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Abstract

Object detection in aerial images is a growing area of research, with maritime object
detection being a particularly important task for reliable surveillance, monitoring,
and active rescuing. Notwithstanding astonishing advances in computer vision
technologies, detecting ships and floating matters in these images is challenging
due to factors such as object distance. What makes it worse is pervasive sea
surface effects such as sunlight reflection, wind, and waves. Hyperspectral image
(HSI) sensors, providing more than 100 channels in wavelengths of visible and
near-infrared, can extract intrinsic information about materials from a few pixels
of HSIs. The advent of HSI sensors motivates us to leverage HSIs to circumvent
false positives due to the sea surface effects. Unfortunately, there are few public
HSI datasets due to the high cost and labor involved in collecting them, hindering
object detection research based on HSIs. We have collected and annotated a new
dataset called “Multi-Modal Ship and flQating matter Detection in Aerial
Images (M2SODAI)”, which includes synchronized image pairs of RGB and
HSI data, along with bounding box labels for 5,764 instances per category. We
also propose a new multi-modal extension of the feature pyramid network called
DoubleFPN. Extensive experiments on our benchmark demonstrate that the fusion
of RGB and HSI data can enhance mAP, especially in the presence of the sea
surface effects. The source code and dataset are available on the project page:
https://sites.google.com/view/m2sodail

1 Introduction

With the growing maritime traffic intensity, detecting and localizing ships and floating matters
have become core functionalities for reliable monitoring, surveillance, and active rescuing [3} [7].
Conventionally, there have been sea surface maritime surveillance systems based on buoys and
ships [S6]. These systems are cost-efficient; however, their sensing range is relatively narrow. By
virtue of their wide sensing range, aerial surveillance systems have received considerable research
interest, the absolute majority of which leverage optical cameras. Although optical cameras can
obtain high-resolution RGB images, the competence of optical sensors is degraded under dire but
commonplace environmental conditions such as solar reflection or waves, i.e., sea surface effects.

Hyperspectral image (HSI) sensors, which acquire imagery in hundreds of contiguous spectral bands,
are emerging as a substitute or supplement of RGB sensors [42] 32]. Abundant spatio-spectral
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Figure 1: M2SODAI dataset spectral analysis. From the top of the figure, we depict the hyperspectral
reflectance intensity patterns and cropped RGB data of 1) ship, ii) floating matter, iii) sea surface
effect, and iv) clean sea surface. The figure shows that the floating matters and sea surface effects are
similar in the RGB image; however, they have different reflectance intensity patterns in the HSI data.

Table 1: M2SODAI dataset vs. related datasets for RGB and HSI data. Among all the datasets, the
M?2SODAI dataset is the only dataset with i) bounding-box-annotated, ii) synchronized multi-modal,
and iii) aerial RGB and HSI data.

