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Abstract

Reinforcement Learning from Human Feedback
(RLHF) has achieved impressive empirical suc-
cesses while relying on a small amount of human
feedback. However, there is limited theoretical
justification for this phenomenon. Additionally,
most recent studies focus on value-based algo-
rithms despite the recent empirical successes of
policy-based algorithms. In this work, we con-
sider an RLHF algorithm based on policy opti-
mization (PO-RLHF). The algorithm is based on
the popular Policy Cover-Policy Gradient (PC-
PG) algorithm, which assumes knowledge of the
reward function. In PO-RLHF, knowledge of the
reward function is not assumed, and the algorithm
uses trajectory-based comparison feedback to in-
fer the reward function. We provide performance
bounds for PO-RLHF with low query complexity,
which provides insight into why a small amount
of human feedback may be sufficient to achieve
good performance with RLHF. A key novelty is a
trajectory-level elliptical potential analysis, which
bounds the reward estimation error when com-
parison feedback (rather than numerical reward
observation) is given. We provide and analyze
algorithms PG-RLHF and NN-PG-RLHF for two set-
tings: linear and neural function approximation,
respectively.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018; Agar-
wal et al., 2021) is a classic sequential decision-making
problem where an agent interacts with an unknown environ-
ment in order to maximize the expected cumulative reward.
In many applications, e.g., robotics and Large Language
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Models (LLMs) (Ouyang et al., 2022; Achiam et al., 2023),
the goal of the agent is complex and related to human eval-
uation. Additionally, the reward function may be hard to
manually design.

To handle these challenges, a framework called Reinforce-
ment Learning from Human Feedback (RLHF) (Christiano
et al., 2017) has been proposed and has achieved huge empir-
ical successes in ChatGPT (Achiam et al., 2023). In RLHF,
the agent does not directly observe rewards, but has access
to queries from humans on preferences based on trajecto-
ries. The agent learns the quality of trajectories (policies)
from the preference feedback over time in order to optimize
performance. Existing empirical works have demonstrated
the practical efficiency of RLHF: human feedback can solve
complex RL tasks by using fewer than 1% of the data from
the agent’s interactions with the environment (Christiano
etal., 2017).

Recently, there have also been a number of theoretical RL
papers which seek to provide analyze RLHF, e.g., (Pacchi-
ano et al., 2021; Chen et al., 2022; Zhu et al., 2023; Wang
et al., 2023). Most of these works consider value-based algo-
rithms or a given dataset of human feedback, while in many
applications, e.g., ChatGPT, policy optimization algorithms
are often used. Our goal is to quantify the query and sample
complexities of policy-based algorithms when used in con-
junction with RLHF, and show that the query complexity is
a small fraction of the overall sample complexity.

In order to address the aforementioned issues, we study Pol-
icy Optimization for RLHF (PO-RLHF) with active human
feedback, through which we provide insights on the query
efficiency of RLHF. The algorithm can be summarized as
follows. It is an iterative process where at each iteration
there is a policy, and several trajectories are drawn by fol-
lowing the policies obtained so far. The trajectories are
compared to trajectories generated by following a baseline
policy. Humans make comparisons between the trajectories
generated by the two policies. Assuming a Bradley-Terry
model (Bradley & Terry, 1952), the algorithm uses the re-
sults of the comparison queries to update the estimate of the
underlying reward function. Then, there is an inner loop
where the algorithm follows several steps of the PC-PG
policy optimization algorithm (Agarwal et al., 2020) using
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the estimated reward model. At each step of the inner loop,
there is a current estimate of a parameter corresponding to
the policy, and Monte Carlo simulations of the policy are
used to determine the subsequent policy parameter.

Under this formulation, we consider two settings, i.e., linear
function approximation and neural function approximation,
where the reward function is linear and belongs to a neural
function class, respectively. For both settings, we design pol-
icy gradient algorithms, PG-RLHF and NN-PG-RLHF, which
can efficiently explore the unknown environment and collect
human feedback adapting to the exploration. We establish
sample and query complexity guarantees for these two algo-
rithms.

While our algorithm is based on the PC-PG algorithm (Agar-
wal et al., 2020), unlike PC-PG where the reward function
is assumed to be known, we assume the use of human feed-
back. In order to take into account human feedback, we
first extend the PC-PG analysis techniques to incorporate
sources of error in the rewards. Then we directly quantify
the error from human feedback. Characterizing error from
human feedback is challenging for the following reason.
The standard tool to analyze policy-based methods with ex-
ploration is the elliptical potential lemma (Abbasi-Yadkori
et al., 2011). However, this lemma has previously been
used only in the case where the reward information is gen-
erated and observed from each individual state-action. A
key novelty in our paper is in transforming our error terms
involving feature covariance matrices into a trajectory-wise
form such that the elliptical potential lemma can be applied
to our RLHF situation, i.e., where rewards are not observed
and two trajectories are compared based on the sum of
rewards at all (state, action) pairs in each trajectory. To ad-
dress this issue, we develop a novel trajectory-level elliptical
potential analysis technique (for more, see Section 4.2).

Our results are consistent with the empirical observation that
a small amount of human feedback is sufficient for RLHF
to be successful. The reason is clear: human feedback is
used to estimate the reward function which is then used in
the policy-based RL algorithm. In other words, the during
the policy update and policy evaluation phases of our algo-
rithm, the reward estimate is fixed. While it may take many
iterations of gradient ascent and many samples to evaluate
each policy, the number of queries required to estimate the
reward function is a small fraction of the overall sample
complexity.

We summarize our main contributions as follows:

* Motivated by the success of RLHF, we study policy
optimization for RLHF with exploration and active
human feedback collection, and seek to theoretically
explain the practical efficiency of RLHF.

e For linear and neural function approximation, we

design provably efficient algorithms PG-RLHF and
NN-PG-RLHF, which simultaneously explore the un-
known environment and adaptively collect human data
according to the exploration.

* We develop novel analytical techniques, including a
trajectory-level elliptical potential argument and a bi-
ased MLE guarantee with neural approximation.

* We provide justification for the practical efficiency
of RLHF through a rigorous comparison of sample
complexity between RLHF and standard RL.

2. Related Work

In this section, we discuss works that are most closely re-
lated to ours, and defer a detailed review to Appendix B.

RLHF (Christiano et al., 2017) has shown great empirical
successes, especially in LLMs (Ouyang et al., 2022; Achiam
et al., 2023). Recently, a number of works have started to
theoretically analyze RLHF. Xu et al. (2020); Novoseller
et al. (2020); Pacchiano et al. (2021) study online RLHF
for tabular MDPs. Chen et al. (2022); Wang et al. (2023)
consider online RLHF with general function approximation.
Wang et al. (2023) design a reduction framework for RLHF,
and prove that the sample complexity for RLHF is no higher
than that for standard RL. Zhu et al. (2023); Zhan et al.
(2023a) study offline RLHF with function approximation.
Ji et al. (2023) seek to understand the empirical success of
RLHF from the perspective of intrinsic data bias.

Different from the above works which mostly consider
value-based algorithms, we analyze policy gradient RLHF
algorithms with exploration, and show that the amount of
data needed to implement RLHF is a small fraction of the
amount of data needed to train an RL algorithm.

Our work is also related to prior neural RL works, e.g., (Cai
et al., 2019; Wang et al., 2019; Xu et al., 2021), which
theoretically analyze neural function approximation.

3. Formulation

In this section, we formally define the PO-RLHF problem.

We consider a discounted MDP M(S, A, 7, P, 7, Sinit)-
Specifically, S is the state space, and A is the action space.
r: S x A — [0,1] is an underlying reward function, so
that (s, a) specifies the reward of taking action a in state
s. In the RLHF setting, the agent cannot directly observe
r(s,a), and instead, can only observe comparison feed-
back between trajectories generated according to r (detailed
shortly). P : S x A — Ag is an unknown transition dis-
tribution, and P(s’|s, a) gives the transition probability of
transitioning to s’ if action a is taken in state s. Here for
any set X', /A x denotes the space of all distributions over
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X, and v € [0,1) is a discount factor. We define a policy as
amapping 7 : § — A 4 which specifies what action to take
in a state.

Let the state at step h be denoted by sy, and the action taken
at step h be denoted by ay. The value function

VT (s) = E[ivhr<sh7ah>|sU - s,w}

h=0

and the state-action value function

Q7 (s,a) := E{Z’yhr(sh,ahﬂso =s,a9 = a, 7T:|

h=0

denote the expected sum of discounted rewards received
under policy 7, starting from a given state s and state-action
pair (s,a), respectively. We define the optimal policy as
7% = argmax, V7 (Sinit)-

The RLHF model is as follows. The agent starts from an
initial state si,. At each step h, the agent first observes
the current state s, and then takes an action a;, according
to her policy. After that, she obtains an underlying reward
(s, a) (not observed), and transitions to a next state spy1 ~
P(:|sh, ap). The agent can choose to terminate the current
trajectory with probability 1 —~ and restart from s;,;; at each
step. The agent can query humans to compare trajectories
7(1) and 7(2), and observe preference feedback y. Following
the literature (Pacchiano et al., 2021; Zhu et al., 2023), we
consider the classic Bradley-Terry model (Bradley & Terry,
1952) to formulate preference generation:

1
1+ exp(—77 )’

Prly =1] = ey
with Pr[y = 0] = 1 — Pr[y = 1]. Here y = 1 represents
that 7(1) is preferred to 7(?), and yy = 0 denotes the opposite
case.

H(T(l)) H(‘r(
(D) () (2)
T 77— pp—
T = E r(sh ,ah r sh ,ah ,
h=0 h=0

and H (7) denotes the length of trajectory 7.

Given a confidence parameter J and an accuracy parameter
€, the goal of the agent is to identify an e-optimal policy 7
which satisfies V™ (Sinit) — V™ (sinit) < € with probability
at least 1 — 4. Before we describe our reward function model,
we first introduce some useful notation.

Notation. For any (s’,a’) € S x A and policy , let
07 o (5,0) = (1—)E[Y58 01" Prsn = 5,01, = also =
s';ag = d,7] denote the discounted state-action distri-
bution of starting from (s’,a’) and executing 7. With a
slight abuse of notation, for any s’ € S, let d7(s,a) :=
Earen(|s)[d% 4(s,a)]. For any initial distribution p €

Asxa,letdy(s,a) := By anynpldy ./ (s,a)]. In addition,
for any (s',a’) € S x A and policy 7, let OF, ,, be the dis-
tribution of the trajectory generated by starting from s’, o/,
executing 7 and terminating with probability 1 — v at each
step, which we call a discounted trajectory distribution.
For any p € Asxua, let OF be the discounted trajectory
distribution of starting from p and executing 7.

Under this formulation, we consider linear and neural func-
tion approximation settings for the reward model.

3.1. Linear Function Approximation

In the linear setting, we consider the log-linear policy param-
eterization and linear reward function. Specifically, there
exists a known feature mapping ¢ : S x A — R? which
specifies the feature vectors of state-action pairs, and satis-
fies ||¢(s,a)|| < 1 forall (s,a) € S x A. For parameter
w € R4, the log-linear policy is represented as

Tolals) == exp(¢(s,a) "w)
w : Za’EA exp(¢(s, a/)—rw) .

‘We make the following assumption on the reward function.

Assumption 3.1 (Linear Reward Function). There exists
some reward parameter ;* € R? such that

r(s,a) :== ¢(s,a) " pu*.

3.2. Neural Function Approximation

In the neural function approximation setting, we parameter-
ize the policy, value function and reward by neural networks.

A two-layer ReLU neural network with input feature ¢(s, a),
parameter w and width m is represented by (Cai et al., 2019;

Xu et al., 2021)

f(s,a;w) Z 1{é(s,a) "[w]e >0} ¢(s,a)" [w],
g:

where b = [b,...,b,]T € R™, and w :=

[[w]1; .- ; [w]m] € R™4 are the network parameters.

We initialize the parameters by b, ~ Unif([—1, 1]) and
[w°]y ~ Dy for any £ € [m]. Here Dy is an initialization
distribution, such that for any w’ € R? in the support of
Dinit» ¢ < |Jw'||2 < € for some constants ¢, ¢ > 0. During
training, we keep b fixed and only update w.

With a temperature parameter & € R and a network param-
eter w € R™9, a policy is represented by

exp(af(s, a;w))
Yareacxp(af(s,a;w))’

ﬂayw =

We also use f(s,a;6) to approximate the state-action value

function Q™ with another parameter # € R™ and the same

initialization as w, i.e., 0° = w?.
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Moreover, we approximate the reward function r(s, a) by

h(s,a;p): Z 1{¢(s,a) [ule >0} ¢(s,a) 1o,
g:

where b = [b),...,b]" € R™ and pu =

[[1)1;- -5 []m] € R™? are the reward network parameters.

Similarly, we initialize b}, ~ Unif([—1, 1]) and [11°]¢ ~ Dinit
for any ¢ € [m], and only update y during training.

For any parameter 1 € R™? and (s,a) € S x A, let

Wu(s,a)e = Z= 1{é(s,0) [ule >0} ¢(s,a)
R for any ¢ € [m]. Let v¢,(s,a) =
[Wu(s,a)li;.. s [Wu(s,a)m] € R™L We can simi-

larly define 9y, (s, a).
Define a neural function class (Rahimi & Recht, 2007):

Fhoo ::{h(s,a) = h(s,a;,uo)+/ 1{¢(s,a)" u >0}

é(s,a) v () dp(p) :

R
7)o < 5}

where p : R¢ — R is the density function of Dj,;, and
v : R? — R? together with h(s,a; u°) parameterize the
element of Fp, .

In the neural setting, we make the following assumptions.

Assumption 3.2 (Neural Realizability of 7). r» € FR o.

This is a standard realizability assumption, and also made in
prior neural RL works (Wang et al., 2019; Xu et al., 2021).

Assumption 3.3 (Regularity of State-action Distribution).
There exists an absolute constant ¢ € (0, 1) such that for
anyv € R%, x>0, (s,a') € S x A and policy T,

Cscale ™

lvll2 -

E(s,a)wd:,ﬂ, []]- {|¢($,CL)TU} < I}] <

This is also a standard regularity assumption in the neural
RL literature (Cai et al., 2019; Wang et al., 2019; Xu et al.,
2021). For a random state-action pair (s,a) ~ d7, ., the

probability of |¢(s,a) "v| < z scales with z and ||v]|5 "

s’ a”

3.3. Baseline Policy

We assume that we have access to a baseline policy, which
will be used for comparison in our algorithms.

For any trajectory 7 = (S0, a0, - - -, SH(r); @x(+)) and fea-

ture mapping Y € {¢, Y0}, let x(1) := S i 0 x (s, an).
Assumption 3.4 (Baseline Policy). The baseline policy
7% satisfies that for any (s,a) € S x A and policy T,

E,oor [X(0) = x(r®))(x(r®) = x (=) T]
o) O,rbase

Sinit

Algorithm 1 PG-RLHF
1: Input: ¢,6, N, K, Myr, Car, Ceovs
2: forn=0,...,N —1do
3: Sample {si,a Y, ~ dT°

K Zf1¢(32aa1)¢(sual)—r i

P “C,WM,WO.

and 3"«

-~ Oﬂ_base

Sinit

Sample trajectories T( ~Ofr and T
Observe the comparison outcome y;
10:  end for

11:  Estimate 4" via MLE as in Eq. (2)

12: a1« NPG-Update(pl,, L7, i)
13: end for

14: return Unif(7!

4. XL, Zz 0 DS CCO"

50 Let pgoy == n+1 Zz 0 s

6: OHF =1 Zz 1Y i 17Vn > 1, and OEIF = Oz’rmﬂ
7. fori= 1 MHF do

8:

9:

oo, )

>_cbaseIET(z) O,rbm[ (7(2))X(7—(2))T]

Sinit

for some absolute constant ¢y, € (0,1). Here x = ¢ in
the case of linear function approximation, and x = ) in the
case of neural function approximation.

We discuss Assumption 3.4 in more detail in Ap-
pendix D.3.4.

4. PO-RLHF with Linear Function
Approximation

We first study PO-RLHF with linear function approximation.
We develop a policy gradient algorithm PG-RLHF which can
explore the environment and adaptively collect human data.

4.1. Algorithm PG-RLHF

PG-RLHF builds upon the policy gradient algorithm PC-
PG (Agarwal et al., 2020) for standard RL. Our algorithm
is described in Algorithm 1. PG-RLHF runs N outer-loop
phases for coverage update and reward estimation (Lines 2-
13 in Algorithm 1), and 7' inner-loop iterations for pol-
icy optimization under given coverage and reward model
(Lines 6-15 in Algorithm 2). In each phase n, PG-RLHF first
estimates the feature covariance matrix 37, and updates the
state-action coverage distribution p;,, which is the average
of the state-action visitation distribution of all the policies
70 ..., 7™ used so far (Line 5 in Algorithm 1). p7 will be
the initial state-action distribution of the policy optimization
in the inner-loop, and is gradually expanded in each phase
to improve the coverage.

Human Feedback Collection. Next, we collect human data
for reward estimation. For any phase n > 1, let Ojjr be the
distribution of the trajectory generated by starting from state-
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Algorithm 2 NPG-Update

Input: pcovﬂzgov’ﬂn T,&,m, We.

Let 7(-,-) :== ¢(-,-) " i" and ©:= {9 0]]2 < Wa}
Letd" (-, ) == 1= ( )T (Sa) () = BY
Let K" :={s € S:Va € A, b"(s,a) =0}

For s € K", initialize w® such that 7%(:|s) :=
Two(:|s) = Unif(A). For s ¢ K", 70(|s) :=
Unif({a € A:b"(s,a) = ﬁ})

Dok v

6. fort=0,..., T —1do
7:  Initialize %°
8: fOI‘i:O,...,MSGD—ldO
9: Sample (s;, a;) ~ pl, and estimate o' (si,a;; 7+
b™) using Monte Carlo sampling
10: Ol Projo (08 — 26(é(si,a;) 08 —

(Q™ (50, a5 7" + b)) — b™(51,a4))) - B(51,a4))
11: end for L
1t
12: 0" ZZ ST
13: wit! «— wt + nd?

