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Abstract

Large language models (LLMs) have demon-
strated remarkable potential in handling natu-
ral language processing (NLP) tasks and be-
yond. LLMs usually can be categorized as
transformer decoder-only models (DOMs), uti-
lizing Next-Token-Prediction (NTP) as their pre-
training methodology. Despite their tremendous
empirical successes, the theoretical understand-
ing of how NTP pre-training affects the model’s
generalization behavior is lacking. To fill this gap,
we establish the fine-grained generalization anal-
ysis for NTP pre-training based on Rademacher
complexity, where the dependence between to-
kens is also addressed. Technically, a novel de-
composition of Rademacher complexity is de-
veloped to study DOMs from the representation
learner and the token predictor, respectively. Fur-
thermore, the upper bounds of covering number
are established for multi-layer and multi-head
transformer-decoder models under the Frobenius
norm, which theoretically pioneers the incorpo-
ration of mask matrix within the self-attention
mechanism. Our results reveal that the gener-
alization ability of NTP pre-training is affected
quantitively by the number of token sequences
N , the maximum length of sequence m, and the
count of parameters in the transformer model Θ.
Additionally, experiments on public datasets ver-
ify our theoretical findings. Our code is available
at https://github.com/Lizeihao/MININTP.

1College of Informatics, Huazhong Agricultural University
2Department of Computer Science and Engineering, Southern
University of Science and Technology 3Department of Com-
puter Science, Hong Kong Baptist University 4Engineering Re-
search Center of Intelligent Technology for Agriculture, Min-
istry of Education, China. Correspondence to: Hong Chen
<chenh@mail.hzau.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Large Language Models (LLMs) have emerged as pow-
erful generative models in solving sequence-to-sequence
(seq2seq) tasks (Ott et al., 2019), which not only have
achieved tremendous progress in various NLP tasks (Malach,
2023), but also have realized remarkable performance in
other domains (Li et al., 2024). Surprisingly, several exist-
ing LLMs, such as GPT3 (Brown et al., 2020), OPT (Zhang
et al., 2022), BLOOM (Workshop et al., 2023), Llama (Tou-
vron et al., 2023), Deepseek (Liu et al., 2024a) and Qwen
(Yang et al., 2025), share two common characteristics: (i)
Employing a decoder-only architecture based on the masked-
self-attention(Vaswani et al., 2017). (ii) Adopting the un-
supervised pre-training method of Next-Token-Prediction
(NTP) (see Figure 1 (a)), which is to predict the next to-
ken based on all previous context tokens in each step (Qi
et al., 2020). The predominant expense in training a large
language model is typically incurred during the pre-training
phase (Zhao et al., 2024). Consequently, it is very important
to examine the DOMs-based NTP pre-training.

Recently, there have been increasing efforts to evaluate the
DOMs-based NTP pre-training empirically. Shlegeris et al.
(2022) found that language models are consistently better
than humans at NTP tasks by performing two distinct ex-
periments. Malach (2023) demonstrated when trained on
Chain-of-Thought data, even a linear next-token predictor
can possess high fitting ability. Bachmann & Nagarajan
(2024) designed a minimal planning task and demonstrated
that NTP pre-training cannot accurately predict the first
position in some tasks. Li et al. (2024) utilized a single
self-attention layer to explore the mechanics of NTP. While
these works justify the use of NTP pre-training in the corre-
sponding regimes, they do not provide a rigorous analysis
of the training mechanism, especially from the perspective
of generalization theory. This motivates a natural question:

“Can we establish the generalization analysis of NTP pre-
training, which probably explains the effects of model pa-
rameters?”

This paper answers the above question positively. The
DOMs (see Figure 1 (b)) usually consist of two compo-
nents (Zhao et al., 2024): multiple layers of transformer-
decoder-blocks, shortened as Representation-Learner (R-L),
and a task-specific processor, noted by Token-Predictor (T-
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Figure 1. (a): How NTP works utilizing decoder-only model (DOM), for every input token tj(0 ≤ j < m), we can get an output token
t̂j+1 whose label is tj+1, and the dashed line here represents the context used. (b): The architecture of DOM, which is consistent with the
GPT-3 (Brown et al., 2020). (c): The architecture of transformer-decoder-block (Vaswani et al., 2017).

P). Similar to Zhang et al. (2024a); Deng et al. (2024), we
abstract the DOMs into a token-based composite function
made up of two separate functions for R-L and T-P, respec-
tively. We consider the dependence between tokens and
utilize φ-mixing to delineate the inter-token dependencies,
which is a commonly used tool in non-independent scenes
(Masuda, 2007; Mohri & Rostamizadeh, 2010; McDonald
et al., 2015; Wong et al., 2020). We then propose a theoret-
ical framework for NTP from the perspective of statistical
learning. To bound the excess risk of NTP, we introduce
the concept of Rademacher complexity for composite func-
tion classes and propose a decomposition law, as stated in
Proposition 4.8. We then establish two distinct bounds on
the generalization capability of NTP, depending on whether
Proposition 4.8 is applied.

To further assess the impact of model parameters of DOMs
on NTP, we provide a refined estimation of the covering
number for multi-layer, multi-head transformer-decoder
blocks. We are the first to consider the mask matrix
in self-attention, which is crucial for NTP. We then use
the covering number of DOMs to get the corresponding
Rademacher complexity upper bound by utilizing the the-
ory of Bartlett et al. (2017); Lin & Zhang (2019) and es-
tablish the generalization bounds for DOMs-based NTP
pre-training. Our results primarily encompass three key pa-
rameters: the number of token sequences N , the maximum
sequence length m, and the count of transformer model
parameters Θ. Our generalization bound can be expressed
as O

(√
Θ/Nm+

√
1/m

)
, where O

(√
Θ/Nm

)
signifies

the generalization capability across token sequences, and
O
(√

1/m
)

denotes the generalization capability among
individual tokens. Our bounds remain valid even with modi-
fications to the structure of the transformer-decoder block.
Our main contributions are summarized as follows:

• A novel Rademacher complexity decomposition
method: We consider the dependence between to-
kens and provide a theoretical framework for NTP
pre-training (Section 3). On this basis, we establish
the Rademacher complexity upper bounds of excess
risk by a novel Rademacher complexity decomposition
method (Section 4.1), which shows that the generaliza-
tion performance of NTP pre-training is related to both
sequences and tokens.

• A refined covering number for multi-layer, multi-head
transformer-decoder models: We establish bounds for
the covering number of a function space derived from
a multi-layer, multi-head transformer-decoder model
based on masked-self-attention (Section 4.2). Unlikely
the previous works, our theoretical results are the first
to consider the mask matrix in self-attention based on
the metric induced by the Frobenius norm.

• A generalization bound for DOMs-based NTP pre-
training: We use the Rademacher complexity upper
bound and covering number to establish the generaliza-
tion theory of DOMs-based NTP pre-training (Section
4.3). Theoretical results imply that the generalization
bound mainly depends on: the number of token se-
quences N , the maximum length of the token sequence
m, and the number of model parameters Θ. Data ex-
periments in Section 5 verify our theoretical findings.

2. Related Work
Next-Token-Prediction (NTP). Beyond its prominence in
NLP (Moon et al., 2021; De Souza Pereira Moreira et al.,
2021), NTP has found applications in diverse domains, in-
cluding object recognition (Yue et al., 2024), sensorimotor
trajectory prediction (Radosavovic et al., 2024), autonomous
driving (Wu et al., 2024; Jia et al., 2024), and code-related
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Table 1. Generalization bounds for transformer-based models in different pre-training scenarios. (N : the number of token sequences, m:
the maximum sequence length, T : the number of prompts, L: the number of transformer layers, d: the model dimension of transformer,
Θ ≈ 12Ld2: the number of transformer model parameters, C: the constant bigger than 1).

Ref. Scenario Technique Bound

Edelman et al. (2022) seq2seq Pretraining Rademacher Complexity O
(√

CO(L) ln(Nmd)
N

)
Li et al. (2023) ICL Pretraining Stability O

(
C lnN√

NT

)
Zhang et al. (2023) ICL Pretraining Operator Approximation O

(
L2d2 ln(1+NTC)√

NT

)
Deng et al. (2024) MAE Pretraining Rademacher Complexity O

(
L(mC)O(L) ln d

N

)
Ours NTP Pretraining Rademacher Complexity O

(√
Θ ln(1+NmC)

Nm +
√

C
m

)

tasks (Izadi et al., 2022; Kim et al., 2021; Qi et al., 2024).
While vision applications remain less explored, Kilian et al.
(2024) demonstrated that NTP excels in prompt adherence
and throughput efficiency for image synthesis, though dif-
fusion models achieve superior image quality and lower
latency. Extensions to standard NTP include multi-token
prediction (Qi et al., 2020; Gloeckle et al., 2024) and Diffu-
sion Forcing (Chen et al., 2024), a hybrid training paradigm
combining NTP with diffusion for sequence generation.

Theoretical insights reveal NTP’s foundational capabilities:
Malach (2023) proved autoregressive NTP can approximate
complex functions using a novel length-complexity mea-
sure. Thrampoulidis (2024) identified an implicit bias to-
ward structured solutions in gradient-based NTP optimiza-
tion at low training loss. Flemings et al. (2024) proposed
PMixED, a differentially private protocol for LLM-based
NTP. Madden et al. (2024) established memory capacity
bounds for decoder-only transformers in NTP. Li et al.
(2024) showed self-attention learns token-retrieval automata
via token-priority graphs.

Generalization theory for pre-training and transformer-
based models. Generalization characterizations of pre-
training have been stated for many learning paradigms, such
as curriculum learning (Zhou et al., 2022), transfer learn-
ing (Tripuraneni et al., 2020; Xu & Tewari, 2021; Lotfi
et al., 2022), reinforcement learning (RL) (Ye et al., 2023;
Lin et al., 2023), etc. Moreover, Zhang et al. (2024a) con-
structed the generalization theory for supervised pre-training
and fine-tuning to explore the trade-off between intra-class
and inter-class diversity in pre-training datasets. Deng et al.
(2024) developed a generalization bound for the unsuper-
vised pre-training of Masked Autoencoder (MAE), their
results are mainly based on the covering number theory of
the transformer-encoder models, which was established by
Edelman et al. (2022).

For the generalization of transformer-based models, Deora
et al. (2023) derived generalization bounds for the single-

layer muti-head-attention models based on the stability of
SGD Lei & Ying (2020); Zhang et al. (2024b). Recently,
theoretical understandings have been provided for the gen-
eralization ability of In-context Learning (ICL). The ICL
pre-training is investigated theoretically from the aspects
of multi-task learning (Li et al., 2023) and Markov pro-
cesses (Zhang et al., 2023), respectively. Notably, Lotfi
et al. (2023) derived the first non-vacuous generalization
bounds for pre-trained LLMs. Later, Lotfi et al. (2024) in-
troduced a martingale-based bound that captures token-level
dependencies.

Table 1 highlights the key differences of our theoretical
result by comparing it with the most related progresses in
(Edelman et al., 2022; Li et al., 2023; Zhang et al., 2023;
Deng et al., 2024).

Notation. Throughout our paper, we denote set {1, · · · , n}
as [n]. And for a matrix W, ∥W∥ℓ∞ := maxi,j |Wi,j |.

3. Preliminaries
This section introduces the framework of NTP pre-training
and defines the architecture of DOMs.

3.1. Problem Setting

Consider a set of tokens T whose vocabulary size is nv =
|T |. Given a pre-training dataset D = {Xi}Ni=1 ⊆ X ,
where Xi denotes the i-th token sequence, X is an instance
domain such as sentences. We assume there exists an un-
known distribution D that {Xi}Ni=1 ∼ D and all the se-
quences are independent of each other. Each sequence Xi is
composed of m tokens {ti1, · · · , tim} ⊆ T , where tij ∈ Rnv

denotes the j-th token of i-th sequence, and m denotes the
maximum input length of a language model LM. Note that
the token sequences we consider here have all undergone a
series of preprocessing operations, such as cropping, mask-
ing, and patching, so all sequences have the same length. We
denote Ti

j = {ti0, ti1, · · · , tij−1} as the context of tij , where
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ti0 = t0 ∈ T denotes the given begin sign <| im start |>
for all sequences. Note that Ti

0 is the empty context for ti0.

Next-Token-Prediction. For NTP, we abstract the model
LM : X × T → T as an algorithm that maps the con-
text Tj−1 to a function LM (Tj−1, · ), similar idea can be
found in Li et al. (2023). Then, we input the token tj−1 to
the above function, which will get a response:

t̂j = LM (Tj−1, tj−1) ,

we hope that t̂j can be as close to tj as possible. More de-
tails about the next-token-prediction can be found in Figure
1. Note that the model LM belongs to decoder-only model
(DOM), which is usually composed of a Representation-
Learner (R-L) h ∈ H ⊆ {T → I} and a Token-Predictor
(T-P) g ∈ G ⊆ {I → T }, where I denotes a hidden repre-
sentation space. We can represent the model LM via

LM (Tj−1, tj−1) = g (h (Tj−1, tj−1)) .