dataset #ll;:}::sces #images ‘ #classes R((v;v ?d?l?)ta }(lvsv:‘ﬁzt)a m“;:ilzl\tlli-ty ‘ annotation ‘ view ‘ Year description
VEDAI[38] | 327 | 1,268 | 9 | v (512,1,024) | - | | bounding box | aerial | 2015 | object detection
cowcpdl | 2007 | 32700 | 1 | vV (2.048) | - | | boundingbox | aerial | 2016 | vehicle detection
CARPK[21] | 89777 | 1,448 | 1 | v (1.280) | - | | boundingbox | aerial | 2017 | vehicle detection
DOTA-v1.0(50] | 12,552 | 2,806 |15 | v (800-13,000) | - | | bounding box | aerial | 2018 | object detection
VisDrone[59] | 5420 | 10209 | 10 | v (2,000 | - | - | boundingbox | aerial | 2018 | object detection
iSAIDH9] | 43,696 | 2,806 |15 | v (800-13,000) | - | | polygon | aerial | 2019 | object detection
FGSD[7] | 131 | 2,612 |43 v (930) | | | boundingbox | aerial | 2020 | ship detection
DOTA-v2.0[8] ‘ 99,647 ‘ 11,268 ‘ 18 ‘ v (800-20,000) ‘ - ‘ ‘ bounding box ‘ aerial ‘ 2021 ‘ object detection
India Pines[2] | | 1 |16 | - | v (145) | - | pixel-wise | aerial | 2015 | remote sensing
HAIBT | | 65000 | | v (G00) | v (500) |  (Syno) | | aerial | 2021 |  dehazing
Samson[58] | | 1 | 3 | - | v (952) | - | pixel-wise | aerial | 2022 | remote sensing
MDAS[R2] | | 23 | 859 | v (150000 | v (300) | v (Sync) | pixel-wise | aerial | 2022 | remote sensing
HS-SOD23] | 120 | 60 | 1 | - | v (1,024) | - | polygon | terrestrial | 2018 | object detection
ODHI|52] ‘ 82357(5_%?))’ zgéi((]:gg) ‘ ‘ v (~696) ‘ v (~696) | x (Async) | bounding box | terrestrial | 2021 | real/fake detection
2
M(Eﬁg‘“ ‘ 5,764 ‘ 1,257 ‘ ‘ v (1,600) ‘ v (224) ‘  (Syne) ‘bounding box | aerial ‘2023 object detection

snapshots of HSIs provide inherent reflective properties of materials even with just a few pixels,
which is not possible with RGB or any other types of images. Figure [I]shows the RGB and HSI data
examples of the ships, floating matters, sea surface effects, and clean sea surface, where reflection
intensity patterns of objects and backgrounds are plotted in the left parts. In the wavelengths of the
near-infrared (NIR) region, water exhibits a pattern of sharply decreasing reflectance between 700 nm
and 900 nm, unlike target objects [54]. That is, even at low resolution, HSI sensor data can identify
unique object characteristics, differentiating the targets from the backgroun(ﬂ

However, most of the object detection datasets on aerial images are about optical images [7, 38|
211,50, 49, 8], and there are only handful HSI datasets publicly available. Even for other tasks,
such as remote sensing, datasets with aerial HSIs are scarce because collecting HSI data is costly
and labor-intensive [2] 58] 22]]. In this work, we build a new Multi-Modal Ship and flQating matter
Detection in Aerial Images (M?SODALI) dataset, which contains synchronized pairs of aerial RGB
and HSI data. For the data collection, we used an off-the-shelf HSI sensor taking 127 spatio-spectral
channels for each snapshot on the wavelength from 400 nm to 1000 nm in steps of 4.5 nm. The
spatial resolutions of the RGB and HSI data are 0.1 m and 0.7 m, respectively, at the altitude of 1 km.

For object detection in aerial images, one major drawback of HSIs is their relatively low spatial
resolution (several meters) compared with optical images (tens of centimeters). Thus, HSI sensors
have been commonly used in remote sensing systems which do not require high-resolution [[14,
[T, 23]]. As hardware technologies for HSI sensors evolve, their resolution has increased, facilitating

2For a detailed analysis, please see Appendix@
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Figure 3: Illustration of the overall procedure of our work. (a) We collect the sensor data using a
single-engine utility aircraft equipped with RGB and HSI sensors. (b) Due to the offset between RGB
and HSI sensor data, we register RGB and HSI data into the same coordinate and then construct our
dataset by cropping and labeling data. (c) The data are preprocessed and forwarded to the DoubleFPN
layer. Finally, after the DoubleFPN layer, the detector estimates the bounding boxes of the target
objects from the DoubleFPN output.

bounding-box-based deep learning research for object detection in HSIs [52]]. Nonetheless, the
resolution of off-the-shelf HSI sensors is not yet high enough for airborne surveillance systems.
Therefore, it is a better choice to use HSIs as a supplement, not a substitute, to optical images in the
case of far-field object detection. Further analysis of related works is provided in Appendix [A]

The salient contributions of our work are listed as follows:

« M2SODAI dataset: The M2SODAI dataset is the first ’Cl e L Dt ith s e e ‘
multi-modal, bounding-box-labeled, and synchronized S e bt
aerial dataset, featured by 11,527 instances, 1,257 im-
ages, and synchronized RGB-HSI data. In Tab.[T] we
compare the M2SODAI dataset with the related public
datasets on RGB and HSI data. Amongst the related
datasets, the HAI [31] and MDAS [22] datasets only
provide synchronized multi-modal aerial data; however,
they come with no annotation [31]] or low-resolution
pixel-wise annotation [22].