14 Vs € K", 7ftl(|s) = mun(ls)
exp(¢(s,-) Tw' ). Vs ¢ K", 7+ ([s) = 70(:[s)

15: end for

16: return Unif(7°, ... 77~1)

action distribution pZ !, executing 7" and terminating with
probability 1 —  at each step, where 7. ~ Unif([n]); For

base

phase n = 0, Ofjp := (97T _(Line 6). In addition, let O

be the distribution of the trajectory generated by startlng
from s;y;, executing 7°%° and stopping with probability
1 —  at each step, where 7°*¢ is a baseline policy (Line 8).
We sample trajectories ’7'( ) and ’7'( ) from Ofir and Osh[
respectively, and observe a comparison outcome y;. This
process is independently repeated Myp times, and then we

obtain human data {Ti(l), Ti(2), yl}ﬁ“f (Lines 7-10).

)

With the human data, we use the maximum likelihood esti-
mator (MLE) to estimate the reward parameter as

Myr
1 Z:l
4" = argmin (— Zlog( {y } ey
< \ ST Mexp (— (@7 ) T w)

NEDINE) ’ @)
1+eXp((¢ )T )
- 6
where ¢T;1>ﬂ<2> _ H(T )¢( s, 1(12)
7@
Zh o(s 52}27‘152}2)’ and (sgez,al@%) denotes the

state-action at step h in trajectory TZ-(Z) forany ¢ € {1,2}.

Comparing to a fixed baseline policy helps to de-correlate
the comparison (difference) relationship between two tra-
jectories in the Bradley-Terry model (Eq. (1)), and provides
a better control for the properties of the human data covari-
ance matrix to cover the state-actions that we care about.

Intuition of Human Feedback Collection. The idea be-
hind our human data collection scheme is as follows. Since
we will do policy optimization with initial state-action dis-
tribution p”, and obtain policy 7! in each phase n, our
performance will be influenced by the reward estimation
accuracy on the state-actions guided by 771 starting from
poy forn =0,1,..., N — 1. Therefore, using the human
data generated by 7™ and p7-t (72 ~ Unif([n])) can guaran-
tee a small reward estimation error on the state-action space
that we care about (where our performance is measured).

With the coverage distribution p[,,, coverage covariance ma-
trix £7 and estimated reward model 7"(-,-) = ¢(-,-) T i,
we call subroutine NPG-Update to perform policy optimiza-
tion. In NPG-Update (Algorithm 2), we first define the
exploration bonus b"(s,a) := ﬁ for the state-actions
that are not sufficiently explored, and define " (s,a) := 0
for those that are sufficiently explored according to ECOV
(Line 3). According to b™(s, a), we implicitly divide the
state space into two state sets, one with well-explored state-
actions (i.e., K™), and the other one with under-explored
state-actions (Line 4).

Then, we perform natural policy gradient (NPG) (Agarwal
et al., 2021) with initial state-action distribution pf, and
bonus-incentivized reward 7™ + b™ (Lines 6-15). Formally,
the optimization objective can be written as

Q7 (s,a; 7™ +b")].

In the ¢-th iteration of NPG, we use projected stochastic gra-
dient descent (SGD) (Shalev-Shwartz & Ben-David, 2014)
to fit (Lines 8-11)

max Es.a)~pg,

argmin E(g q)~pn [((ﬁ(s, a)'o
llell<we

2
_ (Q‘"t (8, a; i+ b") _ bﬂ(s a))) ] . 3)
At step ¢ of SGD, we compute the stochastic gradient by
2(¢(s5,a:) 0 — (Q (55, a57" +b") —b"(s,0))) - ¢(s, a),
where (s;, a;) is sampled from p and Q™ (si,ai; P +b")
is estimated by Monte Carlo sampling (Line 9). After SGD,
we obtain 6% such that ¢(s,a) "6 + b"(s,a) well fits the
state-action value function Q”t (85, a:; 7™ + b™) (Line 12).

Then, we update the policy parameter by w!*! « w? 4 not.
Furthermore, we set the policy 7'* as the log-linear policy
with parameter w!*! for s € K", and the uniform policy
over all under-explored actions for s ¢ K™ (Line 14).

After NPG, we obtain 77! = Unif(7", ..., 77 ~1), which
both optimizes the value function and has an incentive to
explore the unvisited space. In the next phase, 7" is used
to improve the coverage, and also expand the space where
we collect human data and can guarantee accurate reward
estimation.
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Computational Efficiency. We remark that the computa-
tional complexity of NPG-Update is independent of S. b™,
K™ and 7t are only implicitly maintained by computing
> and w'. When we encounter some state s in Monte
Carlo sampling (Line 9 in Algorithm 2), we can identify if
5 is in K™ and compute b™ (s, a) by 37 (for all a). To exe-
cute 7! in state s, if s € K™, we choose an action according
to myt; If s ¢ K™, we uniformly choose an action from the
1

actions with b" (s, a) = 1=

Sample Complexity. We note that is N is the number of
times we update the coverage distribution. Between two
coverage updates, (i) we observe K trajectories to update the
feature covariance matrix, (ii) we perform Myg human pair-
wise trajectory comparisons, and (iii) we run 7" iterations of
NPG, and within each NPG iteration, we run Msgp steps of
SGD for policy evaluation. Further, for each step of SGD,
we sample two trajectories, one to sample from the cover-
age distribution and one to estimate the -value function
(Line 9 in Algorithm 2). So the overall number of trajecto-
ries used by our algorithm is (K + 2Myr + 2T Msgp)N.
Since the number of transitions observed for each trajectory
is O(ﬁ)7 the number of samples used by our algorithm is

O((K + My + T Msop) 725).

4.2. Theoretical Guarantee of Algorithm PG-RLHF

Now we provide performance guarantees for algorithm
PG-RLHF.

First, following (Agarwal et al., 2020), we define a
bounded transfer function approximation error. Let §¢ =
argmin g <w, E(s,a)~pn, [(8(s,0) 70 — (QT (s,a;7 +
b") — b"(s,a)))?], and d%_(s,a) :=dT (s) o Unif4(a).

Assumption 4.1 (Bounded Transfer Error). For any phase

n > 0 and iteration £ > 0, there exists some &p;,s > 0 which
satisfies

E(s.a)~dz, {(Qﬁ(s, a)Tot

- (Q”t(s, a;r +b") — b (s, a)))T < Ebias- (4

Ebias Measures the error of using the best fit #1 with log-
linear policies under p(,, to predict the state-action value
function under d, . For tabular or linear MDPs (Yang &
Wang, 2019; Jin et al., 2020), 91 perfectly fits the value
function for all (s, a) with log-linear policies, and ep;,s = O.
Then, we formally state the performance of PG-RLHF.

Theorem 4.2. With probability at least 1 — 0, the output
policy of algorithm PG-RLHF satisfies

V™ (Sinit) = V™ (init) < O VI Alebias LW
L=y (1—9VT

WovBN

|
+

BWqoNd . d )

(1 - 7)(MSGD)% (1 - 7) V4 CMLECb%aseMéF Nﬁ(l B ,7)

Furthermore, by tuning parameters as in Eq. (25) in Ap-
pendix D.4, we can guarantee

2\/ |-A|5bias

1 -y

* out

V™ (sinit) = V™ (Sinit) < €+

i

with O(POIy(WQ’ Wl“ CHF’ d’ (1 - 7)_17 6_1a Cl;lie’ cl:d]{E))
samples. ~ Here Wgo := ﬁ eme = (2 +
exp(—2W,W,,) + exp(2W,W,)) "L, and W, := O(ﬁ)
denotes the high probability bound of trajectory length.

See the full bounds in Eqs. (24) and (26) in Appendix D.4.

Remark. As shown in Theorem 4.2, the suboptimality
can be decomposed into the following components: (i) the
transfer function approximation error /€pi,s, (ii) the NPG

regret ﬁ, (iii) the policy evaluation error (MSGD)’%, @iv)

the reward estimation error M;F%, and (v) the error due
to the exploration bonus construction % The statistical
error (ii)-(v) will converge to zero as the number of samples
increases, while the transfer function approximation error
(i) can still remain even with infinite samples.

Theorem 4.2 demonstrates that algorithm PG-RLHF can ef-
ficiently utilize human feedback to learn a near-optimal
policy up to the intrinsic function approximation error of the
MDP. For tabular MDPs and linear MDPs (Yang & Wang,
2019; Jin et al., 2020), we have ep;,s = 0, and PG-RLHF can
identify an e-optimal policy.

Below we give a proof sketch, and introduce a novel
trajectory-level elliptical potential analysis for bounding
the feature vector sum of human data.

Proof Sketch. Forany r : S x A — R, let F"(0) :=

E (o.a)ps, [(6(s,0) 70— (Q (5,a;7 + ") = b"(s,a)))?].
Let 6% and 6!, be the optimal solutions to minimize F" ()
and F™" (), respectively. Recall that 6" is a near-optimal
solution to minimize F™" (#) obtained by SGD in our algo-
rithm. Applying the performance difference lemma as in
(Agarwal et al., 2020), we can decompose the suboptimality

into
V*(Sinit) — v (Sinit)
|:]l{8€l€} ( (Et(s, a)T@t + Bn,t(s, a)

I'nea

< ]E(s,a)wd*_

Sinit

1—7

+ A7 (s, a5+ b") — (8'(s,0) 0L + 5" (s, a))
1—‘bizns
+ ¢ (s, a)T(gi — 0ia) + &' (s, a)T(%id —0")

s I'sep
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PG-RLHF for RLHF PC-PG (Agarwal et al., 2020) for Standard RL
# Samples O((NK + NT Msgp + N Myr) 1) O((NK + NTMsep) 1)
# True rewards 0 O((NK + NT Mscp) ﬁ)
# Queries O(N Muyr) 0

Table 1. Comparison of sample complexity, the number of true rewards and the number of queries between PG-RLHF and PC-PG (Agarwal

et al., 2020) for standard RL.

+ Y ea) . ®

(s,a) ¢

Iy

Here A™ (s, a;74+b") := Q™ (s,a;7+b")—V™ (s;7+b"),
9 (s,a) == B(s,a)—Egrmnt(|s) [0(s,a’)] and ™ (s, a) ==
b"(s,a) —Eqrri)s) [0 (8, a’)]. Similar to (Agarwal et al.,
2020), we can bound I'npg, €bias» I'sgp and I'y, due to NPG
regret, transfer function approximation error, policy evalua-
tion error and optimistic bonus construction, respectively.

Then, the remaining challenge is to bound the reward estima-
tion error I',.. To tackle this, we develop a novel trajectory-
level elliptical potential analysis to deal with human data.

Trajectory-level Elliptical Potential Analysis. According
to the definitions of % ., and 6", to bound term T',., it suffices
to bound

E(s.a)mpg, [ Qﬂ'(s a; 7"+ ") = Q" (s, a5 +0")|]
=< TNOWQW[ ‘ Z¢ Shs Qh H(EQ'F)AHM —H |23F} (6)
3 pEaty e o

Here X = MLHsz\iHlFQST 2 (¢T ) - 2) N %Ils

the feature covariance matrix of human data, and concen-
trates to

1 (1) (2), (1) (DT
EﬁF::EE (ETu)Now’ () nOmbue [¢T TeT T) ])
i 1 l][

+ @I )

Let 30 S0r = Curl.

e
= T e(s8 all)) —

for any n > 1.
@)

7 (1)

(bTi 7Ti
H (7'7»(2>) 2 2

Sits ol al).

Eq. (6) is a key step. Specifically, we decompose the

error of state-action value function due to reward esti-

mation into: (i) The error of reward parameter Ila™

I ‘2"’ which is bounded by O( ) due to the

MLE guarantee; (ii) The trajectory- level feature norm

In addition,

| SSEE ¢(snsan)ll (s )-1+ instead of the state-action-
level feature norm Z(Sw“)Nnggv llo(s, a)H(igF)_l.

Since 7" is the average of all obtained policies and 7.
concentrates to Xy, with the Cauchy-Schwarz inequality,
it suffices to bound the summation of the squared feature
norm under X as

1 N-1T-1 H(T) 9
37 2 2oy [| sl ]
NT > ozt { > dlsnan) (=)
n=0 t=0 h=0

A nice thing is that the covariance matrix Xfj; (Eq. (7))
involves trajectory-level features, and here each summed
term || ZH(T &(sh,ap)|| is also a trajectory-wise feature
norm. This enables us to apply the elliptical potential
lemma (Abbasi-Yadkori et al., 2011) to bound this summa-

tion, which validates our decomposition scheme in Eq. (6).
Then, using 77+ = Unif({wt}tT:_Ol), Eq. (8) is bounded by

N-1

1
e | 47,
N T;) r~or “[ Z ¢( Sh ah (S5~
N-1
@ ~ () @) |2
<23 E . ’ 7
- Z T ~On +[ ¢ (nE:F)‘l}

(2) Oﬂbase

Sinit

Tiraj

+22]E7—(2) O""‘““Z qbsh ,ah

® NW? d
1 log(N) ).
© ( ( * dCHF ) * Chbase Og( )>

Here we make the convention that (039r) = C(url.
Inequality (a) comes from adding and subtracting

S o(si 0T

With consistency between the summed term and the covari-
ance matrix X{j (both in a trajectory and difference form),
Iy is an effective elliptical potential summation. Then,
inequality (b) follows from applying the elliptical potential
lemma (Abbasi-Yadkori et al., 2011) and Assumption 3.4.
See Lemmas D.10, D.13 in Appendix D.3 for full proofs.[]

(nzﬁF)l]

4.3. Insight into the Practical Efficiency of RLHF

Below we compare our PG-RLHF and prior standard RL
algorithm PC-PG (Agarwal et al., 2020), and provide an
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insight behind the empirical success of RLHF.

Table 1 shows that PG-RLHF needs additional O(%}Y‘F) sam-
ples due to the lack of direct reward signals. We have
O(Mur) =~ O(Mscp), since their convergence rates are
the same (see Theorem 4.2). Then, the additional sam-
ples needed by PG-RLHF is negligible compared to the total
sample complexity. This implies that RLHF does not intro-
duce much hardness in terms of sample complexity, which
matches the finding of recent RLHF work (Wang et al.,
2023).

Regarding the cost on reward observations, in standard RL,
we require O((NK + NT Msgp) ﬁ) observations of true
rewards. However, in RLHF, we do not need any observa-
tion of true rewards, but only use O(N Mpyr) human queries.
The ratio of the number of queries needed to the total sample
complexity is about NZ\TCJZ\@ZZD = % This theoretically ex-
plains the empirical success of RLHF — RLHF only needs
a small amount of comparison queries to achieve good per-
formance as standard RL (Christiano et al., 2017).

From the perspective of improving RLHF practice, our re-
sults provide two insights. Policy optimization can consist
of three phases: sampling for exploration, policy evalua-
tion and policy improvement. One of our insights is that,
inserting reward model learning before multiple iterations
of policy evaluation and improvement is efficient, i.e., we
get policies that are nearly as good as the case where the re-
wards are known, while using only a small amount of human
data compared to the overall sample complexity. Another
insight is that querying human feedback on the state-action
space which is rarely visited or is more likely induced by
the optimal policy, helps improve the exploration of RLHF
algorithms in reward estimation.

5. PO-RLHF with Neural Function
Approximation

In this section, we turn to the neural setting. We design an
efficient algorithm NN-PG-RLHF, and derive a biased MLE
guarantee with neural approximation in analysis.

5.1. Algorithm NN-PG-RLHF

A detailed description and pseudo-code are provided in Ap-
pendix C. Here we provide a brief outline of the algorithm.
NN-PG-RLHF actively collects human data as exploration,
learns a reward network with human data, and trains a pol-
icy network and a Q-network to optimize the policy. Similar
to PG-RLHF, NN-PG-RLHF estimates the feature covariance
matrix and updates the coverage with the neural feature
10 (8, a). Then, it generates preference data by past cover-
age, past policies and the baseline policy. The reward and
Q-function networks are trained using an MLE loss function
and a least-squares loss function, respectively.

Now we provides theoretical guarantees on NN-PG-RLHF.
Let 0N = argming_go|<r E(s,aywpn, [(Yuwo(s,a) 70 —
(Q™ (s,a;7 + b™) — b™(s,a)))?] denote the optimal solu-
tion to the approximated version of the Q-network training
objective with neural feature 0 (s, a).

Similar to Eq. (4), we assume that the error of using the best
fit 03" under pe., to predict the state-action value function
under d7,  is bounded.

Assumption 5.1 (Bounded Neural Transfer Error). For any
phase n > 0 and iteration ¢ > 0, there exists some €tljil:s >0
which satisfies

E(s,a)~d, [(wwo(s,a)TGENvt
t 2
- (@ a0 -1 (5,0)) | < 2

Theorem 5.2. With probability at least 1 — 6, the output
policy of algorithm NN-PG-RLHF satisfies

24/ AlehN
1—v
. O( N BNRTW
(1= VT (1= )(Mégp)*
midi\/ﬁw'<midi\/ﬁ+ WiRY VN )

T T T
Coase (1 —77) AN M (eare) T (Mgp)

o () )

Here M and MgGD are the numbers of iterations of
the SGD for the reward network and Q-network training,
respectively. B (m_%s) is a neural approximation error
term scaling as m~15. WNN .= \/mé¢ + R, and g =
(2 + exp(—2W,WNN) + exp(2W, WNN))~1,

V™ (Sinit) — Vﬂoul(sinit) <

+

Theorem 5.2 demonstrates that the suboptimality becomes
small with sufficiently large 7', N, My, MgGD and M. é‘GD,
up to the neural transfer error O((eXN) z) and the neural ap-
proximation error O(m ™16 ). See the full bound in Eq. (44)
in Appendix E.5.