Denote zij =
(
Ti

j , t
i
j

)
as the j-th training sample of i-th

sequence, where Ti
j = {Ti

j−1, t
i
j−1}. Then the empirical

risk based on NTP with the i-th sequence can be defined as

L̂Xi
(g ◦ h) := 1

m

∑
j∈[m]

ℓ
(
g ◦ h(zij), zij

)
, (1)

where ℓ
(
g◦h(·), ·

)
: X×X → R represents the pre-training

loss function, usually cross-entropy loss, and

ℓ(g ◦ h(zij), zij) := ℓ
(
g
(
h(Ti

j−1, t
i
j−1)

)
, tij

)
denotes the loss of sample zij . Pre-training based on NTP
is to train each token sequence in the dataset D according
to formula (1), further obtaining the optimal R-L and T-P.
We can denote the objective function based on the empirical
risk minimization (ERM) as

min
g∈G,h∈H

L̂D (g ◦ h) := 1

N

∑
i∈[N ]

L̂Xi (g ◦ h). (2)

Let Lϕi
(g ◦ h) = E

[
L̂Xi

(g ◦ h)
]

denote the population
risk of L̂Xi

(g ◦ h), and

LD (g ◦ h) = E
[
L̂D (g ◦ h)

]
=

1

N

∑
i∈[N ]

Lϕi (g ◦ h)

be the population risk of L̂D (g ◦ h). Then, the excess risk
for NTP pre-training task can be represented as

ED
(
ĝ, ĥ
)
:= LD

(
ĝ ◦ ĥ

)
− min

g∈G,h∈H
LD (g ◦ h) , (3)

where ĝ ∈ G and ĥ ∈ H denote the optimal R-L and T-P we
learned by solving (2) respectively.

3.2. Decoder-only Models

For a given token sequence X = [t1, · · · , tm] ∈ Rm×nv ,
we denote Z = [t0, t1, · · · , tm−1] ∈ Rm×nv as the in-
put matrix, which contains all the context information.
We consider the L-layer and H-head decoder-only trans-
former model as the R-L, which mainly consists of one
Embedding-layer and L layer transformer-decoder-block
(see Figure 1 (b)). We use d to denote the model dimension,
dk = d/H denotes the attention dimension, and df = 4d
denotes the feed-forward dimension throughout the paper.

Embedding. Token vectors are one-hot vectors, which are
in discrete form. We need to convert the discrete vectors into
continuous vectors first through the Embedding operation:

Z0 = Embedding(Z) := ZWe +Wp,

where Z0 denotes the embedded token sequence of Z,
We ∈ Rnv×d denotes the token-embeding matrix, and
Wp ∈ Rm×d denotes the position-embeding matrix.

Transformer-decoder-block. Let Πnorm denote the Layer-
normlization operator, and σ denote the non-linear acti-
vation function ReLU. Denote TFWl as the l-th layer
transformer-decoder-block with parameter set

W l =
{
Wl

F1,W
l
F2, {Wl

Oh
,Wl

Qh
,Wl

Kh
,Wl

Vh
}Hh=1

}
,

where Wl
F1 ∈ Rd×df , Wl

F2 ∈ Rdf×d, Wl
Oh

∈ Rd×d,
Wl

Qh
∈ Rd×dk , Wl

Kh
∈ Rd×dk , Wl

Vh
∈ Rd×d and Zl =

TFWl

(
Zl−1

)
(l ≥ 1) denotes the output of l-th layer block,

which can be formulated by

TFWl

(
Zl−1

)
= Πnorm

(
σ
(
YlWl

F1

)
Wl

F2 +Yl

)
,

Yl = Πnorm

( ∑
h∈[H]

Al
hW

l
Oh

+ Zl−1

)
.

(4)

Here Al
h denotes the masked self-attention of the h-th head.

Masked Self-attention. Denote softmax as the row-wise
softmax operator, Ql

h = Zl−1Wl
Qh

, Kl
h = Zl−1Wl

Kh
,

Vl
h = Zl−1Wl

Vh
, we have

Al
h = softmax

(
Ql

h(K
l
h)

⊤ +M√
dk

)
Vl

h, (5)

where M ∈ Rm×m is a mask matrix defined as

Mij =

{
0, j ≤ i

−∞, j > i
.

Then, the R-L can be mathematically formulated by

h(Z) := TFWL

(
. . . TFW1

(
Embedding(Z)

))
. (6)
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The T-P is composed of a linear projection and softmax:

g (h (Z)) = softmax
(
h (Z)WP

)
,WP ∈ Rd×nv . (7)

4. Main Results
Note that the tokens in one sequence are dependent, which
we usually call a non-i.i.d. process. We introduce the con-
cept of φ-mixing processes to characterize the dependency
relationship between tokens.
Definition 4.1. Let T = {tj}∞j=−∞ be a stationary process
(Hirschfeld, 1935). T is said to be exponentially φ-mixing
(Dobrushin, 1956) if there exist some constants φ0 > 0,
φ1 > 0 and r > 0 such that the φ-mixing coefficient

φ(k) := sup
n

sup
A∈σ∞

n+k

B∈σn
−∞

|Pr[A | B]− Pr[A]|

≤ φ0 exp (−φ1k
r),∀k ∈ N∗,

where σi
j denotes the σ-algebra generated by the random

variables ti, · · · , tj .

Based on the above definition, we now make the following
assumption on dataset D.
Assumption 4.2. Assume that Xi =

{
ti1, · · · , tim

}
is gen-

erated by a φ-mixing distribution ϕi for all i, and there exists
an unknown distribution U such that U = {ϕi}Ni=1 ∼ U .
Remark 4.3. The above assumption is widely adopted in the
study of non-i.i.d. processes such as Ralaivola et al. (2010);
Heinrich & Pawlas (2013); Vankadara et al. (2022); Liu et al.
(2025b). In Definition 4.1, limk→+∞ φ(k) → 0 means that
A and B will become independent as k increases. When
A and B represent two different sentences, the farther the
distance between A and B is (coming from two different
articles), the smaller the correlation between A and B will
be. Therefore, Assumption 4.2 is reasonable.
Assumption 4.4. There exists a constant Bℓ ∈ R+ satisfy-
ing |ℓ(t̂, t)| ≤ Bℓ for any t̂, t ∈ T , and ℓ is Gℓ-Lipschitz
w.r.t. t̂.

Assumption 4.4 is commonly used in learning theory
(Bartlett & Mendelson, 2002; Shalev-Shwartz & Ben-David,
2014; Liu et al., 2022; Deng et al., 2024; Liu et al., 2025a).
Definition 4.5 (Discrepancy measure). Given the set of
distributions U = {ϕi}Ni=1, we define its discrepancy as

disc(U) := sup
k∈[N ]

1

N

∑
i∈[N ]

∥ϕi − ϕk∥TV ,

where ∥ϕi − ϕk∥TV = sup
t∈T

|ϕi(t)− ϕk(t)| denotes total

variation distance between two distributions.

As shown in (Kuznetsov & Mohri, 2020; Wang et al., 2022a),
the closer the distributions in set U are, the smaller disc(U)
will be. In particular, disc(U) = 0 when ϕ1 = · · · = ϕN .

4.1. Rademacher Complexity Upper Bounds

To mitigate the excess risk defined in Equation (3), we in-
troduce a metric for assessing the complexity of a function
class, known as Rademacher complexity (Mohri & Ros-
tamizadeh, 2008).
Definition 4.6 (Rademacher complexity). Given a sample
set S = {z1, ..., zn} ⊆ Z and a function class F : Z → R,
the empirical Rademacher complexity of F is defined as

R̂S (F) := Eε

[
sup
f∈F

1

n

∑
i∈[n]

εif (zi)

]
, (8)

where ε = {ε1, ..., εn} are i.i.d. Rademacher random vari-
ables satisfying P(εi = 1) = P(εi = −1) = 0.5, i ∈ [n].

Due to the dependence of tokens within a sequence, and
the independence of distinct sequences, it is essential to
establish two separate measures of Rademacher complexity.
By setting S = D and F = ℓ ◦ G ◦ H in Equation (8),
we can define the empirical Rademacher complexity of the
composite function class ℓ ◦ G ◦ H for D as

R̂D (ℓ ◦ G ◦ H) := Eε

[
sup

g∈G,h∈H

1

N

∑
i∈[N ]

εiL̂Xi
(g ◦ h)

]
.

For ease of representation, we denote ℓij = ℓ
(
g ◦ h(zij), zij

)
.

Referring to the definition of Rademacher complexity of
multi-task learning in Wang et al. (2022b), we can also
consider all token sequences, and define the following multi-
sequence Rademacher complexity:

R̃D (ℓ ◦ G ◦ H) := Eε

[
sup

g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

εijℓ
i
j

]
.

Remark 4.7. The Rademacher complexity defined here
closely resembles the “representation-induced Rademacher
complexity” delineated in Deng et al. (2024). However, a
notable distinction exists: the innermost function in their
composite function is fixed, whereas in our definition, it
encompasses the entire function class H.

We primarily focus on the performance of R-L because it
applies to various downstream scenarios after pre-training,
whereas T-P changes as downstream tasks evolve. Conse-
quently, we propose decomposing the Rademacher complex-
ity of G ◦ H into the complexities of the individual function
classes G and H. This approach allows for a more precise
analysis of the influence exerted by H, defined as follows:
Proposition 4.8 (Rademacher complexity decomposition).
Let F : Z → R be a composite function satisfying F =
ℓ ◦ G ◦ H, where ℓ is a loss function and H,G are function
classes. Given a sample set S = {z1, ..., zn} ⊆ Z , for any
g ∈ G satisfying Gg-Lipschitz w.r.t. h ∈ H and ℓ satisfying
Gℓ-Lipschitz w.r.t. g ◦ h ∈ G ◦ H, we have

R̂S (ℓ ◦ G ◦ H) ≤ GℓGgR̂S (H) +GℓR̂S

(
G ◦ ĥ

)
,
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where ĥ is any given function in H.
Theorem 4.9. Given a pre-training dataset D containing N
token sequences {Xi}Ni=1 ⊆ X , satisfying the distribution
conditions in Assumption 4.2. Denote ĝ and ĥ as the optimal
R-L and T-P derived by solving Equation (2), respectively.
Then, under Assumption 4.4, for some φ0 > 0, φ1 > 0 and
r > 0, there holds

ED(ĝ, ĥ) ≤ 6R̃D (ℓ ◦ G ◦ H) +Bℓ

√
8 ln 4

δ

N︸ ︷︷ ︸
I

+Bℓ

√
∥∆m∥2∞ log 2

δ

2m︸ ︷︷ ︸
II

+4Bℓ disc(U),

with probability at least 1 − δ, where ∥∆m∥∞ ≤ 1 +
2
∑m

k=1 φ(k) and φ(k) ≤ φ0 exp (−φ1k
r), ∀k ∈ [m].

The proofs of Proposition 4.8 and Theorem 4.9 are provided
in Appendix A and Appendix B, respectively.
Remark 4.10. Item I represents the generalization error of
NTP pre-training on the dataset D, reflecting the model’s
ability to generalize to unseen token sequences and its over-
all generalization capability within the sequence space. Item
II denotes the average generalization capability on individ-
ual token sequences Xi, indicating the model’s local gen-
eralization ability within the token space. The last item,
disc(U) (see Definition 4.5), reflects the influence of the
quality of the pre-training dataset. Since φ0, φ1, and r are
all greater than 0, the positive series

∑∞
k=1 φ(k) is conver-

gent. Therefore, there exists a constant Cφ1,φ2,r > 0 such
that ∥∆m∥2∞ ≤ Cφ1,φ2,r. For simplicity, we will use the
constant Cφ,r to represent the upper bound of ∥∆m∥2∞ in
the subsequent analysis.

The following corollary can be derived by combining Theo-
rem 4.9 and Proposition 4.8.
Corollary 4.11. Under the same assumptions as Theorem
4.9, if g is Gg-Lipschitz w.r.t. h for any g ∈ G, h ∈ H,
there exists a constant Cφ,r > 0 such that the following
inequality holds with probability at least 1− δ:

ED(ĝ, ĥ) ≤ 6GℓGgR̃D(H)︸ ︷︷ ︸
(I)

+6GℓR̃D(G ◦ ĥ)︸ ︷︷ ︸
(II)

+Bℓ

√
8 ln 4

δ

N
+Bℓ

√
Cφ,r log

2
δ

2m
+ 4Bℓ disc(U).

Remark 4.12. Item (I) is exclusively associated with the
complexity of R-L, while item (II) depends solely on the
complexity of T-P. These two items operate independently,
allowing for separate analysis of the effects of R-L and T-
P on generalization performance. This independence also
simplifies the process of replacing T-P, as it only requires
redefining item (II).

