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Abstract
Electronic Health Records (EHR) are valuable1

for patient analysis and disease prediction using2

deep learning algorithms. However, previous ap-3

proaches focused on single predictive tasks and fea-4

ture selection, which may not be optimal in real5

clinical settings where all patient characteristics,6

including historical data, treatments, and past ill-7

nesses, are important. To address this limitation,8

we propose GraphEHR, which leverages Hetero-9

geneous Graph Neural Networks (HGNNs) for var-10

ious predictive tasks using EHR data. GraphEHR11

aims to comprehensively predict multiple diseases12

by modeling all patient characteristics through a13

novel graph-based patient embedding. This ap-14

proach effectively captures complex relationships15

within EHR and enables predictions across a wide16

range of diseases. In comparative experiments us-17

ing the MIMIC-III EHR database, encompassing18

up to 13 predictive tasks, GraphEHR showcased19

its capability to grasp the complexity and multi-20

dimensional nature of EHR when compared against21

multiple baseline models across various tasks. By22

considering all aspects of a patient’s medical his-23

tory, this holistic modeling approach enhances clin-24

ical decision-making and facilitates patient man-25

agement.26

1 Introduction27

Electronic Health Records (EHR) are digital patient charts28

that contain extensive patient information, including medical29

history, diagnoses, medications, treatment plans, and labora-30

tory test results [Seymour et al., 2012]. Given the potential of31

EHR to enhance patient care by streamlining processes and32

providing comprehensive medical histories, there has been33

a surge in deep learning-based approaches aimed at analyz-34

ing these digital clinical repositories [Shickel et al., 2017;35

Zhu and Razavian, 2021; Choi et al., 2020]. By incorporat-36

ing historical diseases and treatment information along with37

multifactorial symptoms from EHR, various predictive mod-38

eling methods with EHR data have been introduced, aiming to39
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advance personalized medicine and improve healthcare qual- 40