— Raw data processing: We add a contrast enhancer
to the method proposed in [24]] for more accurate
data synchronization of RGB and HSI. For more
details, please refer to Sec. [2]and Appendix D} Fig-
ure [2] illustrates randomly selected pairs of RGB ;
and HSI data from our dataset. (b) Annotated HSI data.

* Multi-modal benchmark anq learning framgwork: Figure 2: Examples of collected RGB
We conducted an object Qetectlon bench.mark with our 4 HST data. [@} Typical RGB data in
dataset, where the graphical and numerical results en- o SODAI dataset. Infrared visual-
sure the HSI data can enhance the detection accuracy, ization of the synchronized HSI data in
especially for data with sea surface effects. In order to 1 o .- ot (ratio of the 25-th and 72-nd
fuse the RGB and HSI data, we propose an extension
of the feature pyramid network (FPN) [26]], DoubleFPN.
For a more general benchmark, we build other fusion
methods based on DetFusion [44] and UA-CMDet [43]].

channels). Here, we show ten examples
of images with and without sea surface
effects. In the images with sea surface
effects, the HSI data have more recog-
nizable features than the RGB data.

2 MZ2SODAI Dataset
Overview of the proposed dataset construction procedure Figure 3]illustrates the overall pro-

cedure of the proposed scheme. In the first stage, we collect RGB and HSI sensor data using a
single-engine utility aircraft equipped with RGB and HSI sensors. In the second stage, an image
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Figure 4: Tllustration of our dataset construction procedure. [(@)] The RGB and HSI sensor data are
transformed by a gray scaler and a contrast enhancer. [(b)] The matched feature of transformed sensor
data and the corresponding homography matrix are obtained. The sensor data are registered,
cropped, and labeled.

registration method is used to coincide the pixels of RGB and HSI data. After the image registration,
we construct our dataset by cropping by fixed size and annotating target objects (ships and floating
matters) in the RGB and HSI data. Note that our dataset consists of HSI, RGB, and corresponding
bounding box annotation data. Further details of our dataset are available in Appendix [B] In the third
stage, we train our DoubleFPN architecture and evaluate the trained model using the M2SODAI
dataset.

Data collection Our focus is to create a public dataset Table 2: Specification of RGB and HSI
consisting of synchronized maritime aerial RGB and HSI ~ sensor. The resolutions of the sensors are
data. To this end, we built a data collection system by lever- corresponding to the aircraft’s altitude of
aging a single-engine utility aircraft (Cessna Grand Car- 1 km.

avan 208B). An HSI sensor (AsiaFENIX, Specim, Oulu,

. A HSI Sensor RGB Sensor
Finland) and an RGB sensor (DMC, Z/I Imaging, Aalen, o ARSaFENIX DMC
Germany) are equipped on the bottom of the aircraft, the (@Specim) (@Z/1Tmaging)
direction of which is downward. The raw data was ac- _ 400-1000nm - Blue: 400-580 nm

. . . . . Spectrum (in steps of 4.5 nm)  Green: 500-650 nm
quired through 59 flight strips in 12 flight measurement 127 channels Red: 590-675 nm
campaigns, which cover a total area of 299.7 km?2. During Altitude 1 km
the flight strips, the aircraft maintains its speed of 260  Fieldof View 40° 74°

Resolution 0.7m 0.1 m

km/h and altitude of 1 km.

