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ABSTRACT

Scaling from sparse and underspecified rewards is a core challenge for the contin-
uous improvement of foundation models in decision-making. Reward modeling
and policy optimization have traditionally been decoupled, which often results in
policies overfitting static reward models and thus limits the scalability and general-
ization. In this work, we propose a meta-reward learning algorithm that couples
discriminative and generative reward models with policy models, producing scal-
able intrinsic rewards that bridge the gap between sparse environmental rewards
and the dynamics of policy learning. The goal of meta-reward learning is to train
a reward model capable of generalizing effectively across diverse scenarios under
limited supervision, such as handling unseen modalities or tasks. In particular,
our dual-reward design can attribute each scalar reward to multiple underlying
language criteria and iteratively refine their priority, thereby enabling continuous
improvement of both policy and reward. We implement GRM-OMNI, an omni-
modal reward model that not only achieves strong results on multiple multi-modal
preference reward benchmarks but also facilitates more effective policy decisions.
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Figure 1: Traditional approaches to policy optimization and reward modeling often face limitations
in scalability and generalization, primarily due to the high cost of collecting large-scale preference
data (red line). To overcome these challenges, we introduce a GenRMs that mitigate the learning
rate gap between policy and reward models (green line). A key component of our framework is a
novel meta-reward formulation, designed to alleviate compounding bias in reward modeling. Based
on this, we implement GRM-Omni, which substantially enhances reward modeling across modal-
ities. In particular, we show that our trained model solely on language-based preference data can
generalize effectively to multimodal secnrios by leveraging criteria-based TTS, highlighting the ef-
fectiveness of our meta-reward learning algorithm.
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1 INTRODUCTION

Under the Reinforcement Learning (RL) paradigm (Sutton et al.; OpenAI et al., 2024; Guo et al.,
2025a), Large Language Models (LLMs) (Grattafiori et al., 2024; Yang et al., 2025; Team et al.,
2025) can leverage reward models to transform environmental or human feedback into gradient
signals for updating model parameters. Reward Models (RMs) provide a proxy objective for policy
learning and effectively mitigate the sparsity and delay of environmental rewards. As one of the
most widely used models, the Bradley–Terry (BT) (Bradley & Terry, 1952) model learns a scalar
utility score from pairwise preferences; however, it still faces two main challenges:

➜1: Due to Goodhart’s law, scalar rewards often fail to provide precise feedback. As a result,
policy models are prone to overfitting the proxy signal and vulnerable to reward hacking (Pan
et al., 2022; Skalse et al., 2025; Langosco et al., 2023; Everitt et al., 2021).

➜2: Their reliance on human-labeled preference data introduces high annotation costs and poses
inherent limits on scalability.

Consequently, scalable reward modeling (Gao et al., 2022) serves as a promising direction for cap-
turing complex, multi-faceted objectives, thereby facilitating more efficient policy optimization.
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Figure 2: Illustrating the analogy between Dual-Reward
method and the human learning process.

In the real world, humans rarely rely
solely on environmental feedback for
long-horizon learning. Instead, they
transform such feedback into richer in-
trinsic rewards, such as motivation or cu-
riosity. As shown in Figure 2, we refer to
this process as the conversion from fast-
rewards to slow-rewards: environmen-
tal feedback first elicits direct, immedi-
ate sensations (fast), which are then grad-
ually transformed into higher-order, ab-
stract rewards (slow) through introspec-
tive processing (Qu et al., 2024; Zhang
et al., 2025a). Motivated by this insight, we propose a Dual-Reward method: Discriminative Re-
ward Models (DisRMs) (Liu et al., 2024; Yang et al., 2024b; Lou et al., 2025; Winata et al., 2025)
captures fast-rewards, while Generative Reward Models (GenRMs) (Cao et al., 2024b; McAleese
et al., 2024; Ye et al., 2024b; Liang et al., 2025; Liu et al., 2025) learns slow-rewards. The GenRM
is designed to generate dynamics, fine-grained intrinsic signals based on the scalar output of the
DisRM, thereby facilitating more effective policy optimization. Interestingly, from a modeling per-
spective, capturing fast and slow rewards exhibits an inverted relationship: DisRMs captures envi-
ronmental feedback more slowly than GenRMs processes scalar rewards. This highlights reward
scaling as a key feature: DisRMs gradually transforms rewards via the BT loss, while GenRMs
leverages Test-time Scaling (TTS) (Snell et al., 2024; Uesato et al., 2022; Gulcehre et al., 2023) to
extend its capacity and generalize across scenarios.

However, the step-by-step reasoning of the Dual-RMs is susceptible to compounding bias. That is,
the training signals of GenRM cannot be effectively supervised, meaning that false positives may
arise even when the predictions appear correct. To address this issue, we introduce a meta-reward
learning algorithm, which designs a unified intrinsic reward (i.e., the meta-reward function) to en-
force consistency among the DisRM, GenRM, and policy models. Specifically, we filter high-quality
data from multiple rollout trajectories: GenRMs produce judge rationales for DisRM’s results, the
policy refines the responses, and DisRM re-evaluates the improved outputs. Meta-reward learning
performs general and automatic reward shaping (Zou et al., 2019; Fu et al., 2025) for GenRMs by
providing more precise training signals, thereby mitigating spurious correlations.

We present GRM-OMNI, an omni-modal reward model built on a meta-reward learning algorithm.
GRM-OMNI employs a criteria-based TTS approach to uncover the underlying rationale, including
both criteria and judgments, for aligning with preference labels or DisRM outputs. It can self-evolve
by identifying the most critical criteria and optimizing their combinations to produce more accu-
rate evaluations (Wang et al., 2024c). Experimental results demonstrate that GRM-OMNI achieves
strong cross-modal transfer, yielding substantial gains on multimodal reward benchmarks while re-
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lying solely on alignment in the language modality. Furthermore, continued training with additional
multimodal data consistently enhances performance, markedly increasing the model’s adaptability
to diverse and complex scenarios.

To highlight the main contributions and take-aways of our work:

➜ Conceptually, we demonstrate that dual-reward design and meta-reward learning can
effectively scale reward modeling by bridging the gap between environment feedback
and policy learning. In addition, our meta-reward function shapes rewards across both
scalar and language signals, effectively reducing compounding bias.

➜ Methodologically, we propose a criteria-based TTS that improves the model’s
capacity to identify the most critical decision rationales via exploration and exploitation
of criteria, thereby aligning DisRMs, GenRMs, and the Policy model through consistent
criterion-based judgments.

➜ Empirically, we show that GRM-OMNI, trained only on language-based preference
data, performs competitively on multi-modal benchmarks, highlighting the strong
transferability of meta-reward learning to unseen scenarios.