4.2. Capacity of Transformer-decoder Models

To investigate the effect of the parameters within the
transformer-decoder model (i.e., R-L) on the generaliza-
tion performance of NTP, we use the covering number to
quantify the Rademacher complexity of R-L. We begin by
providing a general definition of the covering number.

Definition 4.13 (ϵ-cover and covering number). Denote
(U, ∥ · ∥) as a metric space and V ⊆ U . For any ϵ > 0, V is
called an ϵ-cover of U if for any u ∈ U , there exists v ∈ V
such that ∥u− v∥ ≤ ϵ. The covering number of (U, ∥ · ∥) is
the cardinality of the smallest ϵ-cover, which is defined by

N (U, ϵ, ∥ · ∥) := min{|V | : V is the ϵ-cover of U}.

Assumption 4.14. Assume that

• Πnorm is Gπ-Lipschitz with the ℓ2-norm, i.e., ∀t1, t2 ∈
Rd, ∥Πnorm (t1)−Πnorm (t2)∥ℓ2 ≤ Gπ∥t1 − t2∥ℓ2 .

• ∀l ∈ [L] and h ∈ [H], there exists constants Cl such
that

∥∥Ql
h(K

l
h)

⊤/
√
dk
∥∥
ℓ∞

≤ Cl.

• ∀l ∈ [L], Wl ∈ W l, there exists constants Bl satisfy-
ing ∥Wl∥F ≤ Bl.

The second assumption in Assumption 4.14 is reasonable
due to the presence of the scaling factor

√
dk in the self-

attention mechanism. The first and third assumptions have
been previously used in the analysis of the transformer cov-
ering number (Edelman et al., 2022; Deng et al., 2024).

Since the learnable parameters of the Transformer model
are all fully connected layer parameters, we introduce the
following lemma proposed by Lin & Zhang (2019):

Lemma 4.15. Let X ∈ Rn×din be a given input matrix
with a bounded Frobenius norm, and W ∈ Rdin×dout such
that ∥W∥F ≤ a. Then, we have

lnN ({XW : ∥W∥F ≤ a} , ϵ, ∥ · ∥F )

≤dindout ln

(
1 +

2a∥X∥F
ϵ

)
.

Lemma 4.15 emphasizes the impact of model parameters on
the covering number, aligning with our research objectives.
Based on this lemma, we provide the upper bound of the
logarithmic covering number for masked self-attention as
follows:

Lemma 4.16 (Simplification of Lemma C.10). Given an
input sequence S = {Z1, . . . ,ZN} ∈ Rm×d, denote
Z[N ] = [Z1, . . . ,ZN ] ∈ RNm×d as the concatenated data
matrix. Consider the masked self-attention head A (·) (ig-
nore the layer and head indices) defined in Equation (5), the
corresponding function class can be defined as:

HA
S := {Z 7→ A(Z) : ∥WQ,WK ,WV ∥F ≤ B} .

6
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Then, we have

lnN
(
HA

S , ϵ, ∥ · ∥F
)
≤ ddk ln

(
1 +

B3∥Z∗∥F ∥Z[N ]∥2F√
dkϵ

)
+ d2 ln

(
1 +

eCB
√
N lnm∥Z[N ]∥F

ϵ

)
,

where ∥Z∗∥F = maxi∈[N ] ∥Zi∥F .

Then, based on Lemma 4.16, we can further obtain the upper
bound of the logarithmic covering number for a single-layer
transformer-decoder-block as follows:

Proposition 4.17. For the transformer-decoder-block TFW
(ignoring the layer indices) defined in Equation (4), the
corresponding function class can be defined as

HTF
S := {Z 7→ TFW(Z) : ∥W∥F ≤ B,W ∈ W} .

Then we can get the following covering number bound:

lnN
(
HTF

S , ϵ, ∥ · ∥F
)
≲ 4d2(H + 3) ln

(
1 +

ω

ϵ

)
,

where ω = G2
πB

2(B2+1)(eCB2H
√
N lnm+1)∥Z[N ]∥F .

The following two lemmas mainly explore the Lipschitz
continuity of the transformer decoder model.

Lemma 4.18. For a single transformer-decoder-block
TFW (·) parameterized by W (ignore the layer indices),
let Z, Ẑ ∈ Rm×d be any input matrixes. Then, there holds∥∥∥TFW (Z)− TFW

(
Ẑ
)∥∥∥

F

≲G2
π(B

2 + 1)
(
eCB2Hmd+ 1

) ∥∥∥Z− Ẑ
∥∥∥
F
.

Lemma 4.19. Let Zl ∈ Rm×d as the output matrix of the
l-th layer decoder-block, we have:∥∥Zl
∥∥
F
≤
∏
j∈[l]

G2
π(B

2
j +1)

(
eCjB2

jH
√
lnm+ 1

)
∥Z0∥F .

Based on Proposition 4.17 and Lemmas 4.18 and 4.19
(proved in Appendix C.3), we obtain the following loga-
rithmic covering number upper bound for the R-L.

Theorem 4.20. Let D = {Xi}Ni=1 be a a dataset contain-
ing N token sequences and let Z[N ] = [Z1, . . . ,ZN ] ∈
RNm×nv be the input matrix generated from D, and denote
Z0

[N ] ∈ RNm×d as the embedded matrix. The function class
of the R-L defined in Equation (6) can be defined as

H :=
{
Z 7→ h(Z) : ∥Wl∥F ≤ Bl,W

l ∈ W l,∀l ∈ [L]
}
.

Then, under Assumption 4.14, we have

lnN (H, ϵ, ∥ · ∥F ) ≤
ΘH

L

L∑
l=1

ln

(
1 +

LB2
l sL∥Z0

[N ]∥F
ϵ

)
,

where Θ ≈ 12Ld2 is the number of model parameters and

sL :=
∏
l∈[L]

G2
π(B

2
l + 1)

(
eClB2

l H
√
Nmd+ 1

)
.

Remark 4.21. As demonstrated in Bartlett et al. (2017), the
logarithm of the covering number of H under the infinite-
norm is bounded above by that under the Frobenius-norm,
i.e., lnN (H, ϵ, ∥ · ∥ℓ∞) ≤ lnN (H, ϵ, ∥ · ∥F ). However,
our approach bounds the Frobenius-norm covering number
with a smaller order of O(L) compared to the orders CO(L)

(where C > 1) reported in Edelman et al. (2022); Deng et al.
(2024). This indicates that our method offers a significant
advantage over the previous studies.

4.3. Generalization Bounds for DOMs

Inspired by Bartlett et al. (2017), we use the covering num-
ber to deduce the upper bound of Rademacher complexity.
Then, the excess risk for NTP pre-training can be bounded
by integrating Corollary 4.11 and Theorem 4.20.

Theorem 4.22. Let Z[N ] ∈ RNm×nv be the input se-
quences generated from dataset D. Denote ĝ and ĥ as the
optimal R-L and T-P learned from Equation (2), respectively.
Then, under Assumptions 4.2, 4.4 and 4.14, there exists a
constant Cφ,r > 0 such that the following inequality holds
with probability at least 1− δ:

ED(f̂ , ĥ) ≲O
(√

ΘdHτ1
Nm

)
+Gℓ

√
dnv

Nm

+Bℓ

(√
8 ln 4

δ

N
+

√
Cφ,r log

2
δ

2m
+ 4disc(U)

)
,

where Θ is the number of model parameters, and τ1 =
ln
(
1+ρLsL

)
, with ρL =

∑L
l=1 B

2
l and constant sL defined

in Theorem 4.20.

Remark 4.23. We focus on three parameters: the num-
ber of token sequences N , the maximum length of the
token sequence m, and the number of model parame-
ters Θ. Our bound is O(

√
Θ/Nm +

√
Cφ,r/m), where

O(
√
Θ/Nm) reflects the generalization ability between

token sequences, and O(
√
Cφ,r/m) reflects the general-

ization capacity among tokens within a sequence. Here,
Cφ,r is a constant related to the φ-mixing coefficient, indi-
cating the distribution quality of a single token sequence,
while disc(U) reflects the overall distribution quality of all
token sequences. Our bound captures the impact of both
dataset quality and individual sample quality on general-
ization performance. Unlike previous works (see Table 1),
we show that effective generalization requires both a larger
N and a larger m, enabling the model to generalize across
both sequence space and token space. Additionally, as Θ in-
creases, the total number of tokens Nm should also increase
to achieve better generalization.
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Figure 2. Experiments on MiniMind and DAMO NLP datasets.

Remark 4.24. It should be noted that our bounds remain
valid even when modifications are made to the structure
of the transformer-decoder block. For instance, replacing
post-layer Normalization with pre-layer Normalization or
substituting the ReLU activation function with SiLU. This
is attributable to the fact that such modifications exclusively
affect the logarithmic terms ρL and sL.

5. Experiments
To validate the theoretical contribution of this paper, specifi-
cally, Theorem 4.22, we performed a set of NTP pre-training
experiments in DOMs. These experiments were designed to
systematically examine the influence of model parameters
and sample size on generalization performance.

5.1. Setup

Model Architecture. Our architecture largely follows the
GPT-2 framework, with two key modifications: (1) the adop-
tion of the SiLU activation function and (2) RMSNorm nor-
malization (Zhang & Sennrich, 2019). As demonstrated
in Remark 4.24, these adjustments do not compromise the
validity of our theoretical framework.

Datasets. For pretraining, we employ the MiniMind
dataset1, while our test set consists of 8,192 samples (with a
maximum sequence length of m ≤ 512) carefully selected
from the DAMO NLP dataset2. Both datasets belong to the
category of Chinese text generation datasets. Due to the con-
sistent pretraining corpus, we adopted the same tokenizer
as MiniMind3, preserving a vocabulary size of nv = 6400.

Training Protocol. Our training methodology follows the
approach outlined in MiniMind. To optimize efficiency, we
employ FlashAttention (Dao et al., 2022) for accelerated
attention computation and conduct distributed training on

1https://www.modelscope.cn/datasets/
gongjy/minimind_dataset

2https://www.modelscope.cn/datasets/DAMO_
NLP/lcsts_test_set

3https://github.com/jingyaogong/minimind

8× NVIDIA A800-80GB GPUs using DeepSpeed-Zero2
(Rajbhandari et al., 2020). For optimization, we utilized the
AdamW (Loshchilov & Hutter, 2017) optimizer, combined
with a cosine learning rate scheduler that includes a 20-step
warm-up phase during the initial training stage.

Full specifications for model architecture, dataset prepro-
cessing, and training configurations are detailed in Table 3.

5.2. Main Results

Maximum sequence length m. As demonstrated in Fig-
ure 2(a), we performed experiments with varying maximum
sequence lengths m (64, 128, 256, 512) in the training
dataset while holding all other parameters constant. No-
tably, the test dataset retained a fixed maximum sequence
length of 512 across all evaluations. While models trained
on shorter sequences converge more rapidly, they exhibit
limited generalization capability when applied to longer
sequences. This observation accounts for the monotoni-
cally increasing test loss trend observed for miniNTP-1, 2,
and 3 as the training sequence length decreases. As shown
in Table 2, models trained on shorter sequences deliver
strong performance on test cases with similarly short se-
quences. Importantly, models trained on longer sequences
maintain robust performance even when evaluated on shorter
sequences, highlighting their adaptability.

Table 2. Test sample perplexity (PPL) variations across models
under variable maximum sequence lengths (m).

Model m = 64 m = 128 m = 256 m = 512
miniNTP-1 1.10 69.35 1578.14 316024.25
miniNTP-2 1.24 1.31 224.25 130613.71
miniNTP-3 1.03 1.05 1.08 24343.04
miniNTP-4 1.03 1.16 1.24 1.49

The number of sequences N . For models with identical
architectural configurations, we demonstrate a enhancement
in generalization performance with increasing training se-
quence quantity. As illustrated in Figure 2(b), while holding
model parameters, training hyperparameters, and maximum
sequence length (m = 512) constant, we evaluated perfor-
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Table 3. Model architectures, training data specifications, hyperparameter configurations, and test PPL (m = 512).
Model Θ L H d m N% Batch Size Learning Rate PPL

miniNTP-1 0.029B 8 8 512 64 100 0.5M 5.0e-4 316024.25
miniNTP-2 0.029B 8 8 512 128 100 0.5M 5.0e-4 130613.71
miniNTP-3 0.029B 8 8 512 256 100 0.5M 5.0e-4 24343.04
miniNTP-4 0.029B 8 8 512 512 100 0.5M 5.0e-4 1.49
miniNTP-5 0.029B 8 8 512 512 50 0.5M 5.0e-4 3.17
miniNTP-6 0.029B 8 8 512 512 75 0.5M 5.0e-4 1.95
miniNTP-7 0.002B 6 4 128 512 100 0.5M 1.0e-3 5.76
miniNTP-8 0.09B 12 12 768 512 100 0.5M 6.0e-4 1.13
miniNTP-9 0.31B 24 16 1024 512 100 0.5M 3.0e-4 1.05

mance across 50%, 75%, and 100% subsets of the complete
pretraining dataset. The experimental results reveal that
diminishing training data volume not only compromises
model generalization but also significantly impairs conver-
gence characteristics and training stability.