Table 2] shows the detailed specifications of the sensors

used in the data collection. The HSI sensor (AsiaFENIX) scans the wavelength range from 400 nm to
1000 nm in steps of 4.5 nm, a total of 127 spectrum bands. The wavelength range includes visible
spectrum and NIR spectrum, generally used for remote sensing and machine vision tasks. The RGB
sensor (DMC) captures high-resolution RGB data in three channels: Red (590-675 nm), Green (500-
650 nm), and Blue (400-580 nm). We note that RGB and HSI data are collected simultaneously, in
which the spatial resolutions of RGB and HSI sensors are approximately 0.1 m and 0.7 m, respectively.

Image registration and annotation In the previous step, we introduce the methodology of col-
lecting the raw RGB and HSI data. Since the size of the raw data is too large for object detection
(HSI: 3,220 pixels, and RGB: 22,5202 pixels on average), we cropped the raw data into a fixed
size. We note that RGB and HSI data are cropped in size of 1600 x 1600 x 3 and 224 x 224 x 127,
respectively. However, the problem is that the coordinates of the collected RGB and HSI pairs are not
matched. Hence, we employ an image registration method to correct pixel offsets between RGB and
HSI pairs. In Fig. ] our data processing procedure is depicted.

1. We transform the raw RGB and HSI data into grayscale images (Fig. fa) [24].
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Figure 5: Schematic diagram of the DoubleFPN-based object detection architecture. The DoubleFPN
object detection architecture consists of three sub-architectures: backbone, neck, and head layers. In
the backbone layer, the feature maps of each input data are extracted, i.e., bottom-up pathway. In the
neck layer, the DoubleFPN fuses feature maps, i.e., top-down pathway. In the head layer, the object
detector estimates the classes and bounding boxes of the objects.

2. We apply contrast-limited adaptive histogram equalization (CLAHE)-based contrast enhancer to
the grayscale RGB data and grayscale HSI data (Fig. [4a)).

3. To estimate the homography matrix between the enhanced RGB data and enhanced HSI data,
we carry out the oriented FAST and rotated BRIEF (ORB) feature descriptor [41]] to both data,
thereby extracting features of the data (Fig. 4b).

4. We use a Brute-force matcher to find the matched feature among the ORB features; then, the
homography matrix is computed from least square optimization for synchronizing the matched
features.

5. We crop the registered data in the same size and generate corresponding bounding box annotation

data (Fig. ).

For object detection, we annotated the bounding boxes on the instances of two classes: 1) floating
matter and 2) ships in both RGB and HSI data. We note that the following instances are labeled as
floating matters: buoys, rescue tubes, small lifeboats, surfboards, and humans (mannequinﬂ) with
life vests. Also, for the ship class, we annotated bounding boxes on steamboats, cruise ships, fishing
boats, sailboats, rafts, and other ship categories. We refer to the infrared visualization map of the
HSI data for bounding box annotation. For labeling, two of the authors annotated target instances by
using Labelme [47], in which the minimum size box containing each object was set as the policy, and
multiple cross-checks were performed. For more details on raw data processing, please see Appendix
Dl

Dataset splits  After the data processing, we obtained 1,257 pairs of synchronized RGB and HSI
data, where the total number of instances in the dataset is 11,527. For experiments, we randomly
divided the dataset into 1,007 training data, 125 validation data, and 125 test data.

3 Method: DoubleFPN

The feature fusion methods are categorized into i) early fusion, ii) middle fusion, and iii) late
fusion [11]]. The early fusion methods fuse sensor data before the backbone layers, thereby fully
leveraging joint features of raw data. However, the common representations of different sensor data
are challenging. On the other hand, the late fusion methods combine sensor data just before the final
detector, whereas they have a potential loss for finding the correlation of sensor data. In our study,
the aim is a compromise proposal of early and late fusion methods, i.e., middle fusion.

Here, the training/inference procedure in Fig. [3]is addressed. In the canonical FPN structure [40], a
pyramid structure for feature extraction is proposed to resolve the issues of memory inefficiency and

3Distressing a real person was done with a mannequin for safety reasons.



