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ABSTRACT

How well do text-only Large Language Models (LLMs) grasp the visual world?
As LLMs are increasingly used in computer vision, addressing this question be-
comes both fundamental and pertinent. However, existing studies have primarily
focused on limited scenarios, such as their ability to generate visual content or
cluster multimodal data. To this end, we propose the Visual Text Representation
Benchmark (ViTeRB) to isolate key properties that make language models well-
aligned with the visual world. With this, we identify large-scale decoder-based
LLMs as ideal candidates for representing text in vision-centric contexts, counter
to the current practice of utilizing text encoders. Building on these findings, we
propose ShareLock, an ultra-lightweight CLIP-like model. By leveraging pre-
computable frozen features from strong vision and language models, ShareLock
achieves an impressive 51% accuracy on ImageNet despite utilizing just 563k
image-caption pairs. Moreover, training requires only 1 GPU hour (or 10 hours
including the precomputation of features) – orders of magnitude less than prior
methods. Code will be released.

1 INTRODUCTION

Large Language Models (LLMs) are solely pretrained on unimodal textual data, yet they are in-
creasingly incorporated into systems that perceive and interact with the natural world (Ahn et al.,
2022; Driess et al., 2023; Wayve, 2023). The lack of direct sensory experience raises fundamen-
tal questions to which extent such models can develop a meaningful and accurate understanding of
visual reality. Do these models merely regurgitate visually relevant factual knowledge from their
training corpus, or do they form internal representations that correspond to real-world phenomena?
Despite the successful integration of LLMs into large-scale Vision-Language Models (VLMs) (Liu
et al. (2023); Li et al. (2023); OpenAI (2023)), it is difficult to judge the visual capabilities already
inherent to LLMs this way. This is not only because of the widely varying training recipes and
proprietary data sources but particularly due to the fine-tuning with paired image-text data, which
dilutes and overrides any visual knowledge already contained in the text-only model.

In contrast, Sharma et al. (2024) and Huh et al. (2024) more immediately assess the visual nature
of LLMs and highlight a non-trivial degree of visual understanding and cross-modal alignment.
These works do this by compiling proxy tasks or measures such as generating code to represent
visual concepts (Sharma et al., 2024) or correlating visual with language-based representations (Huh
et al., 2024). However, the reliance on highly constrained and synthetic tasks with limited practical
significance fails to gauge the aptitude of LLMs when deployed in more realistic settings.

To this end, we propose the Visual Text Representation Benchmark (ViTeRB), a novel benchmark
that directly measures performance on the downstream task of zero-shot open-vocabulary image
classification, as popularised by CLIP (Radford et al., 2021). This enables us to quantify the visual
understanding of language models and their ability to encode text for vision-centric tasks. To prevent
concept leakage during the training stage – a significant factor underlying the robust “zero-shot”
performance of many VLMs (Fang et al., 2022; Udandarao et al., 2024; Parashar et al., 2024) –
we revert to the traditional notion of zero-shot learning (ZSL) where seen and unseen concepts can
be strictly delineated and are disjoint (cf. (Lampert et al., 2009)). With the advent of VLMs like
CLIP (Radford et al., 2021), these formerly strict assumptions have been watered down in favor
of scaling to large volumes of web data that likely contain most but the rarest entities and objects.
Consequently, by enforcing a clear training and evaluation protocol, we can accurately assess the
true generalization capabilities facilitated by the language embeddings.
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Figure 1: ViTeRB performance relative to MMLU scores. Model capability on language tasks is
predictive of visual transfer performance as measured on our Visual Text Representation Benchmark
(R2: 0.379 and 0.075 (excl./incl. Phi-3 models)).

Using the ViTeRB benchmark, we investigate what properties and design choices enable language
models to be effectively leveraged in vision-centric tasks. As one of our key results, we find that
features extracted from decoder-based LLMs are more effective compared to encoder-based embed-
dings. Intriguingly, we find that general LLM capability, as measured through MMLU (Hendrycks
et al., 2021), correlates positively with the model’s ViTeRB visual performance, as shown in Fig-
ure 1. Even off-the-shelf, text-only LLMs without embedding-specific fine-tuning demonstrate
strong visual representation abilities.