Model size Θ. Our analysis in Figure 2(c) evaluates how
model parameter size (Θ) affects generalization perfor-
mance under fixed training sequence count (N ) and maxi-
mum length (m), with configurations adapted from Bider-
man et al. (2023). Early training (step<100) shows smaller
models converge faster, but prolonged training demonstrates
larger models achieve superior convergence rates and lower
final losses. As predicted by Theorem 4.20, this divergence
arises from capacity limits: smaller models saturate earlier
while larger ones continue learning from additional tokens.

Final Train Loss

Final Test Loss

Avg Generalization GapMin Test Loss

Stability

0.2

0.4

0.6

0.8

1.0 miniNTP-1
miniNTP-2
miniNTP-3
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miniNTP-6
miniNTP-7
miniNTP-8
miniNTP-9

Figure 3. Model generalization ability radar chart.

Figure 3 provides a comprehensive visualization comparing
the nine models across five distinct evaluation dimensions,
with radial distance from the center indicating performance
quality in each dimension. The analysis reveals that ex-
tending both the maximum sequence length (m) and the
number of training sequences (N ) improves model gen-

eralization in the NTP pretraining task. Notably, increas-
ing m produces more substantial performance gains than
expanding N , though this comes with increased training
complexity. Additionally, while larger model parameters
facilitate learning richer token representations and elevate
the model’s capacity ceiling, this architectural expansion
should be matched with a corresponding increase in total
token quantity to mitigate overfitting risks.

6. Conclusion
This paper presents a generalization error analysis for next-
token prediction pre-training, a widely used paradigm in
large language models. Our theoretical results enhance the
understanding of how model parameters influence general-
ization ability. We find that generalization depends on the
number of token sequences, the maximum sequence length,
and the number of parameters in the transformer model. Em-
pirical evaluations confirm our theoretical findings through
data experiments.

7. Future Work
In the rapidly advancing field of large language models,
theoretical foundations remain underdeveloped. While our
study addresses part of this research gap, we identify sev-
eral promising avenues for future work. First, although our
φ-mixing data modeling approach demonstrates theoreti-
cal validity, empirical verification in practical applications
requires further investigation. Beyond mixing processes, de-
veloping language-specific data distributions could provide
deeper insights into how linguistic properties affect model
behavior. Second, this work primarily uses Rademacher
complexity for theoretical analysis, other frameworks like
stability-based (Liu et al., 2024b; Zhang et al., 2024b) or
information-theoretic (Lu & Van Roy, 2019; Livni, 2023)
methods are viable alternatives. Finally, given the antic-
ipated evolution toward unified multimodal architectures,
extending this research to incorporate diverse data modali-
ties represents a crucial direction for future exploration.
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Appendix
Summary & Technical Route
This paper conducts a comprehensive theoretical analysis by focusing on the pre-training methodology of Large Language
Models (LLMs) known as Next-Token-Prediction (NTP). It categorizes LLMs as transformer decoder-only models (DOMs)
and delves into the empirical successes of NTP despite a lack of theoretical understanding. This work also establishes a
theoretical framework to analyze the generalization behavior of NTP pre-training. We introduce a novel decomposition
of Rademacher complexity to study the representation-learner and token-predictor components of DOMs. The paper also
addresses the dependence between tokens using φ-mixing, a tool commonly used in non-independent scenarios, to delineate
inter-token dependencies. This approach allows for a fine-grained analysis of the generalization ability of NTP pre-training,
considering the model’s structure and the nature of the training data.

The technical route of the paper involves developing a theoretical framework for NTP from a statistical learning perspective.
This work proposes a decomposition law for Rademacher complexity to bound the excess risk of NTP and establish
different bounds on the generalization capability. We refine the estimation of the covering number for multi-layer multi-head
transformer-decoder models, pioneering the incorporation of the mask matrix within the self-attention mechanism under the
Frobenius norm. This paper uses the covering number to derive the corresponding Rademacher complexity upper bound,
extending the theory of (Bartlett et al., 2017) and (Lin & Zhang, 2019) to establish fine-grained generalization bounds for
DOMs-based NTP pre-training. The results are expressed in terms of key parameters that affect the generalization ability,
providing a clear and quantifiable understanding of how NTP pre-training behaves in practice.

Outline of the Appendix
The appendix is mainly structured as follows,

• Section A: Proof of the Proposition 4.8.

• Section B: Proof of the Theorem 4.9.

• Section C: Capacity of DOMs.

– Section C.1: Introduction to the model architecture.
– Section C.2: Restatement to some useful lemmas.
– Section C.3: Proof of the Proposition C.11.
– Section C.4: Proof of the Theorem 4.20.

• Section D: Proof of the Theorem 4.22.
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A. Proof of the Proposition 4.8
Proof.

R̂S(ℓ ◦ G ◦ H) = Eε

sup
f∈F

1

n

∑
i∈[n]

εiℓ ◦ g ◦ h (zi)


(a)

≤ GℓEε

 sup
g∈G,h∈H

1

n

∑
i∈[n]

εi ∥g ◦ h (zi)∥


≤ GℓEε

 sup
g∈G,h∈H

1

n

∑
i∈[n]

εi

∥∥∥g ◦ h (zi)− g ◦ ĥ (zi)
∥∥∥
+GℓEε

sup
g∈G

1

n

∑
i∈[n]

εi

∥∥∥g ◦ ĥ (zi)∥∥∥


(b)

≤ GℓGgEε

sup
h∈H

1

n

∑
i∈[n]

εi

∥∥∥h (zi)− ĥ (zi)
∥∥∥
+GℓR̂S(G ◦ ĥ)

≤ GℓGgEε

sup
h∈H

1

n

∑
i∈[n]

εi ∥h (zi)∥

+GℓGgEε

 1

n

∑
i∈[n]

εi

∥∥∥ĥ (zi)∥∥∥
+GℓR̂S(G ◦ ĥ)

(c)
= GℓGgR̂S(H) +GℓR̂S(G ◦ ĥ),

where ĥ is a any given function in H. Here (a) is by Ledoux-Talagrand contraction inequality, (b) uses the Lipschitz
conditions of g, and (c) uses the property that the Rademacher random variables ε are i.i.d. with zero mean.

B. Proof of Theorem 4.9
Firstly, we give two necessary assumptions which have been mentioned before.

Assumption B.1. Assume that Xi =
[
zi1, · · · , zim

]
∈ Rm×nv is generated by a φ-mixing distribution ϕi, and there exists

an unknown distribution U such that U = {ϕi}Ni=1 ∼ U .

Assumption B.2. Assume there exists a constant Bℓ ∈ R+ satisfying |ℓ(t̂, t)| ≤ Bℓ for any t̂, t ∈ T , and ℓ is Gℓ-Lipschitz
w.r.t. t̂.

Then, we introduce some related lemmas which will be used in our proof. Since {Xi}Ni=1 are independent of each other,
{L̂Xi (g ◦ h)}Ni=1 are also independent of each other, so the generalization error based on the dataset D can be bounded by
the following common theorem.

Lemma B.3 (Shalev-Shwartz & Ben-David (2014)). Given a dataset D = {Xi}Ni=1
i.i.d.∼ D, if loss function ℓ : T × T →

[−Bℓ, Bℓ], Bℓ ∈ R+, then with probability at least 1− δ, the following inequality holds for any h ∈ H and g ∈ G:

LD(g ◦ h) ≤ L̂D(g ◦ h) + 2R̂D(ℓ ◦ G ◦ H) + 4Bℓ

√
2 log 4

δ

N
.

For the non-independent case, Mohri & Rostamizadeh (2010) gave a Rademacher complexity bound under the φ-mxing
distribution. Therefore, under Assumption B.1, we can define the generalization error based on a single token sequence Xi,
mainly using the following theorem:

Lemma B.4 (Mohri & Rostamizadeh (2010)). Given a token sequence Xi = [ti1, · · · , tim] and loss function ℓ : T × T →
[−Bℓ, Bℓ], Bℓ ∈ R+, if {tij}mj=1 follow a φ-mxing distribution ϕi, then for some φ0 > 0, φ1 > 0 and r > 0, with
probability at least 1− δ, the following inequality holds for any h ∈ H and g ∈ G:

∣∣∣Lϕi(g ◦ h)− L̂Xi(g ◦ h)
∣∣∣ ≤ Bℓ

√
∥∆m∥2∞ log 2

δ

2m
,

where ∥∆m∥∞ ≤ 1 + 2
∑m

k=1 φ(k), and φ(k) ≤ φ0 exp (−φ1k
r) for all k ∈ [m].
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Lemma B.5. For the two Rademacher complexity over the dataset D mentioned before, we have the following inequality:

R̂D (ℓ ◦ G ◦ H) ≤ 3R̃D (ℓ ◦ G ◦ H) .

Proof. Let ε′ = {ε′i}Ni=1, ε
′′
= {ε′′

j }mj=1, ε = {{εij}mj=1}Ni=1 be three i.i.d. Rademacher random variable collections, and
ε′, ε

′′
are independent of each other. For ease of representation, we denote ℓij = ℓ

(
g ◦ h(zij), zij

)
. Then, we have:

R̂D (ℓ ◦ G ◦ H) = Eε′

 sup
g∈G,h∈H

1

N

∑
i∈[N ]

ε′i

 1

m

∑
j∈[m]

ℓ
(
g ◦ h(zij), zij

)
= Eε′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

(
ε′iℓ

i
j − ε

′′

j ℓ
i
j + ε

′′

j ℓ
i
j

)
= Eε′′

Eε′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

((
ε′i − ε

′′

j

)
ℓij + ε

′′

j ℓ
i
j

)
≤ Eε′′

Eε′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

(
ε′i − ε

′′

j

)
ℓij


︸ ︷︷ ︸

(I)

+Eε′′

Eε′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

ε
′′

j ℓ
i
j


︸ ︷︷ ︸

(II)

.

For part (I), we denote ε̂ = {{ε̂ij}mj=1}Ni=1, where ε̂ij = 1
2

(
ε′i − ε

′′

j

)
. It’s easy to get ε̂ are i.i.d. random variables, and

the distribution is:

p (ε̂ij) =


1/4, ε̂ij = 1

1/2, ε̂ij = 0

1/4, ε̂ij = −1

.

Then, by the independence of ε′ and ε
′′

, we have:

(I) = 2Eε′′

Eε′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

1

2

(
ε′i − ε

′′

j

)
ℓij


= 2Eε̂

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

ε̂ijℓ
i
j


≤ 2Eε

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

εijℓ
i
j

 .

For part (II), we denote ε̃ = {{ε̃ij}mj=1}Ni=1, where ε̃ij = ε′iε
′′

j . It’s easy to get ε̃ are i.i.d. Rademacher random variables.
We have:

(II) = Eε′

Eε′′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

ε
′′

j ℓ
i
j


= Eε′

Eε′′

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

ε′iε
′′

j ℓ
i
j


= Eε̃

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

ε̃ijℓ
i
j


= Eε

 sup
g∈G,h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

εijℓ
i
j

 .
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Therefore we can get: R̂D (ℓ ◦ G ◦ H) ≤ (I) + (II) ≤ 3R̃D (ℓ ◦ G ◦ H).

Lemma B.6 (Levin & Peres (2017)). Given two probability measures T1 and T2 over instance space X , the following
equality holds:

∥T1 − T2∥TV =
1

2

∑
z∈X

|T1(z)− T2(z)|.

We then give some necessary symbol descriptions as follows:

g∗, h∗ = arg min
g∈G,h∈H

LD (g ◦ h) , (9)

k = arg max
i∈[N ]

Lϕi (g
∗ ◦ h∗) . (10)

In the above symbols, g∗ and h∗ in (9) are the Token-Predictor and Representation-Learner that minimize the expected risk,
exactly the best g and h that we hope to learn through (2). k represents the subscript that maximizes the expected risk based
on distribution Tk (k ∈ [N ]) when using g∗ and h∗, therefore Tk represents the worst distribution in U = {Tk}Nk=1. Based
on the above lemmas and notations, we begin the proof of Theorem 1.