2 META REWARD DESIGN

Meta-reward refers a higher-order signal that does not directly supervise policy behavior but instead
evaluates the quality of a reward function itself. Designing a scalable meta-reward (Wu et al., 2024)
that can generalize across scenarios or tasks remains a non-trivial challenge. Until now, there has
been no widely accepted automated method for providing higher-order rewards to reward models.
This challenge is difficult even for human annotators: real-world rewards are typically the result of
multi-dimensional judgments (Li et al., 2023) (e.g., correctness, safety, fairness), and these dimen-
sions often lack a unified scale (Wang et al., 2023; 2024b).

We now review the characteristics of traditional reward modeling approaches: DisRM learns pair-
wise preference annotations (easily accessible) during training and subsequently predict potential
ranking scores for candidate items at test time. However, it remains sensitive to dataset biases and is
limited by the compression of multi-dimensional judgments into a single scalar, complicating both
interpretation and attribution. Additionally, DisRM cannot extend its capabilities by test-time scal-
ing, as it is constrained by the size of available preference data. In contrast, GenRM employs LLMs
to generate fine-grained rationales, providing a flexible mechanism to represent multi-dimensional
objectives and underspecified constraints (Guo et al., 2025b; Wang et al., 2025a). But, the accuracy
of these generated rationales is often difficult to verify, as hallucinations, spurious correlations, or
biases may be amplified rather than mitigated. Consequently, DisRM and GenRM offer comple-
mentary strengths: DisRM provides ranking capabilities, while GenRM contributes language-based
reasoning and potential for cross-task generalization, suggesting that hybrid approaches (Ankner
et al., 2024; Yu et al., 2025) represent a promising direction.

GenRM Policy Model DisRM< , , ,  >q r1 r2 l
c1 j1

̂r1
smetâr2

̂si1

̂si2

Figure 3: Overview of the proposed meta-reward score computation pipeline.

In this section, we propose a new meta-reward function that provides an intrinsic reward, thereby
enhancing the scalability of RMs. A key design principle of this meta-reward function is to ensure
substantial differentiation between alternative reasoning trajectories (Liang et al., 2025), allowing
the model to assign smooth, informative scores across a wide range of candidate outputs. By pro-
viding such finely graded signals, the meta-reward function not only facilitates effective ranking of
trajectories but also supports the reward model in capturing subtle differences in reasoning quality,
which is essential for multi-objective and fine-grained preference modeling. Given paired prefer-
ence data ⟨q, r1, r2, l⟩ (l ∈ 0, 1), the GenRM generates multiple candidate criteria ci together with
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Figure 4: Accuracy curves of preference judgments for different criteria after ranking by smeta
scores. “Original” denotes the results without smeta ranking, while “Meta-Reward (v1)” and “Meta-
Reward (v2)” correspond to variants using different DisRM, with v2 demonstrating superior perfor-
mance. For additional details and comparisons, please refer to the Appendix B.3.

corresponding judgments ji. These judgments serve as potential rationales for why the original
responses were chosen or rejected. The Policy model then generates refined responses r̂i1 and r̂i2
corresponding to each candidate criterion ci and judgment ji. Finally, the DisRM assigns scalar
scores s1 and s2 to the original responses, and ŝi1 and ŝi2 to the refined responses; these scores are
subsequently used to define the meta-reward function:

smeta(τi) =


ŝi2 − s2, if ji = 0 and ŝi1 > ŝi2,

ŝi1 − ŝi2, if ji = 0 and ŝi1 < ŝi2,

ŝi1 − s1, if ji = 1 and ŝi1 < ŝi2,

ŝi2 − ŝi1, if ji = 1 and ŝi1 > ŝi2.

(1)

Specifically, the reward model can use smeta to sample and prioritize multiple reasoning trajectories
τi = (ci, ji, r̂

i
1, r̂

i
2, ŝ

i
1, ŝ

i
2), ensuring consistency and causality: In the first case, when the judgments

from DisRM and GenRM are consistent (if ji = 0 and ŝi1 > ŝi2), smeta = ŝi2 − s2 measures the
improvement of criterion ci on the rejected sample s2. In the second case, when predictions are
inconsistent, smeta reflects the difficulty of distinguishing between r̂i1 and r̂i2. Since the value of
ŝi1 − ŝi2 is negative, a higher meta-reward implies a larger gap. Moreover, if the policy model gen-
erates responses that receive high evaluations from DisRM under a given criterion, that criterion is
assigned higher priority. This ensures that high-priority criteria are not arbitrary but instead causally
linked to the policy’s improvement, thereby preserving causality in the smeta calculation.

The proposed meta-reward function requires no additional training and can be seamlessly com-
bined with any GenRM and DisRM. As shown in Figure 4, we evaluate its effectiveness on
RewardBench using Qwen3-32B-AWQ as the policy model and GenRM, the Skywork-Reward
model serving as DisRM. We observe that, after ranking by smeta, the judge accuracy curves across
different criteria become much smoother compared to the unsorted originals. This demonstrates that
the meta-reward effectively captures and prioritizes the relative importance of different ci.

Notes: DisRM is designed to measure how GenRM generated criteria impact policy perfor-
mance, thereby generating a ranking of criteria importance rather than selecting among GenRM
outputs. The piecewise function is used to precisely capture these differences, enabling the
reward function to produce smooth signals on the preference dataset.

3 GENERATIVE OMNI-MODALITY REWARD MODELING

3.1 META-REWARD LEARNING

Based on the meta-reward design, we propose a meta-reward learning algorithm that optimizes
the reward function itself, improving the robustness of reward model training. Key features of the
algorithm include:

4
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Figure 5: Overview of our meta-reward learning based DPO framework, which consists of two main
stages: data synthesis and model training. In the SFT stage, the training corpus includes language-
only data in the thinking mode and multimodal data in the non-thinking mode. During the DPO
stage, thinking-style multimodal data can be optionally incorporated. Although the procedure can
be iterated multiple times, we adopt a single iteration in practice for efficiency.

1. Complex objectives: Enables the reward model to generate multi-objective, fine-grained
rationales underlying preference judgments (binary feedback).

2. TTS support: Supports test-time scaling, allowing the reward model to refine reward judg-
ments using additional computational capacity without relying on extra annotations.

Our meta-reward learning is agnostic to existing RL algorithms, allowing flexible adoption depend-
ing on the task or environment. In this work, we implement a variant based on the Direct Preference
Optimization (DPO) (Rafailov et al., 2023), which not only trains the model but also generates
high-quality data for further optimization. As shown in Figure 5, we treat preference labels as a
form of environmental feedback, and leverage the GenRMs, Policy Model, and DisRM to compute
the meta-reward score. In our implementation, we employ open-source LLMs as both GenRMs
and the policy model to synthesize preference data, while DisRM serves as the evaluator to collect
high-quality training dataset.

