferred per weight. Less popular is the topic of sparse neuron activations. Sparse activations
theoretically limit the weights that have to be fetched from memory to the columns/rows associated
with the non-zero activations, a large potential efficiency gain. Although, sparse activations have
been observed in deep feed-forward networks [23, 21, 25], many hardware accelerators, with a few
exceptions [38, 52, 53], do not leverage this type of sparsity due to their dynamic nature. The ability to
handle dynamic activation sparsity is a core feature of neuromorphic hardware such as [26, 28]. Most
neuromorphic systems operate in an event-driven manner, and co-locate memory and computation
to reduce the energy and latencies [6].

In this work, we focus on activity sparse recurrent neural networks (RNNs) based on the recently pub-
lished event-based GRU (EGRU) model [41]. With the recent resurgence in RNNs with architectures
that are able to get close to or beat transformers in language modeling task performance [37, 8], we
expect our analysis to be relevant in a broader and more practical context as well.

Our contributions to this workshop are as follows:

• Using an efficient recurrent architecture (EGRU) designed for novel neural network
accelerators, we show how activity sparsity can be tuned using weight decay

• We show that the number of connections of small-scale language models can be compressed
with minimal loss in perplexity, which previously has only been shown on subpar baseline
models for the Penn Treebank and WikiText-2 datasets [54].

• We demonstrate that the reduction factors from activity sparsity and weight sparsity compose
multiplicatively to yield a significant reduction of required memory accesses and arithmetic
operations of up to 20× without compromising on perplexity.

2 Related Work

Pruning RNNs. An extensive review of weight pruning techniques can be found in [19]. Pruning
has been applied to a range of recurrent architectures including Elman RNNs, LSTMs, and GRUs
[34, 17, 54, 1]. On speech recognition benchmarks compression rates of up to 90% can be achieved
with the LSTM model without loss in performance [17, 54, 1]. Dai et al. [7] reported an increase of
sparsity by expanding the linear transformations of LSTM gates to be multi layer neural networks.
The best pruned LSTM model for language modeling on the Penn Treebank dataset in the literature
is reported by [54]. They achieve their best results, a perplexity of 77.5 (where lower is better), at
a weight sparsity of 80%. We generally find that pruning has not been applied to more recent LSTM
based language models such as the AWD-LSTM [33], which achieves a perplexity of 57.3.

Activity sparsity for RNNs. The ReLU activation function sparsifies RNN activations at the cost
of unstable training dynamics. Talathi and Vartak [43], Li et al. [24] addressed this by training diagonal
RNNs with ReLU activations. They traded non-linear recurrent operations for feed-forward operations,
and used more parameters than required with shallow but fully connected RNNs. Delta Networks
[35] operate on differences between hidden states at consecutive time-steps. This operator is shown
to be equivalent to standard RNNs, while the deltas can be thresholded to yield a sparse approximation.
Spiking neural networks (SNNs) based on the biologically plausible leaky-integrate-and-fire
neuron hold the promise of efficient inference on neuromorphic hardware but struggle to achieve
state-of-the-art performance on machine learning benchmarks [13, 44, 42, 49]. Aiming to bridge
the efficiency promise of SNNs with the task performance of ANNs, [47] and Subramoney et al. [41]
combined deep neural network architectures with discontinuous step functions and state resets to
mimic the behaviour of SNNs, while achieving better task performance. Zhu et al. [55] followed a
similar approach and applied SNNs in the context of larger-scale language models.

Combining activity sparsity and weight sparsity. Hunter et al. [21] introduced a structured sparse
algorithm for top-k winner-takes-it-all activation sparsity for feed-forward networks. Gao et al. [12]
show significant efficiency gains of joint activity and weight sparsity with an FPGA-based LSTM
accelerator on a speech recognition benchmark. While weight pruning is a popular research topic
in the context of SNNs [3, 40, 36, 4, 22, 51], most works focus on image classification.
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Language modeling with RNNs. Small scale language modeling datasets such as Penn Treebank
[27] or WikiText-2 [32] drove progress of LSTM based language models before Vaswani et al. [45]
enabled large-scale language modeling. The best raw LSTM language models on the Penn Treebank
dataset are reported in [33] and [29]. Recently, a set of RNNs based on linear recurrences demonstrated
strong results on large-scale language modeling tasks [15, 11, 39]. In this work, we work in the small
data regime, and comparison with the newer architectures will be done in future work.