Proof. We first perform an error decomposition on the excess risk defined in (3):

ED(ĝ, ĥ) = LD(ĝ ◦ ĥ)− LD (g∗ ◦ h∗)

= LD(ĝ ◦ ĥ)− L̂D(ĝ ◦ ĥ) + L̂D(ĝ ◦ ĥ)− LD (g∗ ◦ h∗)

≤ LD(ĝ ◦ ĥ)− L̂D(ĝ ◦ ĥ)︸ ︷︷ ︸
I

+ L̂D

(
g∗ ◦ ĥ

)
− LD (g∗ ◦ h∗)︸ ︷︷ ︸
II

,

Bounding I : According to Lemma B.3, we can get

I = LD(ĝ ◦ ĥ)− L̂D(ĝ ◦ ĥ)

≤ 2R̂D (ℓ ◦ G ◦ H) + 4Bℓ

√
2 log 4

δ

N
,

Bounding II :

II = L̂D

(
g∗ ◦ ĥ

)
− LD (g∗ ◦ h∗)

=
1

N

∑
i∈[N ]

(
L̂xi

(
g∗ ◦ ĥ

)
− LT i (g∗ ◦ h∗)

)
=

1

N

∑
i∈[N ]

(
L̂xi

(
g∗ ◦ ĥ

)
− Lϕi

(
g∗ ◦ ĥ

)
+ Lϕi

(
g∗ ◦ ĥ

)
− Lϕi (g

∗ ◦ h∗)
)

≤ 1

N

∑
i∈[N ]

∣∣∣L̂xi

(
g∗ ◦ ĥ

)
− Lϕi

(
g∗ ◦ ĥ

)∣∣∣
︸ ︷︷ ︸

III

+
1

N

∑
i∈[N ]

(
Lϕi

(
g∗ ◦ ĥ

)
− Lϕi

(g∗ ◦ h∗)
)

︸ ︷︷ ︸
IV

,

Bounding III : According to Lemma B.4, we can get

III =
1

N

∑
i∈[N ]

∣∣∣L̂Xi

(
g∗ ◦ ĥ

)
− Lϕi

(
g∗ ◦ ĥ

)∣∣∣
≤ Bℓ

√
∥∆m∥2∞ log 2

δ

2m
,
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Bounding IV :

IV =
1

N

∑
i∈[N ]

(
Lϕi

(
g∗ ◦ ĥ

)
− Lϕi

(g∗ ◦ h∗)
)

≤ 1

N

∑
i∈[N ]

(LTk
(g∗ ◦ h∗)− Lϕi

(g∗ ◦ h∗)) +
1

N

∑
i∈[N ]

(
Lϕi

(
g∗ ◦ ĥ

)
− LTk

(
g∗ ◦ ĥ

))

≤ 1

N

∑
i∈[N ]

(∑
z∈X

|Tk(z)− ϕi(z)| · ℓ (g∗ ◦ h∗(z), z)

)
+

1

N

∑
i∈[N ]

(∑
z∈X

|ϕi(z)− Tk(z)| · ℓ
(
g∗ ◦ ĥ(z), z

))

≤ 2Bℓ

N

∑
i∈[N ]

(∑
z∈X

|ϕi(z)− Tk(z)|

)
(i)
=

4Bℓ

N

∑
i∈[N ]

∥ϕi − Tk∥TV

≤ 4Bℓ disc(U),

where (i) is by Lemma B.6. Combining the above processes and by Lemma B.5, Theorem 1 is obtained.

C. Capacity of DOMs
C.1. Model architecture

In this section, we describe the architecture and function class of the decoder-only transformer model in detail. Given a
pre-training dataset D = {Xi}Ni=1 ⊆ Rm×nv containing N token sequences, where m represents the maximum word vector
length and nv represents the vocabulary size. We can get N input matrixes {Zi}Ni=1 ⊆ Rm×nv .We first introduce two
normalization operations that will be used. For a given matrix A ∈ Rn×m, we denote softmax (·) as the row-wise softmax
operator, which can be defined as:

softmax (A)i,j =
exp(Ai,j)∑

j′∈[m] exp(Ai,j′)
. (11)

Let Πnorm (·) denote the Layer-norm operator (Ba et al., 2016), which can be defined as:

Πnorm (A)i,j =
Ai,j − µ

δ
,where

{
µ = 1

m

∑
j∈m Ai,j

δ =
√

1
m

∑
j∈[m] (Ai,j − µ)2

. (12)

We consider a L-layer and H-head decoder-only transformer model as our Representation-Learner h(·), which mainly
consists of one Embedding-layer and L layer transformer-decoder-block. We use d to denote the model dimension,
dk = d/H denotes the attention dimension, and df = 4d denotes the feed-forward dimension throughout the paper.
Given a token sequence Z ∈ Rm×nv as input matrix, the lth layer’s output is:

Zl =

{
Embedding (Z) , l = 0

TFWl

(
Zl−1

)
, l ∈ [L]

, (13)

here Embedding (Z) = ZWe +Wp, where We ∈ Rnv×d denotes the token-embeding matrix, Wp ∈ Rm×d denotes the
position-embeding matrix. Note that matrices We and Wp are learnable, but we can also directly use the pre-trained We

and calculate Wp using sine and cosine functions, the specific calculation method can be found in (V aswaniet al., 2017).
To simplify our analysis, we choose the latter.
TFWl (·) denotes the l-th layer transformer-decoder-block with

W l =

{
Wl

F1,W
l
F2,
{
Wl

Oh

}H
h=1

,
{
Wl

Qh

}H
h=1

,
{
Wl

Kh

}H
h=1

,
{
Wl

Vh

}H
h=1

∈ Rd×df ,Rdf×d,Rd×d,Rd×dk ,Rd×dk ,Rd×d

}
(14)
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as parameters, which can be defined as:

TFWl

(
Zl−1

)
= Πnorm

(
FFN

(
Yl
))

,

Yl = Πnorm
(
MHA

(
Zl−1

))
,

(15)

where FFN (·) denotes the Feed-Forward Neural Network with Residual Connections:

FFN
(
Yl
)
= σ

(
YlWl

F1

)
Wl

F2 +Yl, (16)

where σ (·) denotes the activation function, and we use ReLU throughout the paper. MHA(·) denotes the Masked-Mutil-
Head-Attention with Residual Connections:

MHA
(
Zl−1

)
=
∑

h∈[H]

Al
h

(
Zl−1

)
Wl

Oh
+ Zl−1, (17)

here Al
h (·) denotes the Self-Attention head:

Al
h

(
Zl−1

)
= softmax

(
Ql

h

(
Kl

h

)⊤
+M

√
dk

)
Vl

h, (18)

where Ql
h = Zl−1Wl

Qh
, Kl

h = Zl−1Wl
Kh

, Vl
h = Zl−1Wl

Vh
denote Q, K, V matrix respectively, and

M =


0 −∞ −∞ · · · −∞
0 0 −∞ · · · −∞
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ Rm×m (19)

is a given mask matrix.
Therefore the Representation-Learner can be defined as h(X) = ZL. And the hypothesis class of h(X) is defined as:

H =

{
X 7→TFWL (TFWL−1 . . . TFW1 (Embedding (X))) :∥∥Wl

F1

∥∥
F
,
∥∥Wl

F2

∥∥
F
,
∥∥Wl

Oh

∥∥
F
,
∥∥Wl

Qh

∥∥
F
,
∥∥Wl

Kh

∥∥
F
,
∥∥Wl

Vh

∥∥
F
≤ Bl,∀l ∈ [L],∀h ∈ [H]

}
. (20)

The Token-Predictor has many options, there we use a simple linear projection layer and softmax:

g (h (X)) = softmax(ZLWP ), (21)

where WP ∈ Rd×nv .

Assumption C.1. Assume that

• Πnorm is Gπ-Lipschitz with the ℓ2-norm, i.e., ∀t1, t2 ∈ Rd,

∥Πnorm (t1)−Πnorm (t2)∥ℓ2 ≤ Gπ∥t1 − t2∥ℓ2 .

• ∀l ∈ [L] and h ∈ [H], there exists constants Cl such that∥∥Ql
h(K

l
h)

⊤/
√
dk
∥∥
ℓ∞

≤ Cl.

• ∀l ∈ [L], Wl ∈ W l, there exists constants Bl satisfying

∥Wl∥F ≤ Bl.
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C.2. Useful Lemmas

Here, we use the covering number to bound Rademacher complexity, so we first introduce the definition of the covering
number and provide some useful lemmas and propositions.

Definition C.2 (ϵ-cover and covering numbe). Denote (U, ∥ · ∥) as a normed space and V ⊆ U . For any ϵ > 0, V is called
an ϵ-cover of U if for any u ∈ U , there exists v ∈ V such that ∥u − v∥ ≤ ϵ. The covering number of the normed space
(U, ∥ · ∥) is the cardinality of the smallest ϵ-cover, which is defined by N (U, ϵ, ∥ · ∥) := min{|V | : V is an ϵ-cover of U}.

Lemma C.3 (Lemma 9 of Lin & Zhang (2019)). Let W := {w : w ∈ Rd, ∥w∥2 ≤ a}, then for any ϵ > 0, we have

lnN (W, ϵ, ∥ · ∥2) ≤ d ln

(
1 +

2a

ϵ

)
.

Lemma C.4 (Lemma 10 of Lin & Zhang (2019)). Let X ∈ Rn×din be a given input matrix with bounded F-norm, and
W ∈ Rdin×dout satisfying ∥W∥F ≤ a, then

lnN ({XW : ∥W∥F ≤ a} , ϵ, ∥ · ∥F ) ≤ dindout ln

(
1 +

2a∥X∥F
ϵ

)
.

Proof. Let Ŵ be the ϵ-cover of {W : ∥W∥F ≤ a} such that ∥W − Ŵ∥F ≤ ϵ, then

∥XW −XŴ∥F ≤ ∥X∥F ∥W − Ŵ∥F ≤ ϵ∥X∥F .

This means that any ϵ-cover of {W : ∥W∥F ≤ a} is also an ϵ∥X∥F -cover for {XW : ∥W∥F ≤ a}, we have

lnN ({XW : ∥W∥F ≤ a} , ϵ, ∥ · ∥F ) ≤ lnN
(
{W : ∥W∥F ≤ a} , ϵ

∥X∥F
, ∥ · ∥F

)
.

We denote W̄ ∈ Rdindout as the one dimensional vector which is obtained by reshaping W. Then by Lemma C.3, we have

lnN
(
{W : ∥W∥F ≤ a} , ϵ

∥X∥F
, ∥ · ∥F

)
≤ lnN

({
W̄ : ∥W̄∥2 ≤ a

}
,

ϵ

∥X∥F
, ∥ · ∥F

)
≤ dindout ln

(
1 +

2a∥X∥F
ϵ

)
.

Lemma C.5 (Extension of (Bartlett et al., 2017)). Let F be a real-valued function class taking values in [0, c], and assume
that 0 ∈ F . Then the empirical Rademacher complexity of F can be bounded as:

R̂S(F) ≤ inf
α>0

(
4α√
n
+

12

n

∫ c
√
n

α

√
lnN

(
F|S , ϵ, ∥ · ∥2

)
dϵ

)
,

where S represents the dataset containing n samples.

Lemma C.6. Assume that f(x) is a continouous function on [a, b] satisfying f(x) > 0, and g(x) is a continouous
concave(downward) function on the range of f(x). Then we have:

1

b− a

∫ b

a

g(f(x))dx ≤ g

(
1

b− a

∫ b

a

f(x)dx

)
.

Proof. We divide the interval [a, b] into n eaqual parts, let xi = a+ i
n (b− a)(i = 0, 1, 2, · · · , n), then ∆i = xi − xi−1 =

b−a
n (i = 1, 2, · · · , n). Since g(x) is a concave function, we can use Jensen’s inequality to get:

1

b− a

n∑
i=1

g(f(xi))∆i =

n∑
i=1

1

n
g(f(xi)) ≤ g

(
n∑

i=1

1

n
f(xi)

)
= g

(
1

b− a

n∑
i=1

f(xi)∆i

)
.

Combining the integrability of continuous functions and the definition of integral, let n → ∞ in the above formula, we can
get the result.
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Lemma C.7. Let Πnorm (·) be the layer normlization operator defined in (12), for any matrix X ∈ Rm×d, we have
∥Πnorm (X) ∥F ≤

√
md.

Proof.

∥Πnorm (X) ∥F =

√√√√∑
i∈[m]

∑
j∈[d]

X2
i,j

ξ2 + 1
d

∑
j′∈[d] X

2
i,j′

≤

√√√√∑
i∈[m]

∑
j∈[d]

X2
i,j

1
d

∑
j′∈[d] X

2
i,j′

=
√
md

Lemma C.8. Let softmax (·) be the row-wise softmax function defined as (11), for any matrix X ∈ Rm×m obeying
∥X∥ℓ∞ ≤ C, we have:

∥softmax (X)∥F ≤ eC and ∥softmax (X+M)∥F ≤ eC
√
lnm,

where M is the given mask matrix defined in (19).

Proof. Denote X = (xij)m×m and softmax (X) = (yij)m×m, we have:

yij =
exij∑

j′∈[m] e
xij′

≤ eC

me−C
=

e2C

m
.

Then we can get:

∥softmax (X)∥F =

√∑
i∈[m]

∑
j∈[m]

y2ij ≤

√√√√∑
i∈[m]

∑
j∈[m]

yij
e2C

m
= eC ,

here we uses
∑

j∈[m] yij = 1,∀i ∈ [m]. When adding the mask matrix M, we have:

X+M =


x11 −∞ −∞ · · · −∞
x21 x22 −∞ · · · −∞

...
...

...
. . .

...
xm1 xm2 xm3 · · · xmm

 , softmax (X+M) =


y′11 0 0 · · · 0
y′21 y′22 0 · · · 0

...
...