Based on these findings, we propose “Shared Vision-Language-Locked Tuning” (ShareLock), a
straightforward late-fusion VLM that leverages the expressive representations of frozen models
across both modalities. With vast streams of unimodal data available for large-scale unsupervised
pretraining, our research question is how to optimally exploit this resource and investigate how little
image-text paired data, and thus weak human supervision, is needed to achieve competitive results.

Our extensive evaluation of ShareLock demonstrates the effectiveness of our approach in a variety
of tasks. ShareLock outperforms existing methods trained on the same data, such as CLIP (Radford
et al., 2021) or LiT (Zhai et al., 2022), by a significant margin on classification problems and per-
forms competitively on retrieval and compositional reasoning problems. With a fraction of the data
and learnable parameters, our method approaches the performance of CLIP models fully optimized
on orders of magnitude more data. Moreover, by only training a single MLP on top of frozen repre-
sentations, ShareLock is an extremely lightweight framework that allows us to train our model with
batch sizes of 16k on a single A100 GPU.

Summarizing, the main contributions of this work are as follows:

• We introduce ViTeRB, a protocol that strictly controls prior concept exposure, enabling the
assessment of true visual zero-shot understanding of language models.

• Our benchmark highlights decoder-based LLMs as effective sources of visual knowledge,
with semantically meaningful representations directly extractable from their internal states.

• We propose ShareLock, a lightweight method that aligns frozen unimodal features, achiev-
ing state-of-the-art data efficiency and superior performance compared to previous models.
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2 RELATED WORK

Visual understanding of large language models. Many previous works (Liu et al., 2023; Wang
et al., 2023; Li et al., 2023) enable LLMs to interact with visual information by mapping image
features into the token embedding space of the language model, an approach that requires extensive
alignment on multi-modal corpora. However, LLMs can also infer and reason about visual content
without explicit multi-modal training (Bowman, 2023). By transcribing images into text form us-
ing separate VLMs, LLMs can be naturally interfaced via language (Hakimov & Schlangen, 2023).
Sharma et al. (2024) tasked LLMs to draw common objects and scenes using simple shapes, indicat-
ing present spatial understanding and illustrating that LLMs can conceptualize real-world settings.
Various works highlight the plausibility and utility of LLM-generated descriptions of objects in the
context of image classification and demonstrate that LLMs possess encyclopedic knowledge about
visual characteristics (Pratt et al., 2022; Menon & Vondrick, 2023; Yang et al., 2022; Saha et al.,
2024). These capabilities suggest that the extensive pretraining on large volumes of diverse textual
data aids the visual understanding of LLMs. Prompted by correlations between semantic represen-
tations in the language and vision space, Huh et al. (2024) argue that the embedding spaces of neural
networks converge towards a shared representation of reality irrespective of the concrete optimiza-
tion objectives, model architectures, and data utilized during training. Similarly, we investigate the
degree of visual alignment inherent to exclusively language-based representations but assess this in
the practically more relevant context of zero-shot image classification and design a rigorous bench-
mark to measure the true generalization capabilities facilitated by language embeddings.

Data-efficient CLIP-like models. Prevailing VLMs heavily rely on large-scale corpora. While
the original CLIP (Radford et al., 2021) was trained on 400M image-text pairs, ALIGN (Jia et al.)
forwent extensive data cleansing, utilizing a total of 1.8B samples and showing that the noisiness
of web-scraped data can be offset through scale. However, more recent work suggests improving
the data quality rather than quantity as the more promising alley towards better performance, and
a litany of filtration methods has been proposed as a result (Schuhmann et al., 2021; Mahmoud
et al., 2024; Joshi et al., 2024; Yu et al., 2023). Such investigations aim at identifying data subsets
that effectively facilitate generalization while keeping the training recipes fixed (Gadre et al., 2023).
Additionally, advances have been made in the model architecture and training regime to improve data
and computational efficiency. It has been shown that even smaller language encoders with notably
fewer layers can perform similarly to more expressive language models (Cui et al., 2022). Zhai
et al. (2022) leverage representations of pretrained image encoders and only tune the text encoder.
ASIF (Norelli et al., 2023) takes this a step further by exploiting pretrained encoders for both vision
and language modalities and aligning their representations in a training-free manner with only a few
million image-text pairs. Compared to these works, our approach focuses on maximizing the utility
of existing unimodal models by aligning them with minimal compute and limited paired data.