3.2 CRITERIA-BASED TTS

Trade-off between exploration and exploitation. In traditional test-time scaling (TTS) (Zhang
et al., 2025b; Ji et al., 2025), two conditions are typically required: 1) the policy must exhibit suf-
ficient diversity, and 2) the verifier must provide reliable scoring. While our proposed meta-reward
smeta addresses the ranking challenge, ensuring diverse reasoning trajectories remains non-trivial.
Existing methods rely on sampling-based heuristics, which are constrained by the model’s intrinsic
capacity and thus fail to guarantee sufficient diversity. To address this, we introduce a criteria-based
TTS strategy that leverages distinct criteria to guide the generation of diverse reasoning chains.
Moreover, this approach naturally supports multi-objective and fine-grained preference modeling by
tracing back decisions to their underlying atomic factors (criteria).

We interpret the optimization process of criteria-based TTS as a balance between exploration and
exploitation. In the exploitation phase, GenRMs generate multiple candidate trajectories, which are
ranked by smeta to select high-quality and diverse reasoning rationales. In the exploration phase,
GenRMs perform criteria extension, synthesizing new decision dimensions from existing criteria.
These extended criteria are then re-ranked and recombined using smeta, allowing the model to refine
its judgments by composing the most informative decision factors (Coste et al., 2024). The degree
of exploration can be explicitly controlled by tuning the number of generated criteria, and in practice

5
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it may be further adjusted based on the nature of the task. As shown in Appendix B.3, incorporating
additional criteria under more challenging tasks significantly improves optimization capacity.

Data synthesis and training. We first synthesize criteria and the corresponding reasoning trajecto-
ries, thereby incentivizing the full capabilities of the omni-modality model. Concretely, the GenRM
generates k criteria under the current policy and produces a judgment based on these criteria. If the
judgment is incorrect, the model performs criteria expansion by generating n new criteria, which
are then used to refine the original response. 1 The refined responses are subsequently evaluated by
the DisRM, and the resulting scores are used to re-rank the candidate trajectories. From the top-
ranked trajectories, the three most effective criteria are combined to produce improved judgments.
This approach leverages the fact that combining different criteria can lead to more accurate and re-
liable scores, as demonstrated in prior work (Saha et al., 2024). The resulting improved judgments,
together with outputs from the original policy, are stored as preference pairs in the DPO dataset.
This design allows iterative updates of both the model and data, effectively accommodating the slow
training dynamics of the DisRM.

3.3 GRM-OMNI

An important capability of criteria-based TTS is enabling the model to trace key decision criteria,
which can intuitively generalize across different modalities. To verify this, we focus on a challeng-
ing multimodal reward modeling scenario: achieving cross-modal generalization using alignment
and training solely in the language modality. A key challenge is that open-source multimodal back-
bone models are generally less capable than their language counterparts, particularly in instruction-
following. Consequently, generating reward data with multimodal models is non-trivial. We adopt
QWEN-OMNI (Xu et al., 2025) as the backbone and incorporate multimodal data during SFT train-
ing to expose the model to diverse input modalities. Specifically, multimodal inputs are paired with
direct reasoning prompts, while language-only inputs employ CoT-based reasoning prompts. This
design allows the reward model to adapt to multimodal inputs during training while preserving its
ability to perform CoT reasoning at inference. Furthermore, by leveraging our meta-reward learning
framework, the model is explicitly guided to identify and prioritize critical decision criteria across
different modalities. As a result, the trained reward model not only generalizes effectively to un-
seen modalities but also maintains high-quality reasoning trajectories, facilitating robust preference
judgments in complex, multimodal scenarios.

4 EXPERIMENTS

To train the reward model, we first collected a large corpus of open-source data, from which only a
subset was sampled for training to ensure the query diversity. During the SFT stage, we employed
QWEN3-32B-AWQ (Yang et al., 2025) to synthesize 22K SFT training examples, while in the
DPO stage, 20K DPO examples were generated for model optimization. Although scaling up the
dataset could further benefit model performance, exploring this scalability is beyond the scope of the
current work. Detailed training hyperparameters and implementation are provided in Appendix B.2.

In our experiments, we conduct a comprehensive evaluation across multimodal reward model-
ing benchmarks, spanning two language benchmarks, four vision benchmarks, and two audio
benchmarks, for a total of 22 task subsets (● RewardBench, ❍ RMB, ■ VL RewardBench,
❏ Multimodal RewardBench, ▲ GenAI Bench (Image), ▼ GenAI Bench (Video),
◆ Audio Bench (Understanding), ❖ Audio Bench (Generation)). These bench-
marks span both understanding and generation tasks, with multimodal generation in particular re-
quiring strong cross-modal reasoning capabilities. Therefore, this collection of benchmarks provides
a comprehensive evaluation of the effectiveness of our proposed reward modeling approach. More
detailed experimental settings and benchmark descriptions can be found in the Appendix B.1.

4.1 MAIN RESULTS

As shown in Table 1, we conduct a comprehensive evaluation of GRM-OMNI on eight multimodal
benchmarks to examine its ability to generalize across diverse tasks and modalities. We consider

1In our experiments, we set k=3 and n=7.
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Table 1: Performance of QWEN-OMNI across various benchmarks. Notably, on the Audio bench-
mark, QWEN-OMNI struggles with coherent reasoning and often produces repetitive outputs; there-
fore, we report results obtained by training on language-preference data. Additional results are
provided in the Appendix B.4.

Models Size Language Vision Audio Avg.
● ❍ ■ ❏ ▲ ▼ ◆ ❖

QWEN3-AWQ 32B 93.2 72.5 - - - - - - -
QWEN-OMNI 7B 68.9 50.7 36.6 52.9 41.5 46.4 50.3 67.8 51.9

GRM-OMNI-SFT 7B 82.2 64.5 53.3 58.5 63.6 70.6 58.0 70.0 65.1
GRM-OMNI 7B 87.4 70.4 64.8 62.4 65.5 72.3 58.7 75.5 69.6

Table 2: Evaluation results on VL RewardBench benchmark.

Methods Inference VL RewardBench Avg.Gen. Hallu. Reason.
GPT-4o (2024-08-06) Thinking 49.1 67.6 70.5 62.4
IXC-2.5-Reward Thinking 84.7 62.5 62.9 70.0
UnifiedReward Thinking 76.5 58.1 65.1 66.6

QWEN-OMNI Thinking 24.6 29.2 56.0 36.6

GRM-OMNI Thinking 71.9 60.5 61.9 64.8
GRM-OMNI ++ Thinking 72.0 69.8 62.3 68.0

two variants of our model: 1) GRM-OMNI-SFT, trained via SFT on criteria-synthesized data, and
2) GRM-OMNI, which further incorporates preference optimization through our meta-reward based
DPO framework. When compared against the backbone model (QWEN-OMNI) and the synthesis-
only model (QWEN3-AWQ), GRM-OMNI-SFT already achieves a significant improvement of
13.2%, highlighting the effectiveness of criteria-guided data synthesis in enhancing reward modeling
capabilities. Beyond this, GRM-OMNI yields an additional 4.5% gain after preference optimization,
demonstrating that meta-reward learning can further refine preference judgments. Interestingly, we
observe that the improvements are consistent across nearly all benchmarks, with particularly strong
gains in tasks requiring fine-grained multimodal reasoning. This suggests that the combination of
criteria-based supervision and meta-reward guided optimization not only strengthens alignment in
the language modality but also facilitates more robust cross-modal transfer.