3 Efficient Recurrent Neural Networks for Neuromorphic Accelerators

With our method, we aim for two goals: First, match the performance metrics targeted by the task.
Second, respect the power and compute budget of the hardware system. We exploit lessons from
deep learning as well as neuromorphic computing to significantly reduce the communication between
processing elements and memory.

3.1 Event-based Gated Recurrent Unit

Long Short-Term Memory (LSTM) networks [18] and Gated Recurrent Units (GRU) [5] allow long
range learning by gating input and hidden state variables for better gradient propagation. The Event-
based GRU (EGRU) [41] combines gating mechanisms with spiking mechanisms inspired by biological
neuron models. Therefore, it distinguishes between a local cell state c=(c1,...,cn) and a communicated
cell state y=(y1,...,yn), where n is the hidden dimension. In each time-step, the communicated state
y is a sparsification of the local state c via the pointwise heaviside thesholding function

y
⟨t⟩
i = c

⟨t⟩
i H

(
c
⟨t⟩
i −ϑi

)
, H(x)=

{
1, x≥0

0, x<0
, (1)

where ϑ=(ϑ1,...,ϑn) is a potentially trainable threshold parameter. This sparse state y is then passed
to an update gate u and a reset gate r, similar to the GRU model

u⟨t⟩=σ
(
Wu

[
x⟨t⟩,y⟨t−1⟩

]
+bu

)
, r⟨t⟩=σ

(
Wr

[
x⟨t⟩,y⟨t−1⟩

]
+br

)
. (2)

The gates compute a proposed state z and the updated local state c as

z⟨t⟩=g
(
Wz

[
x⟨t⟩,r⟨t⟩⊙y⟨t−1⟩

]
+bz

)
, c⟨t⟩=u⟨t⟩⊙z⟨t⟩+(1−u⟨t⟩)⊙c⟨t−1⟩−s⟨t⟩. (3)

Note that this is almost the update of the GRU, but with an additional reset term s⟨t⟩=ϑH
(
c⟨t⟩−ϑ

)
.

This term is motivated by the reset term commonly used in SNNs to improve activity sparsity (see [9] for
a review). Another common strategy is to attach surrogate gradients to the non-differentiable Heaviside
function dH

dc =λmax(1−|c|/ϵ) similar to [2] to allow differentiation of the event-based system.

3.2 Sparsely Connected Networks

Event-based systems such as EGRU improve efficiency by reducing the activity on each neuron-
to-neuron channel. An orthogonal method to reduce the communication of a system is removing
neuron-to-neuron channels entirely, i.e. pruning weights of the neural network (see sec. 2). The most
popular heuristic for weight removal is weight magnitude pruning [16]. In weight magnitude pruning,
we choose a set of target weight tensors. We, then, systematically identify the weights with the smallest
magnitudes from the target tensors and remove a specified percentage by setting it to zero. Following
the recommendations in [19], we investigated various pruning routines. A two-step approach, wherein
we first train the RNN model to convergence followed by sparsification through iterative pruning,
produces the best results for our goals of inference performance and sparsity.

The specific pruning methodology we implement is a global unstructured weight magnitude pruning
technique. At each step, we carry out weight magnitude pruning on all the weight tensors that constitute
the RNN model. The weights to be pruned are selected globally from all the tensors except for the
embedding vectors. By selecting the weights globally, we enable the layers that play a larger role in the
forward pass to retain a commensurate proportion of its weights. Our rationale for pruning the RNN
weights and not the embeddings is based on the perception that RNN weights are more representative
across different tasks rather than just language modeling. After each pruning iteration, we allow the
model to fine-tune for a few epochs before advancing to the subsequent pruning step. This iterative
procedure is repeated until a pre-defined target sparsity level is achieved. For further details on the
pruning experimental setup, refer Appendix B.
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Figure 1: Influence of weight sparsity and activity sparsity on the Penn Treebank and WikiText-2
datasets. A and B: Test perplexity versus reduction of MAC operations through weight sparsity
(LSTM) and combined activity and weight sparsity (EGRU). We plot the mean test perplexity and
corresponding standard deviation over 15 seeds. C and D: Activity sparsity vs weight sparsity
trade-off for EGRU. The marker size is proportional to the number of MAC operations while the colour
represents task performance in terms of test perplexity.