Biased Neural MLE Analysis. Due to the gap between
the true reward r and the functions that h(s, a; 1) can rep-
resent, our MLE reward training is biased. To tackle this
difficulty, we develop a novel biased MLE analysis with
neural approximation.

Specifically, let ;2™ be the network parameter of the projec-

tion of 7 onto neural function class {1,0(s,a) " u}. Then,
we have that ,,0(s,a) " i is close to 7 up to a neural

approximation error scaling as . Let 4y ; be the optimal
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Figure 1. Experimental results of algorithms PG-RLHF and PC-PG.

solution to the approximated version of the MLE objective
with feature 1,0 (s, a). Note that the human data are gen-
erated almost according to u” (since it is close to r), and
11, & has a larger likelihood than uP™. Utilizing these two
facts, we can bound ||z & — 2| up to the standard MLE
error ON(\/T) and a neural approx1mat1on error. Further-
more, the SGD result ™ obtained in our algorithm is close
to the MLE optimal solution ;g up to the SGD error.
Combining the SGD, MLE and neural approximation error,
we can bound || — ub®||. We refer interested readers to
Lemma E.12 in Appendix E.4.

6. Experiments

In this section, we present experiments to demonstrate the
practical efficacy of our algorithm and validate our theoreti-
cal results.

Following the experimental setup of existing algorithm PC-
PG (Agarwal et al., 2020), we evaluate algorithms in an RL
environment called Bidirectional Lock, which was also used
in other prior works, e.g., (Zhang et al., 2021). The details
of this environment are deferred to Appendix A.

In our experiments, S = 22, A = 5,y = 0.9, § = 0.005,
N 03, N = 30, T € {50,100,200}, K = 2500,
Msgp = 2500 and Muyg = 2500. The feature vectors
@(s,a) are one-hot vectors of state-actions, and d = 110.
We compare our algorithm PG-RLHF with the standard RL
algorithm PC-PG (Agarwal et al., 2020). Each algorithm is
performed for 50 independent runs. Figure 1 plots the nor-
ViV~

malized suboptimalities of output policies “— with
95% confidence intervals, and reports the sample complexi-
ties and query complexities in the legend. (Since the num-
bers of samples and queries are computed before perform-
ing policy optimization and reward learning in algorithms

out

PG-RLHF and PC-PG, the sample complexity and query com-
plexity are the same for all runs.)

From Figure 1, we see that PG-RLHF effectively learns the
optimal policy without observing true rewards, and achieves
comparable performance to PC-PG while using a few more
samples and a small amount of preference queries. When the
number of iterations in policy optimization 7" increases, the
ratio of query complexity to the overall sample complexity
(scaling as %) decreases, which matches our theoretical
results.

7. Conclusion

In this work, we study exploration-driven policy optimiza-
tion for RLHF. For the linear and neural function approxi-
mation settings, we propose efficient algorithms with active
human data collection. Through the comparison of results
between RLHF and standard RL, we give a theoretical ex-
planation for the query efficiency of RLHF. There is still
a large space for future investigation. For example, it is
interesting to explore other potential reasons behind the suc-
cess of RLHF, e.g., the structural advantage of preference
feedback over numerical feedback.
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Figure 2. The Bidirectional Lock environment.

A. Details of the Experimental Environment

In this section, we describe the Bidirectional Lock environment used in our experiments.

As shown in Figure 2, there are two locks, and each of them has 21 states. These states are denoted by sgoom 5, and sﬁad, ho
were ¢ € {1, 2} is the index of the lock, and h € [H] is the horizon of the lock. In addition to these 2H states, there are an
initial state sp and an absorbing ending state s | . There are 5 actions, including a good action @444 and 4 bad actions. The
reward function depends only on states. Only the last good states of locks give high rewards, i.e., r(séood’ m,) = 1land
7(820q.11>-) = 0.3. Other good states of locks {s’,,;
locks give tiny rewards, i.e., r(sfad pr) = %4 forany ¢ € {1,2} and h € [H]. We set H = 5 in our experiments.

}/6{172}7,16[}1_1], sp and s induce zero reward. The bad states of

The agent starts from so Under ag4004, she transitions to st deterministically; Under other actions, she transitions

ood,1
€0 83441 Soood,1 ANd 57,4, all with probability 3. For an;/]( € {1,2} and h € [H — 1], in state s/,
the agent transitions to s‘;ood7 pa1 and sp, a,n+1 With probabilities 0.95 and 0.05, respectively; Under other actions, she
transitions to sy, 5, ., deterministically. Forany £ € {1,2} and h € [H — 1], in state s}, ,,, the agent transitions to s}, , , |
deterministically under any action. Once the agent achieves sgood’ g O sfa a4 forany £ € {1, 2}, she transitions to a
deterministically.

under agood,

This environment has sparse rewards. The optimal policy is to always take @004, and obtain the high final reward of lock 1.
A suboptimal (myopic) policy results in getting stuck in bad states or only obtaining the low final reward of lock 2.

B. Detailed Review of Related Works

In the following, we present a more detailed review of related works.

RLHF. RLHF (Christiano et al., 2017; Kaufmann et al., 2023) has gained a huge empirical success, especially in
LLMs (Ouyang et al., 2022; Achiam et al., 2023). Recently, a number of works have emerged to theoretically ana-
lyze RLHF. Xu et al. (2020); Novoseller et al. (2020); Pacchiano et al. (2021) study online RLHF for tabular MDPs. Chen
et al. (2022); Wang et al. (2023) consider online RLHF with general function approximation. Wang et al. (2023) design a
reduction framework for RLHF, and prove that the sample complexity for RLHF is no higher than that for standard RL. Zhu
et al. (2023); Zhan et al. (2023a); Li et al. (2023) study offline RLHF with function approximation. Xiong et al. (2023)
introduce a KL-constrained framework for RLHF, and Zhan et al. (2023b); Wu & Sun (2023) consider how to optimize
query complexity via experimental design and posterior sampling. Ji et al. (2023) also seek to understand the empirical
success of RLHF in the offline contextual bandit setting, but different from our work, Ji et al. (2023) explain it from the
perspective of intrinsic human data bias.

In contrast to the above works which most consider value-based algorithms, we analyze policy gradient RLHF algorithms
with exploration, and theoretically explain why RLHF only needs a small amount of human feedback to attain good
performance, from the perspective of the efficiency of RLHF (reward learning) algorithmic procedure itself.

12
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Algorithm 3 NN-PG-RLHF
1: Input: g, 6) Na K7 MHF7 CHF? €COV7 ﬂ.base’ 7.(.0.
2: Initialize o = 1 and [11°], [w°]¢ ~ Dipir, V€ € [m].
3: forn=0,...,N—1do X
4 Sample {s;,a;}/< | ~dT" Jand X" « L Zfil Yoo (81, i)y (s, a:) T
zA)::lov — Z?:O 21 + CCOVI
Let p?ov = %H Z?:O d;rmn
i 0
Ofp =150, O7_1,¥n > 1, and O =07
for:=1,..., Myrdo
Sample trajectories Ti(l) ~ Ofr and Ti(2) ~0
10: Observe the preference outcome y;
11:  end for
12:  Train the reward network h(s, a; 1) with the MLE objective Eq. (9) by projected SGD, and obtain "
13: 7"t « NN-NPG-Update(pZ,, 2, , ")
14: end for
15: return Unif(7t, ... 7

ﬂ_base

Sinit

Y e W

)

Algorithm 4 NN-NPG-Update

1: Input: pcrzlovv 2?0V7 ﬂnv n, T, ﬂv aO, w®.

2: Let 7" (+, ) := h(-,-; 4™) R

3 0 ) e {0 ()T (Sl () 2 B}

4: LetK" :={se€ S:Vae A, b"(s,a) =0}

5: Fors € K", 7%(-|s) := mq0 0. For s ¢ K", 7%(-|s) := Unif({a € A : b"(s,a) = ﬁ})

6: fort=0,...,7T—1do

7 080

8:  Train the Q-network f(s, a; #::°) with the objective Eq. (10) by projected SGD, and obtain #*
9:  Update policy network: o 1w!t! < alfw! + nht

10: Vs € K™, w1 (:|s) = maer1 et (o] s) o< exp(aT f(s, a; with)). Vs ¢ K7, wtT1(-]s) = 79(-|s)
11: end for

12: return Unif(7°, ... 77~1)

RL with Neural Function Approximation. There have been several theoretical RL works, e.g., (Cai et al., 2019; Wang
et al., 2019; Liu et al., 2019; Fan et al., 2020; Xu et al., 2021), use neural networks to approximate value functions and
policies, and provide guarantees based on existing analysis for overparameterized neural networks (Jacot et al., 2018; Arora
et al., 2019). Our work also considers neural function approximation for the RLHF environment. In addition, our work is
also related to (Agarwal et al., 2020), which designs a policy gradient algorithm enabling exploration for standard RL.

C. Detailed Description of Algorithm NN-PG-RLHF

In this section, we present the pseudo-code of algorithm NN-PG-RLHF, and give a more detailed algorithm description.

Algorithm 3 illustrates the procedure of NN-PG-RLHF. Similar to PG-RLHF, in each phase n, NN-PG-RLHF first estimates
the feature covariance matrix X and updates the coverage distribution p7,. Then, it generates Myr pairs of preference
data using past coverage distributions p’.!, past policies ¢ and a baseline policy 7°¢ (i = 0, 1, ..., n). With these data,

PG-RLHF trains the reward network h(s, a; u°) to minimize the following MLE objective by projected SGD (Line 12):

Mpur
. 1{y; =1) L{y; = 0}
argmin <Zlog( D @,y P (), ) ’ ©
lu—nOl2<R i—1 Ltexp (= h(r 775 p0)  1texp (h(r 775 1)

5 @ 2 . .
where h(ri(l),ri@);p) = ZhHZ(Ol )h(sg}fz,a%;u) — ZhHZ(Ol )h(sgiz,a,giz;,u). After training, we call a subroutine

NN-NPG-Update (Algorithm 4) with pZ , X0y and h(-, -; i™) to perform policy optimization.

13
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In NN-NPG-Update, we train the Q-network f(s, a; 6%°) to fit the state-action value function with initial distribution p7 by
project SGD (Line 8):

. 2
argmin  Eg q)~pn, [(f(& a;0) — (Q’T (s,a; 7™ 4+0") = b" (s, a))) ] . (10)
16—0°I<R

With the trained Q-network f(s,a;6*), we update the policy network parameter o *1w!*! using 0! (Line 9). After the
natural policy gradient, we obtain an improved policy network 7%, which is used to improve the coverage and guide the
human data collection in the next phase.

D. Proofs for PO-RLHF with Linear Function Approximation

In this section, we give the proofs for algorithm PG-RLHF. In our analysis, the ideas of MDP construction and natural policy
gradient (Lemmas D.1-D.6) for optimistic MDPs are originated from (Agarwal et al., 2020).

D.1. MDP construction

We consider three MDPs as follows: (i) The true MDP M. (ii) The optimistic MDP with exploration bonuses Myn. Mpyn
replaces the reward function in M by (s, a) + b" (s, a). (iii) The (7*, K™)-modified optimistic MDP M™. M™ is the same
as Mn except that, for any s ¢ K™, M"™ adds an additional action a’ whose reward function and transition distribution are

r”(s’ajf) =1, p”(s‘s’af) =1

In M™, we consider a modified version of 7*, denoted by 7*™. For any s € K", 7" (-|s) = 7*(:|s). For any s ¢ K",
7*"(at|s) = 1. Thus, in M™, under policy 7", once the agent goes into some s ¢ K", she will self-loop and keep
receiving the reward 1.

Lemma D.1. For any phase n > 0, iterationt > 0, s € S and a # af,
t t t t t t
Vi () = Vi, (), Qun(s,a) = Qhy,. (5,a), Aln(s,a) = A}y, (s,a).

Proof. This lemma follows from the fact that M™ is the same as M. except that M™ has an additional action o', but 7t
never picks a'. O

Lemma D.2 (Lemma C.1 in (Agarwal et al., 2020)). For any phasen >0, s € K" and a € A,
e (8,0) < dy(s, a).

Lemma D.3 (Lemma C.2 in (Agarwal et al., 2020)). For any phase n > 0 and iterationt > 0,

*,m

Vi (sinit) > VT (Sinit),

t t t ]_ t
Vit (Sinit) = Vi, (Sinie) < V3 (Sinie) + i > dr (s.a).
(s:0)gK"

Lemma D.4 (Lemma C.3 in (Agarwal et al., 2020)). For any phase n > 0,

n+1 1 ~
> il (5,0) < GE( gy [0(5,0)T (S) 605, 0)|

(s,a)gl(:" init
Furthermore, it holds that

N1 . 5 det ((COVI +3N E (o iz’ [6(s,a)e(s, a)TD
Z Z dsanit (s,a) < B log det (Ceov!)

n=0 (s,a)¢K™
2d N
< —log |1+ > .
g8 ( Coord

14
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D.2. Performance Difference Lemma and Policy Gradient on M™

Lemma D.5 (Performance Difference Lemma on M™). For any phase n > 0 and iteration t > 0,

! [Aﬂw (s,a)-1{s € ic"}] .

*,m t
V;\T/[n (Sini[) - V,/Cl" (Sini[) S E]E(S’G)Nd/\/t”;si““

Proof. For any phase n > 0 and iteration ¢ > 0, using the standard performance difference lemma (Kakade & Langford,
2002), we have

T xt 1 »
Vi (Sinit) — Vign (Sinit) = mE(Sﬂ)NdWM*;:S_ ) {AMH(S,G)}
1 " :
- ﬁ (s,@)~dint, {AMH(S,G) -1{sek }}
1

+ g {Aﬂn(&a) 1{s¢ /cn}] .

1—n o~

In M™, for any s ¢ K", policy 7" chooses a' deterministically. For any s ¢ K", we have
o (8, aT) = QM (s, GT) = Viin(s)
=14+94Vim(s) — Vign(s)
— 1 (1= )V (s)
(a) 1
<1-(1- 0+ —
Q1o (04 )
=0,

where inequality (a) is due to the facts that for any s ¢ K", 7'(-|s) = Unif({a € A : b"(s,a) = 1flv}), and that VA’T/:TL (s)is
1

no smaller than the cumulative reward 0 plus the exploration bonus ™ (s,a) = ——.

1—v
Therefore,
*,M ﬂ—t 1 Trt )
Vign (Sinit) — Vin (sinit) < EE(S,a)NdWM*;;;m {AMn(s,a) 1{sek }]
® 1 ot .
Y B, [An (50 15 €K,

where inequality (b) is due to that AT, (s, a) = AﬂMtbn (s,a) for a # a' (Lemma D.1), and 7™ never picks a' for any state
se K. O

Let W := ;7537 and ) < 7. Then, |A%y,, (s,a)] < Wa foralln > 0,t > 0and (s,a) € S x A.

Lemma D.6 (Regret for Natural Policy Gradient). For any phase n > 0 and iteration t > 0,

!
—

i’ m] < los(lA)
Eo gz, {AMW (s;a)-1{s €K }] <=t nWAT.
t

Il
=]

Proof. For any phase n > 0, iteration ¢t > 0, s € K" and a € A, we have b"(s,a) = 0.
Define

Dy:= Y (exp(¢(s,a’) ")),

a’eA
E, := exp (_nanﬂ-tHs) [¢(57 a)Tat])
= €exp <_77Ea~7rt(~|s) [¢(Sa a)—ret + bn(sa a)])

15
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oo (V5 0).

and we have

P41 ]g) = P (0 w )
Darea (@(s, /) Twit)
_exp(o(s, )T (w' + "))
 Daea(@(s,a)T (w! +not))

T e (3 (805, )T 55, )))
Varea (ERLD - oxp (1 (65, @) TO" + b(s, ) )
7 (1s) - exp (1Q%,. (5. )) - Es
Saea (7(@]s) - exp (10, (5,0) - E.)
7(fs) - exp (1A, (5.)
Sea (TH@ls) - exp (nAF, (5. 0)))
7(fs) - exp (1A, (5.9)
 Swea (T@ls) - exp (145, (5,0) ) )

Define G5 := Y, 4(7"(d's) -exp(nfl}(;bn (s,a’))), and we have

where inequality (a) is due to that n/iﬂbn (s,a’) <nWa < landexp(x) <1+ z+ 22 forany z < 1.
Thus, for any s € K™, we have

KL(7™" ([s) [ (-]s)) = KL(m™" (-]s)l|7" (]s))

*,n a|s 7r*7n(a,|8)
= Eunrncro 08 ( Trpncar IS )] - B s (i)
= Egum=n(s) [log <7Tt+1 (als) )}

=Eqnnm(]s) [log(G ) — nAMW (s,a)}

S _nEaNTr*="(~|s) |:A7T,/\/lbn (&a)} +772Wi,

which is equivalent to

At 1 *,M *,m
Burn ) [ ARty (5:0)] < - (KLGE (L)l (1)) = KL (L) [7 (1)) + 073,
Adding s ~ dﬂ’:wm on both sides and summing overt = 0,...,7T — 1, we have
T—1 o
> Epapeags, | AR (s,0) - 1{s € K"}] < UEM;;:S KL (fs)lIn0(19)) = KL (|s) [ (]s))]
t=0

16
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+nWAT
1
_Jos(AD |y
n

D.3. Human Feedback

For any trajectory 7 = (S0, o, - - -, SH(r), @H(r)) let H( ) denote the length of 7, and ¢(7) := Zfz(g) &(sh, ay). For any
trajectories 71, 7(2) | Jet &m”@) = Zfz(g(l)) <z>( (1)) Zh 0(2) o(s;; ),af)).