4.2 CONTINUAL TRAINING WITH MULTIMODAL DATA

To further evaluate the generalization ability of our approach, we extend GRM-OMNI to the mul-
timodal setting by incorporating multimodal policy and reward models for synthesizing new DPO
datasets based on DR1-RM and DLLaVA. Using the same scale of 20K preference pairs, we train the
extended model, denoted as GRM-OMNI++. This design allows the model to adapt its reasoning
and preference modeling capabilities beyond text, covering diverse input modalities.

As shown in Tables 2 and 3, GRM-OMNI++ consistently outperforms GPT-4o across multimodal
benchmarks. Compared with models such as IXC-2.5 Reward and UnifiedReward, which rely on
extensive amounts of multimodal training data, our approach benefits from the strong initialization
provided by GRM-OMNI. This initialization substantially reduces the reliance on large-scale multi-
modal supervision, allowing the training process to focus more effectively on preference alignment
rather than data scaling. These results highlight that our method not only delivers strong performance
in language-only settings, but also scales efficiently to multimodal contexts, achieving competitive
or superior results to state-of-the-art proprietary systems with significantly less multimodal data.

4.3 EXPLORATION CAPABILITIES

We further investigate whether training the reward model from scratch can yield more informa-
tive criteria, thereby extending its preference judgment capabilities. The motivation is to examine

7
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Table 3: Evaluation results on Multimodal RewardBench benchmark.

Methods Inference Multimodal RewardBench Avg.Corr. Pref. Know. Math Cod. Safety VQA
GPT-4o Thinking 62.6 69.0 72.0 67.6 62.1 74.8 87.2 70.8
Qwen2.5-VL-7B Thinking 58.1 61.0 56.8 54.7 47.9 56.1 68.7 57.6
MM-RLHF-Reward Thinking 61.7 67.5 54.3 58.4 57.9 92.9 76.8 67.1

GRM-OMNI Thinking 70.8 67.4 61.6 62.4 56.7 38.4 79.8 62.4
GRM-OMNI ++ Thinking 72.2 67.7 67.1 71.2 58.8 88.1 84.5 72.8
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Figure 6: Exploration capabilities of GRM-OMNI on RewardBench after SFT and DPO training.

whether post-training allows the discovery of criteria that are both more generalizable and discrim-
inative compared to those derived from strong foundation models. To ensure a fair comparison, we
maintain the same policy model and DisRM as in the previous experiments.

As illustrated in Figure 6, we compare the performance of GRM-OMNI on RewardBench after
SFT and DPO training, following criteria extension. Our results demonstrate that applying meta-
reward guided ranking consistently improves the model’s ability to explore informative trajectories.
Interestingly, DPO models exhibit a higher lower bound compared to SFT models, suggesting that
reinforcement learning can substantially enhance performance on challenging or low-quality sam-
ples, thereby improving the overall robustness of the reward model.

4.4 IMPACT ON DOWNSTREAM TASK PERFORMANCE
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Figure 7: Evaluation of model performance on MATH
benchmarks using the correctness accuracy metric.

To further assess whether GRM-OMNI can
enhance downstream task performance, we
evaluate it on the Preference Proxy Evalu-
ations (PPE) benchmark, which measures
reward models via proxy tasks. We focus
on three representative datasets from PPE,
including MATH, to provide a compre-
hensive evaluation of model performance.
For comparison, we consider strong base-
lines: Deepseek-GRM-27B that trained via
GRPO, and Skywork-Reward-Llama-3.1-
8B, which achieves high scores on Reward-
Bench. As shown in Figure 7, GRM-
OMNI consistently outperforms these base-
lines, demonstrating that our meta-reward
learning approach enhances reward modeling and improves downstream task performance.

4.5 CASE STUDIES AND ERROR ANALYSIS

To better understand the strengths and limitations of GRM-OMNI, we perform case studies across
multiple benchmarks, analyzing both successful and failed examples. Our goal is to identify cases
where the model demonstrates clear improvements and to uncover common error patterns. For in-
stance, in language-based dialogue tasks, given a query asking for an explanation of photosynthesis,
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Query：Could you outline the two main stages of photosynthesis…? 

Chosen: Of course! …Photosynthesis is indeed a vital process for life … 

Rejected: Photosynthesis is a process by which plants use sunlight …

Query：Rewrite the given sentence using 
a variety of grammar, punctuation, and 
structure: the woman ran quickly 

Chosen: Swift-footed, she darted onward 

Rejected: She ran quickly

  Query：a woman on the beach holding 
a pinwheel

Query：Describe this image 
in detail

Query：A happy fuzzy panda playing guitar nearby 
a campfire, snow mountain in the background

<criteria 1> Structure and Organization: Measures whether the answer uses numbered lists, headings, or 
bullet points effectively to separate ideas. This improves readability and logical flow. </criteria 1> 
<criteria 2> Factual Accuracy: Evaluates correctness of biological facts presented. Critical because errors 
can mislead learners about essential concepts like the roles of chlorophyll and …</criteria 2> 
<criteria 3> Depth of Information Provided: Assesses whether the answer goes beyond basic definitions to 
include contextual explanations (e.g., explaining the significance of ATP/NADPH in the light…</criteria 3>

<criteria 1> Use of Specific Details: 
Assesses whether the description includes 
precise observations…</criteria 1> 
<criteria 2> Clarity of Pedestrian 
Activities: Evaluates how explicitly the 
response conveys actions…</criteria 2> 
<criteria 3> Logical Flow Between 
Sentences: Measures coherence in 
transitions…</criteria 3>

<criteria 1> Emotional Tone: Measures 
whether the image evokes positive emotions 
like joy or calmness through..</criteria 1> 
<criteria 2> Clarity of Subject Focus: 
Evaluates if the subject (the woman and 
pinwheel)…</criteria 2> 
<criteria 3> Color Contrast Effectiveness: 
Assesses how well contrasting colors 
enhance visual impact…</criteria 3>

<criteria 1> Emotional Engagement: Measures whether the image evokes emotions like joy, calmness, or nostalgia 
through its composition and color palette. This impacts the overall appeal to viewers.</criteria 1> 
<criteria 2> Relevance to User Query Elements: Evaluates if all key components (campfire, snow mountain, guitar-playing 
panda) are present in both images. Matters because the user explicitly requested these elements.</criteria 2> 
<criteria 3> Creativity in Scene Composition: Judges originality in arranging elements (e.g., placement of the panda 
relative to the campfire vs. mountains). Creativity adds uniqueness to the visual storytelling.</criteria 3>

<criteria 1> Adherence to User Request… </criteria 1> 
<criteria 2> Creativity in Rephrasing …</criteria 2> 
<criteria 3> Use of Adverbial Modifiers…</criteria 3>

Figure 8: Examples of synthesized criteria generated by GRM-OMNI across multiple multimodal
benchmarks, including language and visual dialogue, image generation, and video generation tasks.

the model identifies content organization and structure as the most critical criterion, followed by
factual accuracy and content depth. When multiple responses are factually correct, what distin-
guishes them is primarily how well the content is organized. In visual dialogue tasks, the reward
model emphasizes the use of specific details to distinguish between accepted and rejected responses.
For video generation, the model emphasizes relevance to key query elements (e.g., a campfire) to
accurately distinguish correct outputs from incorrect ones.