3 ShareLock: SHARED VISION-LANGUAGE-LOCKED TUNING

Inspired by the efficiency and effectiveness of late fusion architectures in CLIP-like models, Share-
Lock comprises two separate encoders for vision and language inputs. The outputs of either en-
coder ϕ(·) are subsequently mapped into a shared d-dimensional latent space through a projection
p(·). The latent representation for a given input image xi or caption ti is therefore computed by
zimg = pimg(ϕimg(xi)) ∈ Rd and ztxt = ptxt(ϕtxt(ti)) ∈ Rd, respectively. Due to the normalization
following the projection, the cosine similarity between two embeddings zi and zj is given by their
dot product (i.e., sim(zi, zj) = ⟨zi, zj⟩). During training, the contrastive loss encourages the model
to maximize the similarity between embeddings of correct image-caption pairings while decreasing
the similarity of non-corresponding pairs. For an image-caption pair i in a batch with N items, it is
given by

L(i) = − log
exp

(
sim(zim, zin)/τ

)∑N
j=1 exp(sim(zim, zjn)/τ)

, (1)

for both alternated modalities pairings (m,n) ∈ {(txt, img), (img, txt)} and with τ being a fixed
temperature parameter. Given a set of classes C and their corresponding textual class representations
f(·) (e.g., “a photo of a <class name>”), the predicted class ĉ for a sample xi is obtained
via ĉ = argmax

c∈C
⟨zimg,ptxt(ϕtxt(f(c)))⟩ .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

TextImage

CLIP

fcfc

Image Image Text
ShareLock

MLP

Text

LiT
• Both backbones frozen
• Decoder LLM for text 

representations
• 16k batchsize on 1GPU

fc

Figure 2: Model Schematic of Late Fusion VLMs. Compared to prior works like CLIP and LiT,
we propose ShareLock, which utilizes frozen pretrained representations for both modalities, allow-
ing extremely efficient training. ShareLock also benefits from progress in the LLM domain by
representing text with decoder-only LLMs, such as Llama-3.

Deviating from prior works, ShareLock leverages frozen pretrained models in both the vision as well
as language components, as can be seen in Figure 2. As the alignment of the two modalities is still
necessary, only the lightweight projection networks p(·) are optimized.

4 VISUAL TEXT REPRESENTATION BENCHMARK

The objective of our proposed visual alignment benchmark ViTeRB is to assess how language mod-
els facilitate generalization to novel concepts. It retains the model architecture and optimization
objectives of ShareLock but places restrictions on the data akin to traditional ZSL approaches (cf.
Lampert et al. (2009)). To rigorously attest to the true generalization performance without be-
ing affected by concept leakage through supervision with arbitrary image-caption pairs, we split
conventional image classification datasets into sets of seen classes S as well as unseen classes U,
ensuring that S ∩ U = ∅. To provide coverage across natural and human artifacts (e.g., aircrafts and
animals), coarse and fine-grained categories (e.g., zebra vs. dolphin and fish crow vs. American
crow), and different scales (40 ≤ |S| ≤ 1000), the reported scores are averaged per-class accu-
racies over U across four datasets. Namely, AWA2 (Xian et al., 2017), CUB (Wah et al., 2011),
FGVCAircraft (Maji et al., 2013), and ImageNet+are selected for their complementary characteris-
tics. ImageNet+defines the ImageNet-1k classes as seen concepts and treats the 500 most populated
classes (i.e., highest number of training samples) of ImageNet-21k as unseen ones. For AWA2 and
CUB, we utilize the splits proposed by Xian et al. (2017) while randomly assigning aircraft types
into 50 seen and 20 unseen classes.

As the classification performance on unseen classes is primarily contingent on the validity and se-
mantic continuity of the class representation, the proposed setup can assess the visual alignment
of language embeddings. In the absence of image-specific captions, text-based class representa-
tions f(yi) are used as supervision signals during training and for zero-shot transfer during infer-
ence. Besides the template-based targets proposed by Radford et al. (2021) that solely substitute
the respective class names, we generate more comprehensive auxiliary information about classes
(e.g., visual descriptions) using the instruction-tuned version of the Llama-3 8B model and acquire
human-curated information from Wikipedia (details provided in A.2).