For any (s,a) € S x A and policy , let O3, be the distribution of the trajectory which is generated by starting at
(s,a), executing policy 7 and terminating with probability 1 — - at each step. For any state-action distribution p, let
OF =Ky (s,0)[0F 4]-

D.3.1. TRAJECTORY LENGTH AND COVARIANCE MATRIX CONCENTRATION

To analyze the reward estimation error under human feedback, we first define the concentration events for trajectory length
and the coverage and human data covariance matrices.

Define event

log (3
Er = {|7’| < Olg <6 ) := W, for any trajectory 7 sampled in the algorithm} . (11)
-

Lemma D.7. It holds that Pr[€;] > 1 — 2N (K + Myr + T Mscp)d'.

Proof. This proof is similar to Egs. (94)-(97) in (Zanette et al., 2021).

Let H denote the length of a trajectory which is generated by terminating with probability 1 —  at each step. Then, H is a
random variable which satisfies Pr[H = t] =y~ 1(1 — ) fort = 1,2,....

We have

Pr[H > h] = 27 L=m =" Y11 =9"d """ 1= ="

t=h+1 t=1 t=1

Let 6’ = ~". Then,

In(d) —In(d) _ —In() _In(F)
(y) () S —(—1) = T~

Thus, we have

O

Let (cov := 1 and (gp := 4W2. Foranyn > 0and 1 <i < K, let ( ?. al) denote the i-th state-action pair sampled in

phase n for constructing the estimated coverage covariance matrix X (Line 3 in Algorithm 1).

COV

For any phase n > 0, let

E&V:_Z< Z¢ Z’ Z Z’ Z) >+CCOV

=0

17
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cov . Z IE(s a)NdW” (Sa a)¢(37 a)T] + Geovd
= (n + I)E(s,a)r\/pg})v (d)(sa a)¢(37 a)T) + Ceovd -

Spp = —— Mz (69) = 6(r®)) (oY) - 9(r®)) " + S
Myr P ¢ C i i "
Myr
1 s W@ [~ @\ (up
= Ti Ty T T 2y vn > 1
Myr Zz:; ¢ (d) ) + n n=
i Ly CHF
St = 22 (o, | (6010) = o) (07 - 0(12) ]) I
TN o
1 - (1) (2) [ ~(1) (2) CHF
= — P TV T SHF >
nZ; ET(l)NO:&;l {Qb (¢ ) }) I, vn>1
= () o

Define event

1 _
Eeov 1= {2 ||¢(570)H(2;V)71 < ||¢(Sva)”(2gév)4 <2 ||¢(s,a)||(21?w)’

1 _
S 1605, @)l g+ < 1905, 0)l 1 < 2016(5,0)I iy, YOS < N = 1}.

Lemma D.8. Assuming that event £, holds, we have Pr[.] > 1 — 2N,

16(N+1)” log® (44

410 4d
Proof. This lemma follows from Lemma F.2 and the conditions that K > = ) and Myr > M

CHF

D.3.2. REWARD ESTIMATION ERROR IN Q-VALUE FUNCTIONS
Let W, := 1.

For any n > 0, recall that

n

A . Myr 1 {yl = 1}
pt = argmin | — ) log HED) ) W T
lull2<W, i=1 1+ exp ((Z Cb( i, h? a; h) Zh 0 (Sz‘,fw ai,h)) “)

1 {yz = 0}
* V) H<r< DY) T '
1exp (S0 o6L1) o)) - o3 al) n)
Lemma D.9 (MLE, Lemma 5.1 in (Zhu et al., 2023)). For any phase n > 0, with probability at least 1 — &', we have

d+log(5) = CupW?
07— 1|, <8 0 Bo._on
1" = p ||zHF = \/ 2 M + - EHF

— 1
where cvig = 24exp(—2W, W, )+exp(2W,. W, )"

In other words, defining event

EMLE = {Hﬂn — s <éefp, V0<n <N — 1},

we have Pr[&vig) > 1 — N&'.

18
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Lemma D.10. Assume that event E; N Eoy N EmLE holds. Then, for any phase n > 0, iterationt > 0 and (s,a) € S X A,

H(r)
Q' (s,a; 7" + ") — Q™ (s, a;r + b")| < 26, Lort Z d(sh,an) = qf;
h=0 (E;ﬁ:)—l
Proof. Since Q™ (s,a; " + b") = E <ort S M (shyan) + b (shoan))] and QT (s,azr + bY) =
E, oz [ty (r(sn,an) + b (s, an))], we have
. . H(r)
Q (s,a;7" +0") = Q7 (8,57 +")| = |E _opmr | D (7" (50, an) = r(sn, an))
h=0
[ # ()
<E,om || D (" (snyan) = r(sn,an))
L h=0
[ # ()
=E, or || D Slsnan)T (2" = )
© || r=0
[[[#()
S E-,—N@;r"’a };) ¢ 5h7ah ||lu — M ||2;ILF
L (EQF)71

@ H(T)
< 264rE, ont Z ¢(sh, an) )
(Zhe) ™

where inequality (a) is due to the definition of event &y. O

Let 65 = Es.a)mpn, [65a] = 2(;“;}FIETNO,r il Zh o (;S(sh,ah)H(En ) 1 Wo = 2” — 1 ad Wg = =5 7)2
Lemma D.11. Assume that event £, N ECOV N EmLg holds. Then, for any phase n > 0, iterationt > 0, s € K™ and a € A,

H(r)

|o(s,a) T (0L —0L)| < | 328Woeks(n + DE, _ort > ¢(sn,an) + Wo/8BCur-
h=0

()~
Proof. For any phase n > 0 and iteration ¢ > 0, for any fixed 6 and (s, a), using Lemma F.3, we have

(Qﬂt(s,a;f" + ") —b"(s,a) — ¢(S7a)T9)2 B (Qﬂt(s,a;r FBY) — b (s, a) — ¢>(s,a)T9>2
< AW |Q (5,07 ") = Q' (s, 457 + ")

< AWosr, (12)

where W, satisfies that max{|Q™ (s, a; 7" + b™)|,|Q™ (s,a;7 + b")|, |p(s,a) T+ b"(s,a)|} < Wq foralln > 0,t >0
and (s,a) € S x A.

Taking E (s q)~,n [-] on both sides, we have

t 2
Blaarmas, | (@7 (0057 +87) = 5"(5.0) = 6(5,0) 0) | (13)
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— E(s,a)"‘P&L)v |:(Q7Tt (87 a;r+ bn) - bn(sv a) - ¢(S, a)—re) 2:|

< AWQE(sapp, [57a]

t
= Wasy, -

Plugging 6% into 6, we have that for any fixed (s, a),

. 2
E(s,a)~pn, (Q” (s,a;r +0") —b"(s,a) — &(s, a)THt) }

+ 2
> Blaes, | (@7 (st +07) = 0°(s.0) = o(o,0)02) | 07,

(a)

where inequality (a) is due to the definition of 67 ,.

Furthermore, we have

+ 2
]E(s,a)wpg)v |:<Q7r (S, a;r+ bn) - bn(sa a’) S a Temld) :|
27

— E(s.0)mpn. (Q’T (s,a;7 +b") — b"(s,a) — P(s,a) ' 62 )

t 2
= E(S»a)wpgﬁv |:(Q7T (Sa a; P + bn) - bn(87a) - d)( ) emld) :|

- ) 97
- E(s,a)rwpgw (QW (Sa a;r+ bn) - bn(S’ a) - ¢(57 a)Tei)

. 2
+ E(Sva)’“ﬁgév |:(Q7T (87 a;r+ bn) - bn(sv (l) - ¢( ) amld) :|

t 2
B E(s,a)"’ﬂg},v |:(Q7T (Sa a; P + bn) - bn(s7 a) - d)(s a)T9m1d> :|

<4WQ§pt +AWQE5,a)~p HQ s, a; 7"+ b") —Q’Tt(s,a;r—kb")
< SWQ%V’

}

where inequality (a) uses Lemma F.3.

On the other hand, it holds that
. 2
B, | (@7 (o057 +87) = 5°(5.0) = 95.0) 0hs) |

— ]E(s,a)wpgw [(Qﬂt <87 a,r + bn) - bn(sa a) - ¢(S, a)TQi)Q]
= Eeampn, |(05.:0)T (04~ Ohua)) |

2B sy, | (@ (5,07 +6") = B7(s,0) = 6(s5,) T0L) 6(s,) T (6 — Ola)

t 2 t
Z E(s,u)f\/pggv (er (57 a; 7" + bn) - bn(sv (l) - ¢(S a)Temld) :| - 4WQ§;’C’§W

TermI" > 0

where Term I is non-negative due to the the first-order optimality of §¢.

Thus, we have

Bz, | (0(5:0)T (6~ Ohia)’]
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+ 2

< By, (@7 (sair +87) = 1°(5:0) = 0(5.0) i) |
t T it 2
B, | (@7 a8 06, 05,0076 ) |

< SWQCZZ:.

Since E(sayopp [(6(5,0) (08 — 05012 = Eoajmpn (00 — Oy T0(s,)0(s,0)T (0L — O] = (61 —
emld) Es, a)Npggv[¢(5aa)¢( a) ](et_afmd) we have

(015 - emld) E(s,a)wpcnov[gﬁ(sva)(b(&a)—r](et omld) < SWQggg;
Moreover,

|| 6% — 6L

midHZn

= 0ria) <ZE (s,0)dg o(s,a)p(s,a) | + CCOVI> (6% — 0L0)

= m1d Z Z dem,l )¢(S5 a)T + CCOVI (ot artmd)

=0 (s,a)
= (TL + 1) ( mld (SZ.; Z s,ml 5, a 5 a)¢(sa a) C(_tvll (Qi - 0l§nid)
AR PR o) (6 )

< 8(n+1)Wosh + 4G Wi
For any s € K™, using the definitions of ™ and event &y, we have

25 10060 -+ < 65,0l 55+ < VB

Therefore, we obtain

|¢( ) (Qt - 9m1d)| < Hqﬁ(s,a)H(E&v),l Hei - extnid’

n
2COV

= \/25( (n+1)Wosj, + 4CCOVW3>
H(r)
< |328Woetp(n + DE__om ||| Y ¢(sn, an) + Wor/8BCeon-
cov h:O (ES{F)71

D.3.3. ELLIPTICAL POTENTIAL ANALYSIS FOR HUMAN DATA

Lemma D.12 (Elliptical Potential for the Baseline Policy). For any phase n > 0,

d log(N).

Chase

N-1
> E, o 16N 15y 1] <
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Proof. We have

SE, ome 16D 15,y1]
n:o it L
- —1
B Ty (1) @) M @y "
= Y B o [0 [ LB g [(60) = 0tr) (670) — o) | 4 et | o0
n=0 I i=1 7(2)~O‘7’$ze
(a) 1 N—-1 n -1
< = D E ope [6(7)T (ZET<2)Nogbese [¢<T<2>)¢<r<2>>T} +<pr> (7)
ase n=0 init i—1 Sinit
N-1 1
1 1 Cur W2
= —tr E rbase 7_(2) T(2) T —+ I> E rbase T T T + T
Chbase ngl n (( T(Q)Nosi:it [d)( )¢( ) } n TNOSi:it [d)( )¢( ) ] CbaseCHF
d =1 w2
= —+
Chase 1 n CbaseCHF
d
< (log(N) +1) +
Chase Chase
® 24
< log(N).
Cbase

where inequality (a) uses Assumption 3.4, and inequality (b) holds if log(N) > 2 which can be easily guaranteed in our
problem. O

Lemma D.13 (Elliptical Potential for Preference-based Data). It holds that

N—1 T—1 H(T) 2 1 :
1 1 1 ANW 2dz log* (N
IS EY B o (s, an) < 2dt logh (14 VW2 | 2d71og* (V)
N T o Curd 1

n=0 t=0 h=0 (ELLF)_I Chase

Proof. For any phase n > 0, we have
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We make the convention that n3{j; := (gr/ for n = 0. Then, we obtain

1 N-1 1 T—-1 H(r)
~ - E, .o > é(sn,an)
n=0 t=0 h=0 (=)~
1 N—1 H(T) T H(T)
n \—1
< N P ET O;C':rl ;} P(sh, an (Eir) Z B(sh,an)
@ 1 = [ (1) ' (& _
N Emo;;‘jl > blsnan) | (S Z ®(sn, an)
n=0 h=0
. N-1 H(7) ! H(r)
< )i N - Z Emoﬂ;:l Z d(snyan) | (Sfp) Z (Sh,an)
n=0 h=0
1 N—1 H(T) T
< ﬁ N - 7;) ETN(’);%Z:A Z ¢ sh,ah ZﬁF B Z (b sh,ah
v H(r) ! H(r) !
=N"1 E o || D d(snran) | (Sh)” Z d(sn, an)
n=1 Peov h=0
- 1
N-1 H(r) T H(r) *
< | X B [ stonan) w3 ot
n=0 o h=0 h=0
3 . :
N—-1 H(T)
= Z ETNO:;::JA Z ¢ Shy ah
n=0 I (nz&:)fl
where inequality (a) uses the Jensen inequality.
It holds that
N—-1 H(T) 2
E At (sh,an)
B (nZQ’F)7
N-1 9
=Y E 0o [Hw% R ] W
n Plov (nEﬁ'F)
- (2>~O7\_basn
N—1 9 9
<> (2, o [H¢ (W — (@) ) } +2E, o) e {HMT@)) _1}
o 4 (nsp) ™! Sinit (n2f)
(2) Oﬂ_ ase

Sinit
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-1

[(w“» —o(r®)) (D) - W”)ﬂ +<sz> :

@ X

n—1
<2 Z]ETu)NOWLI [ (éb(T(l)) - ¢(T(2))>T< ZETQ)NO
n =1

—1 Pcov
@ or” 7@ om™e

init Sinit

4d

<det (S Bt o [(61) = 8(:2) (30 = )] + Gt ) )
+

(b)
< 4d 1 Pcov 1 N
- o8 det (CHFI) Chbase Og( )
ANW? 4d
<d4dlog 1+ Wy + log(N).
Curd Cbase

Here inequality (a) uses Lemma D.12 and Assumption 3.4. Inequality (b) follows from the elliptical potential lemma
(Lemma F.5) and the fact that (yp := 4W2.

Therefore, we have

1 N-1 1 T-1 H(T)
= - E_ . :
N o T v TNO/’E’W Z d)(sh ah) ( ) 1
_ — — o)
ANW2\  4d T
< (4d log (1 + T> + 1og(N)>
CHFd Chbase
ANW2\  2d%logi (N
<2di10g% (1 WT) + d: 01g4( )
Curd ot
base

D.3.4. DISCUSSION ON ASSUMPTION 3.4

Assumption 3.4 can be abstracted from the RLHF framework, and serve as a technical condition for an independent
mathematical problem.

We provide Lemma D.14 to demonstrate that under Assumption 3.4, one can systematically utilize the elliptical potential
lemma (Abbasi-Yadkori et al., 2011) to obtain a mathematical conclusion that is independent of the RLHF framework.

Our RLHF analysis (Lemmas D.12 and D.13) is an application of this systematical analytical procedure.

Lemma D.14. Let ® := {¢ € R¢ : ||¢||2 < Wy}. There are random distributions D, . .., D and Dyyse over ®, and a
regularization parameter ( > WQ%

Assume that Dy, satisfies that for any n € [N],

Egab, ¢/~ Duwe (6 — )(D — )] = CouseEp/aDpe [0 ] (18)

Sor some constant cuye € (0,1).

Then, we can use the elliptical potential lemma (Lemma F.5) (Abbasi-Yadkori et al., 2011) to bound

N
Eg, D00 ~ y -
Z d)n Dn7¢n 'Dbnsc |:||¢n|| (Zzl:—ll Ed:iN’Di,qs(iN'Dbmc [(¢L_¢;)(¢l_¢;)_r]+<[) 1:|

n=1
N

< , — > -
<2 ‘ (E¢n,~Dm¢n~Dm [”@z ¢n||(zzz;11 Ey. b, o/ ~ Dy [(¢i_¢;)(¢i_¢;)ﬂ+41) 1}
n= i B
2

Ey - Aty -
L (160 e, i) )
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NWZ 2d
<ddlog |14+ —— | + (log(N) +2).
¢d Cbase

Proof. According to the assumption Eq. (18), we have that for any ¢ € [N],
Eg~D;,¢/ ~Douse [(¢ - ¢/)(¢ - ¢')T] +¢I = CoaseBp’ ~Diuse [¢/¢/T] + 1 = chaseEgp n Dy [¢/¢,T} + ChaseC 1,

which implies that

(Boopy g [(6— )b — )] +¢D) 7 = —— Egomy [¢#6T] +¢I) 7

Cbase

Hence, we have that for any v € RY,

LT om [667] + D)

Chbase

VT (Bppy prmmie [(0— &) (6= )] +¢I) v <

Furthermore, we have

N
Eg, D, .4 ~ I _
Z Pn Dm¢n Dhase |:||¢n||(z?11]E¢1,~Di,<1>;~73base[(¢i¢;)(¢i¢;)T]+C1) 1:|
N
— Y /2
- Z E(IbnNDm(ﬁitNDbase |:|¢71 ¢n + (an (Z;L;ll EMND#WNDbase [(¢i¢;)(¢i¢;)T]+C1)1:|

N
< OBy . o ~ — |3 -
= Z ( @n~Dn ¢, ~Dhase |:||¢’ﬂ (an(ZZm;ll E¢i~Div¢;NDbase [(¢77¢;)(¢17¢;)T]+<1) 1:|

2E, - Al -
+ 2B~ Do {l(b””(z?fE%wi,d,;wm[<¢1—¢;)(¢i—¢;)T]+<I) 1])

(a) 2
<2 Z:l (E(ZSnNDn)(b;LN'Dbase |:|¢n - (bn”(zyz—ll E D, 4~ Dy [(¢i¢§)(¢i¢;)T]+<1)l]
2 2
Ey ~ ! _
* Chase " P {d)"|(Z?_fE¢;~Dbasc[¢;(¢;ﬁ]+<z) D
N n—1 —1
:22“ (Z Bt Do (91 = 60 (05 = 0D + “) E i~ Dr st Dme (60 — 8 (60 — 8) 7]
n=1 i=1
N 1 9
2 1 2W.
-t Eg ()T T E, . ;o NT é
* o 2 r<< o/~ D [#(9) ] + —— Do [0 ] | +

®) NW?2 200 X1 2W2
<4dlog |1+ —2 ¢
- o8 ( * Cd ) + Chase n—>= n—1 Cbase<

NW2 2d
<d4ddlog [ 14+ —— | + (log(N) +2),
Cd Cbase

where inequality (a) uses Assumption 3.4, and inequality (b) applies the elliptical potential lemma (Lemma F.5) (Abbasi-
Yadkori et al., 2011).