ity [Rajkomar et al., 2018; Choi et al., 2018]. 41

These efforts to address healthcare predictive tasks using 42

information from EHR necessitate modeling the relationships 43

among various factors such as patient metadata (e.g., gen- 44

der, age), past medical history, treatment records, and patient 45

response to treatment. Since these factors affect and inter- 46

act with each other, graphs have become a valuable tool for 47

modeling multifactoral features in tabular EHR data, given 48

their effectiveness in capturing relationships among numer- 49

ous factors. However, previous studies have primarily con- 50

centrated on individual predictive tasks, overlooking the de- 51

velopment of foundational models capable of addressing mul- 52

tiple predictive tasks using the abundant information available 53

in EHR. By integrating multiple tasks into a single model, 54

we can uncover new interactions among factors influencing 55

diseases and symptoms, leading to enhanced effectiveness in 56

addressing predictive models. 57

To address the intricacies and multi-dimensional structure 58

of EHR, we propose a Heterogeneous Graph Neural Net- 59

work (HGNN), GraphEHR, designed to tackle various pre- 60

dictive tasks effectively. By integrating patient-centric infor- 61

mation from multiple hospital visits using a heterogeneous 62

graph network, GraphEHR learns the complex relationships 63

among medical concepts within EHR data. Additionally, 64

through our proposed patient-embedding process, GraphEHR 65

exhibits robustness in learning diverse graph structures, re- 66

sulting in adaptive enhancements in performance across a 67

spectrum of EHR predictive tasks. Extensive experiments 68

conducted on widely-used EHR datasets such as MIMIC- 69

III, along with comparisons against baselines, demonstrate 70

GraphEHR’s capability to forecast the early stages of diseases 71

like pancreatic cancer, which often manifest with similar ini- 72

tial symptoms. GraphEHR represents a significant advance- 73

ment in fully leveraging EHR data across 13 predictive tasks, 74

thereby demonstrating potential improvements in healthcare 75

decision-making and patient outcome predictions. 76

2 Dataset: MIMIC-III 77

To extend the utility of GraphEHR and evaluate its exten- 78

sibility for critical healthcare predictive tasks, we utilized 79

the MIMIC-III [Johnson et al., 2016] dataset. MIMIC-III 80

is an open, accessible critical care database widely used for 81

healthcare research, comprising records of 53,423 distinct 82



hospital admissions for adult patients spanning from 200183

to 2012. This dataset provides a wealth of information in-84

cluding demographics, vital signs, laboratory results, medica-85

tion records, procedural details, diagnoses, and clinical notes.86

Within our study, we focused on 13 specific predictive tasks:87

Advanced Cancer, Advanced Heart Disease, Advanced Lung88

Disease, Alcohol Abuse, Chronic Neurological Dystrophies,89

Chronic Pain Fibromyalgia, Dementia, Depression, Devel-90

opmental Delay, Non-Adherence, Obesity, Substance Abuse,91

and Schizophrenia and other Psychiatric Disorders.92

2.1 Data Preprocessing93

We extract various information from the complex relational94

files in the MIMIC-III dataset to create our features as fol-95

lows:96

• Patient: Details from the patient’s initial hospitaliza-97

tion, such as Subject ID, HADM ID, ICU stay ID, gen-98

der, age, and obesity status.99

• Medication: National Drug Code (NDC), Input CV100

item ID (liquids injected using the CareVue system), and101

Input MV item ID (liquids injected using the MetaVision102

system).103

• Procedure: ICD9 billing codes assigned to surgeries or104

procedures undertaken.105

• Lab Result: Item ID and corresponding value. The item106

ID indicates the type of measurement, such as red blood107

cells, while the value represents the actual measurement,108

such as the count of red blood cells for the patient.109

Specifically, in cases where a patient (identified by Subject110

ID) made multiple visits to the emergency room (with unique111

ICU stay IDs) at the same hospital (with unique HADM IDs),112

multiple ICU stay IDs were assigned. Subject ID, HADM113

ID, and ICU stay ID serve as unique key values in this con-114

text. Our focus was on extracting specific details such as115

prescribed medications, procedures performed, and relevant116

measurements (e.g., blood pressure) from the dataset. The117

statistics of the dataset are summarized in Table 1.118

3 Method: GraphEHR119

To effectively manage the complexity of Electronic Health120

Records (EHR), which encompass diverse data types like121

medications, procedures, and lab results interconnected122

through relationships such as ”causes” and ”symptoms,” we123

introduce GraphEHR. This approach involves constructing124

a heterogeneous graph from EHR data and employing a125

Heterogeneous Graph Neural Network (HGNN) to embed126

this multifaceted information, as depicted in Figure 1. Our127

methodology aims to enhance the model’s ability to capture128

the intricate relationships within the data, thereby improving129

predictive accuracy concerning patient outcomes. Specifi-130

cally, the heterogeneous graph helps in detecting patients with131

similar health profiles by recognizing patterns in their medi-132

cal histories, such as commonly prescribed medications or133

frequently performed procedures. It also efficiently handles134

various types of nodes and edges, enabling a comprehensive135

representation of the EHR’s complex data structure.136

Table 1: Summary of Preprocessed MIMIC-III Dataset Statistics:
Average counts of features per ICU stay and total counts across the
dataset, with a distribution of diagnostic labels among patients.

(a) Feature Counts.
Feature Avg. Count per ICU Stay / Total Count

Medication 28.9 / 2,042
Procedures 4.0 / 568
Lab Values 159.6 / 3,689
Patients 1,375

(b) Patient Counts with Positive Diagnostic Labels.
Diagnostic Label Positive Counts

Mortality 828
Non-Adherence 120
Developmental Delay 29
Advanced Heart Disease 228
Advanced Lung Disease 137
Schizophrenia and Other Psychiatric Disorders 249
Alcohol Abuse 198
Other Substance Abuse 139
Chronic Pain Fibromyalgia 290
Chronic Neurological Dystrophies 324
Advanced Cancer 149
Depression 391
Dementia 104