5 LANGUAGE MODELS FOR VISUAL ZERO-SHOT GENERALIZATION

Utilizing the Visual Text Representation Benchmark(ViTeRB), we investigate the impact of spe-
cific design choices to identify critical factors that promote generalization and inform subsequent
decisions when building a locked-image-locked-text model.

LLMs are comprehensive repositories for real-world knowledge. While simple templates have
proven effective classification targets on large-scale CLIP-like models (Radford et al., 2021; LAION
AI, 2022), training with conventional image classification datasets opens up the possibility of using
alternative semantic class representations as well. Especially the class-wise supervision combined
with limited diversity and number of concepts can impede vision-language alignment. Therefore,
we first utilize ViTeRB with different types of textual class representations to gauge how their nature
and information content affect the model’s generalization ability. More details about the character-
istics and acquisition of these class representations are provided in Section A.2 of the appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Classification results of ViTeRB benchmark for various language models. Decoder-
based language models outperform encoder-based architectures across all types of input data.
Llama-3 8B is used for LLM generated Wikipedia articles and descriptions.

Model Type Language Model Class Names LLM Description LLM Wikip. Articles Wikip. Articles

Encoder
BERT-Large 18.3 15.9 20.8 22.9
T5-XL 33.6 37.8 37.9 40.7
SentenceT5-XXL 39.5 44.7 44.3 41.6

Decoder
NV-Embed 40.5 42.9 47.5 45.9
Gemma 7B 39.7 33.7 45.1 43.4
Llama-3 8B 40.2 43.8 44.9 44.3

Depending on the type of language model, text features are obtained from a special CLS token or
the last text token, as shown in Figure 3. The results are summarized in Table 1.

In line with previous studies (Pratt et al., 2022; Menon & Vondrick, 2023; Yang et al., 2022; Saha
et al., 2024), we find that the addition of auxiliary information, such as class descriptions, results
in improved performance for most language models. This is even true for the Llama-3 model,
which was used to generate the description data and resembles findings from Chain-of-thought (Wei
et al., 2022), where model performance increases with response length. We also find that LLM-
generated articles describing a class in the style of Wikipedia (LLM Wikip Articles in Table A.2
can provide strong targets during multi-modal alignment, achieving the best overall performance
of 47.5%. Interestingly, relying on strictly human-curated data in the form of actual Wikipedia
articles tends to lower scores, for example, from 47.5% → 45.9% and 44.9% → 44.3%, for NV-
Embed and Llama-3. Thus, LLMs can effectively absorb and interpolate substantial amounts of
factual information from their training data, positioning them as valuable sources of visually relevant
knowledge.

Decoders outperform encoders in visual concept representation. A new insight resulting from
this analysis is the competitiveness of decoder-based language models for representing visual con-
cepts. Compared to encoders, we show that representing inputs with decoders can result in higher
performance for visual tasks, mirroring a recently emerging trend in the language domain (Lee et al.,
2024; Springer et al., 2024). NV-Embed (Lee et al., 2024), a model tuned explicitly for embedding
text, emerges as the best performer across various types of input data with a maximum perfor-
mance of 47.5%. However, even off-the-shelve LLMs like Gemma or Llama manage to outperform
encoder-based models and trail NV-Embed with ViTeRB scores of 45.1% and 44.9%, respectively.

LLM performance correlates with visual performance. In Figure 1, we compare various LLMs
by their ViTeRB performance, as well as their MMLU (Hendrycks et al., 2021) score, which is a
common metric to measure LLM performance. We find that the capability of language models is
positively correlated with their ability to perform well on the visual ViTeRB tasks. Since models
steadily improve in the language domain, this benchmark will be useful to assess whether the trend
of increasing visual understanding will continue in future LLM models. If this holds, ShareLock can
piggyback off and benefit from developments in the LLM domain.