We further categorize the observed error types to better understand model limitations and guide fu-
ture works. Across multiple benchmarks, we find that approximately 60% of failures stem from
biased or misaligned evaluation criteria, 20% from hallucinations or factual errors, and 10%
from misinterpretation or incorrect application of criteria. The remaining errors are often at-
tributable to limitations in the underlying foundation models or inconsistencies in the benchmark
itself. For example, in an image task asking the model to describe skiing scenes, the generated
criteria focused on the evaluation team’s composition and safety equipment rather than the skiing
content itself, resulting in incorrect reward judgments. Similarly, in a kite-counting task, the model
failed to identify the correct number of kites, reflecting inherent limitations in the backbone model’s
perception capabilities. These cases highlight that, although meta-reward learning enhances prefer-
ence modeling, the quality and capacity of the underlying backbone model remain limiting factors.
In future work, we aim to extend this approach to larger and more capable foundation models to
further reduce such errors and improve robustness across diverse multimodal scenarios.

5 CONCLUSIONS

In this work, we identify a critical mismatch between reward modeling and policy optimization in the
standard RLHF, and introduce meta-reward learning as a potential solution. We design a novel meta-
reward function that not only captures fine-grained preference judgments but also provides a robust
ordering mechanism to guide preference alignment. Building on this design, we further propose
meta-reward learning variants of SFT and DPO, and incorporate a criteria-driven test-time scaling
strategy to better explore diverse alignment objectives. Empirically, we demonstrate that GRM-
OMNI, trained exclusively on textual data, generalizes remarkably well across eight multimodal
benchmarks, substantially reducing reliance on large-scale preference data. These findings highlight
the contribution of meta-reward learning: 1) as a more reliable paradigm for reward modeling, and
2) as a training process that inspires new directions for aligning future foundation models.
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The appendix includes detailed experimental setups and corresponding results, along with a
detailed exhibition of the reward modeling methods employed for different modalities.
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A RELATED WORK

Aligning LLMs with human intent (Bai et al., 2022; Christiano et al., 2017; Ouyang et al., 2022)
has emerged as a core challenge in the pursuit of AGI. This challenge spans both language-only and
multimodal reasoning tasks. Unlike imitation learning, which is typically implemented via super-
vised fine-tuning (SFT), RL-based approaches (Schulman et al., 2017; Shao et al., 2024) leverage
an auxiliary reward model to provide richer supervision signals. These reward models enable LLMs
not only to generate high-quality reasoning trajectories, but also to perform fine-grained preference
modeling that supports the optimization of underspecified or ambiguous objectives (Chen et al.,
2025b; Chu et al., 2025). In this section, we provide a comprehensive review of existing reward
modeling paradigms, including traditional DisRMs and GenRMs. DisRMs as a “fast-thinking”
mechanism, providing scalar scores to guide model behavior. In contrast, GenRMs run a “slow-
thinking”, generating explicit CoT that capture the underlying rationales behind judgments.

While reward modeling can take various forms: such as point-wise, pair-wise, or list-wise ranking,
this work focuses on the pairwise, which remains the most widely adopted approach in RLHF. Pair-
wise reward modeling aims to compare model outputs and identify which response better aligns with
human preferences, thereby enabling the construction of reward functions to guide model optimiza-
tion. Formally, let x denote a user query, and y+, y− denote two responses generated by the LLMs,
where y+ is preferred over y− by a human annotator. The reward model rθ(x, y) is parameterized
as a function that evaluates the quality of a given paired data. The learning objective of RMs is to
ensure that:

rθ(x, y
+) > rθ(x, y

−).

As illustrated in Figure 9, both Scalar RMs and GenRMs can optimize this pairwise objective. Scalar
RMs project contextual representations into scalar scores via an MLP head and are typically trained
with the Bradley–Terry loss. In contrast, GenRMs treat reward modeling as a conditional generation
task and are optimized using standard language modeling loss functions.

A.1 DISCRIMNATIVE REWARD MODELING

The Bradley-Terry (BT) model is a classical probabilistic framework for modeling preferences based
on pairwise comparisons. It assumes that each option is assigned a utility score, and the probabil-

18
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Figure 9: Illustration of the differences between GenRM and DisRM, and how our approach com-
bines their complementary strengths.

ity of one option being preferred over another depends on the relative magnitude of their scores.
Formally, for a pair of options i and j, the preference probability is given by:

P (i ≻ j) =
er(i)

er(i) + er(j)
(2)

where r(i) and r(j) denote the scores (log-utilities) of options i and j, respectively. This is equiv-
alent to applying a softmax function over the two scores. A notable application is in the Chatbot
Arena 2, where outputs from different models are evaluated through pairwise comparisons, and these
comparisons are aggregated to produce a global preference ranking or implicit reward signal Sun
et al. (2025).

In several recent works, Yuan et al. (2024) extend the Bradley–Terry (BT) framework by incor-
porating absolute rewards for individual actions, improving its suitability for binary comparison
tasks. Yang et al. (2024a) impose regularization on the internal representations of reward models,
enhancing their generalization to out-of-distribution (OOD) examples and mitigating overfitting to
specific training distributions. Additionally, multi-objective reward formulations have been pro-
posed to capture diverse and nuanced human preferences, allowing models to reason over trade-offs
across multiple criteria (Wang et al., 2024a). However, these methods typically do not scale well,
because they depend on large amounts of labeled data and struggle to speed up the model’s learning
and improvement.

A.2 GENERATIVE REWARD MODELING

The emergence of GenRMs has been largely enabled by advances in LLMs (Zheng et al., 2023;
Mahan et al., 2024), particularly their ability to leverage self-improvement techniques such as CoT
reasoning and TTS. Recent work (Cao et al., 2024a; Ye et al., 2024a) has explored GenRMs that op-
timize reward models through preference modeling objectives, including both pairwise and single-
point rewards. Beyond scoring, GenRMs can serve as feedback mechanisms or even assist in cor-
recting errors in tasks such as mathematics (Gao et al., 2024; Zhang et al., 2024). A key advantage
of GenRMs is their ability to produce interpretable reasoning trajectories, which can guide humans
or downstream models for further refinement.