Table 3: AP (%) benchmark result on the M?SODAI dataset with the DoubleFPN and the uni-modal
baseline methods. All the results are obtained by using ResNet-50 backbone and Faster R-CNN
detector. In addition to the AP-based metrics, we show types of neck layers and use of the RGB and
HSI data.

neck layer \ multi-modal RGB data HSIdata mAP APes AP@7s Ship Float. Mat. AP, AP,, AP,
DoubleFPN(ours) | v v v 444 848 393 557 331 352 417 614
FPN (RGB) [26] X v X 388 770 333 52.4 252 183 448 556
FPN (HSI) [26] X X v 7.8 23.2 29 15.8 0.0 - -
UA-CMDet [43] v v v 429 840 40.0 559 29.8 20.8 43.0 60.8
DetFusion [44] v v v 420 843 354 535 30.5 242 419 611
Early fusion v v v 429 830 376 542 31.5 189 441 59.7

*Best: bold and underline, second-best: underline.

low inference speed of the general feature map extraction architecture. However, the input of the FPN
is a fixed-scale single image, and the output is feature maps sized proportionally to the input image.

For our dataset, the feature extraction network should be capable of handling RGB and HSI data
with different scales. More importantly, HSI data itself does not have sufficiently high resolution to
detect aerial objects, even though it can capture unique features of materials. Hence, we propose
an extension of the canonical FPN to jointly extract feature maps by fusing two data. The detailed
schematic diagram of the DoubleFPN is depicted in Fig.[5] We note that the DoubleFPN architecture
can be generally implemented with other detectors, such as RetinaNet and FCOS [27, |45].

Dimensionality reduction and preprocessing Let us denote the size of RGB data and HSI data
as Hygp X Wig, x 3 and Hyyp X Whyp X Chyp, respectively. We note that Cyy, = 127 in our dataset.
Since several spectral features are necessary for object detection, we leverage the incremental PCA
method. As a result, we observe that the cumulative variance of the first 30 principal components
occupies more than 99.9% of the total variance. Hence, we use 30 principal components in our object
detection instead of fully leveraging 127 channels.

Backbone layer In Fig.[5] the backbone layers are feed-forward CNNs that extract feature maps of
the inputs, i.e., bottom-up pathway. As in the figure, each pair of RGB and HSI data is fed into the
separate backbone layer, in which the CNN layers for RGB and HSI data have N different scales.
The output feature maps at each level are scaled by 1/2 of that at the previous level. Here, we denote
the i-th feature map of RGB and HSI data as Crgg,; and Chst,;-

Neck layer In the neck layer, the DoubleFPN forwards N fused feature maps from /N RGB feature
maps and N HSI feature maps. In the primal neck layer, the HSI feature maps are converted into
attention maps to represent weights for the high-resolution RGB features. At the top of the primal
neck layer, the feature map Cygy, v is fed into 1 X 1 convolution layer with one channel with Sigmoid
activation function. In the top-down pathway of the primal neck layer, the i-th feature map Chsr,;
is forwarded into 1 x 1 convolution layer with one channel and is added with the 2x up-scaled
previous attention map. Let us define the -th attention map as H;. Then, the -th attention map H;
is up-scaled seven times and is multiplied with the ¢-th RGB feature map Crgg,; fori = 1,.., N.
In the secondary neck layer, the fused feature maps H; - Crgg,; are forwarded into the canonical
FPN structure. Consequently, after 3 x 3 convolution layers, we get a set of fused feature maps with
different scales.

Head layer The head layer predicts the bounding boxes and classes of the objects from the output
of the DoubleFPN. For the experiments, we introduce an application of our method to Faster R-CNN
[40]. For further implementation details, please refer to Appendix[H

4 Experiments

Since none of the other datasets in Tab. [I] provides synchronized RGB, HSI, and bounding-box-
annotation data, we evaluate the DoubleFPN on the M2SODAI dataset.
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Figure 6: Detection results on data with sea surface effects. The first figure depicts the ground truth
of the bounding box. The other figures show the detected bounding boxes of the objects, e.g., floating
matter, ship.