...
. . .

...
y′m1 y′m2 y′m3 · · · y′mm

 ,

where

y′kj =

{
exkj∑

j′∈[k] e
x
kj′ , j ≤ k

0 , j > k
.

Similarly we can get:

∥softmax (X+M)∥F ≤

√√√√∑
k∈[m]

∑
j∈[k]

y′kj
e2C

k
= eC

√√√√∑
k∈[m]

1

k
≲ eC

√
lnm.

Here we use the fact: (1 + 1
2 + · · ·+ 1

m − lnm) → γ, where γ ≈ 0.577218 called Euler constant.

Lemma C.9. The softmax is Gs − Lipschitz in the ℓ2 − norm, and Gs ≤ 4
√
3

9 , which means for any x,y ∈ Rm, we
have:

∥softmax(x)− softmax(y)∥ℓ2 ≤ 4
√
3

9
∥x− y∥ℓ2 .
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Proof. Let ej denote the jth element of softmax (x), the Jacobian satisfies:

∥J(x)∥F =
∥∥diag(softmax(x))− softmax(x) softmax(x)⊤

∥∥
F

=

√∑
i∈[m]

∑
j∈[m]

(ei (I [i = j]− ej))
2

=

√√√√√∑
i∈[m]

e2i

1− ei +
∑
j ̸=i

ej

2

=

√∑
i∈[m]

4e2i (1− ei)
2

=

√∑
i∈[m]

4ei (e3i − 2e2i + ei)

≤

√√√√16

27

∑
i∈[m]

ei

=
4
√
3

9
,

where the last inequality uses the fact: x3 − 2x2 + x ≤ 4
9 , x ∈ [0, 1].

Denote z = y − x, according to the definition of derivative, we have:

lim
δ→0

softmax(x+ δz)− softmax(x)

δ
= J(x)z.

Integrating along δ = 0 to 1 under ∥J(x)z∥ℓ2 ≤ 4
√
3

9 ∥z∥ℓ2 can obtain the result.

C.3. Proof of Proposition 4.17

Lemma C.10 (Covering number of masked self-attention head). Given an input sequence S = {Z1, . . . ,ZN} ∈ Rm×d,
denote Z[N ] = [Z1, . . . ,ZN ] ∈ RNm×d as the concatenated data matrix. Consider the Self-Attention head A (·) (ignore
the layer and head indices) defined in Equation (18), the corresponding function class can be defined as:

HA
S :=


A =

 A (Z1)
...

A (ZN )

 : A (Zi) = softmax

(
ZiWQ (ZiWK)

⊤
+M√

dk

)
ZiWV

: ∥WQ∥F , ∥WK∥F , ∥WV ∥F ≤ B

 ,

then we can get the following covering number bound:

lnN
(
HA

S , ϵ, ∥ · ∥F
)
≤ d2 ln

(
1 +

2eCB
√
N lnm∥Z[N ]∥F

ϵ

)
+ 2ddk ln

(
1 +

8GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵ

)
.

Proof. Step 1: Denote CV as a ϵV -cover of set HV
S := {V = Z[N ]WV : ∥WV ∥F ≤ B}, then by LemmaB.6 we have:

lnN
(
HV

S , ϵV , ∥ · ∥F
)
≤ d2 ln

(
1 +

2B∥Z[N ]∥F
ϵV

)
.

Step 2: Let CQ to be a ϵQ-cover of set HQ
Z := {Q = ZWQ : ∥WQ∥F ≤ B}, and CK to be a ϵK-cover of set

HK
Z := {K = ZWK : ∥WK∥F ≤ B}. We can use CQ and CK to construct a set as following:

CS :=

S =

 S1 0
. . .

0 SN

 : Si = softmax

(
ZiWQ (ZiWK)

⊤
+M√

dk

)
: WQ ∈ CQ,WK ∈ CK

 .
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We consider the following set:

HS
S :=

S =

 S1 0
. . .

0 SN

 : Si = softmax

(
ZiWQ (ZiWK)

⊤
+M√

dk

)
: ∥WQ∥F , ∥WK∥F ≤ B

 ,

then for ∀ϵ > 0 and any S ∈ HS
S , there exists Ŝ ∈ CS such that:

∥∥∥S− Ŝ
∥∥∥
F
=

∥∥∥∥∥∥∥
 S1 0

. . .
0 SN

−

 Ŝ1 0
. . .

0 ŜN


∥∥∥∥∥∥∥
F

=

√√√√√√∑
i∈[N ]

∥∥∥∥∥∥∥softmax

(
ZiWQ (ZiWK)

⊤
+M√

dk

)
− softmax

ZiŴQ

(
ZiŴK

)⊤
+M

√
dk


∥∥∥∥∥∥∥
2

F

(i)

≤ Gs√
dk

√√√√∑
i∈[N ]

∥∥∥∥ZiWQ (ZiWK)
⊤ − ZiŴQ

(
ZiŴK

)⊤∥∥∥∥2
F

≤ Gs√
dk

√√√√∑
i∈[N ]

(∥∥∥(ZiWQ − ZiŴQ

)
(ZiWK)

⊤
∥∥∥
F
+

∥∥∥∥ZiŴQ

[
(ZiWK)

⊤ −
(
ZiŴK

)⊤]∥∥∥∥
F

)2

≤ GsB√
dk

(ϵQ + ϵK)

√∑
i∈[N ]

∥Zi∥2F

≤ GsB√
dk

(ϵQ + ϵK) ∥Z[N ]∥F

(ii)
= ϵ.

Evoking Lemma C.9 we have (i), and by setting ϵQ = ϵK =
√
dk

2GsB∥Z[N]∥F
ϵ can get (ii). Therefore CS is a cover of HS

S ,
then by Lemma C.4 we have:

lnN
(
HS

S , ϵ, ∥ · ∥F
)
≤ ln |CS| ≤ ln |CQ|+ ln |CK | ≤ 2ddk ln

(
1 +

4GsB
2∥Z∗∥F ∥Z[N ]∥F√

dkϵ

)
,

where ∥Z∗∥F = maxi∈[N ] ∥Zi∥F .

Step 3: For every given V̂ ∈ CV , we can construct the set HS
S ◦ V̂ :=

{
SV̂ : S ∈ HS

S

}
and CS ◦ V̂ :=

{
SV̂ : S ∈ CS

}
,

we denote C
(
CS ◦ V̂, ϵS , ∥ · ∥F

)
as a ϵS-cover of CS ◦ V̂. Then for any SV̂ ∈ HS

S ◦ V̂, we can find ŜV̂ ∈

C
(
CS ◦ V̂, ϵS , ∥ · ∥F

)
such that: ∥∥∥SV̂ − ŜV̂

∥∥∥
F
≤
∥∥∥S− Ŝ

∥∥∥
F
∥V̂∥F ≤ ϵS∥Z[N ]∥FB.

We can Choose ϵS = ϵA
∥Z[N]∥FB to get that C

(
CS ◦ V̂, ϵS , ∥ · ∥F

)
is a ϵA-cover of HS

S ◦ V̂ which can be denoted as

C
(
HS

S ◦ V̂, ϵA, ∥ · ∥F
)

. Then we have:

sup
V̂∈CV

ln
∣∣∣C (HS

S ◦ V̂, ϵA, ∥ · ∥F
)∣∣∣ ≤ sup

V̂∈CV

ln
∣∣∣C (CS ◦ V̂, ϵS , ∥ · ∥F

)∣∣∣ ≤ 2ddk ln

(
1 +

4GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵA

)
.

Then we construct a set CA:
CA =

⋃
V̂∈CV

C
(
HS

S ◦ V̂, ϵA, ∥ · ∥F
)
,
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which is easy to get:

ln |CA| ≤ ln |CV |+ sup
V̂∈CV

ln
∣∣∣C (HS

S ◦ V̂, ϵA, ∥ · ∥F
)∣∣∣

≤ d2 ln

(
1 +

2B∥Z[N ]∥F
ϵV

)
+ 2ddk ln

(
1 +

4GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵA

)
.

Step 4: Next we will proof that CA covers HA
S . For any A ∈ HA

S , we can find Â ∈ CA such that:∥∥∥A− Â
∥∥∥
F
=
∥∥∥SV − ŜV̂

∥∥∥
F

≤
∥∥∥SV − SV̂

∥∥∥
F
+
∥∥∥SV̂ − ŜV̂

∥∥∥
F

≤ ∥S∥F
∥∥∥V − V̂

∥∥∥
F
+ ϵA

=

√∑
i∈[N ]

∥Si∥2F ϵV + ϵA

≤
√
N lnmeCϵV + ϵA,

where the last inequality uses Lemma C.8. Then by setting ϵV = ϵ
2eC

√
N lnm

, ϵA = ϵ
2 , we can get:

lnN
(
HA

S , ϵ, ∥ · ∥F
)
≤ ln |CA|

≤ d2 ln

(
1 +

2eCB
√
N lnm∥Z[N ]∥F

ϵ

)
+ 2ddk ln

(
1 +

8GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵ

)
.

Proposition C.11 (Covering number of transformer-decoder-block). Given an input sequence S = {Z1, . . . ,ZN} ∈ Rm×d,
denote Z[N ] = [Z1, . . . ,ZN ] ∈ RNm×d as the concatenated data matrix. Consider the transformer-decoder-block
TF (·)(ignore the layer indices) defined in Equation (15), the corresponding function class can be defined as:

HTF
S :=



Z 7→Πnorm (σ (YWF1)WF2 +Y) ,Y = Πnorm

(∑
h∈H

Ah (Z)WOh
+ Z

)
,

Ah (Z) = softmax

(
ZWQh

(ZWKh
)
⊤
+M√

dk

)
ZWVh

:

∥WF1∥F , ∥WF2∥F , ∥WOh
∥F , ∥WQh

∥F , ∥WKh
∥F , ∥WVh

∥F ≤ B, ∀h ∈ [H]


,

then we can get the following covering number bound:

lnN
(
HTF

S , ϵ, ∥ · ∥F
)
≲ 4d2(H + 3) ln

1 +
G2

πB
2(B2 + 1)

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵ

 .

Proof. Step 1: We first consider the function class of muti-head-attention MHA(·), which can be defined as:

HMA

S :=

{
MA =

∑
h∈H

AhWOh
+ Z[N ] : Ah ∈ HAh

S , ∥WOh
∥F ≤ B, ∀h ∈ [H]

}
,

where

HAh

S :=


Ah =

 Ah (Z1)
...

Ah (ZN )

 : Ah (Zi) = softmax

(
ZiWQh

(ZiWKh
)
⊤
+M√

dk

)
ZiWVh

: ∥WQh
∥F , ∥WKh

∥F , ∥WVh
∥F ≤ B

 .
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For any h ∈ [H], denote CAh
as a ϵA-cover of HAh

S , we select one element Âh ∈ CAh
to construct the following set:

Âh ◦WOh
=
{
ÂhWOh

: ∥WOh
∥F ≤ B

}
,

let C
(
Âh ◦WOh

, ϵd, ∥·∥F
)
ϵd-covers Âh ◦WOh

, we have:

ln
∣∣∣C (Âh ◦WOh

, ϵd, ∥·∥F
)∣∣∣ ≤ sup

Âh∈CAh

lnN
(
Âh ◦WOh

, ϵd, ∥·∥F
)

≤ sup
Âh∈CAh

d2 ln

(
1 +

2B∥Âh∥F
ϵd

)

≤ d2 ln

(
1 +

2eCB2
√
N lnm∥Z[N ]∥F
ϵd

)
.

Now we can construct the ϵd-cover of set
{
AhWOh

: Ah ∈ HAh

S , ∥WOh
∥F ≤ B

}
as :

Cheadh
=

⋃
Âh∈CAh

C
(
Âh ◦WOh

, ϵd, ∥·∥F
)
.

Combined with Lemma C.10, it is easy to get the following covering number bound:

lnN
(
HMA

S , ϵd, ∥ · ∥F
)
≤H ln |Cheadh

|

≤H

(
ln |CAh

|+ sup
Âh∈CAh

ln
∣∣∣C (Âh ◦WOh

, ϵd, ∥·∥F
)∣∣∣)

≤d2H ln

(
1 +

2eCB
√
N lnm∥Z[N ]∥F

ϵA

)
+ 2ddkH ln

(
1 +

8GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵA

)

+ d2H ln

(
1 +

2eCB2
√
N lnm∥Z[N ]∥F
ϵd

)
.

Step 2: Now, we consider the Feed-Forward Neural Network FFN (·) defined in (16), which consists of two fully-connected
layers. The hypothesis class of fully-connected layer 1 can be defined as:

HF1

S =
{
Y[N ]WF1 : Y[N ] = Πnorm (MA) ,MA ∈ HMA

S , ∥WF1∥F ≤ B
}
.