Generative reward models fall into two broad categories: Thinking and Non-thinking, depending
on whether they explicitly produce CoT trajectories. Non-thinking models use CoT during train-
ing, and their performance closely matches DisRMs in practice. In contrast, Thinking models rely
on high-quality CoTs and are susceptible to error accumulation due to they generate intermediate
reasoning steps, which can limit their effectiveness. Yet this very capability also enables TTS, un-

2https://lmarena.ai/leaderboard
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Table 4: Overview of the collected multimodal open-source preference dataset used for training.
Modality Task Dataset Number (K) Huggingface

Language U&G DSky 77 Skywork/Skywork-Reward-Preference-80K-v0.2 3

Image

Understanding DR1-RM 17.3 yifanzhang114/R1-Reward-RL 4

DLLaVA 34.7 CodeGoat24/LLaVA-Critic-113k

Generation
DHPD 24.0 CodeGoat24/HPD 5

DOIP 7.4 CodeGoat24/OIP 6

DEvalMuse 3.0 CodeGoat24/EvalMuse 7

Video
Understanding DShareGPTVideo 26.8 CodeGoat24/ShareGPTVideo-DPO 8

Generation DVideoDPO 10.0 CodeGoat24/VideoDPO 9

DT2VHP 5.7 CodeGoat24/Text-2-Video-Human-Preferences 10

Audio Understanding DAlign-Any-TA2T 30.5 PKU-Alignment/align-anything 11

Generation DAlign-Any-T2A 10.9 PKU-Alignment/align-anything

Table 5: Evaluation benchmarks for assessing preference judgment capabilities.
Modality Benchmark Task Huggingface

Language RewardBench U&G allenai/reward-bench 12

RMB U&G RMB-Reward-Model-Benchmark 13

Vison

VL RewardBench Uderstanding MMInstruction/VL-RewardBench 14

Mutilmodal RewardBench Uderstanding multimodal rewardbench 15

GenAI-Bench-Image Generation TIGER-Lab/GenAI-Bench 16

GenAI-Bench-Video Generation TIGER-Lab/GenAI-Bench 17

Audio Align Anything TA2T Uderstanding PKU-Alignment/align-anything 18

Align Anything T2A Generation PKU-Alignment/align-anything

locking reasoning capabilities and potential. Our method improves the fidelity of these training
CoTs, strengthening the model’s ability to make accurate and interpretable reward judgments.

B EXPERIMENTS DETAILS

B.1 DATASETS

To train the reward model, we first aggregated a large corpus from open-source datasets, all of which
are publicly available with download links provided. Table 4 summarizes the final dataset statistics.
Rather than using the entire corpus, we randomly sampled subsets to ensure broad coverage of
the query distribution, promoting robustness in the training process. During the training of GRM-
OMNI, we only rely on language data to synthesize criteria and judgements. The role of other
multimodal data was limited to enabling the base model to handle inputs from multiple modalities.
We achieved this through a prompt-switching strategy: For language training, we used language

3https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.
2

4https://huggingface.co/datasets/yifanzhang114/R1-Reward-RL
5https://huggingface.co/datasets/CodeGoat24/HPD
6https://huggingface.co/datasets/CodeGoat24/OIP
7https://huggingface.co/datasets/CodeGoat24/EvalMuse
8https://huggingface.co/datasets/CodeGoat24/ShareGPTVideo-DPO
9https://huggingface.co/datasets/CodeGoat24/VideoDPO

10https://huggingface.co/datasets/CodeGoat24/Text-2-Video-Human-Preferences
11https://huggingface.co/datasets/PKU-Alignment/align-anything
12https://huggingface.co/datasets/allenai/reward-bench
13https://github.com/Zhou-Zoey/RMB-Reward-Model-Benchmark
14https://huggingface.co/datasets/MMInstruction/VL-RewardBench
15https://github.com/facebookresearch/multimodal_rewardbench
16https://huggingface.co/datasets/TIGER-Lab/GenAI-Bench
17https://huggingface.co/datasets/TIGER-Lab/GenAI-Bench
18https://huggingface.co/datasets/PKU-Alignment/align-anything
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Table 6: Hyperparameters used for training GRM-OMNI.
Hyperparameter Value
Number of GPUs 8
Per device train batch size 2
Gradient accumulation steps 8
Sequence cutoff length 4096
Number of training epochs 1
Learning rate (SFT) 1e-5
Learning rate (DPO) 1e-6
Learning rate scheduler cosine
Warmup ratio 0.1
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Figure 10: Best-of-N (BoN) evaluation of criteria after ranking

prompts paired with thinking-style CoT responses. For multimodal training, we used multimodal
prompts paired with non-thinking responses. After this stage, the trained model can adaptively
switch prompts to produce CoT reasoning in multimodal scenarios as well.

For evaluation, we benchmark GRM-Omni across multiple modalities. Specifically, we consider
RewardBench and RMB for language understanding, VL RewardBench and Multimodal
RewardBench for vision understanding, GenAI Bench for vision generation, and Align
Anything (referred to here as the Audio Bench) for video and audio. Table 5 provides a sum-
mary of the dataset statistics. We adopt accuracy as the evaluation metric across all benchmarks to
consistently measure preference judgment performance.

B.2 TRAINING AND INFERENCE

During data synthesis, we adopt Qwen3-32B-AWQ as the GenRM and Skywork-Reward V2 as
the DisRM to construct training data for GRM-LANG. In the model sampling process, we further
explore 7 new criteria to obtain higher-quality results. For multimodal reward modeling, we employ
Qwen2.5-Omni-7B as the backbone model. To generate CoT data for multimodal training, we use
the trained GRM-LANG as GenRM and Skywork-VL-Reward for data selection. As shown in
Table 6, we report the hyperparameters used in the SFT and DPO stages to facilitate reproducibility.

B.3 EMPIRICAL STUDIES ON META-REWARD DESIGN

To better understand how criteria relate to the meta-reward function, we conduct an in-depth analysis
focusing on the following questions:

1. Scalability: Do preference judgments scale as the number of criteria increases?

2. Voting benefit: Can ranked criteria still yield improvements when aggregated via voting?

3. Score distribution: What is the value range of the meta-reward function?
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Figure 11: Impact of voting on the ranking of criteria.

Figure 12: The ranges of meta-reward scores across different subsets.

All experiments were conducted on RewardBench. For the GenRM and Policy Model, we used
Qwen-3-3B-AWQ, while DisRM was instantiated with Skywork-Reward-V2 19 (with v1 20 referring
to Skywork-Reward-V1).

First, to examine the impact of the number of criteria on preference judgment accuracy, we compared
the performance of the original 60 criteria without ranking against the performance after ranking,
measured via Bag-of-N (BoN). As shown in Figure 10, BoN values increase as the number of criteria
grows, suggesting that incorporating more criteria enhances the model’s overall performance. This
effect is especially evident on the Chat Hard subset, where the BoN curve exhibits a consistent
upward trend. These results indicate that more difficult examples benefit from a larger set of criteria
to arrive at correct judgments. 21

We also investigate whether voting can enhance preference judgment accuracy after criteria ranking.
As shown in Figure 11, voting improves judgment correctness for unsorted criteria. In contrast, once
the criteria are ranked, applying large-scale voting offers minimal additional benefit. This suggests
that the ranking process already identifies the most informative criteria for accurate judgments.