O
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D.4. Proof of Theorem 4.2

For any phase n = 0,..., N — 1 and iterationt = 0,...,T — 1, define

16ll2<We

0% := argmin E o) pp. [(qﬁ(s,a)—r@ - (Q”t (s,a;r +0") — b”(s7a)>)2] ,

2

)

0! .4 := argmin E(s,a)~pn, |:(¢(S,G)T9 - (Q”t (s,a; 7" +0") — b" (s, a)))
10]]2<W§y

. 2
ot % argmin E(s,a)~pn, [((b(s, a)' 60— (QW (s, a; 7™ + b") — b"(&a))) ] :

[[0]l2<Wy

Foranyn > 0,¢ > 0and (s,a) € S x A, let b™(s,a) := b"(s,a) — Egrunt(s) ["(5,a’)] and ¢'(s,a) := ¢(s,a) —
Ea’wﬂ'"(~|s) [d)(s,a’)].

Proof of Theorem 4.2. Using Lemma D.5, we have that for any phase n = 0,..., N — 1 and iterationt = 0,...,T — 1,

V]\T/;" (Sinit) - V/(r/:n (sini[)
1 o §
< T Eeanag [ m(s,0) 1{s €K }}

1 .- ;
= 1 Rsaagi, [ Myn (8,0) - 1 {s € K"}

+ (A% (5,0) = (35, 0) 0L +574(5,a)) ) -1 {s € K"}

Term 1

+0'(s,0) T (01— Ofia) - L{s € K"} + 9 (s,0) " (Ofua — 0") - 1 {s € ’Cn}] (19)

Term 2

Term 3

Following the proof of Lemma D.1 in (Agarwal et al., 2020), we can bound Terms 1 and 3 as follows.

~dM (@Rt () = (605, )76 +b(s,)) ) -1 45 € K}

Tt i) | (@R (5:0) = (0(5,0) 0 + b(s,0)) ) - 1 {s € K"}

Term 1 = E(S’G)Nd”/\;;:q.. |:< ﬂbn (s,a) — ((Et(s, a)Tﬁi + B”’t(sya))) .1 {3 c K:n}}

=B 0

(@) .
2 B iy, (@i o50) — (005,070 4 00(5,0)

+ \/ Eus aimrt (1) | (@R (5:0)) = (05,070 + b7 (5,07)))]

t 2
< 2\/ AIE oy, [(@F,0 (5,0) = (6(5,0) 708 +b7(s, )]
< 24/| Alébias, (20)
where inequality (a) uses Lemma D.2.

Define the Q-value function fitting error as

With probability at least 1 — 2NT',

Term 3 = E; ;) 4r* [6'(s,a) " (0L,q — 0") - 1{s € K"}]

Sinit
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< 2\/Ban W3 + B(n + Deq

log (L)) *
< 2Wyr/Bloow + AWo /Bl + 1) (f}”) . @1
SGD

Define event

Ep = {Term 3< 2\/BCCOVW92 + B(n+ 1)5Q} .

Then, Pr[&] > 1 — 2NT§'.

Now we have Pr[€ N E NEvie N Eeoy] =1 —4 - 2N (K + Myp + TMsgp) - 28’ > 1 — 4. In the following, we assume
that event & N E; N EmLe N Ecov holds, and derive the suboptimality guarantee.

Applying Lemma D.11, Term 2 can be bounded as follows.

Term 2 = E(s a)~dn o [(bt( ) (975 - emld) 1 {8 € ICYL}]

M7 s

< Eamagy. [0(s,a)T (6L = 019) |- 1{s € K"}]

> Sinit

+ Eswd"* . IRCEHC H(b (s (l ( emld)‘ 1 {5 € K:n}]

MTs

H(r)
<16 | BWoepp(n+ DE__om ||| Y d(sn,an) + 8Wo/ Bleov- (22)

P&y )
"\
(i)

Plugging the connection result between M™ and M (Lemma D.3) into the suboptimality decomposition (Eq. (19)), we have

« ¢ 1 ¢
V™ (siit) = V7 (sinir) < RHS inEq. (19) + -—— > df, (s.a).
(s,a)gK™
Summing overt = 0,...,T — 1 and dividing T', we have
* n+41
V™ (Sinie) = V™ (Sinit)
1= ;
=7 (VTr (Sinit) = V™ (Sinit))
t=0
1 =1 1 +1
< D RHSinEq.(19)+—— »  di, (s.0)
t=0 (s,a)¢Km™
1
@ log(lA) |, nW3 2y Alevias  AWoy/B(n+1) (log ()\" L 10Wsv/BGeon
T A=ymT 11—y 1—vy 1—v Msap 16—
16\/ n+1)% (d +log (& B
( Cha 16) +2(n+1)<m=wj>
e Mur
" A 1 “
T E op Z d(sn: an) i > i, (s.a), (23)
=0 (=) (s,0)¢K"
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where inequality (a) combines the natural policy gradient regret (Lemma D.6) and Terms 1-3 (Egs. (20)-(22)).

Summing over n = 0, ..., N — 1 and dividing NV, we have

out

V™ (Sinit) = V™ (Sinit)

| N-1 »
= > (V7 ) =V ()
n=0
log(l4) . nW3 2V Al | 8Wov/BN (log (5) ! L 10Ws /Bl
T (=T 1-v 1—7 1—7v Mscp 1—7
32./BW, 4N? (d +log (& *
1=y me Mur
1 N—-1 1 T—1 H(T)
— — E ot ,
N 22T 2 Oz ; (Sh,an) .
— — — )"
n+1
1 _ N Z Z dsmn
n=0 (s,a)¢K"

@ log(A) | nW3 | 2Vl 8WovBN (log(5) )" 10WovBlo
T (=T 1=y 1y 1—y Msap 1—v

1
256 /BW, N2 (d+log (& g , ANW2\  dilogi(N
+ l_ﬁ,y Q . ( ( Og (5 )) +NCHFW3> . d% IOgZ (1 _|_ 7—) + 4 O%‘l( )

2
CMLE Myr Curd

+ — 1 dlo ( N)
I-n)N 3 %7 God

2Vl | Wav/Ios(AD) | 8WoyBN log* (§) | 10Wpy/Bly

1
Chase

=+
L=~ (1—y)VT L=~y (Msgp)* L=y
L2 256\/ Wq di 1ogi (5N) [ 2N2dlog (&) o) 2d
: + NGrW; | + —— - log(2N), (24)
Cbaﬁe v Mur ! (1-7)NB
. . L \/log(|.A])
where inequality (a) uses Lemmas D.13, D.4, and the fact 5 := vt
. . . 16(N+1)” log® (44N )
In addition, due to the condition of concentration event &y, we should guarantee K > = &~ and Myg >
16W log? (44)
G ’
lo g(%)
Recall that W, = —/=2= W, = 1, Wa := ﬁ, Wy = ﬁ — 1 , Wo = ﬁ, CMLE =
1 e W, o o _ 4log? (ﬁ)
2+exp(72WTWu)+exp(2W7Wu)’g o (WQJrVée)ﬁ’ Geov = 1 and Gyp = AW = (1- 7)2 '
We set
. FWRlog(A]
(1—7)%e? ~
_ Vlog(JA]) _ (1=7)e
WavT 6W3
ﬁ L (1 - ’y)sEscbase lo _9 800 - 2562d3WQW;“/ IOCHF N O (1 - 7)5€5cbase
" 5000 - 65 - 24 2564W622W3CHFd2 & (1 —9)*5/Coase N WéWﬁdQCHF ’
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6-10d 6-4d - [ PWEWCur
= 1 = & ux
(1 - 7)56 o8 <(1 - 7)5ﬂ> © <(1 - '7)656cbase> ’

64'84'W4 2N2 LLQL 5 W4d2
Msgp := 1200 - bl 10%2( 5 3>:O e )

1y A=
=1
64-2%.2564B2W2 N2d2 log(5N L L2L ~ W2d*
Myp == 1200 - 64 s x )1og2< — 3) = Sz
(1 - 7) €7 CyLE Cbase o (1 - ’Y) €7 CypLECbase
:=L3
B g (N L D) (VG
(020V 4 (1 - 7)12512632156 ’
:=Lo
5 0

T 12N(K + 1+ T)MueMscp

Then, we have

* out 2\/ A Ebias
V™ (sinit) = V™ (Sinit) < €+ ¢~

L=n
Finally, the number of samples is bounded by
0] (N (K + Myr + T Mscp) - 117)
_ 0( WEW;iGird® ( W4 Wi Gipd® wgd* Lowp o W ) .
(1= 7)0e0che  \ (1 —)1212¢3,, (1 —7)%0c pcrase (1 —7)%e2 (1—7)86) 1—1«

(1 - ’7) 195180%356

E. Proofs for PO-RLHF with Neural Function Approximation

In this section, we provide the proofs for algorithm NN-PG-RLHF.

Definitions for Neural Function Approximation. We first introduce or recall some definitions.
Let Sg :={w € R™ : ||w — w’||, < R} andUg := {p € R™ : ||u — p°||, < R}.
For any w € R™, recall that

_ b

[Wule(s,a) : V%-n{qb(s,af[w]po}qb(s,a) eRY, Ve [m],

Y (5,a) = [[w]1(5,a);...; [Pw]m(s,a)] € R™,

Here ¢ < ||[[w°]¢||2 < ¢ for all £ € [m)] for some constants ¢, ¢ > 0.
Recall the Q-network, policy network and reward network as follow:

m

LS b1 {p(s,0)T[0le > 0} 6(s,a) T [0l = vo(s,0) 76,
/=1

J(s,00) = =
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o (als) = exp (af(s,a;w)) _ exp(a)y, (s, a) Tw)
o Za eA exp (af(s,a’;w))  Ypeaexp(@thu(s,a’) Tw)’
h(s, a; ) sz 1 {¢(s,a) " [ule > 0} p(s,a) " [u]e = Ppu(s,a) .

For any ¢ > 0, we use 7" and 7, ¢ interchangeably.

Let
fols,a5) 1= TZ 1 {65, @) [0 > 0} 65, @) [wle = uo(s,0) T,
1 m
ho(s,a;pn) := — ) b o(s,a) " [1°]e > 0} d(s,a) T [u]e = o (s,a) " w.
0 H \/m; 0" { 0 } e

Define the neural kernel spaces as

¥ = {f<s,a> — f(sasu®) + [ 1{0(5,0)Tw> 0} 6(s,0) v @)dp" () [ )] < Z}

Fi = {f<s,a> = n(s,aip®) + [ 1{0(50) > 0} o(s.) ) () - 0] < fa}

Here v : RY — R% and f(s,a; w’) parameterize the element of 7 _, and p* : R? — R is the density function of
the initialization distribution of w°. Similarly, v* : R? — R and h(s, a; u°) parameterize the element of F' T o> and

# . R? — R is the density function of the initialization distribution of ;°. In this work, for simplicity, we set the
initialization distribution for w® and ,uo as Dipn;t.

Define
P = {jﬁ D b 1{o(s.a) [l > 0} bls,a) e : [l = w°]l, < R} ,
L
Fiam = {%Zbﬂ{ﬂﬁ(wﬂuoh>0}¢<s,a>T[me: e = e, < R}'

Fi.m is the subset of Fp .

Let 2™ € U, be the parameter such that
Projz,  r(s,a) = Po(s,a) " .

Covariance Matrix Concentration. Next, we define the concentration event for the coverage and human data covariance
matrices.

For any trajectory 7 = (S0, a0, ..., 5H(r), @r(r)) and p € Ug, let Y, (1) = Zf(g) tu(sh,an). For any trajectories
~ 7_( ) T<2)
71, 72 and w € Ug, let me’T(Q . H( )1/)u(8§b1)7 agbl)) H( )w#( ELQ)7 agbz)).

Foranyn > 0andt > 0, let ( 0 al") denote the i-th state-action pair sampled in phase n for constructing the estimated
coverage covariance matrix ECOV (Line 4 in Algorithm 3).

For any phase n > 0, define

Elc\gn = Z ( Zﬂjo Si,a ;L)T) + Ceovd,

=0
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ECN(S’n = ZE(s,a)Nd;f‘i“ [1/)0(57 GWO(S, a)T] + Ceovd
1=0

= (n+ DEs,a0)~pp, (wo(s,a)wo(s, a)T) + Ceovl.

Mg
S = 13 (o) — o) (w0(r) —o(r) "+ S
=1

Mpyr
Myr T
1 ~r (D 2(2) ~r (D) (2 CHF
- — Wt T (qp) + =1, Vn>1
MHF - 0 0 n
NN ] - A 1) @) (1) @y " CHF
HE = s ot [($o(T) = do(T) ) (%o(7) = 3ho(77) + =
1= Pcov
1 7—(2)/\/(9‘::_‘bidse
1< — () @) (=) @\ T Cur
= g 2 <E7(1>~O;§1 |: 0 ('(/)0 ) :| ) + 7[7 Vn >1
= T(2>Nogb§se
&NN,n NN,n
Yup = 2gp = el

Recall W, := IOfEZ) and the definition of event &£, (Eq. (11)).

Define event
1 -1
Eo = {2 [P0(s; @)l mamy -1 < 1%0(s; @)l gwny -1 < 21[900(s, @)l gsony
1 -1
5 1o(s, )l sy -1 < [0 (s, )l sy -1 < 2110 (s, @) vy, VO < < N — 1}

Lemma E.1. Assuming that event £, holds, then we have Pr[ENN] > 1 — 2N¢§'.

. .. 16(N+1)2 log? (44N 16W 4 log? (44N
Proof. This lemma follows from Lemma F.2 and the condition that K > (V+1) Czog (457) and Myp > *m
cov HF

E.1. Neural Function Approximation

In the following, we present useful technical lemmas for neural function approximation. Lemmas E.2-E.5 borrow the ideas
from prior neural network theory works (Rahimi & Recht, 2008; Cai et al., 2019; Wang et al., 2019; Xu et al., 2021).

For brevity of presentation, Lemmas E.2 and E.3 are written with parameter w and function f, but it works for parameters
w, 0, u and their corresponding functions f, h.

For ease of notation, we simplify the notations 40 and 1,0 as 1)y, which can be easily recovered from the context.

Lemma E.2. For any w,w’ € R™? such that |[w — w°||z < Rand |[w' — w2 < R,

3
4CscaleR
cy/m

Cscale I

cy/m’

E, [|wo(3, a) T w' — (s, a)Tw’|2] <

E, [[Yo(s,) = vu(s,0)ll3] <

Proof. We prove the first statement as follows.
’1/)0(3, a) w — ww(s,a)—rw'|
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= % Zbg . (]l {(b(s,a)T[wO]g > O} -1 {(;S(s,a)T[w]g > O}) B(s,a) T [w'],
=1
1 m
< — 1{¢(s,a)" [w’]y >0} — 1{p(s,a) " [w]e > 0} |o(s,a) " [w]e|.
=Sy > 0} 1 {00 Rl > 0} (s, 0) 1
Since |1 {¢(s,a) T[] > 0} — 1 {¢(s,a) [w], > 0} implies
|6(s,a) T[w’)e| < [6(s,a) " [w]e — d(s, @) "[wle| < [lé(s, @)y [[[w’]e — [wlel],,

we have
|]l {gb(s,a)T[wo]g > O} -1 {qﬁ(s,a)T[w]g > O}| <1 {|¢(s,a)T[w0}g| < |lp(s,a)ll, H[wo]g - [w]gﬂz} ) 27

Hence, we have

|¢0(5, a) T w' — (s, a)Tw’|

< \};n {16(5.0) T [0%)e] < 165, @)y | [w%)e — [wlel], } [ (5. @) T
<L ™1 {[o(s.0) [l < 16(s. @)l [0 — fwlel],} (|60 @) TR0le] + [6(s.0)T () — [u0]e)])
—1

(@ 1

2 ﬁ;]l {l6(s,a)T[w)e] < llo(s, @)l [[[w°]e = fwle]],} -

$,0)|ly [[[w")e = [wlel, + lé(s, @)l [|[w']e — [w°le]l,) ,
where inequality (a) is due to 1 {|z| < y} |z| < 1{|z| < y}v.