A notable outlier is presented by the Phi-3 model family (Microsoft, 2024), which score compara-
bly low ViTeRB results given their MMLU scores. This discrepancy likely illustrates the effects of
the extensive data curation and synthetic data creation utilized in Phi3, which might remove visual
information to favor tokens that promote reasoning abilities. Thus, a lack of exposure to sufficient
factual knowledge about real-world conditions may impede the formation of visually informed in-
ternal representations.

6 IMAGE-CAPTION PRETRAINING EXPERIMENTS

The previous section has provided us with prerequisite insights to propose ShareLock and moti-
vated the choice to leverage the strong visually aligned representations of LLMs in the context of a
CLIP-like model. Forgoing the strict zero-shot setup and moving toward larger-scale image-caption
datasets, we intend to explore how well these observations translate in the context of a general-
purpose VLM and whether only optimizing a lightweight network on top of frozen features is suf-
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ficient to compete with full pretraining or fine-tuning. This analysis will illustrate the current upper
limits of utilizing unimodal foundation models as building blocks while applying minimal additional
compute and multi-modal data to achieve high-performing VLMs.

6.1 EXPERIMENTAL SETUP

Pretrained Vision and Language Models. Given its strong performance, broad pretraining
regime, and popularity, the ViT-B/14 variant of the DINOv2 model family (Oquab et al., 2023)
is used as the default vision backbone unless noted otherwise. Language features are extracted from
a Llama-3 8B LLM through last token pooling, as shown in Figure 3. For LiT baselines, we initialize
the language encoder with pretrained BERT weights (Devlin et al., 2019), in accordance with the
original implementation (Zhai et al., 2022). When comparing LiT, ASIF, and ShareLock models in
the following, the exact same pre-computed input features (barring the language component of LiT).

Figure 3: Text features. We
obtain the final text features
by processing the last caption
token with an MLP.

Projection Networks. As in Zhai et al. (2022), no transforma-
tions are applied to the vision features. The MLP projection net-
work after the language model comprises four layers. Between
consecutive layers, inputs are normalized via Batch Normaliza-
tion (Ioffe & Szegedy, 2015) and fed into a ReLU non-linearity.
Dropout (Srivastava et al., 2014) with p = 0.2 is applied during
training. We have also explored more sophisticated projection net-
works, but found the MLP to overall provide best performances, see
details and ablations in Appendix A.3.

Datasets. Our investigation focuses on minimizing the amount of
paired data required and explores how unimodal embeddings can
drive robust multimodal performance with minimal supervision and
alignment. As a result, our evaluation is limited to comparably
small paired datasets. COCO Captions. Containing human an-
notations for around 80k images, COCO Captions (Chen et al., 2015) is a small but high-quality
multimodal dataset. As multiple captions per image are available, a random caption is sampled
during each iteration. CC3M. The Conceptual Captions dataset (Sharma et al., 2018) was built by
scraping image-alt-text pairs from websites, applying filters to remove noisy or mismatched data.
Due to expired links, our version of CC3M contains around 2.8M image-text pairs. We also use a
smaller subset filtered for more balanced concept coverage for the LLaVA VLM (Liu et al., 2023).
CC12M. Expanding the scale and diversity of CC3M, CC12M (Changpinyo et al., 2021) is the
largest dataset used to train and evaluate our model, offering insights into performance at higher
data scales. Our dataset version contains approximately 8.5M image-text pairs.

Training. The training setup largely follows the CC12M configuration of LiT (Zhai et al., 2022)
and uses the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−3 and a weight decay
of 10−4. Gradient clipping to a global norm of 1 is applied. The CLIP loss (Radford et al., 2021)
with τ = 0.07 is employed, and models are trained until convergence on a validation split sets
in, which is around 5k optimization steps with a batch size of 16,384 – regardless of dataset size.
Features of the frozen vision and language models are initially precomputed and stored for direct
re-use in subsequent epochs.

Training speed and storage. On a single A100 48GB GPU, the precomputation of language fea-
tures with LLama3 8B takes around 8 hours for the CC3M-Llava subset containing 563k image-
caption pairs. The DINOv2 features are obtained in 1 GPU hour, and the final multimodal opti-
mization of the MLP also takes around 1 GPU hour. This brings the total training time to around
10 GPU hours. In terms of storage, the original dataset requires around 80GB of storage, while our
precomputed features only require around 12GB.