3.3 Efficiency of Sparse Activations and Sparse Connectivity

The efficiency gains of sparse activations and sparse weights complement each other in a multiplicative
way. This yields significantly more efficient systems compared to ones that have each of these sparsities
separately. Consider the linear transformation Wa. Let λa =E[a ̸=0] denote the fraction of active
neurons in each time step. We then call σa =1−λa the activation sparsity. Likewise, we call σw the
weight sparsity of W, and denote the fraction of non-zero connections λw. The transformation Wa
requires memory access and arithmetics for the non-zero weights Wij for each non-zero aj . Hence,
we need to load λa columns of W that each have a fraction of λw non-zeros. Effectively the fraction
of remaining operations compared to a dense vector matrix multiplication is λa ·λw.

4 Results

Our main goal for this work is to show that activity sparsity and weight sparsity can be combined for
optimal inference efficiency on novel accelerators. According to previous work (see sec. 2), RNNs for
language modeling in the computationally feasible domain are more sensitive to the removal of weights
compared to RNNs for speech recognition. We, therefore, choose language modeling as the more
challenging task to support our main claim and conducted the evaluation on the Penn Treebank [27]
and the WikiText-2 [32] word-level language modeling datasets. The task performance metric for both
datasets is perplexity (i.e. exponentiated cross-entropy, where lower is better). Since computational
efficiency depends on hardware properties, there is no universal metric to quantify efficiency. We
choose multiply accumulate (MAC) operations as our metric, which poses a finegrained measure of
theoretically required operations on digital hardware.

All models trained for this work follow the architecture presented in [33]. Hence, an embedding
look-up table for the word embeddings is followed by three layers of stacked RNNs without skip
connections and a linear decoder, whose weights are tied to the embedding layer. DropConnect is
applied to the recurrent weights [46]. In contrast to [33], we significantly simplify the optimization
procedure by using AdamW instead of their proposed averaged SGD schedule. AdamW speeds up
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Model
(Weight sparsity)

LSTM EGRU

MAC Test PPL MAC Test PPL

Merity et al. [33] 20.2M 57.3 - -
Ours (0%) 20.2M 57.1 6.4M 56.6
Ours (20%) 16.2M 56.9 5.3M 57.1
Ours (40%) 12.1M 56.8 4.1M 56.9
Ours (60%) 8.1M 56.9 2.8M 57.0
Ours (70%) 6.1M 57.1 2.2M 57.1
Ours (80%) 4.1M 57.6 1.6M 58.0
Ours (85%) 3.1M 57.7 1.2M 58.7
Ours (90%) 2.0M 58.3 0.9M 60.2
Ours (95%) 1.0M 66.5 0.5M 65.2

(a) Penn Treebank

Model
(Weight sparsity)

LSTM EGRU

MAC Test PPL MAC Test PPL

Merity et al. [33] 20.2M 65.8 - -
Ours (0%) 20.2M 65.7 7.4M 66.6
Ours (20%) 16.2M 65.9 6.0M 66.7
Ours (40%) 12.1M 66.1 4.7M 67.0
Ours (60%) 8.1M 66.4 3.3M 67.1
Ours (70%) 6.1M 66.3 2.6M 67.6
Ours (80%) 4.1M 68.0 2.0M 69.4
Ours (85%) 3.1M 68.9 1.6M 70.7
Ours (90%) 2.0M 71.2 1.1M 73.3
Ours (95%) 1.0M 81.9 0.6M 79.3

(b) WikiText-2

Table 1: Summarized results for the Penn Treebank and WikiText-2 datasets. We record the effective
number of MAC operations in the RNN, expressed in millions. Lower value indicates greater efficiency.

the convergence of both Merity et al. [33]’s LSTM and Subramoney et al. [41]’s EGRU by a factor of
3-4. While it would be natural to choose GRU as a baseline for comparison with EGRU, GRU models
did not match the LSTM performance in our experiments. This is consistent with the literature that
does not report GRU results close to the LSTM baseline. Since overfitting is a major problem on Penn
Treebank and WikiText-2, we speculate that the sparse activations of EGRU may impose additional
regularization of the model compared to GRU.