=)

Using the Cauchy-Schwartz inequality, we have

|'¢)0(5 ) ww S, a |

< E; {l6(s,0) T [w")e] < (s, @)l [[1w°)e = [ele]],}

i (2l6(s, I3 1w = fwlel]; + 2 g5, )3 [[w'le — [wlell3)
< Lig:]l{w 5,0) Twle] < 6(s, @)l [[[w")e — Fule]],)
< ‘fén {l6s.0) 1] < [|[w’]e — e}

Therefore, we have

B, [Ivato, )T ) o] < 20 S, 3 {10, 1u0l] < [l ful, )
/=1
@ degeaeR2 o= [|[w e — [wle|),
-, Z TwOTell,

40 m m
scale Z ” wO Z _ z||§ Z ”
=1

-1 5”2
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< 4Cscalefig
= To/m

where inequality (a) uses Assumption 3.3.

Next, we prove the second statement using the similar argument.

(s, @) = dhu(s, a)ll5

% (1{(s, @) ") > 0} — 1 {(s, ) fwle > 0})* (s, a)]2
< %Zﬂ {16(s:@)" [w0le] < [[1w) ~ fwle],}

where inequality (a) uses Eq. (27).
Taking E,[-], we have

B, [In(s.0) — uls 3] < o S, [1{}0(s,0) w0le] < [[1wls ~ wle],}]

IN

iy
s|f
[~]s
_|=
E‘&
2 |

£

IA
(@)
s|f
NE
B
o
\
B
o 1o
NE
=
I
oY)

Cscale IR

IN

m

Cscale I

cy/m’

IN

Lemma E.3. Forany w € Sg and (s,a) € S X A,

wa(sva)H? < 17
|w|2 < vVme+ R,
|f(s,a;w)| < vV/mé + R.

Proof. We have

m

(s a)llz = | > lIwls a)lelld = | > -2 - 1{é(s,0)Twle > 0} | é(s, )3 < 1.

{=1 (=1

In addition,

> lwlellz < v/me.

(=1

kel =

Then,
[wlly < [Jw’]], + [Jw = w®,
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< +v/mé+ R.

Furthermore,

£ (s, a30)] = [u(s,a) Tw] < [[Yu(s,a)l, [wll, < vme + R,
0
Lemma E.4 (Projection Error for F7, . (Rahimi & Recht, 2008)). Let h € Fp, . For any §' > 0, with probability at least
1-4,
R(1+ /2108 (%))
Vm ’

HProj}—-R,mh — th <

where p is a distribution over S x A.

Lemma E.5 (Distance between (s, a) and 1o(s,a) " 12, Assume that event Ey, holds. Then,

log (57)

e

Proof. Recall thatr € Fp,  and Projz. 7(s,a) = to(s, a)T P, Since Fii m is asubset of FJ . we have

< apy /8,

= vl = [Proiz =] < oz
Hw 12 H 0j £, T T = 0j 7, T T , -
O
Define event
log (&
mn:{||1/ﬁ POl —p|| e <4R 8 () ,Vte [T },vne[N]}.
Plov m
Lemma E.6. It holds that P[] > NT'.
Proof. This lemma follows from Lemma E.5 and a union bound. O

E.2. Neural Neural Policy Gradient

Let WIN := /mé + R. According to Remark 28 in (Agarwal et al., 2021), since || (s, a)||2 < 1, log(7a,.) is a smooth
function with smoothness parameter Wg = 1.

Lemma E.7 (Neural Neural Policy Gradient). For any phase n > 0 and iteration t > 0,

> Eapagr, [(hi(s,a) 70"+ (s,0)) - 1 {s € K"}] <

—0 init

log(|.Al) + nWs(Wé\IN)QT
n

Proof. Following the analysis in (Agarwal et al., 2021), according to the Wg-smoothness of lOg(ﬂ'at,wt), we have

log (7Tat+17wt+1 (a|s)) — IOg (’/Tat,}wt (a|s))

>V log (Tt i (a\s))T (ozt"’lw75+1 — Oﬁwt) ~ Wy ||at+1wt+1 _ atthi .

For any s € K", we have
KL (™" (-|s)[|7" (-|s)) — KL(m™" ()| (-]s))

34



Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization

Algorithm 5 Q-network Training via Projected SGD (with the objective Eq. (10))

1: Input: f(s,a;w"), &.
2: fori=0,...,Mi;, — 1do

30 g e 2(flsiai0™) — (Q7 (s ai i +57) =¥ (si,a)) ) Vf(siais0%), where (si,a)) ~ ply, and
Q”t (84, ai; 7™ + b™) is estimated by Monte Carlo sampling
4: et,i—&-l = et,i _ €9~gt,i
50 M« Projy, (697T1)
6: end for
t AL%D71 t,i
7: return 0" = > .70 0"

B I 7" (als) " (als)
= Euvcotr 16 ()| B o (Zei
I mttl(als)
=E *,m (. 1 TN
) _°g< w(als) )]

r 2
> Eqren(ls) |V log (Tt we (a|s))T (a”‘lth — oztwt) — Wy Ha“‘lth — oztthQ}

= B (fs) [Pl (5,0) 707 — 12 Ws [|6°][3

which is equivalent to

B (fs) [Dhye(5,0) T0"] < = (KL(7"(-[s) ][ (-]s)) — KL(x™" (-|s)[| 1 (5))) +nWs [|6"]]5

I =

For any phase n > 0, s € K™ and a € A, we have b"(s, a) = 0, and then b™(s, a) := b"(s,a) —Eqr e () [0"(s,a")] = 0.

Adding s ~ dﬂ’:f;sm on both sides and summing overt = 0,...,7T — 1, we have
T—1 B B
B aymagin, [(Phe(s,a)T 0" + 0™ (s,a)) - 1{s € K"}]

t=0
T—1 B

= Y i, [Bhi(s,0)70" - 1{s € K"}
t=0
1 *.1 *,1

< Beagin, [KL(7™"([)[7°(-]s)) = KL(x* " (-|s)l|l7 T (-|s))] +nWs (W™ )T
1
OgSI-AD + oW, (Wé\lN)QT

E.3. Q-value Function Fitting
For any fixed phase n = 0, ..., N — 1 and fixed iterationt = 0,...,T — 1, define

t

F7(0) = Esaympn, {(fo(s,aﬂ) - (Q” (5,a;7" +b") — b"(s,a)))g] :

tim B
0.y = argmin F" (6).
0eSr

Then,

VoF™ (0) == E(s.a)mpn

cov

[2 (fo(s, a;0) — (Q”t(s, a; 7"+ b)) —b" (s, a))) Vo fo(s,a; 0)} .
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Furthermore, for any ¢+ =0, ..., MgGD — 1, define
gt =2 (f(Snai;@ ) (Q t(Sz‘,ai;f’n +0") — bn(%%))) Vof(si,ai;0"),
0t,i+l — Gt,i _ gagt,i

and it holds that

0"+! = Projg, (0"11).

4(/mc+R
Let W, 1= by 4 204netfd),

Define event
JVISGGDi1 ]"4SQGD71 1
RN CEE S B SR CLOM AR ] N
i=0 i=0

5§’N::{
vogngN1,v0§t§T1,v0§¢§M§’GD1}_

Lemma E.8. It holds that Pr[E)N] > 1 — 2NT§'.

Proof. This lemma can be obtained by using the Azuma-Hoeffding inequality and the union bound. O
NN .__ = NN ._ Vmc+R 2 — R
Let Wf = mC + R, WQ =1 + -z and 50 = m

Below we give the guarantee for the projected SGD of Q-network training, which is described in algorithm 5.

Lemma E.9 (SGD for Q-value Function Fitting). Assume that event S(I,‘IN holds. Then, for any phase n > 0 and iteration

t>0,
P P 7T IOg l/ 12R2(WNN + WSN) V Cscale 2
FP (0 — F™(0L1) < AWSRR M£5 ) + ! < 1= e,
SGD \ema
Proof. Fix phase n and iteration . Forany i = 0, ..., MY, — 1, since F'" (6) is convex with respect to 6, we have
an (9“) _ Fﬁn (9217;") < Vquﬁn (9t7i)T (91&,1’ _ Hrt_[;:;”)
_ o tiNT (ptii t, A" Pt t,i T t,i 7"
=(g"") (9 — Oiia ) + (VGF 0"")—yg ) (9 _emid)
1 L~ . ) an n ) N T ) an
— g(et,l . 0t+1,z)T (91&4 _ 051;1721 ) + (V()FT (at,z) _ gt7z) (gt,z _ 0;;;’(‘1 )
_ 1 et,i ét,i+1 2 9t,z‘ at,f" 2 977”1 ot,f*" 2
_@ - ‘2+ ~ Ymid ‘2_ ~ Ymid ‘2
i N (i st
+ (VeFT (07") —g ’Z> (9 " = Omia )
&o til|2 1 ti || ti+1 £ ||?
< 5 Mgl + %, H9 ~ Onia ‘2 - H9 ~ Onia ‘2
Pt t,4 T t,i t,F"
+ (VoF™ (07) —g) (67— o)
Summing i = 0,..., Mg, — 1 and dividing M&;,, we have

Ff‘" (et) _ F?“" (et,f")

mid
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1 MEp—1 4
=F g > 0 - P70
SGD  i—o
@ 1 Mip -1 " n
< P FP (0" = F™ (051)
SGD  i—g
fa JMSGGD,1 y ) o o o o 9
<o o I+ s (o -0~ oo - i)
MSGD 1

T
T —t,1 —t,% 3 t,7
Mg Z (VQF 91‘ 1,) gt,z +gt,z _ gt,z) (et K 9m1d )
SGD

[ [
JMSGD_1 JWSGD_l

St 3 R gt > @ gt (0 )
Mgy S 2 29 Misy  Mp m
Mon—1
2R SGD H . ) N
- VOFT (et,z) _ gt,z , (28)
MSQGD ; 2

where inequality (a) uses the Jensen inequality.

For any 7 > 0, let #; be all histories of steps 0, . . ., 4, and we make the convention that H;_, = () for i = 0. Let E;[-|H;_1]

denote the expectation with respect to the randomness at step ¢ conditioning on all histories of steps 0, ...,7 — 1. Then, for
any i > 0, we have E;[Vo F(65%) T <9t i ghrt ) |Hi 1] = VoF™" (049 (ﬁt A ghrt )

According to the definition of event £)'N, we have

Mggp—1 Mg —1
Z (gt,i)T <0t,i _ ortrilf’:] ) _ (gt,i)T (et,i _ ortr;; )
1=0 =0

< oW R, M0 Tog (;) (29)

HVQF’FH (et,i) _ gt,i

Then, we have

2

= B, [2 (fos a0 = (Q7'(s.ai#" + ") =b"(s,0) ) ) Vo fols, a:0")
—2(f(s,030") = (Q (5,07 + ") = "(s,0)) ) Vo (s.30")] ||
< 2E(s,a)mpn, :Hfo(s,a; 0" ) Vo fo(s,a;0%") — f(s,a;0"")Vof(s,a;6"")|,

+ W5 ([ Vo fols, a;6%") — Vo f(s, a; 9“’”2]

< 2B aymp, | || 05,007V fols, a;071) — fols,a; 0"V f(s, a:6%)],
|| fols, a3 84)V o £ (5, a36%) — f(s, 03 6%V f(s, 03 6%
+ WAN| Vo fols,a; 0%) — Vo f (s, a; W‘)M

< 2B o0y, | folls, 0 6) = f(s,a:0")|

+ (W L WEN) (4o (s, a) _¢9t,i(s,a)||2]. 0)
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Plugging Egs. (29) and (30) into Eq. (28), we have

M1
R log (& 4R & »
F™ (0" — (Qfmd ) <AWSLR M£5 ) + 20 g E(s,a)~pn, “fo (s,a;0"") = f(s,a;6"")]|
SGD SGD  i—p

+ (WIN+ W) [[g0(s, 0) = Gy (5, 0),

1 NN NNy
< 4WgNR w + AR 2y Cscalele T (Wf + WQ 1) Cscale 12
SGD yemit yemi
NN IOg (%) 12R2(W}\IN + WSN) \% CscaleR
<AWgrR 7 + i )
Mggp Vyema
where inequality (a) uses Assumption 3.3.
O
E.4. Human Feedback
- +) e
Recall that for any trajectories 7(1), 7(2) and y1 € Up, let w;(l)”@) = e 1 Yulsy a) = S (s af?),

= H(+M 1 1 H(® 2 2 H(rM 1 1

h<f<1> T<2> u) = P h(s) alVs ) — SR (st 0l p) and F(r@), 7@ = SEC p(s aV) -
2

S (s ap)).

For any fixed phase n = 0, ..., N — 1, define the approximated MLE objective function and its optimal solution as follows:
Mur
1 1{y: =1}
L(p) == —— Z —log B L M
Myr = H(r®) o (2) (2) H(f IPIVCORPEY
i= 1+ exp tho fO( i ho zh’u) Z fO( o zh’/”L)

. 1{y: =0} ))
1+exp<z ) o0 ) - SEC fo(s2, a2, >)

zh’ zh’

Myr

1 1{y; =1 1{y, =0
_ Z “log {yi } + {yi } ’
My “ 7@ 7@
i=1 1+ exp | —(¢dy' ) h 1+exp ( (¢g ) w
Hiae = argmin L(u).
HEUR

Then, it holds that

20 @
| M 1{y; =1}exp < (&' )TN> 1{y; =0} @
VuL(p) = Myr Z N @ + 1 @ ot )
i=1 1+ exp ( (gt T )T,u> 1+ exp ( (Yo' )TM>
=aq}(n)
) . OO
VL) 3" w=tew (00 ") g o | e T
g My =

L @ 2t 7D ) 2 Yo
(1+exp< (1/1‘ T )Tu)> (1+exp< T,u))
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Algorithm 6 Reward Network Training via Projected SGD (with the objective Eq. (9))
1: Input: h(s,a; %), &,.
2: for j =0,..., Mz, —1do

; 1{y;=1} exp(—h(r{V 7Pi)) 1{y;=0} o) (@),
. j _ J J Yj @)
3: 2 ( 1+exp(7}~l(7_;1)’7_](2);m)) + 1+exp(*ﬁ(7'j(l)»7-;2>§ﬂj)) Vuh( G )

ﬂj+1 <~ :uj - fuzj
i+1 ; ~j+1
P = Projy, (/)
end for
4SHGD_1

return 4" = > 0

AN A S

Forany j =0,..., M{;, — 1, define

_ 7L _(2).
| 1{y; = 1exp (—h(r", 75 ) 14y, = 0} e
S RO - - @, | VT,
1+ exp (—h(Tj ' T ;,uJ)) 1+ exp (—h(Tj )T ;,uj))
M 1{yi =1} exp (_B(Tﬁl) T‘(Q).,U/j)> o
. 1 s ; 1{y;, = - .
7= M, Z(( 7 (1)Z (2 z . + {~y 10} 2). Vuh(ﬁ(l)aﬁ@);ﬂj) )
HE =1 1+exp (—h(Ti \T; ). uﬂ)) 1+ exp <_h(7i( )’Ti( ?W))
=q* ()
ﬂjJrl = ,u‘j - f#zja
where (7;1), 7}2), y;) is uniformly drawn from {(Ti(l), TZ-(Z), y; ) Mo,
Then, we have
p 1 = Proj,, (7).
Define event
A{s&anfl ]\45“0071
en { S VL (W) (W = pne) = Y VL) (17— i)
Jj=0 j=0

1
< 8WTR\/M$GD10g <6,)7 VO<n<N-—-1,V0 <j < My, — 1}'

Lemma E.10. It holds that Pr[ENN] > 1 — 2N¥'.

Proof. This lemma can be obtained by applying the Azuma-Hoeffding inequality and the union bound. O
— R
Let§&, := W

SGD
Below we provide the guarantee for the projected SGD of reward training, which is illustrated in algorithm 6.

Lemma E.11 (SGD for the Reward Model). Assume that event Eini (1 E; N ENN holds. Then, for any phase n,

L(p™) — L(pie)

ME—1 Mur
log () 2R & 1 X LM @ @) (@)
< 1TW.R o7 4 3 2 |Gz
Mo~ Mien =\ Mur Y ,

ho(r D, 7@ ) — (D 7@, )

K2 K2 K2 )

+ 4W,

._ _NNn
= E&sgD -
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Furthermore,
log (&)  40R2W,+\/ceae R
E,_w Myg n ENNn <1TW.R g(é) T Cscalfl: )
{32 ~One SGD 44 e =) Jam!
{7_(2)}IWHFNO,,rbase SGD 0 \[
i =1 Sinit

Proof. Forany j =0,..., Mi,p —1,

L(Hj) — L(pyg) < VuL(ﬂj)T (Nj - ﬂK/{LE)
— ()T (1 — we) + (VuL?) = 2) " (0 = piae)

1 . _ . _
5 (H - M]H) (/J] - ﬂK/ILE) + (VHL(MJ) - ZJ)T (.UJ - UK/ILE)
n

1 S .
= o (I = A7 + e = ey = 127 = e
2§u
+ (VuL(pd) —zf‘)T (W — i)
5
<2y +

It MKALEH;)

(Hu — el — [l
+ (VuL(p?) - ZJ) (W — pAe) -

Summing j = 0,..., M, — 1 and dividing M{;p,, we have

L(p™) — L(pie)

MSH(’D
7 1 L(pae)
Ms’GD 2 MEE

7=0
M1
('d) 1 SGD ) .
< A Z (L(1") = L(pane))
SGD 5

< S e g (108 sl — 5 — i
= oML, pa g 2, Ml M= Mgl — ||H FmLe||,

1 Mo —1 . . . T .
tam D (VL) =+ 7 =) (1~ )
SGD j=0
ML ML —1
£M SGD 9 R 1 SGD i T . )
< J + + ) ) J
2MS#GD ]ZO H H2 2§#MS“GD M;GD Jgo (Z <z ) (:u MMLE)
MY
2R & . _
A R an
SGD =0
where inequality (a) uses the Jensen inequality.
We have
7V @
70, < 29"
H(r{") H(r{®)
=2 Z %J h7 51}1 Z %“ (22’ jh
2
< AW,. (32)
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For any j > 0, let 1, be all histories of steps 0, .. ., j, and we make the convention that 7{,;_; = () for j = 0 LetE;[-|H,;-1]
denote the expectation with respect to the randomness at step j (i.e., (7; (1 ), ;2), y;) ~ Unif({(7;", ) ), yz)}MHF)) con-
ditioning on all histories of steps 0,...,j — 1. Then, for any 5 > 0, we have E; [V,Lf)j(uj)T ( uMLE) [H,—1] =
V/LL(ﬂj)T (Hj - /LK/ILE)'

According to the definition of €EN, we have
My —1 _ ' Ml —1 _ '
Z (ZJ)T (H] - NK/ILE) - (EJ)T (N] - NK/ILE)
j=0 j=0

/ 1
< 8W, Ry | ML log ( 5,> (33)

We have
(1) (2) T
S Ly =1 exp | —(dg " )" 1{y: = 0}
|QB(MJ)—611(NJ)|§ - @ + I
vrew (<) e (<))
. 1{y; = 1} exp (—E(Tm T@);uj)) 1{y; =0} ‘
1+ exp (—B(Ti(1)7 1(2),/#)) 1+ exp (—fl( 0, 1(2)7/1’))
A @
3 exp (~h(rV, 7)) exp( (o ") w)
< - 1 _(2
1+6Xp( h( ‘(1)7 1(2)a.u“j)) 1+eXp( (’(/}Tl i )Tuj)
s 1
( ) ( ) .
1+eXP< (g e > 1+e><p< h(r (1)7771(2)5:“]»
®

< 2|ho(r, 75 w) = R 70|,

where inequality (a) uses the fact that the derivative of functions 5 exp(@)  apq lies in (0,1).