4.1 Setups and Implementation Details

Implementation details Our experiment is carried out on two NVIDIA RTX 3090 GPUs. The
overall object detection model is trained for 73 epochs, in which the stochastic gradient descent
parameters are: the learning rate of 2 - 1072, the momentum of 0.9, and the weight decay of 1 - 1074,
In addition, the batch size is set to be one per GPUEl For fairness in the performance analysis, we
evaluate all methods based on the ResNet-50 backbone model [19]. Since the ResNet-50 model
provides five-stage feature maps, each of the backbone networks in the uni-modal methods provides
five feature maps. In the DoubleFPN, the backbone layer for RGB and HSI data input forwards five
and four feature maps, respectively, i.e. N = 5. For other experiment parameters, we follow the
default parameters of the canonical FPN [40]. In the evaluation, we employ the standard COCO
metrics average precision (AP) metrics: mAP (averaged AP over IoU thresholds from 0.5 to 0.95),
APa 5, APa 75, AP, (areac(0,322%]), AP, (areac(322,96%]), and AP; (areac(962,00)).

4.2 Performance Analysis of DoubleFPN

Table 3| shows the evaluation result on the test set of the M2SODAI dataset. As a baseline detector,
we use a widely used uni-modal object detector, Faster R-CNN [40] for all benchmark resultsﬂ For
comparison, we add an early fusion method with simple convolution layers and late fusion methods
modified from DetFusion [44]] and UA-CMDet [43].

Comparison with uni-modal object detection We first compare the DoubleFPN method and the
uni-modal methods, which use either RGB or HSI data. First, we can see that the DoubleFPN method
outperforms all other uni-modal methods in most of the metrics. This means that the DoubleFPN
method significantly reduces the number of false positive bounding boxes by using the HSI data
as a complement to RGB data. Second, when HSI data is used as a substitute for RGB data, the
performance of object detection is significantly lower than that of the methods using only RGB data.
This is because HSIs have relatively lower resolution than RGB images, so it is difficult to infer
accurate shapes of bounding boxes even if they know whether the target objects exist or not. As a
result, the benchmark results in Tab. [3]show that HSIs are suitable as a complement to RGB images,
but are not yet sufficient enough as a substitute.

“The largest batch size in our GPU configuration.

SAlthough we have tried to train with recent object detectors such as TOOD (mAP of 38.8 % with
ResNet-50 backbone) and VFNet [33] (mAP 40.9 % of with ResNet-50 backbone), Faster R-CNN (mAP of 44.4
%) performs better under the training from the scratch settings. We note that for enhanced performance with HSI
data, there’s a need for either a representative pre-trained backbone layer or an improved training method for the
latest detectors from the ground up.
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Comparison with multi-modal methods In Tab.[3] the DoubleFPN method outperforms the early
fusion method, where the reason would be that our method uses the HSI feature maps as attention
maps on RGB feature maps, whereas the early fusion method directly fuses the feature maps in the
backbone layer. More specifically, compared to the late fusion (UA-CMDet and DetFusion) methods,
our method has a higher mAP, since late fusion methods cannot jointly fuse the feature maps of RGB
and HSI data.

Comparison with and with- Table 4: Benchmark result for data with sea surface effects.

out sea surface effects Ta-

. neck layer RGB/HSI mAP APas APar7s Shi Float. Mat.
ble [] shows the detection per- Y op from OWP
. DoubleFPN (ours) /v 422(122) 823 312 417 2.8
formance on the data with sea
. FPN (RGB) vix 351(144) 739 300 422 28.0
surface effects. By comparing UA-CMD VIV 389(13.0) 822 334 434 344
. . - et . . . 334 434 .
Tabs: [BJand [ the AP metrics of DetFusion VIV 397(123) 833 302 435 359
multi-modal methods are steady Early fusion VIV 404(125) 794 344 420 38.9

regardless of the sea surface ef-
fects; however, the AP metrics

*Best: bold and underline, second-best: underline.
**(): mAP differences for the overall sea data results.