Since this work focuses on the interaction of activity sparsity and weight sparsity, we do not use
strategies such as mixture-of-softmaxes [50], neural cache [14], or mogrifier gates [30] that can further
improve the performance of the LSTM based methods. We note that these methods could be applied
on top of all the models presented in this work.

4.1 Weight Sparsity

We evaluate our weight pruning method across sparsity levels ranging from 20% to 95%. Training
and subsequent pruning is carried out as per the methodology described in sec. 3.2. The results are
presented in detail in tab. 1, and visualized in fig. 1. Weight magnitude pruning effectively compresses
our models up to 85%with marginal loss in task performance on Penn Treebank. In fact, lightly pruned
models, with weight sparsity levels up to 60%, actually exhibit an improvement in performance. On
WikiText-2, slightly lower compression rates are required to maintain task performance. While a
similar trend was observed by Zhu and Gupta [54], the results presented in tab. 1 surpass their models
significantly by 20 perplexity points.

Keeping the MAC cost constant, if we compare a densely connected EGRU with sparse activity to a
sparsely connected LSTM with dense activity, we find that they achieve comparable perplexities. How-
ever, combining both weight and activity sparsity yields better results than using either one in isolation.

4.2 Activity Sparsity

Utilizing 85% sparse weights and sparse activations, our method reduces the number of MAC
operations by a theoretical factor of nearly 20 compared to the dense baseline set by Merity et al.
[33] on Penn Treebank. This reduction in computational complexity is accompanied by a minimal
perplexity gain of less than 2 points. Fig. 1C and fig. 1D show the trade-off between activity sparsity
and weight sparsity for the EGRU model. It is discernible that there is minimal drop in activity sparsity
as we increase weight sparsity until we reach high levels of weight sparsity; with the trade-off being
slightly higher on WikiText-2. This observation provides further evidence that these two kinds of
sparsities are mostly orthogonal and can be combined for greater efficiency in RNNs.

In our hyperparameter search, we observe that weight decay strongly influences both the task
performance as well as the activity sparsity. The effect of weight decay on the amount of sparse
activations is particularly interesting as it provides a means to trade off sparsity for task performance.
We systematically study the influence of weight decay on the EGRU model by training a set of
models with different degrees of weight decay applied to the weights and biases separately. Fig. 2
summarizes our findings. The task performance experiences an optimum around a weight decay of
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Figure 2: We show the effect of weight decay regularization on the performance and activity sparsity of
the EGRU. Therefore, we consider separate degrees of weight decay for the weights and bias, separately.
All models are trained on WikiText-2. A: Validation perplexity trade-off with weight decay. B: Weight
decay on both the weights and the bias reduces the amount of sparse activations. C and D: Effect of
weight decay on the distribution of weights and biases for fixed weight decay on the bias of 0.01.

0.14. Weight decay applied to the weights also has a strong influence on the activity of our model,
while weight decay applied to the bias has a limited effect. Investigating the distribution of weights
and biases, we find that both weights and bias have a tendency to be negative, which drives the
cell states below their threshold and promotes sparse activations. With stronger weight decay the
distribution of weights concentrates closer around zero. Assuming statistical independence between
weights W and activations a =

[
x⟨t⟩,y⟨t−1⟩], the expectation of the preactivations is given by

E[Wa+b]=E[W]E[a]+E[b]. Hence, negative mean weights tend to drive weights below thresholds,
which increases the probability of preactivations passing the threshold ϑ and reduces sparsity.