Denote CM as a ϵd-cover of HMA

S , we select one element M̂A ∈ CM to construct the following set:

M̂A ◦WF1 =
{
Πnorm (M̂A)WF1 : ∥WF1∥F ≤ B

}
,

let C
(
M̂A ◦WF1, ϵF1, ∥·∥F

)
ϵF1-covers M̂A ◦WF1, we have:

ln
∣∣∣C (M̂A ◦WF1, ϵF1, ∥·∥F

)∣∣∣ ≤ sup
M̂A∈CM

lnN
(
M̂A ◦WF1, ϵF1, ∥·∥F

)
≤ sup

M̂A∈CM

ddf ln

(
1 +

2B∥Πnorm (M̂A)∥F
ϵF1

)

≤ sup
Âh∈CAh

ddf ln

1 +
2BGπ

(
H∥Âh∥FB + ∥Z[N ]∥F

)
ϵF1


≤ ddf ln

1 +
2BGπ

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵF1

 .
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Now we can construct the ϵF1-cover of HF1

S as:

CF1
=

⋃
M̂A∈CM

C
(
M̂A ◦WF1, ϵF1, ∥·∥F

)
.

We have the following covering number bound:

ln |CF1 | ≤ ln |CM |+ sup
M̂A∈CM

ln
∣∣∣C (M̂A ◦WF1, ϵF1, ∥·∥F

)∣∣∣
≤d2H ln

(
1 +

2eCB
√
N lnm∥Z[N ]∥F

ϵA

)
+ 2ddkH ln

(
1 +

8GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵA

)

+ d2H ln

(
1 +

2eCB2
√
N lnm∥Z[N ]∥F
ϵd

)
+ ddf ln

1 +
2BGπ

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵF1

 .

Step 3: Next, we consider the hypothesis class of fully-connected layer 2:

HF2

S =
{
σ
(
F[N]

)
WF2 +Y[N] : F[N] ∈ HF1

S ,Y[N] = Πnorm (MA) ,MA ∈ HMA

S , ∥WF2∥F ≤ B
}
.

For every element F̂[N ] ∈ CF1 and M̂A ∈ CM , we construct the following set:

F̂[N ] ◦WF1 ◦ M̂A =
{
σ
(
F̂[N ]

)
WF2 +Πnorm (M̂A) : ∥WF2∥F ≤ B

}
,

let C
(
F̂[N ] ◦WF1 ◦ M̂A, ϵF2, ∥·∥F

)
ϵF2-covers F̂[N ] ◦WF1 ◦ M̂A, we have:

ln
∣∣∣C (F̂[N ] ◦WF1 ◦ M̂A, ϵF2, ∥·∥F

)∣∣∣ ≤ sup
F̂[N]∈CF1

,M̂A∈CM

lnN
(
F̂[N ] ◦WF1 ◦ M̂A, ϵF2, ∥·∥F

)
= sup

F̂[N]∈CF1

lnN
(
F̂[N ] ◦WF1, ϵF2, ∥·∥F

)
≤ sup

F̂[N]∈CF1

ddf ln

(
1 +

2B∥F̂[N ]∥F
ϵF2

)

≤ sup
M̂A∈CM

ddf ln

(
1 +

2B2∥Πnorm (M̂A)∥F
ϵF2

)

≤ sup
Âh∈CAh

ddf ln

1 +
2B2Gπ

(
H∥Âh∥FB + ∥Z[N ]∥F

)
ϵF2


≤ ddf ln

1 +
2B2Gπ

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵF2

 .

Now we can construct the ϵF2-cover of HF2

S as:

CF2 =
⋃

F̂[N]∈CF1
,M̂A∈CM

C
(
F̂[N ] ◦WF1 ◦ M̂A, ϵF2, ∥·∥F

)
.
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We have the following covering number bound:

ln |CF2
| ≤ ln |CF1

|+ ln |CM |+ sup
F̂[N]∈CF1

,M̂A∈CM

ln
∣∣∣C (F̂[N ] ◦WF1 ◦ M̂A, ϵF2, ∥·∥F

)∣∣∣
≤2d2H ln

(
1 +

2eCB
√
N lnm∥Z[N ]∥F

ϵA

)
+ 4ddkH ln

(
1 +

8GsB
3∥Z∗∥F ∥Z[N ]∥2F√

dkϵA

)

+ 2d2H ln

(
1 +

2eCB2
√
N lnm∥Z[N ]∥F
ϵd

)
+ ddf ln

1 +
2BGπ

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵF1


+ ddf ln

1 +
2B2Gπ

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵF2

 .

Step 4: To get the covering number of HTF
S , we construct the following set:

CT = {Πnorm (F2) : F2 ∈ CF2
} ,

which is an ϵ-cover of HTF
S that can be verified. For any Z[N ] ∈ HTF

S , we can find a Ẑ[N ] ∈ CT such that:∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F
=
∥∥∥Πnorm

(
σ
(
Y[N ]WF1

)
WF2 +Y[N ]

)
−Πnorm

(
σ
(
Ŷ[N ]ŴF1

)
ŴF2 + Ŷ[N ]

)∥∥∥
F

≤Gπ

∥∥∥σ (Y[N ]WF1

)
WF2 − σ

(
Y[N ]WF1

)
ŴF2

∥∥∥
F

+Gπ

∥∥∥σ (Y[N ]WF1

)
ŴF2 − σ

(
Ŷ[N ]ŴF1

)
ŴF2

∥∥∥
F
+Gπ

∥∥∥Y[N ] − Ŷ[N ]

∥∥∥
F

≤Gπ

(
ϵF2 +B

∥∥∥Y[N ]WF1 − Ŷ[N ]ŴF1

∥∥∥
F
+
∥∥∥Y[N ] − Ŷ[N ]

∥∥∥
F

)
≤Gπ

(
ϵF2 +B

∥∥∥Y[N ]WF1 −Y[N ]ŴF1

∥∥∥
F
+B

∥∥∥Y[N ]ŴF1 − Ŷ[N ]ŴF1

∥∥∥
F
+
∥∥∥Y[N ] − Ŷ[N ]

∥∥∥
F

)
≤Gπ

(
ϵF2 +BϵF1 + (B2 + 1)

∥∥∥Y[N ] − Ŷ[N ]

∥∥∥
F

)
.

For
∥∥∥Y[N ] − Ŷ[N ]

∥∥∥
F

we have:

∥∥∥Y[N ] − Ŷ[N ]

∥∥∥
F
=

∥∥∥∥∥Πnorm

(∑
h∈H

AhWOh
+ Z[N ]

)
−Πnorm

(∑
h∈H

ÂhŴOh
+ Z[N ]

)∥∥∥∥∥
F

≤ Gπ

∑
h∈H

∥∥∥AhWOh
− ÂhŴOh

∥∥∥
F

≤ Gπ

∑
h∈H

(∥∥∥AhWOh
−AhŴOh

∥∥∥
F
+
∥∥∥AhŴOh

− ÂhŴOh

∥∥∥
F

)
≤ Gπ (Hϵd +BHϵA) .

In summary, we have:∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F
≤ Gπ

(
ϵF2 +BϵF1 +Gπ(B

2 + 1)(Hϵd +BHϵA)
)

= GπϵF2 +GπBϵF1 +G2
π(B

2 + 1)Hϵd +G2
π(B

3 +B)HϵA.

We can conclude that CT ϵ covers HTF
S By setting

ϵF2 =
ϵ

4Gπ
, ϵF1 =

ϵ

4GπB
, ϵd =

ϵ

4G2
π(B

2 + 1)H
, ϵA =

ϵ

4G2
π(B

3 +B)H
.
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From the definition of CT , we have:

ln |CT | ≤ ln |CF2
|

≤4d2H ln

(
1 +

8GsG
2
π(B

4 +B2)H
√
N lnm∥Z[N ]∥F

ϵ

)

+ 4ddkH ln

(
1 +

32eCG2
π(B

6 +B4)H∥Z∗∥F ∥Z[N ]∥2F√
dkϵ

)

+ 2ddf ln

1 +
8G2

πB
2
(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵ


≲(4d2H + 4ddkH + 2ddf ) ln

1 +
G2

πB
2(B2 + 1)

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵ

 .

Combining dk = d/H, df = 4d, we have:

lnN
(
HTF

S , ϵ, ∥ · ∥F
)
≤ ln |CT | ≲ 4d2(H + 3) ln

1 +
G2

πB
2(B2 + 1)

(
eCB2H

√
N lnm+ 1

)
∥Z[N ]∥F

ϵ

 .

Lemma C.12. Let Zl
[N ] ∈ RNm×d be the lth layer’s concatenated output matrix of our transformer model defined in

Equation (13), we have: ∥∥∥Zl
[N ]

∥∥∥
F
≤
∏
j∈[l]

G2
π(B

2
j + 1)

(
eCjB2

jH
√
N lnm+ 1

)
∥Z0

[N ]∥F .

Furthermore, let Zl ∈ Rm×d as the output matrix, we have:∥∥Zl
∥∥
F
≤
∏
j∈[l]

G2
π(B

2
j + 1)

(
eCjB2

jH
√
lnm+ 1

)
∥Z0∥F .

Proof. ∥∥∥Zl
[N ]

∥∥∥
F
=
∥∥∥Πnorm

(
σ
(
Yl

[N ]W
l
F1

)
Wl

F2 +Yl
[N ]

)∥∥∥
F

(i)

≤ Gπ

∥∥∥σ (Yl
[N ]W

l
F1

)
Wl

F2 +Yl
[N ]

∥∥∥
F

≤ Gπ(B
2
l + 1)

∥∥∥∥∥∥Πnorm

 ∑
h∈[H]

Al
h

(
Zl−1

[N ]

)
Wl

Oh
+ Zl−1

[N ]

∥∥∥∥∥∥
F

≤ G2
π(B

2
l + 1)

Bl

∑
h∈[H]

∥∥∥Sl
hZ

l−1
[N ]W

l
Vh

∥∥∥
F
+ ∥Zl−1

[N ] ∥F


(ii)

≤ G2
π(B

2
l + 1)

(
eClB2

l H
√
N lnm+ 1

)
∥Zl−1

[N ] ∥F

≤
∏
j∈[l]

G2
π(B

2
j + 1)

(
eCjB2

jH
√
N lnm+ 1

)
∥Z0

[N ]∥F .

Here (i) uses Assumption C.1, and (ii) uses Lemma C.8. Similarly, we can get the second result by setting N = 1.
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Lemma C.13. For a single transformer-decoder-block TFW (·) parameterized by W (ignore the layer indices), let
Z[N ] ∈ RNm×d as the concatenated input matrix, we have:∥∥∥TFW

(
Z[N ]

)
− TFW

(
Ẑ[N ]

)∥∥∥
F
≲ G2

π(B
2 + 1)

(
eCB2H

√
Nmd+ 1

)∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F
.

Furthermore, let Z ∈ Rm×d as the input matrix, we have:∥∥∥TFW (Z)− TFW

(
Ẑ
)∥∥∥

F
≤ G2

π(B
2 + 1)

(
eCB2Hmd+ 1

) ∥∥∥Z− Ẑ
∥∥∥
F
.

Proof.∥∥∥TFW
(
Z[N ]

)
− TFW

(
Ẑ[N ]

)∥∥∥
F
≤ Gπ

∥∥∥σ (Y[N ]WF1

)
WF2 +Y[N ] − σ

(
Ŷ[N ]WF1

)
WF2 − Ŷ[N ]

∥∥∥
F

≤ G2
π(B

2 + 1)

∥∥∥∥∥∥
∑

h∈[H]

Ah

(
Z[N ]

)
WOh

+ Z[N ] −
∑

h∈[H]

Ah

(
Ẑ[N ]

)
WOh

− Ẑ[N ]

∥∥∥∥∥∥
F

≤ G2
π(B

2 + 1)

B
∑

h∈[H]

∥∥∥Ah

(
Z[N ]

)
−Ah

(
Ẑ[N ]

)∥∥∥
F
+
∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F

 .

For any h ∈ [H], we have:∥∥∥Ah

(
Z[N ]

)
−Ah

(
Ẑ[N ]

)∥∥∥
F
=
∥∥∥ShZ[N ]WVh

− ŜhẐ[N ]WVh

∥∥∥
F

≤ B
(∥∥∥ShZ[N ] − ŜhZ[N ]

∥∥∥
F
+
∥∥∥ŜhZ[N ] − ŜhẐ[N ]

∥∥∥
F

)
≤ B

(√
Nmd

∥∥∥Sh − Ŝh

∥∥∥
F
+ eC

√
N lnm

∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F

)
.