of the uni-modal methods have more degradation with many false positive bounding boxes if there are
sea surface effects. This shows that multi-modal detection can perform more robust object detection
for maritime object detection by leveraging the HSI data. For visualization, in Fig.[6] we show some
samples of the object detection results and ground truth annotations on the data with sea surface
effects. From the figure, we can see that the multi-modal methods propose more accurate bounding
box estimations. For more examples of the benchmark results, please refer to Appendix [G]

4.3 Visualization Analysis

Figure[7] visualizes feature maps of the DoubleFPN and the RGB-only canonical FPN. As depicted
in the figure, the input data have strong sea surface effects in the bottom-left corner, which are the
challenge. To the right of the input data image, we depict the feature maps of the RGB-only FPN,
which are vulnerable to the sea surface effects. For example, the feature maps of the RGB-only
FPN are not clear. On the other hand, in the lower part, the feature maps of the DoubleFPN are
drawn, where the DoubleFPN fuses the RGB and HSI backbone outputs in order from low resolution
to high resolution. As RGB and HSI data are fused, the feature maps of the DoubleFPN become
clearer. Therefore, DoubleFPN can estimate the bounding boxes more accurately than RGB-only
FPN method by delivering clearer feature maps to the detector.

5 Discussion

Summary Our work addresses the problem of maritime object detection in aerial images using two
types of data: RGB and HSI. To this end, we created the MZ2SODAI dataset, which is the first dataset
composed of bounding box annotations, RGB, and HSI data. We propose a multi-modal object
detection framework that fuses high-resolution RGB and low-resolution HSI data. Our extensive
experiments confirm the robustness of our object detection model on maritime object detection.



Limitations The limitations of our work are three-fold. 1) There is room for performance enhance-
ment by having pre-trained backbone networks HSI data and multi-modal detectors instead of Faster
R-CNN. 2) When we collect the data, the weather is always sunny. A future research direction is
to enhance the object detection performance by proposing a new neural network architecture or to
collect data in various weather conditions (e.g. foggy, rainy, etc.) or main/sub categories (e.g. buoys,
rescue boats, cars, buildings, etc.). Hopefully, the atmospheric correction, typically applied during
HSI data collection, can adjust for unwanted weather conditions to simulate sunny conditions, thereby
allowing our data to serve as a more general representation[[15]]. Additionally, as the dataset has
been gathered in South Korea, there may exist potential biases in the data, such as variations in the
object’s distribution, the condition of the oceans, and the types of ships that are commonly used in the
region. 3) The data collection scenario presented in this paper requires actual aircraft and expensive
HSI sensors, resulting in significant financial costs. We believe that this paper will inspire relatively
low-cost drone-based data collection methods and maritime surveillance systems with HSI data. 4)
Techniques for image fusion that incorporate extra HSI demonstrate greater delays in comparison to
those methods that rely solely on RGB. As a result, we have advocated for forthcoming research into a
3D CNN-based feature mapping for HSI, emphasizing an approach that is both more computationally
streamlined and adept at extracting essential features.

Societal impact and ethics consideration First, the M>?SODALI dataset offers a new perspective
on maritime object detection, which can bring about positive societal effects in various applications
such as maritime safety and national defense. A typical negative societal impact during aerial data
collection is capturing sensitive areas, such as military zones or private areas. We have carefully
reviewed this aspect, and we ensure that our flight areas are limited to non-military zones and
non-private areas as shown in Fig.[B.T]

Usefulness of M2SODAI In our benchmark, M2SODAI has demonstrated the ability to enhance
object detection accuracy using HSI data to complement existing high-resolution optical images. We
have strong confidence that this dataset will not be limited to object detection tasks but can also be
sufficiently utilized for other tasks, such as RGB to HSI reconstruction tasks.
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