We further analyze the range of meta-reward scores by examining their mean, maximum, and mini-
mum values (Figure 12). The results indicate that meta-reward scores can be either positive or nega-
tive, highlighting the necessity of handling reward signals in a segmented manner. Furthermore, the
mean score curves provide a reliable signal for comparing and ranking different criteria.

19 https://huggingface.co/Skywork/Skywork-Reward-V2-Llama-3.1-8B
20https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B
21Specifically, these examples of the Chat Hard subset correspond to the lowest-scoring and most challeng-

ing cases in RewardBench.
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Table 7: Evaluation results on RewardBench benchmark.

Methods Inference RewardBench Avg.Chat Chat H. Safety Reasoning
DisRMs
ArmoRM-Llama3-8B Non-Thinking 96.9 76.8 90.5 97.3 90.4
Skywork-Llama-8B Non-Thinking 95.8 87.3 90.8 96.2 92.5
Skywork-Gemma-27B Non-Thinking 95.8 91.4 91.9 96.1 93.8

GenRMs
GPT-4o Thinking 96.1 76.1 88.1 86.6 86.7
Gemini-1.5-pro Thinking 92.3 80.6 87.9 92.0 88.2
DeepSeek-R1 Thinking 93.6 79.2 86.9 97.4 89.3
DeepSeek-GRM-27B Thinking 94.1 78.3 88.0 83.8 86.0
IXC-2.5-Reward Thinking 90.8 83.8 87.8 90.0 88.6
RM-R1-Qwen-7B Thinking 94.1 74.6 85.2 86.7 85.2

QWEN-OMNI Thinking 85.8 48.7 75.3 65.4 68.9

GRM-OMNI-SFT Thinking 91.6 66.2 83.5 87.3 82.2
GRM-OMNI Thinking 92.5 77.2 88.4 91.4 87.4

Table 8: Evaluation results on RMB benchmark.

Methods Inference RMB Avg.BoN Help. BoN Harm. Pair Help. Pair Harm.
DisRMs
ArmoRM-Llama3-8B Non-Thinking 63.6 49.7 78.7 66.3 64.6
DeepSeek-BTRM-27B Non-Thinking 64.0 33.6 83.0 51.0 57.9
Skywork-Reward-Llama Non-Thinking 62.7 60.3 78.1 75.9 69.3

GenRMs
CLoud-Gemma-27B Thinking 64.7 41.7 81.1 66.1 63.4
DeepSeek-PairRM-27B Thinking 59.9 34.1 83.3 55.5 58.2
DeepSeek-GRM-27B Thinking 62.3 57.0 80.5 76.1 69.0
Qwen3-AWQ Thinking 66.5 64.3 81.1 77.9 72.5

QWEN-OMNI Thinking 41.1 40.0 62.9 58.8 50.7

GRM-OMNI-SFT Thinking 58.9 52.1 75.8 71.0 64.5
GRM-OMNI Thinking 60.6 64.4 77.8 78.6 70.4

B.4 MAIN TABLE RESULTS

We conduct a comprehensive evaluation across multiple benchmarks, reporting results on each sub-
dataset to better capture the strengths and limitations of different reward modeling approaches:

1. RewardBench As shown in Figure 7, we provide a direct comparison between discrim-
inative and generative reward models. Specifically, the discriminative model includes
Skywork-Llama-8B (Liu et al., 2024), while the generative model includes RM-R1-Qwen-
7B (Chen et al., 2025a).

2. RMBAs shown in Figure 8, we compare against state-of-the-art generative models including
DeepSeek-GRM-27B (Liu et al., 2025).

3. VL RewardBench As shown in Figure 9,we evaluate multimodal reward models, such
as MM-RLHF-Reward (Zhang et al., 2025c).

4. Multimodal RewardBenchAs shown in Figure 10, we compare with vision-language
reward models Qwen2.5-VL-7B (Bai et al., 2025).

5. GenAI Bench As shown in Figure 11,we compare with the strong baseline Uni-
fiedReward (Wang et al., 2025b).

6. Audio Bench As shown in Figure 12,we compare with Qwen-omni (Xu et al., 2025).
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Table 9: Evaluation results on VL RewardBench benchmark.

Methods Inference VL RewardBench Avg.Gen. Hallu. Reason.
GPT-4o (2024-08-06) Thinking 49.1 67.6 70.5 62.4
Claude-3.7-Sonnet Thinking 68.1 70.7 60.8 66.5
MM-RLHF-Reward Thinking 45.0 50.5 57.6 51.0
IXC-2.5-Reward Thinking 84.7 62.5 62.9 70.0
R1-Reward Thinking 63.8 85.7 64.8 71.4
UnifiedReward-Think Non-Thinking 77.9 70.5 65.4 71.3
UnifiedReward-Think Thinking 78.1 72.7 66.0 72.3

QWEN-OMNI Thinking 24.6 29.2 56.0 36.6

GRM-OMNI-SFT Thinking 54.0 44.8 61.0 53.3
GRM-OMNI Thinking 71.9 60.5 61.9 64.8

Table 10: Evaluation results on Multimodal RewardBench benchmark.

Methods Inference Multimodal RewardBench Avg.Corr. Pref. Know. Math Cod. Safety VQA
GPT-4o Thinking 62.6 69.0 72.0 67.6 62.1 74.8 87.2 70.8
Qwen2.5-VL-7B Thinking 58.1 61.0 56.8 54.7 47.9 56.1 68.7 57.6
MM-RLHF-Reward Thinking 61.7 67.5 54.3 58.4 57.9 92.9 76.8 67.1
LLama3.2-11B Thinking 57.8 65.8 55.5 51.2 51.2 35.5 55.8 52.4

QWEN-OMNI Thinking 56.0 61.2 55.1 57.6 48.5 33.3 58.3 52.9

GRM-OMNI-SFT Thinking 58.9 68.6 61.1 64.1 52.5 33.1 73.1 58.5
GRM-OMNI Thinking 70.8 67.4 61.6 62.4 56.7 38.4 79.8 62.4

C LLM USAGE

LLMs were used to aid in the writing and polishing of this manuscript. Specifically, we used Ope-
nAI’s ChatGPT-4 to refine the wording of our paper, improve academic tone, and assist in figure
preparation. All text generated by the LLM was carefully reviewed and verified by the authors to
ensure accuracy, faithfulness to the research, and consistency with our scientific contributions. The
LLM was not used to generate novel ideas, design experiments, or produce results; its role was lim-
ited to language editing and presentation support. The authors take full responsibility for the content
of the manuscript, including any text generated or polished by the LLM. We have ensured that the
LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific
misconduct.