For
∥∥∥Sh − Ŝh

∥∥∥
F

, we have:

∥∥∥Sh − Ŝh

∥∥∥
F
=

√√√√∑
i∈[N ]

∥∥∥Shi − Ŝhi

∥∥∥2
F

=

√√√√√√∑
i∈[N ]

∥∥∥∥∥∥∥softmax

(
ZiWQh (ZiWKh)

⊤
+M√

dk

)
− softmax

 ẐiWQh

(
ẐiWKh

)⊤
+M

√
dk


∥∥∥∥∥∥∥
2

F

≤ Gs√
dk

√√√√∑
i∈[N ]

∥∥∥∥ZiWQh (ZiWKh)
⊤ − ẐiWQh

(
ẐiWKh

)⊤∥∥∥∥2
F

≤ Gs√
dk

√√√√∑
i∈[N ]

(∥∥∥(ZiWQh − ẐiWQh

)
(ZiWKh)

⊤
∥∥∥
F
+

∥∥∥∥ẐiWQh

[
(ZiWKh)

⊤ −
(
ẐiWKh

)⊤]∥∥∥∥
F

)2

≤ GsB
2

√
dk

√√√√∑
i∈[N ]

(
∥Zi∥F + ∥Ẑi∥F

)2 ∥∥∥Zi − Ẑi

∥∥∥2
F

≤ 2GsB
2
√
md√

dk

√√√√∑
i∈[N ]

∥∥∥Zi − Ẑi

∥∥∥2
F

=
2GsB

2
√
md√

dk

∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F
.
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Combining the above results, we can get:∥∥∥TFW
(
Z[N ]

)
− TFW

(
Ẑ[N ]

)∥∥∥
F
≤ G2

π(B
2 + 1)

(
eCB2H

√
N lnm+

2GsB
4H

√
Nmd√

dk
+ 1

)∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F

≲ G2
π(B

2 + 1)
(
eCB2H

√
Nmd+ 1

)∥∥∥Z[N ] − Ẑ[N ]

∥∥∥
F
.

C.4. Proof of Theorem 4.20

Proof. Step 1: We firstly define the class of lth layer’s output as:

Hl =

X 7→TFWl (TFWl−1 . . . TFW1 (Embedding (X))) :∥∥∥Wj
F1

∥∥∥
F
,
∥∥∥Wj

F2

∥∥∥
F
,
∥∥∥Wj

Oh

∥∥∥
F
,
∥∥∥Wj

Qh

∥∥∥
F
,
∥∥∥Wj

Kh

∥∥∥
F
,
∥∥∥Wj

Vh

∥∥∥
F
≤ Bj ,∀j ∈ [l],∀h ∈ [H]

 .

For l = 1, we consider the set:
TF1

(
Z0

[N ]

)
:=
{
TFW1

(
Z0

[N ]

)
: W1 ∈ W1

}
,

where Z0
[N ] = Embedding

(
X[N ]

)
represents the embedded token sequences, and W l defined in (14). We denote

C1 = C
(
TF1

(
Z0

[N ]

)
, ϵ1, ∥ · ∥F

)
as the ϵ1-cover of TF1

(
Z0

[N ]

)
. Then for 1 < l + 1 ≤ L, let Cl be a cover of Hl, we

select one element Ẑl
[N ] ∈ Cl to construct the ϵl+1-cover of following set:

TFl+1

(
Ẑl

[N ]

)
:=
{
TFWl+1

(
Ẑl

[N ]

)
: Wl+1 ∈ W l+1

}
,

here we denote C
(
TFWl+1

(
Ẑl

[N ]

)
, ϵl+1, ∥ · ∥F

)
as the cover. Then by Lemma C.12 and Proposition C.11, we have:

ln
∣∣∣C (TFWl+1

(
Ẑl

[N ]

)
, ϵl+1, ∥ · ∥F

)∣∣∣ ≤ 4d2(H + 3) ln

1 +
G2

πB
2
l+1(B

2
l+1 + 1)

(
eCl+1B2

l+1H
√
Nmd+ 1

)
∥Ẑl

[N ]∥F
ϵl+1


≤ 4d2(H + 3) ln

(
1 +

B2
l+1sl+1∥Z0

[N ]∥F
ϵl+1

)
:= lnNl+1,

where sl+1 :=
∏

j∈[l+1] G
2
π(B

2
j + 1)

(
eCjB2

jH
√
Nmd+ 1

)
.

Step 2: Now, we can cunstruct the cover of Hl+1 as:

Cl+1 =
⋃

Ẑl
[N]

∈Cl

C
(
TFWl+1

(
Ẑl

[N ]

)
, ϵl+1, ∥ · ∥F

)
.

Then we can get:

|Cl+1| =

∣∣∣∣∣∣∣
⋃

Ẑl
[N]

∈Cl

C
(
TFWl+1

(
Ẑl

[N ]

)
, ϵl+1, ∥ · ∥F

)∣∣∣∣∣∣∣ ≤ |Cl|Nl+1 ≤
l+1∏
j=1

Nj .

We have:

ln |Cl+1| ≤
l+1∑
j=1

lnNj

≤ 4d2(H + 3)

l+1∑
j=1

ln

(
1 +

B2
j sj∥Z0

[N ]∥F
ϵj

)
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Step 3: Next we go to verify that CL is a cover of HL. By Lemma C.13, for any ZL
[N ] ∈ HL we can find a ẐL

[N ] ∈ CL such
that: ∥∥∥ZL

[N ] − ẐL
[N ]

∥∥∥
F
=
∥∥∥TFWL

(
ZL

[N ]

)
− TFŴL

(
ẐL

[N ]

)∥∥∥
F

≤
∥∥∥TFWL

(
ZL

[N ]

)
− TFWL

(
ẐL

[N ]

)∥∥∥
F
+
∥∥∥TFWL

(
ẐL

[N ]

)
− TFŴL

(
ẐL

[N ]

)∥∥∥
F

≤ G2
π(B

2
L + 1)

(
eClB2

LH
√
Nmd+ 1

)∥∥∥ZL−1
[N ] − ẐL−1

[N ]

∥∥∥
F
+ ϵL

≤
L∑

l=1

L∏
j′=l+1

G2
π(B

2
j′ + 1)

(
eCj′B2

j′H
√
Nmd+ 1

)
ϵl.

We set ϵL = ϵ
L , and for 1 ≤ l ≤ L − 1, we choose ϵl =

(
L
∏L

j′=l+1 G
2
π(B

2
j′ + 1)

(
eCj′B2

j′H
√
Nmd+ 1

))−1

ϵ.

We denote sl+1→L :=
∏L

j′=l+1 G
2
π(B

2
j′ + 1)

(
eCj′B2

j′H
√
Nmd+ 1

)
, then we can get the covering number of HL as

following:

lnN
(
HL, ϵ, ∥ · ∥F

)
≤ ln |CL|

≤ 4d2(H + 3)

L∑
l=1

ln

(
1 +

B2
l sl∥Z0

[N ]∥F
ϵl

)

≤ 4d2(H + 3)

L∑
l=1

ln

(
1 +

B2
l sl(sl+1→L)L∥Z0

[N ]∥F
ϵ

)

= 4d2(H + 3)

L∑
l=1

ln

(
1 +

B2
l LsL∥Z0

[N ]∥F
ϵ

)
.

Furthermore, let X ∈ Rm×nv as the input matrix, and Z0 = Embedding (X), by scaling N to 1, we have:

lnN
(
H|X, ϵ, ∥ · ∥F

)
≤ 4d2(H + 3)

L∑
l=1

ln

(
1 +

B2
l Ls

′
L∥Z0∥F
ϵ

)

where s′L :=
∏

l∈[L] G
2
π(B

2
l + 1)

(
eClB2

l Hmd+ 1
)
.

D. Proof of Theorem 4.22
Proof. Step 1: We first bound the Rademacher complexity R̃D(H). For Zi =

[
ti0, · · · , tim−1

]
∈ Rm×nv , note that

we do not input each token one by one in order, but input the entire sequence at once, and get a representation matrix
h(Zi) ∈ Rm×d. Due to the existence of mask M, each token can only use the information before the current node. We can
naturally abstract the above process into using the jth token tij to perform m queries in sequence. Therefore R̃D(H) can be
defined as:

R̃D(H) := Eε

sup
h∈H

1

Nm

∑
i∈[N ]

∑
j∈[m]

εij
∥∥h (tij−1

)∥∥
F

 .

By Lemma C.7 we know: for any i ∈ [N ], j ∈ [m], we have
∥∥h (tij−1

)∥∥
F
≤

√
d. Therefore, according to Lemma C.5, we

have:

R̃D(H) ≤ inf
α>0

(
4α√
Nm

+
12

Nm

∫ √
Nmd

α

√
lnN

(
H|D, ϵ, ∥ · ∥2

)
dϵ

)
.
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We denote λ = 4d2(H + 3) and ρL =
∑L

l=1 B
2
l , then by Theorem 4.20, we can get:

∫ √
Nmd

α

√
lnN

(
H|D, ϵ, ∥ · ∥2

)
dϵ ≤

√
λL

∫ √
Nmd

α

(
L∑

l=1

1

L
ln

(
1 +

B2
l LsL∥Z0

[N ]∥F
ϵ

)) 1
2

dϵ

(a)

≤
√
λL

∫ √
Nmd

α

(
ln

(
1 +

ρLsL∥Z0
[N ]∥F

ϵ

)) 1
2

dϵ

(b)

≤
√
λL(

√
Nmd− α)

(
ln

(
1√

Nmd− α

∫ √
Nmd

α

(
1 +

ρLsL∥Z0
[N ]∥F

ϵ

)
dϵ

)) 1
2

=
√
λL(

√
Nmd− α)

ln

1 +
ρLsL∥Z0

[N ]∥F ln
√
Nmd
α√

Nmd− α

 1
2

≤
√
λLNmd

ln

1 +
ρLsL∥Z0

[N ]∥F ln
√
Nmd
α√

Nmd− α

 1
2

.

Here (a) uses Jensen’s inequality, (b) uses Lemma C.6. By setting α = 1√
Nmd

, we have:

R̃D(H) ≤ inf
α>0

 4α√
Nm

+
12

Nm

√
λLNmd

ln

1 +
ρLsL∥Z0

[N ]∥F ln
√
Nmd
α√

Nmd− α

 1
2




≤ 4

Nm
√
d
+

12
√
λLd√

Nm

(
ln

(
1 +

ρLsL∥Z0
[N ]∥F ln(Nmd)

√
Nmd− 1/

√
Nmd

)) 1
2

(i)

≲

√
λLd√
Nm

√
ln (1 + ρLsL)

≤
√

12Ld3(H + 3) ln (1 + ρLsL)

Nm
,

where (i) uses the fact that ∥Z0
[N ]∥F is of

√
Nmd.

Step 2: Next, we consider the Rademacher complexity R̃D(G ◦ ĥ):

R̃D(G ◦ ĥ) = Eε

 sup
∥WP ∥F≤R

1

Nm

∑
i∈[N ]

∑
j∈[m]

εij

∥∥∥softmax
(
ĥ
(
tij−1

)
WP

)∥∥∥
F

 .

We consider the set
G ◦ ĥ :=

{
softmax

(
ẐL

[N ]W
P
)
: ∥WP ∥F ≤ R

}
,

where ẐL
[N ] ∈ CL. By Lemma C.4, C.7 and C.9 ,it is easy to have:

lnN
(
G ◦ ĥ, ϵ, ∥ · ∥F

)
≤ dnv ln

(
1 +

2RGs∥ẐL
[N ]∥F

ϵ

)
≤ dnv ln

(
1 +

2RGs

√
Nmd

ϵ

)
.

Then, by Lemma C.5, we can get:

R̃D(G ◦ ĥ) ≤
√

dnv ln(1 + 2RGs)

Nm
.
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Step 3: For any k ∈ [m], let Tk ∈ Rk×nv be the input token sequence. Then for any h, ĥ ∈ H and g ∈ G, we have:∥∥∥g (h (Tk))− g
(
ĥ (Tk)

)∥∥∥
F
=
∥∥∥h (Tk)W

P − ĥ (Tk)W
P
∥∥∥
F

≤ R
∥∥∥h (Tk)− ĥ (Tk)

∥∥∥
F
.

Therefore Gg = R, then by Corollary 4.11, we have:

ED(ĝ, ĥ) ≤ 6GℓGgR̃D(H)︸ ︷︷ ︸
(I)

+6GℓR̃D(G ◦ ĥ)︸ ︷︷ ︸
(II)

+Bℓ

√
8 ln 4

δ

N
+Bℓ

√
Cφ,r log

2
δ

2m
+ 4Bℓ disc(U)

≤6GℓR

√
12Ld3(H + 3) ln (1 + ρLsL)

Nm
+ 6Gℓ

√
dnv ln(1 + 2RGs)

Nm

+Bℓ

√
8 ln 4

δ

N
+Bℓ

√
Cφ,r log

2
δ

2m
+ 4Bℓ disc(U)

≲GℓR
√
ΘdH

√
ln (1 + ρLsL)

Nm
+Gℓ

√
dnv

Nm
+Bℓ

√
8 ln 4

δ

N
+Bℓ

√
Cφ,r log

2
δ

2m
+ 4Bℓ disc(U).

Note that, the number of model parameters is L(10d2 + 2Hd2). Since d is usually much larger than H , we follow the
approach of Kaplan et al. (2020) which use Θ ≈ 12Ld2 approximation to represent the number of model parameters.
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