Evaluation. We employ a comprehensive suite of VLM evaluations to assess and compare Share-
Lock’s capabilities across a wide range of tasks. Based on the publicly available CLIP Benchmark
(LAION AI, 2022), we gauge the models’ zero-shot classification and retrieval abilities across di-
verse datasets and provide qualitative text-to-image retrieval results on ImageNet for CC3M trained

6
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Table 2: Frozen CLIP-like zero-shot classification on ImageNet variants. ShareLock outper-
forms CLIP, LiT and ASIF baselines across 21/24 ImageNet evaluations and achieves performances
competitive with models that utilize significantly more paired data, such as CommonPool-L (384M).

Model Training Dataset Test Dataset AverageSize Name IN-1k IN-V2 IN-R IN-A IN Sketch ObjectNet
LiT 83k COCO Captions 23.3 20.8 34.4 21.1 18.4 29.2 24.5
ASIF 83k COCO Captions 9.4 8.7 14.4 8.8 6.9 16.1 10.7
ShareLock 83k COCO Captions 32.2 28.6 36.6 22.8 22.4 30.4 28.8

LiT 563k CC3M Subset 41.7 37.5 59.2 44.4 32.4 40.7 42.6
ASIF 563k CC3M Subset 21.6 20.5 27.7 24.4 14.9 21.5 21.8
ShareLock 563k CC3M Subset 50.5 45.8 60.5 47.0 36.9 41.1 47.0

CLIP 2.8M CC3M 16.0 13.2 17.6 3.6 6.4 8.2 10.8
LiT 2.8M CC3M 44.1 39.3 62.7 45.6 34.8 43.3 45.0
ShareLock 2.8M CC3M 52.1 47.1 64.1 50.9 39.0 43.1 49.4
DataComp-LAION 3.84M CommonPool-S 3.0 2.7 4.4 1.5 1.3 3.7 2.8

CLIP 12M CC12M 41.6 35.4 52.6 10.7 28.8 24.0 32.2
LiT 8.5M CC12M 56.2 49.9 70.3 52.8 43.9 47.8 53.5
ShareLock 8.5M CC12M 59.1 53.2 68.8 53.4 44.5 46.7 54.3

DataComp-LAION 38.4M CommonPool-M 23.0 18.9 28.0 4.3 15.1 17.7 17.8
DataComp-LAION 384M CommonPool-L 55.3 47.9 65.0 20.2 43.2 46.5 46.3
CLIP 400M Proprietary 68.4 61.8 77.6 50.1 48.2 55.4 60.2

models. Additionally, the challenging compositionality Winoground task (Thrush et al., 2022) is
explored.

Benchmarks. We compare our proposed method against a variety of existing VLMs with a par-
ticular emphasis on data-efficient alignment approaches. Alongside the original ViT-B/16 variant of
CLIP (Radford et al., 2021), we test against several CLIP-like models trained on public datasets of
different scales (Fan et al., 2023; Gadre et al., 2023). Using pretrained models to their advantage,
we assess how ShareLock stacks up against LiT (Zhai et al., 2022) and ASIF (Norelli et al., 2023).

6.2 COMPARISON TO STATE-OF-THE-ART

Comparison to prior works on IN-1k. Taking the ImageNet-1k zero-shot classification perfor-
mance as the principal benchmark for model performance, ShareLock clearly outperforms other
models trained with similar amounts of data, as demonstrated in Table 2. Compared to the small-
scale CC3M CLIP model (Fan et al., 2023), ShareLock performs notably better, achieving an ac-
curacy 52.1% vs. 16.0%. Adding LLM-based features further proves effective when consider-
ing the 44.1% accuracy of LiT (Zhai et al., 2022), which utilizes the same vision backbone as
ShareLock. Our optimization-based alignment also consistently outperforms the training-free ASIF
(Norelli et al., 2023) method, which relies on a large reference dataset with diverse concepts covered
for performance. As the dataset size increases, fine-tuning encoders becomes more feasible. Yet,
ShareLock still maintains performance gains of 3%− 18% to LiT and CLIP even for CC12M.