3.1 Heterogeneous Graph Construction 137

We construct a heterogeneous graph comprising four node 138

types: diagnoses, procedures, hospital visits, and lab results. 139

Each hospital visit node is linked to nodes representing the di- 140

agnoses, procedures, and lab results associated with that visit. 141

Additionally, hospital visit nodes are connected to each other 142

if they correspond to the same patient. For node differen- 143

tiation, diagnoses, procedures, and hospital visits are distin- 144

guished by their unique identifiers. Lab results, which are 145

inherently continuous, are categorized into bins labeled high, 146

medium, and low. This categorization discretizes the lab re- 147

sults, allowing us to treat these values as discrete nodes within 148

the graph, facilitating more straightforward analysis and in- 149

terpretation. 150

3.2 Learning Patient Representation 151

We utilize a Heterogeneous Graph Transformer (HGT) [Hu et 152

al., 2020] to extract node embeddings from the heterogeneous 153

graph. The model incorporates unique embedding layers tai- 154

lored for each node type and employs multi-head attention 155

mechanisms to capture the relationships between neighbor- 156

ing nodes, taking into account their specific types and the 157

types of edges connecting them. The final step in our ap- 158

proach involves making predictions using a linear layer that 159

processes the embeddings of the most recent hospital visit 160

nodes, thereby generating patient-specific outcomes. 161

4 Experiments 162

4.1 Experiment Setting 163

We assess our model across a variety of classification tasks, 164

aiming to predict critical outcomes from patient data. Our 165



Figure 1: An overall architecture of the proposed method. The proposed heterogeneous graph identifies Electronic Health Record (EHR)
features as distinct nodes, each connected by different edges to represent their relationships. The Graph Attention Transformer comprehen-
sively understands the connections between these nodes and all patients, utilizing node embeddings to formulate representations. Finally, a
task-specific representation is generated through the fusion of each node representation.