D PROMPT ENGINEERING

D.1 DATA SYNTHESIS

As shown in Figures 13, 14 and 15, here we detail the prompt template employed to guide our meta-
reward learning framework in judging between two responses. The template explicitly instructs the
model to compare candidate responses according to multiple evaluation criteria, including both stan-
dard dimensions and our self-synthesized criteria, ensuring that the judgment process is systematic
and aligned with task-specific requirements.

D.2 INFERENCE

The prompt formats used for different input modalities or task settings are shown in Figures 16,
illustrating the instruction templates adopted during training and inference.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Evaluation results on GenAI benchmark.

Methods Inference GenAI Bench Avg.Image Gen Video Gen
ImageReward Thinking 65.0 73.1 69.1
VisionReward Thinking 66.4 73.3 69.9
UnifiedReward Thinking 70.9 77.2 74.1
UnifiedReward-Think Non-Thinking 71.9 81.6 76.8
UnifiedReward-Think Thinking 72.5 82.3 77.4

QWEN-OMNI Thinking 41.5 46.4 44.0

GRM-OMNI-SFT Thinking 63.6 70.6 67.1
GRM-OMNI Thinking 65.5 72.3 68.9

Table 12: Evaluation results on Audio benchmark.

Methods Inference Audio Bench Avg.Audio Und Audio Gen
QWEN-OMNI-SKYWORK Thinking 50.3 67.8 59.0

GRM-OMNI-SFT Thinking 58.0 70.0 64.0
GRM-OMNI Thinking 58.7 75.5 67.1

Figure 13: Prompt for Criteria Generation.

Thinking Prompt

You are an expert in generating evaluation criteria. Given a user query and two assistant
replies (which may include Text, Image, Video, and Audio), your task is to create **exactly
10 evaluation criteria** that best distinguish the strengths and weaknesses of the two re-
sponses. ### Instructions:1. Carefully compare the two replies and identify meaningful dif-
ferences in how they respond, these could involve reasoning, factual accuracy, structure, clar-
ity, creativity, style, or multimodal use. 2. From those differences, derive 10 context-specific
criteria. Each criterion should help a third-party evaluator compare the two replies fairly and
systematically. 3. Ensure that none of your criteria overlap with the given candidate criteria.
If no candidate criteria are provided, propose the 10 criteria you consider most important.
4. For each criterion, provide a short, clear name, followed by a brief explanation of what
it evaluates and why it matters in this context. ### Output format: <criteria 1>**Name**:
Explanation<criteria 1>...<criteria 10>**Name**: Explanation</criteria 10>### Input:
[User Question]:{query} [The Start of Assistant A’s Answer]:{response 1}[The End of As-
sistant A’s Answer] [The Start of Assistant B’s Answer]: {response 2}[The End of Assistant
B’s Answer] [The Candidate Criteria Start]: {candidate criteria} [The Candidate Criteria
End]
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Figure 14: Prompt for Judgment Based on a Given Criterion.

Thinking Prompt

You are an expert evaluator. Your task is to assess how well each assistant response satisfies
the user’s query, strictly based on the provided [Evaluation Criteria]. ### Instructions: 1.
Carefully read the user query, the two assistant responses, and the [Evaluation Criteria].
2. For each response, provide a step-by-step analysis of how effectively it addresses the
user’s query in relation to the criteria. Support your evaluation with specific evidence from
the response content. 3. Your judgment must be strict, fair, and explicitly grounded in the
Evaluation Criteria. 4. Do not assume one response is better unless the evidence clearly
shows it satisfies the query more effectively. ### Final Output Format: 1. Present your
results in three sections using the following format: ### Final Output Format: <Judge
A>[Analysis of Response A: Evaluate against each Evaluation Criteria. Be explicit about
strengths and weaknesses. Clearly state where improvements are needed and explain why.
Assign an overall score from 1–10.]</Judge A><Judge B>[Analysis of Response B: same
requirements as above.]</Judge B># The Final Verdict is [[A]] or [[B]]. 2. Assign an
overall score to each response (integer from 1 to 10): + 1 = Does not satisfy the query
at all under the criteria + 6 = Partially satisfies the query + 10 = Fully satisfies the query
with excellence across all criteria 3. At the end, output your analysis and then give the
final decision in this exact format: If Assistant A is better: explanation followed by [[A]];
If Assistant B is better: explanation followed by [[B]]. Only output one of the tags ([[A]]
or [[B]]) on the final answer line, and nothing else. ###Input [User Query]{query} [The
Start of Assistant A’s Answer]{response 1}[The End of Assistant A’s Answer] [The Start
of Assistant B’s Answer]{response 2}[The End of Assistant B’s Answer] [The Begin of
Evaluation Criteria]{criteria}[The End of Evaluation Criteria]

Figure 15: Prompt for Refinement Based on Judgment.

Thinking Prompt

You are tasked with revising the assistant responses based on a user query and a provided
critique. ### Instructions: 1. Make only objective and necessary edits that directly address
the specific points raised in the critique. 2. Do **not** change any content that is not
explicitly mentioned in the critique. 3. Do **not** introduce new ideas, rephrase unrelated
sections, or make stylistic edits beyond what the critique specifies. 4. Your revisions must
be accurate, minimal, and strictly aligned with the critique. ### Output Format: Return
**only** the fully revised response. Do **not** include any explanations, comments, or
metadata. ### Input [User Query] {query} [The Start of Responses] {response} [The End
of Responses] [The Start of Critique]{judge} [The End of Critique] Please return revised
responses:

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 16: Prompt for Direct Judgment.

Thinking Prompt

You are a fair, professional, and neutral multimodal AI evaluator. You are tasked with eval-
uating two different multimodal responses (Text, Image, Video, Audio) generated for the
same user query, and determining which one is better. ### Instructions 1. Comparison
Basis. Carefully compare the two responses and identify meaningful differences in how
they address the user’s query. Differences could involve: reasoning, factual accuracy, clar-
ity, structure, creativity, or use of multimodal elements. 2. Criteria Creation. From these
differences, derive exactly three evaluation criteria that best distinguish the strengths and
weaknesses of the two responses. Each criterion should have a short name and a brief expla-
nation of what it evaluates and why it matters. Ensure the criteria do not overlap with each
other. 3. Evaluation. For each criterion, analyze Response A and Response B step by step.
Support your evaluation with clear, specific evidence from the responses. Maintain a strict,
fair, and grounded judgment. 4. Verdict. Your final decision must be ‘[[A]]‘ or ‘[[B]]‘ (no
ties allowed). Base your verdict solely on which response performs better under the three
criteria. ### Output Format<think><criteria 1>Name. Explanation. <Judge A>Analysis
of A.</Judge A><Judge B>Analysis of B.</Judge B>Based on the criteria, the verdict
is [[A]] or [[B]]</criteria 1>... </think>The final verdict is [[A]] or [[B]] ### Input:[User
Question]: {query} [The Start of Assistant A’s Answer]: {response 1} [The End of Assis-
tant A’s Answer] [The Start of Assistant B’s Answer]: {response 2} [The End of Assistant
B’s Answer] Please output your analysis and final verdict:
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