5 Discussion

This work shows that activity sparsity and connectivity sparsity complement each other for efficient
recurrent neural network inference. While the spiking neural network literature shows promising
pruning results for image classification[40, 36, 22, 51], SNNs do not yet deliver competitive baselines
even for small-scale sequence modelling problems such as language modeling on Penn Treebank
unlike more general event-based RNNs such as the EGRU [41]. To the best of our knowledge this work
is the first to show the multiplicative efficiency gain of activation sparsity and connectivity sparsity
in the challenging domain of language modeling.

The EGRU model is just one example that shows the potential gains for both fields, i.e. improved
benchmark performance for SNNs and improved efficiency for ANNs. In the spirit of this workshop,
our results suggest the need for more convergence of methods between deep learning and neuromorphic
computing. Such efforts will require joint commitment from accelerator designers and algorithm
developers to explore models beyond the deep learning mainstream dominated by GPUs. Unstructured
weight sparsity alone does not necessarily justify the design of specific accelerators. However, joint
connectivity and activity sparsity could deliver the required reduction in operations that drive the
efficiency of irregular accelerators beyond highly regular accelerators.
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A Extended Results

Table 2: Penn Treebank results

Model Weight
Sparsity MAC Validation Perplexity Test Perplexity

Min Mean ± Std Dev Min Mean ± Std Dev

EGRU

0% 6.4M 60.81 61.12±0.26 56.61 57.06±0.29
20% 5.3M 61.15 61.22±0.04 57.10 57.15±0.03
40% 4.1M 61.01 61.13±0.05 57.00 57.07±0.03
60% 2.8M 61.04 61.12±0.04 57.01 57.06±0.05
70% 2.2M 61.22 61.27±0.04 57.08 57.25±0.06
80% 1.6M 62.06 62.31±0.15 58.04 58.24±0.12
85% 1.2M 62.76 63.01±0.17 58.74 58.88±0.12
90% 0.9M 64.38 64.66±0.22 60.22 60.46±0.16
95% 0.5M 69.64 70.03±0.31 65.22 65.44±0.21

LSTM

0% 20.2M 59.81 60.04±0.18 57.06 57.23±0.10
20% 16.2M 59.61 59.64±0.02 56.87 56.89±0.02
40% 12.1M 59.53 59.57±0.02 56.81 56.84±0.02
60% 8.1M 59.58 59.61±0.02 56.93 56.96±0.03
70% 6.1M 59.73 59.77±0.03 57.06 57.12±0.03
80% 4.1M 60.28 60.36±0.04 57.63 57.67±0.02
85% 3.1M 61.04 61.10±0.03 57.67 58.32±0.37
90% 2.0M 62.88 62.96±0.04 58.30 59.87±0.51
95% 1.0M 69.82 70.04±0.10 66.47 66.58±0.11

Table 3: WikiText-2 results

Model Weight
Sparsity MAC Validation Perplexity Test Perplexity

Min Mean ± Std Dev Min Mean ± Std Dev

EGRU

0% 7.4M 69.74 70.26±0.34 66.64 67.21±0.28
20% 6.0M 69.77 69.88±0.06 66.71 66.80±0.04
40% 4.7M 70.28 70.37±0.05 67.03 67.11±0.06
60% 3.3M 70.47 70.57±0.05 67.12 67.22±0.15
70% 2.6M 71.17 71.25±0.04 67.64 67.76±0.07
80% 2.0M 73.00 73.08±0.05 69.40 69.72±0.51
85% 1.6M 74.42 74.53±0.07 70.70 70.85±0.09
90% 1.1M 77.18 77.37±0.09 73.33 73.44±0.05
95% 0.6M 83.89 84.11±0.11 79.28 79.44±0.12

LSTM

0% 20.2M 68.68 68.85±0.12 65.66 65.94±0.11
20% 16.2M 68.73 68.82±0.06 65.93 66.06±0.07
40% 12.1M 68.73 68.88±0.10 66.11 66.21±0.07
60% 8.1M 69.00 69.22±0.11 66.41 66.55±0.11
70% 6.1M 69.52 69.78±0.14 66.32 66.88±0.26
80% 4.1M 70.61 70.86±0.11 67.96 68.07±0.28
85% 3.1M 71.94 72.11±0.08 68.89 69.01±0.07
90% 2.0M 74.56 74.69±0.08 71.20 71.34±0.09
95% 1.0M 86.02 86.06±0.03 81.91 81.97±0.02