model is compared against seven baseline models, encom-166

passing simple and competitive approaches, especially as we167

introduce novel prediction tasks beyond mortality. The evalu-168

ated models include: (1) Logistic Regression applies balanced169

class weights and predefined regularization parameters for bi-170

nary classification tasks, (2) Random Forest utilizes decision171

trees with balanced class weights and ensemble learning, (3)172

Gradient Boosting employs a specific number of estimators to173

build weak learners sequentially, enhancing the model’s pre-174

dictive capabilities, (4) SVM (Support Vector Machine with175

Standard Scaler) uses balanced class weights and regulariza-176

tion, along with feature scaling, to identify optimal class sep-177

aration, (5) KNN (K-Nearest Neighbors with Standard Scaler)178

classifies points based on the majority class among their near-179

est neighbors, (6) MLP is multilayer perceptrons with varying180

hidden layer sizes.181

These models are refined with techniques like SMOTE182

for addressing class imbalance and include regularization183

to enhance their robustness. Additionally, the baseline184

VGNN [Zhu and Razavian, 2021] stands out for its graph-185

based approach, representing patients with nodes for diag-186

noses, procedures, and lab results. VGNN creates a com-187

plete graph with a self-attention mechanism for node updates,188

yet its patient-specific graphs limit broader analytical insights189

and face scalability issues with increasing features. We train190

VGNN for 50 epochs, using the initially proposed optimal hy-191

perparameters except for the embedding size dimension. Due192

to memory constraints, we opt for a reduced embedding di-193

mension of 128 instead of the original 256.194

Our model introduces a heterogeneous graph embedding195

approach, incorporating node embeddings for each feature to196

capture inter-feature and patient-wide relationships. Unlike197

VGNN, which creates individual patient graphs, our model198

constructs a unified graph, enhancing comparative analysis199

across patients. Our model is trained for 200 epochs, select-200

ing the iteration with the best validation performance. 201

4.2 Experimental Results 202

The results, detailed in Table 2, highlight the superior per- 203

formance of our proposed model GraphEHR over the base- 204

line models in almost all tasks, 9 out of 13. Notably, VGNN 205

performs well in tasks like predicting advanced heart disease 206

and psychiatric disorders, but its performance difference with 207

GraphEHR is marginal. Impressively, GraphEHR outper- 208

forms VGNN significantly in predicting conditions like ad- 209

vanced lung disease or dementia, as depicted in the results. 210

This superior performance is likely due to GraphEHR’s abil- 211

ity to effectively identify patients with common medications 212

or procedures and its adept handling of various node and edge 213

types. Moreover, the analysis with extensive predictive tasks 214

indicates that simpler models like Logistic Regression and 215

SVMs struggle with the complexity of EHR data, highlight- 216

ing the necessity for more sophisticated, expressive models. 217

The Area Under the Precision-Recall Curve (AUPRC) 218

generally appears lower in tasks other than mortality pre- 219

diction, attributed to the class imbalance inherent in these 220

tasks. This imbalance affects baseline models notably, with 221

VGNN being especially sensitive to training data quality in 222

imbalanced scenarios. For example, in dementia prediction, 223

VGNN’s AUPRC of 0.08 highlights its struggle with imbal- 224

anced datasets. 225

Additionally, GraphEHR showcases a considerably shorter 226

running time than VGNN, as illustrated in Table 3, demon- 227

strating its efficiency. This is because GraphEHR utilizes the 228

defined graph structure, whereas VGNN explores all potential 229

connections between nodes to discover implicit connections, 230

resulting in longer processing times for VGNN. 231



Table 2: Model evaluation of mortality prediction in our dataset using precision-recall curves (99% confidence interval)

Algorithm LR RF GB SVM KNN MLP VGNN GraphEHR

Mortality 0.68 0.65 0.68 0.72 0.61 0.73 0.76 0.86
Non-Adherence 0.08 0.07 0.09 0.06 0.06 0.06 0.23 0.31
Developmental Delay 0.33 0.01 0.10 0.01 0.01 0.33 0.23 0.29
Advanced Heart Disease 0.12 0.10 0.12 0.10 0.11 0.19 0.56 0.53
Advanced Lung Disease 0.10 0.12 0.10 0.09 0.10 0.14 0.16 0.39
Schizophrenia and Other Psychiatric Disorders 0.17 0.13 0.17 0.13 0.11 0.15 0.46 0.44
Alcohol Abuse 0.35 0.24 0.25 0.24 0.15 0.33 0.52 0.47
Other Substance Abuse 0.11 0.06 0.08 0.06 0.07 0.11 0.36 0.42
Chronic Pain Fibromyalgia 0.17 0.15 0.15 0.16 0.16 0.20 0.21 0.44
Chronic Neurological Dystrophies 0.23 0.24 0.25 0.24 0.25 0.28 0.29 0.48
Advanced Cancer 0.08 0.08 0.08 0.08 0.09 0.11 0.15 0.30
Depression 0.39 0.38 0.36 0.36 0.36 0.41 0.32 0.54
Dementia 0.10 0.11 0.26 0.09 0.09 0.29 0.08 0.27

Table 3: GraphEHR significantly outperforms VGNN regarding
computational speed.

VGNN GraphEHR

Computation Time (Sec.) 13,308 921

5 Conclusion232

In this paper, we introduced GraphEHR, aimed to revolu-233

tionize healthcare analytics by leveraging Graph Neural Net-234

works (GNN) on Electronic Health Records (EHR) data.235

Through the proposed GraphEHR, we achieved a robust un-236

derstanding of complex relationships, leading to enhanced di-237

agnosis, treatment, and patient care. Moving forward, we238

plan to enhance interpretability by integrating techniques like239

attention mechanisms. This will shed light on influential240

nodes or edges in the heterogeneous graph, increasing trust in241

the model’s decision-making process. Additionally, we aim242

to expand our dataset beyond MIMIC-III, considering alter-243

natives like eICU to address limitations encountered during244

Exploratory Data Analysis. We envision our work benefit-245

ing medical professionals and patients, empowering informed246

decision-making, and improving healthcare outcomes.247
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