1
+exp(z) 1+exp(z)

Then, it holds that

|VuL(p) — 2|, (34)
1 M D) @ NP OO
HMZ( iy~ g )
M . ORC) L) @ L) @) i iy @)

I /\

M Z
1 MHF
MHFZ<2‘

.
My Z (2‘

i=1

— (W) T (W) T = (W)

2

@ W@

"’T~(1>,T» T2
Yo' Tt =

IN

+ 2W- g (1) — qi(uj)!)

I R )
i _d};ﬁ i

IN

T,
Yo'

) : (35)

+ AW, ’BO(Ti(l)v Ti(2); Mj) - B(Ti(l)y Ti(2)§ Mj)
2

Plugging Eqs. (32)-(35) into Eq. (31), we have
L(p") — Lpae)
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R log (3)
<8EW2 4 0 +8W.R "
a 26, Mgp, Mgep,
ME 1 M
2R SGD 1 HF ( ‘ (D ng) ~T§1) TKZ)
+ — Yot Tt —W Y
Mgp JE::O M ; g

g /ﬁL( (1) () ) E( (1) (2)

1 MS”GD 1 Myr
<1TW_ R ( ) + 2R ( L (2‘
=0

"'7‘,(1) ""7:(2)

MS#GD MSMGD j= Mk i—1 W 2
W, o, 7 Psa) = RG] ) ) o= 0
In addition, we have
NN,n
E{ (U}NIHF On { (2)}1\4HF Oﬂ_hase |:€SGD:|
H(T“))
lo
<1TW,R ]@( )+23<E o on, l ( (55 af) = v (s, )|
SGD (2) Oﬂ,base h=0 2
H(T(z) H(‘r(l))
+ Z H"/JO Sh 7a22) djw (522)7(122))}’2) +4WT< ‘h() sh)aag)nu ) h(821)7a21)7ﬂ )
h=0
e
+ Z ! (17, 1?) = h(si af?s ! >\>D
log (3 2
<17TW.R o8 ,(fs ) + — R E ) g 2( H1/Jo(s(1),a(1)) — Y (5(1),a(1))H
Msgp 1 - (2>~d::se 2
+ [[ols®, ) = 0 (2, a(2))H2) N 4WT< o5, 7) = h(sD, Vs )
ity a0
%) 17W. R log ,(L%) + 2R 4v/Cscale 1 16WT % Csclale}%3
MSGD \/m4 \@mz
1 i, 4 2 T scale
< 17w, gy (B (F) | WV el
Msgp (1 —7)y/cm1
where inequality (a) uses Assumption 3.3. O

Let oang = (2 + exp(—2W.(yv/me + R)) + exp(2W,(v/mé + R))) !

Lemma E.12 (MLE). Assume that event Eipyyy N E; N SSN holds. Then, for any phase n > 0, we have that with probability
at least 1 — 26/,

. 1 5mdlog (& 3
H‘u pmJHZNN W < QCNN MHF(6 ) QCMEE

e e ()
YilVe MHF

=1
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€NN N C
NN,
42D 2Ry > =y
CMLE n

In other words, defining event

& = { I = | g < EME VO <0 < N -1},

we have Pr[ENN:] > 1 — 2N§'.

Furthermore, we have

1 5mdlog (3) 1 log (%)
NN,n 5 ;
(1) M, n [E } < + 17TW.R
i (%iMZZ gﬂbase e 2emE Myr N ME
+ QR\/CHT_;'_ 1gcscaleR i\l\{HF W, eXp 4W ( /) .
" et eV T—m )

Here we make the convention that <”F = (yF.

Proof. Since

7 7@
o T
VQL( )_ 1 %: 1 {yz - 1}exp < (% ) M) 1 {yl _ 0} (1/)0 ( ))T/J ~_I_i(1)’7_i(2> ~Ti(1)771‘(2))—|—
w ) — A0 @ 2 @ 2 [ (%o
= (1 + exp ( (g’ )Tu)> <1 + exp (w ” )Tu))
AN Mir -0, (2) 2D

- MLEZ 0 )T7

we have that for any A € R4,
L2 4+ A) — L) — (u) T A
To2 i
> ATY2L(uv)A

Myr

> KIEEAT (1\4114}: Z (1/)0( (1)) 1/’0(77:(2))> (1/)0(71'(1)) - 1/)0(71:(2))>T> A.

=1

Using Lemma E.11 and the definition of 5y 5, we have
n * T NN,n
L(p") < Lue) + esep < L) + exop'

Then,

Mpyr T
Mg (" — i)’ < MlHF > (vo(r") = wo(r)) (wo(r™) = vo(r?)) ) (" = pufel)
1

L") = L) = V, L) T (" — )
-V L( prO_]) (Mn pl'O_]) +ETS\TgDn’

which implies

roj || 2 r0j n roj NN,n 4CII:I/EECHFR2
CMLE HM — JHiggv" < HVMLWIT) J)H(ggg,n)*l HN — JHiE;”" +ésop T -,
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By analysis for quadratic functions, we have

H‘un _ MPrOjH o < L HVHL(MPrOj)H N1 Is\IgDn +oR CHF
T T 2 T ) CMLE

Let
~—r.(1),'r.(2) T . proj
L{y; =1}exp ( —(vg' ™" ) o 1{y; = 0}
V,=— M @ A + NEE N V€ (M,
1 Jrexp< O )TM?_TOJ) 1 +exp< Wy " )Tﬂgmj)
V= [Vlv SRR VYJ\/IHF]T € RMHF
EOIC - T The T Muexd
X =" 7" ) s (h ™ )] e RS,
NG () @
XT=W’01 n a--~7’(/} r HF] ERdXMHF’
and then
Mur
‘ 1 I CO R C) 1
VL) = — S Vgl T = — X TV,
L) = S Vi T
SN x Ty 4 o CHF
F MHF

For any ¢ € [Myg|, we have |V;| < 1 and
o N
1{y; = 1}exp | (¢’ ) 1{y; = 0}

~r 1) (@ o + ~r D) L@ o
1+ exp _(,L/)Ol Ti )T’ugj 1+ exp (,(/}1 Ti )T’ugj

(1) () o
exp( (wo )TMP J)

1
L) (@)

= 3 . )
1 + exp ( ( .(1),7-1.( ))) 1+ exp ( (1/) i oTi )Tugf01>
exp (710, 7)) 1

2 RETCS! .
1+exp< (T ()7 z( ))> 1+exp< (i T )T/f;”l)

(1) (2)

o () o (15 )

o) (oo ()

+

Then,

~T(1),T.(2) 3 ~ 1 2
B, Vil < exp(@y) | (77T i~ (rD ’)\

H(r{") H(r{*))
= eXp(QW-,—) Z fO 551 3 Cl ) Ngmj) f0(552}37 a£2h),7 :ugmj)
h=0
H(r") H(r®)
1 1 2 2
S a3 e e |
h=0 h=0

(36)



Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization

H(T(l))
< exp(2W,) ( ‘fo B El;zvﬂyp«roj) (s fﬁ’af}ﬁ)’

H(r”)
F 3 [l )] )
h=0

Let D = 3 X (S ") X T = 3 X (4,

M2, HF

XTX+9en-1xT ¢ RMuxMir,

Then,

A -1 .
HVML Pro H ZNN ”) -V L( PrO_]) (Eﬁgn) VML(MpT)rOJ)

Vix (s ( NN, ") X'V
Mﬁp

=V'DV.

Since D is positive semi-definite, let Ay > - -+ > Apz,. > 0 denote the eigenvalues of D.

We bound tr(D),
1 CHF ' 1 My )\~ T d

(D) =tr [ —5 X XTX 4+ 2= ) X'|= tr (XTX+I XTX :

D) (MgF (MHF My n My

M -1
HFCHF I) xT
n

(DE[V]E[V]T) and H(DH 7y as follows.

IN

X (XTX +
HF

1 CHF
Dl|=|-—X XTx XT

DE[VIEV]T) = (E[V]T DE[V]) = E[V]T DE[V] < |[E[V]|]%||D _ i (B, [Vi]?
tr (DE[VIE[V]") = tr (E[V] [V]) =E[V] VI <I[E[V]3[ID]| < Mo ,
and

|D|? @MHFHDHQi MupAi(D) < MyupAi(D) < M

w(Dh) = T = T o 2 S S 2 ) S Mee

(D*) = (tr(D)) (S aip)) D)
where inequality (a) is due to tr (D?) > (HI(VZ)F) .

Let §’ < % According to Lemma F.4, we have that with probability at least 1 — 24,

9,2 [ gy -+ < 15 (D) + 2\/(tr (D))?log ((51 > +2|D| log (;)

1
+tr (DE[VIE[V]T) <1 + 24/ My log (5,)>
md  2md 1 2 1\  SMHE, [V])? 1
< . =1 V"Il P/ f—
< M + o log <5l> + o log (6’) + Mg 1+ 24/ Myrlog 5

5md 1()g (7(51’) i 2 1()g (*51,)
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Plugging Eq. (37) into Eq. (36), we have

1" = 1 oo

1 dmdlog (%) My 1 c Car
3 E, [Vi])? R,/ 2L
Sa\ M o\ Ml e

__1  [5mdlog () 3
T 200k My 2000k

ENN ,n C
SGD HF NN,n
+ 2R =&k -
MLE

Next, we handle the term E,, [V;]. For any ¢ € [Mpyg],

H(zD)
2
1 1 1
]ETi(l)NO;ILF [(Eyl[V]) } < exp(4W )W EE (1) ~on. [ Z (fO( E}z, Z}z’ugroj) ( 5’27a§’2))
base

@ O;"‘f*ﬂ (2) h=0
H(r?)
. 2) @)
+§I( (52, a2 ) — (52, a2)
exp(4W, )W, 1 D142
- 71_7 EE(S(l),a(1>)~dﬁF (fO(Sh),ag),uljf"J) (Sgl),agl)o
(5(2) 7a(2))Ndbase

2
+ (folsi?, a5 i) = (s af?)) ]

32R?W, exp(4W,) ( 1 >
log (| —
(1=7)m

5/

Then, we have

1
M %M% MMH;UW&MWWQ
Fenrop (9] S 5y e | A-m

{r (2)}MHF or

Sinit

N,n

{ (1)}MHF ~Om T (2)}MHF Oﬂ"::':“ |:€SGD:| L oR ’CHF

CMLE

- /5md10g (#) 12RM;;F W exp(4W;)
B 205/11\{15 MUE (I—=v)m

1
1 lo l, ’ 1 40R2 WT R
+ e | 1Ry [ 22 Ef ) _ VewreR\® o p fG
CMLE MSGD CMLE (1 _ 7) \@mz n
1 5mdlog (& 1 log (L
> NN g(é ) + — 17TW, R gl(t(g )
2cmLe Myr AN ME
-+ 2R\/E+ 1chCaleR4MHF\/m ( ) .
" ¢t CI\N/ILE 1- &
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Lemma E.13. Assume that event Einyy N E- N EEN N 5&% N Sg\(]}j holds. Then, for any phase n > 0 and iteration t > 0,

]

t R t
(5,0)~pl,, {T(l)}MHF o, {Ti(2)}i1‘/il-llF HQW (570’; (s + bn) - Qﬂ- (Sv a;r+ b’ﬂ)

NN,7n W 6/ Cscate 127 log (%) NN, 7t
< 2B o0y Mueon {sMLE} Eoon Z Yo(sn, an) M T e
(2)y M ﬂbase Peov N ( — ’y)\@m4
(=} or (S -1
Proof. We have
Q”t (s,a; 7" +0") — Q”t (s,a;r +0")
H(T)
= ETN(’);Vta Z (h(S}“ [ ‘u’ﬂ) - T(S}H ah))
" | h=0
H(r) A
=E o [ > (h(Sh,ah;Mn) — ho(sh, an; 0") + ho(shs an; p™) — ho(sh, an; pi™)
h=0
+ ho(sn, an; p2™) — T(shaah))‘| ’
(1)
<SE, o || D (Alsnyan; ™) = ho(snyan; i)\ | +Epom || D olsnran) ™ (1" — 1)
h=0 =
H(r) A
+E, or Z (ho(sn, an: ™) —r(sn, an))
" r=0
H(7) 1
< ETNog_fa Z Yo (sn,an) Hu projHZNN n| + mE(s/,a/)Nd;‘a Hh(s/a a/;ﬂn) - hO(/Sv a';ﬂn)”
- e
1 ¢
T g, (o5 (')
@ H(r) 1
< QEMLE”IETNO;; > o(sn,an) + ﬁuz( Nz, (008" 0’ ™) = ho('s, a5 )]
- s
1 )
+ m]E(Slval)Nd:ta Hho(sl, a’y Py — (s, a’)H ,
where inequality (a) uses the definition of £Yy and Lemma E.12.
Then, taking E s 4)~pn [-] on both sides, we have
E(s,a)~pn, HQ”t (5,a;7" +b™) — Q™ (s,a;7 + b") }
n 1
<20k E,om ||| D2 Yolsnsan) T Bz, M 050) = hoC's, ™))
cov h=0 (Zl;{fllf,n ) . cov
]‘ ! li j / /
+ 1— ’YE(s/’a/)nggf;ﬂv HhO(S ) a ;MgrOJ) - 7’(8 ya )H
@ n sy 2y CscaleR3 4R log (%)
< 25MLE E ~or! Z Yo(sh,an) + T+ 1_
R | (s (1 —7)y/cm3 ¥ m
HF
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Ii) ( ) 6 CscaleRS IOg (%)
Yo(sh,an
= (1—7)yemt

<2 E

0T

Peov
NN,ny _
(g™t

where inequality (a) uses Lemma E.2 and the definition of event ;.

Furthermore, taking £ (r DM on (23w e ['] on both sides, we have

Q”t (s,a; 7" +0") — Q”t (s,a;7r +b"™) }

B 61/ Cscale 23 log (L)

\/ 5 ot
> Yo(sn, an) + =™
h=0

(1 —7)/emi

Es.a)~0, [

NN,n
= 2E{Ti(1)}?iH1FNOSF |:€MLE :| ETNO”"tL

(2)1 07 cov
HF ™
S Nosinil

T Pl
base (Egg,n),l

In the following, for ease of notation, we use E (DM o ()M oy rbise [-] and Ezx[-] interchangeably.
k3 =1 HF» 3 i=1 Sinit

Lemma E.14. Assume that event Ep;y N E- N SEN N EI\I)I[IEE N 552;’ holds. Then, for any phase n > 0, iterationt > 0, s € K"
and a € A,

[o(s,a) T (0L — 0Liq)| < \/25 (8(n + UWchpNggmt + 4ccosz).
Proof. For any phase n > 0,
E e 0)eg " [(@’” (307" +1%) — (s, @) o (s,0)0) " — (@ (s, a7+ ") — b (s.0) — (s, a>T0)2]
pn HQ”t (s,a; 7" 4+0") — Q’Tt (s,a;r +0b") }

< 4WENNN (38)

n
cov

< AWGNE(s 0y~

n
cov?

Here WV satisfies max{|Q™ (s, a;r + b") — b™(s,a)|, [0 (s,a) T OL 4|, [1bo(s,a) TOL[} < WHN.

Plugging 6% into 6, we have that for any fixed (s, a),
t 2
E(s.a)~pn, {(Q” (5,a;7 4+ b™) — b™(s,a) — o(s, a)T,gi) ]

3 2 t
> Es,a)~pn, in {(Q”t(s,a;f" +0™) —b"(s,a) — Wo(s, a)T9i> } — 4VVSI\I§E]N’Tr

n
cov

n
cov

¢ 2 ¢
> E(s aympp i [(Q“ (3,03 7"+ b") = b"(5,0) — (5, 0) Vi } — AW (39)

where inequality (a) is due to the definition of 6. ,.