11



B Pruning Methodology

To achieve the best results after pruning we tested out multiple pruning techniques. We tried out parallel
training and sparsification methodologies such as the lottery ticket hypothesis mentioned in [10] and
the sparsify during training method mentioned in [19]. However we achieved much better results by
first training to convergence and then pruning. Hoefler et al. [19] suggests pruning to the target sparsity
in one go however we experimented with an iterative pruning method as described in sec. 3.2

For the iterative pruning method, we vary the learning rate and number of pruning steps for each level
of target sparsity we tried out . The final results are then obtained by repeating the best methodology
for each target on 15 different seeds. For low sparsity, it is beneficial to carry out the pruning in one
go whereas for higher sparsity we obtain better results on carrying out multiple steps of pruning and
subsequent fine-tuning. The trends are visualized in fig. 3.
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Figure 3: Influence of number of pruning steps on the results for different target weight sparsities.
Results are displayed for EGRU experiments on Penn Treebank dataset. Other experimental setups
follow similar trends

Similarly for learning rate, lower sparsity targets achieved better performance with a lower learning
rate (0.1× baseline training learning rate) while higher sparsity models required larger learning rates
(equal to the baseline training learning rate).

C Network Activity

Our investigation of activity sparsity in sec. 4.2 showed how the distribution of weights affects the
activity of EGRU networks when weight decay is applied. We provide more detail on the activity
spectrum of EGRU here. Fig. 4 shows the distribution of activity for the layers individually. The lower
weight decay, the more the activities move towards zero. An anomaly is the output layer, which has
significantly higher activity than the bottom layers. This observation could be driven by the learning
objective of language modeling. At each point in time, the model has to output a candidate word
embedding vector. This candidate vector is compared to all the (learned) word embedding vectors from
the dictionary via dot-product. Since, we don’t apply a decoder layer on top of the EGRU following
Merity et al. [33], the candidate word embeddings have positive and zero entries only. Yet, the word
embeddings are learned and perhaps take any value, especially not necessarily sparse values. The
learning objective of matching the correct next word embedding with the output of the final EGRU
layer might force a high activity in the final layer. Future work can consider more beneficial decoding
strategies to keep activity low in the final layer as well.
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Figure 4: Histogram of activity of the EGRU neurons in each layer. For example, an activity of 20%
denotes that a neuron’s output is non-zero 20% of the time, hence saving operations 80% of the time.
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Figure 5: Histogram of cell state values shifted by the thresholds c−ϑ in each layer.

Fig. 5 visualizes the distribution of the normalized cell states c−ϑ of EGRU on the Penn Treebank
validation set. We observe that higher weight decay motivates the cell states to operate closer to their
thresholds. At the same time, cells with smaller weight decay operate a significant amount of time
far away from the threshold in the negative regime. This makes the output signals y less sensitive
to inputs, which increases the regularity of EGRU networks compared to GRU.

D Limitations

Our work is based on unstructured weight sparsity and irregular activation sparsity. Both sparsities
are difficult to accelerate on contemporary hardware. Unstructured weight sparsity is not aligned
with the regular memory access instructions of GPU programming. Yet, the sparsity pattern is known
at compile time for inference applications. This simplifies the design of specialized accelerators.
Our activation sparsity is irregular in the sense that it cannot be predicted ahead of time. Hence, the
instructions depend on context, and the compiler can hardly optimize the system e.g. by fetch weights
from memory in advance. Efficiently simulating our method requires an event-based programming
paradigm, which only few accelerators such as SpiNNaker2 [28] or Loihi [26] support.

We find that EGRU requires larger word embeddings than LSTM for the language modeling task.
This might be due to the sparsity of the feature map, which does not align with the dense embedding
vectors. The larger word embeddings introduce additional MAC operations, which limits the effective
reduction of MAC operations through activity sparsity to a factor of 3 (see tab. 1).
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