Furthermore, we have
t T At 2
E(sva)"’ljcﬂdv |:<Q7r (57 a7+ bn) - bn(Sa a) - 77[}0(57 CL) 9mid> :|
[ ¢ Tot)?
B, | (@ i 407 = 0 (s.0) = s, )76 ) |

Bl | (Q (505 487) = 1 (5,0) = v(s,0) Ol |

+ 2
B | (@7 (a8 =860 (s, T8
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+ 2

F e, | (@7 (i + ) =8 (510~ dals0) ) |
. R 2
By | (Q (5,0 4 87) = 87(5.0) ~ ol 0) Ol |

< 4WNN NNt 4WSNE(S,Q)~%,M Hth (s,a; 7™ +b") — o' (s,a;r +0")

}

< 8WN §N i (40)

where inequality (a) uses Lemma F.3.

On the other hand, it holds that
t Tt 2
Blarmas, | (@7 (057 +%) = 07(5,0) = n(5,0) i) |
o (@ ) 1 s - (s aTet) |
= Eoaypg, | (G0(s:0)" (61— 00))’]

+ 2E(s,a)~pz, [(Q” (s,a;r +b") —b"(s,a) — (s, a)T91> wo(s,a) (Gt — led)} 41)

Term I > 0

]E(g a)~pn,

FNN

where Term is non-negative due to the the first-order optimality of §%.

Then,
(9t ortmd) ]E(s,a)rvpg}'w [1/}0(5 a)?,[)o( )T](et efmd)
= E(Saa)Nﬂgw |:('(/10(87 a>T (et Hmld)) }

(a) ¢ 2
< By, [ (@7 (air 87) = 8(5.0) = vn(s,0) ) |

+ 2
B, [(Q” (s +7) =8 (s.) ol 0) )|
< SWANWANSNT,

where inequality (a) uses the same argument as Eq. (17) (i.e., the first optimality of 6%).

The above equation implies

Hei mld’

SN = (91,‘ 9m1d> ((n + 1)E(S,a)~p§,v [’(/)0(8, a)’lbo(s, a)T] + Ccovl) ( emld)
< 8(n + DWENN™ 4+ 4¢eo R2.

For any s € K", using the definition of ™ and event EXN, we have

1
75 I0(5,0) sy 1 = 1005, @) ggyy o < VB @
Thus, for any s € K™,
|7/)0(57a)—r( m1d)| < Hwo(s a)” ZNNn Het mid||2£’oNv*"

< \/25 (S(n + L) WENNT 4CCOVR2).
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E.5. Proof of Theorem 5.2
For any phase n = 0,..., N — 1 and iterationt =0, ..., T — 1, let

0 = argin B, | (Folssai) = (@7 (scasr 07 - 1))

0eESR

0.4 = = argminE, q)~pn sn {(fo(s,a; 0) — (Q”t(&a;f" +0") — b”(S,a)))Z} ’

0eSR

2
gt argmin B, o)~ pn [(fg(s,a; 0) — (Q“t(s,a;f" +0") —b"(s, a))) ] )

0eSr

A ) n,t N _
Let &/ := SN (R T M M T For any n > 0, t > 0 and (s,a) € S x A, let b™'(s,a) = b"(s,a)

Eqrrt()s) [0"(s,a’)], and for any w € R™, let ¥y, (s, @) := Pu(s,a) — Eo/nmt(|s) [Yw(s;a)].

Proof of Theorem 5.2. First, we have Pr[&yiNEYNNE-NENNNENTENENN] > 1—6-2N (K +Myp+Mgn+T Mg )-26" =

cov

1 — . In the following, we assume that event Eipie N EY™N N E NENN N Exe N ERY holds.

For any phase n = 0,..., N — 1 and iteration t = 0, ..., T — 1, we have

*,m t
V_/(T/tn (sinit) - V/(r/(n (sinit)

1 » .
S 1— v (s a)NdMW Sini |:AMbn (57 a’) -1 {S ex }:|
1 7 n n
= T Bz, {( we(5,0) 10" +b™(s,0)) - 1 {s € K"}
+ (A%, (5,0) = (G(s,0) 0L + 57 (s,a)) ) -1 {s € K}
Term 1
+ 1/_)6(87(1)1— (et emld) 1 {S € ]Cn} +1/;6(53 a) (amld ) -1 {S € ICn}
Term 2 Term 3
+ (Dh(s,0) — Pl (s,0) | ﬂ- (43)

Term 4
Below we bound Terms 1-4.

Term 1. We first bound Term 1.

Term 1 = E; ) gzm {(Qﬂbn (s,a) — (wo(s,a)Tei + b”(s,a))) -1{se IC”}}

n.
MM sinic

- Eswd"* " i‘,a’~71't(~|s) {(Qﬂbn (87 a/) - (’(/}O(Sa a/)Tei + bn(sa a/))) -1 {S € K:n}i|

< \/E<sa~dw [(QMM( )—(z/)o(s,a)wiwn(s,a))ﬂ

e Baar i [ (@ (5:0) — G, )70+ 00(5,)]

< 2¢ Ay, [(@ (5.) — o(s.a) T8+ b7(s.0))]

\/ |A|5blds7

where inequality (a) uses Lemma D.2.
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Term 2. Then, we bound Term 2.

Using Lemma E.14, we have that for any s € K" and a € A,

[o(s,a) T (08 — 0L)| < \/23 (S(n +)WENGR ™ + 4§COVR2).

Thus,

Term2 =E D [Vh(s,a)™ (0L —0L) - 1{s € K"}]

Sinit

< E(S a)~din" H’L/)O(S’ (et - emld)’ 1 {8 € Icn}]

M s

FEjoqmtn et [|1/)0 s,a) (0 —0ha)| - 1{s € K"}]

n
M sinie

2\/25 (8(n + 1)WgN<pNg§*“‘ + 4CC0VR2).

Term 3. Next, we bound Term 3.

Using the same argument as Eq. (41) (i.e., the first optimality of 6%, ),
E(s,a)~pp, ,in [(%(Sa a) " Orig — o(s, a)TQt)Q}
< Byt | (006,070 — (@7 (i +17) = 1°(5,0)) ) |
—Es,a)y~prn, in [(¢0(s a) 0.y — (Q”t(s, a; ™ 4 b™) — b (s, a)))?

= Eon |E(s .0, [ (ols.a) 70" (@7 (s.a:5 +7) " (5.0)) )

4

(1/)0(5 a)'o (Q’T (s,a; 7" +0") — b"(s,a)))g}

= K. [Ff”(at) — F™ (k)17 }
< Epu [F7(6%) ~ 7 055 )17
@ NN

<EQ

where inequality (a) is due to Lemma E.9.

Then, we have

||9m1d atHZNN n < (emld et)—r ((TL + 1)E(9 a)~pn, [dJo(S, a)’l/Jo(S, a)T] + CCOVI) ( mid gt)
= (n+ 1)E(,q Yropm, {(1/)0(5 a) — o (s, a)TQt)Q} +4R?*Ceoy
< (n+1)egy + AR Ceoy-

For any s € K™ and a € A,

|w0(8’a (emld et)’ < WO(S a)H(ZNN n Hemld 0* ’

g \/25 ((n+ Vel + 4R )

NN, 7
Zeov’

where inequality (a) uses Eq. (42).
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Hence, we have
Term 3 = (s a)~d”*n”b » [%(Sa a) (emld ) 1 {S € K:"H

< 24/B(n+ 1)egy’ + 4R/ Bleov-

Term 4. Finally, we bound Term 4 as follows.

Term 4 = E(s,a)Nde*;y:m [(1/36(5, a) — YL (s, a))T 91
[ wos. @) — (5,00 01

IAIE oy, [|Wo(5,0) = e (s,0) 6
< 4‘~A| V CscaleR3
_— \/ém% .

The Total Suboptimality. Combining Lemma D.3 and Eq. (43), we have

< IE(s a)~d7;

M sinit

}

x : 1 :
V™ (simit) — V™ (sine) < RHS in Eq. (43) + 15 Z dg:il(s, a).
(s,a)gKm

Summing overt = 0,...,T — 1, dividing T" and applying the regret for natural policy gradient (Lemma E.7), we have

n+1

V™ (Simit) = V™ (Sinit)

1 T-1 . ;
=230 (V7 (o) = V™ (o))
t=0

log(lA)_, nWs(W5™)* 2y |A|€b’as 1/ (n+ 1)WAN - Z NNt
Tz T

SU—yr A=) = o
L 12R . 2 4]A 1 "
I\Z/BCT - Bn+ 1) + | ‘\/Csc? 4 — Z d’;m:] (s,a).
vem (s.0)gKn

T-1 [ NNzt
Next, we handle the term = >, " \/ng .

L V-1 - | N-1T-1
NZW ZV !Iiliﬂ NT (n+1)§gljw
n=0 t=0 n=0 t=0
1 N-1T-1 N [5mdlog (5) IN R log (&)
T NT = ML My MLE . Mg
A+ DR CHF 38Ncgca,eR MHF\/W < ,>
i ANEVT — yms 0
Hn) 6N \/cueate R¥ log (&) 2
scale 6/
E__ ot Yo(sn,an) + )
TNO ’ 1
i | T
(EHF )
i i
N [5mdlog (%)) * ON log (L
< /= ()} L V2N (g Lfﬁ )
CMLE Myr (AN) ¥ Ml
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1 5 1 1
1,1 TVNcg Rs MG (W, 4W.)) 4 1
+4VRN Gl + fc“f”e UL ULy (> '
cs Ve (L—7) T mis ’
| N-1T-1 H(r) 3VN R3loe (L)) 7
3 (B [ | [+l 3
NT & = s e VI—7cims
1
@ N (5mdlog (X)\* V2N log (%
o ([ () (1 e
e\ i (&) Moo
1 5. 1 1
1 TVNeE RS M. (W, exp(4W,))* 1
s aVRNE Gl + TN UMyl (Vr oWy <> '
s /g (1= 7)* mis g

ENE

)

2 11 3 1
ot logh <1 . 4NWT> | 2mid* log(N) +3\/JV (Cscale R }ogl(é,))
CHFmd s V1 —~cims

1
Chase

JHF

where inequality (a) uses Lemma D.13 with feature dimension md.

. b — L AT2 — NN ._ = NN ._ 4
Recall that §’ := SIN (R M+ M, TTMI)” Coov := 1, Cup = 4W2, Wg 1= 1, W := /mc + R, Wg == Tz T+
log(].A|)

4(v/mc+R) NN ._ /= NN ._ VmctR 2 ‘_ R — R —
11— ’Wf = yme + R, WQ =1t (177)2’&’ T Wg'}\/%’f“ W/ Mg = WWNWsT and

2 4dN
AN (24 exp(—2W, (/mc+ R))+exp(2W, (y/me+ R))) L. K and My should satisty that & > o 1] os” (*57)
16W2 log (44X)

and My > , respectively.

HF

Therefore, summing over n = 0, ..., N — 1, dividing NV, and applying Lemma D.4, we have

| Nl "
== S (V7 G =V ()
n=0
- 2\/@ n log(].Al) n 77‘/I/S(V[/gn\l)2 12R/Bleov 2md log (1 + 7N )
= 1—~ (1 _7)77’1’ (1 —'}/) 1—7 (1 —’y)N,B Ccovmd
— W/ Ws 1os(AD
- A=—NVT
1 7 NN 1.1 1 11 L
| SYBNWIER <1og (;,)) L Sdir /BN (4\/]Vm4d4 logt (§)  5VAW/ Rl log! (4)
1 1 1
L=~ Mgep, 1—x VNN MR (cae) T (Mgp) s
1 5 1 1
oV 0= :

/ NN NN NN i
i 8 BWQ 3VIN (CscaleR3 log (%) L 16R\/6N W + W ) scale}%4 4‘A|‘/Cﬂcale
’ 1

T T 44)
1—7 V1 —~cims (1 —=7)c ims \[m4
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F. Technical Tools

Lemma F.1. Let D be a distribution of random vector ¢ € R? such that ||¢||2 < W and ¥ = Eyp|d¢']. Given K i.i.d.

samples ¢1, ..., Px ~ D, then with probability at least 1 — &',

X

T2 0ol =%
i=1

Pr <

2W?2 log (%—‘,i)
- VE |

Proof. This analysis is originated from Lemma H.3 in (Agarwal et al., 2020).
Let X; = ¢;¢; — %, and it holds that E[X;] = 0 and || X;|| < W2,

Then, we have

E[X?] =E[(¢i0] —2)]
=E|(¢:0])" + 32 - 250:9] |
=E :(@@T)Q} + 32 - 2%E [¢i4] ]
—E :(¢i¢j)2} 4+ ¥2_ox?
—E [(6:6])°] - 57

For any x € R,

which implies

For any x € R4,

o7 (WE [0i0] ] ~E[(0:0])7]) o = W2 -2 TE [0 | — 2 TE[(010]) (616])] @
>W? a"E[pig] | o~ W22 E[¢i] |«
=0,

which implies
W2E [0i6]] = B [(4:6])"].
Then, we have

(3

E[X?) <E[(6i0])"] <WE [pi0]] = W75,

and thus,

K
Y E[XP] 2 KW,
i=1
K

>_E[x]]

i=1

< KW4.
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Using the Matrix Bernstein inequality (Theorem 7.7.1 in (Tropp et al., 2015)), we have that for any t > W2V K + %WQ,

_lpg2.2
> z| <d4dexp <W4Kj— 1W2Kz> .
3

Let

2W?%log (44)
vE

z =

Then,

K

Z

VK

AW 4 log? (#)
K

2W2 log (‘f;,i)]

1K2

< 4dexp <
WK + L 20sl) f;(*')

_ tdexp ( WK log? (44) )

WH4K + 2V[/S’\ﬁlog ((Td)

cuea ()

Thus, with probability at least 1 — ¢,

1S
=) _¢ip; — X

QI/V2 log (5—‘1)
=T Uk |

O

Lemma F.2. For any n € [N], let D" be a distribution of random vector ¢ € R? such that ||¢||2 < W, and define

Y = Egpnpd'] and ¥ = ZN, Y7, For any n € [N], given K iid. samples ¢7,..., % ~ D", let " =

n=1
A~ ~ 2 4 4dN
+ Zszl (b?(gb;’)—r and ¥ = 25:1 3", Letting K > % then with probability at least 1 — &', we have that

forany x € RY,

SeT(E4 D) e <aT (i+<1)7lzg 207 (N +¢I) 'a

Proof. This proof is originated from Lemma H.4 in (Agarwal et al., 2020).

According to Lemma F.1, we have that for any n € [N], with probability at least 1 — %,

1« _ 2W2log (*3Y)

Priligg 2 df(ef)’ -2 < ——02

j=1
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Thus,
4dN K AN
Z"_2W210g(5' )[<iz¢"(¢”)T—<Zn+2w2log(45/ )I
\/E - Kj:1 J J — \/F )
and then summing over n € [IN], we have
g W (B7) )y is w5
VK B - VE '
.. . 2NW? 1og(4f?,N)
This implies that for { > T*’
-1 —1
g WP (7)) < (5+ g])fl (5o PWPoe () g
VK - - VK '

Let UAU T be the eigendecomposition of 3, where A = diag([\1, ..., A\g]) and U = [uy, ..., ug). Then, we have

2T (2+QI)_1x—xT S+

dN
<t <2 _ 2NW?2log (*4

-1
)I+CI> z—a' (S+¢D) e

VK
—1
2NW?log (44N _
:‘ <0i+c_ \/R( 0 ) _(UZ+C) ! (uix)Q'
1€[d)
2 o 4dN
Since ¢ > %, we have
2NW?log (44Y) ANW?log (44Y)
20+ ¢~ J =0;+(— 2 o+
( VE ‘ VE ‘
Z g; + Cv
and thus

2 4dN Y\ 1
(Ui-l—C—?NW\l/O;(&)) <2(0+¢) .

Hence,
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2 4dN -1
_Z (o +¢) —<01+C+2NW\1/O§( )> (wiz)?.

i€[d]

. 2NW? log( 44N
Since ¢ > %, we have

2(0i+¢) =0i+C+o0i+¢
2NW?2log (4dN)

20 +(+ ;
(2 C \/I?
and thus
2NW?log (44N) )
-1

o; + <2(o;+¢+

(05 +C) ( ¢ TR
Hence,

TS e —at (2+<I)_1x

AN 1
< Z (ai + ¢+ 2NW=log (%5 )> (uiz)?

1€[d] \/?
. -1
T (Z + CI) T.
O
Lemma F.3. Foranya,b,c € R, we have
(b—a)? = (c —a)?® < 4max{l|al, |b|, |c|}|b - c|.
Proof. 1t holds that
(b—a)? — (c—a)* = (a® + b* — 2ab) — (a® + * — 2ac)
=02 —c? —2a(b—c)
=b+c)(b—c)—2a(b—rc)
=(b+c—2a)b—c)
< 4max{|al, |b],|c|}b — ¢|.
O

Lemma F.4 (Theorem 2.1 in (Hsu et al., 2012)). Let A € R™ "™ be a matrix, and let . := AT A. Suppose that
x = (x1,...,2y) is a random vector such that, for some v € R" and o > 0,

E [exp (aT (x—v))] <exp <a||202>

forall o € R™. Forallt > 0,

Nl

||A(£H2 > g2 (tr(Z) + 24/tr(X2)t 4 2 ||2]| t) + tr(El/z/T) 1+2 (trI?Z”j) t) < exp(—t).
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Lemma F.5 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Let X1,..., Xy be a sequence of d x d-dimensional positive
semi-definite matrices, and || X, || < Wy, for all n € [N]. Let Ag = (Iq with ¢ > max{1,W,}. For any n € [N], let
Ay = Ao+ X" | X;. Then, we have

N ) det(A
T;tr (4,2, Xn) < 2log (d;c((A](\){))> '
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