Robustness. To evaluate the robustness of the VLMs under distribution shifts, the ImageNet-1k
classification objective is repeated with visual out-of-distribution inputs. As seen in Table 2, columns
‘IN-v2’, ‘IN-R’, etc., ShareLock still compares favorably to previous approaches. On average, it sur-
passes other models trained with datasets comparable in scale and approaches vanilla CLIP models
trained with orders of magnitude more data (8.5M vs. 400M for the original CLIP).

Fine-grained classification. As shown in Table 3, the strong unimodal features of ShareLock
similarly contribute positively to fine-grained problems. Here, ShareLock outperforms CLIP, LiT,
and DataComp models by large margins on 8/12 evaluations. We also find that on these datasets,
the models benefit much more noticeably from increased data scale, e.g. from 10.6% on Flowers to
48.8% when increasing the dataset 100×. Intuitively, exposure to a more diverse and nuanced set of
concepts makes methods more capable of performing fine-grained classification. Nonetheless, the
effectiveness of our method in leveraging auxiliary knowledge contained in LLM representations is
demonstrated through surpassing alternative methods on the same training datasets.
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Table 3: Zero-shot classification on fine-grained datasets. Fine-grained problems rely heavily on
large-scale data; still, ShareLock performs competitively with other models trained on the same data.

Training Dataset Test DatasetModel Size Name Aircraft Pets Flowers Cars EuroSAT Average

LiT 83k COCO Captions 1.6 28.8 7.7 1.8 21.9 12.3
ASIF 83k COCO Captions 2.8 7.0 1.6 1.3 21.5 6.8
ShareLock 83k COCO Captions 3.0 20.6 10.6 9.2 25.1 13.7

CLIP 2.8M CC3M 1.4 13.0 10.8 0.8 12.9 7.8
LiT 2.8M CC3M 2.1 28.5 35.9 3.0 34.4 20.8
ShareLock 2.8M CC3M 6.5 43.1 32.8 4.4 27.9 22.9
DataComp-LAION 3.84M CommonPool-S 1.4 4.0 1.8 1.6 15.8 4.9

CLIP 12M CC12M 2.5 64.2 36.7 24.1 20.9 29.7
LiT 8.5M CC12M 5.0 74.4 48.2 13.2 35.3 35.2
ShareLock 8.5M CC12M 8.3 66.6 48.8 11.5 40.7 36.7

DataComp-LAION 38.4M CommonPool-M 1.7 29.9 22.4 22.0 18.8 18.9
DataComp-LAION 384M CommonPool-L 7.1 77.8 53.3 67.7 41.0 49.4
CLIP 400M Proprietary 24.4 89.0 71.2 64.7 55.9 61.0

Table 4: Compositional reasoning. Strong frozen language features alone do not address the short-
comings inherent to prior CLIP-like models when it comes to spacial or conceptual relationships.
For space, the full table including CC3M model performances is provided in the Appendix.

Model Training Dataset Winoground
Size Name Text Image Group

Human 89.5 88.5 85.5
Chance 25.0 25.0 16.7

LiT 83k COCO Captions 25.0 5.8 2.8
ASIF 83k COCO Captions 18.8 9.0 5.3
ShareLock 83k COCO Captions 21.0 11.8 6.5

CLIP 12M CC12M 22.3 9.5 5.3
LiT 8.5M CC12M 24.3 6.5 4.8
ShareLock 8.5M CC12M 26.3 12.8 5.3

DataComp-LAION 38.4M CommonPool-M 25.0 8.3 6.3
DataComp-LAION 384M CommonPool-L 27.0 9.5 7.0
CLIP 400M Propriatary 30.8 10.8 8.3

Compositionality. Late fusion VLMs have long struggled with nuanced textual scene descriptions
or fine-grained compositional differences as tested through benchmarks like Winoground (Thrush
et al., 2022) or SugarCrepe (Hsieh et al., 2023). While our results are competitive in Winoground,
outscoring CLIP and LiT by a couple of percentage points in 5/6 cases (see Table 4), the reliance
on capable pretrained models so far failed to materialize in a significant above-random performance
for the challenging compositionality task. ShareLock shares similar limitations as previous methods
and remains far from reaching human-level performance.

Data scaling. In Figure 4, we show the performance of various CLIP-like methods and models
with increasing image-caption dataset sizes. We find that starting from scratch, vanilla CLIP models
require orders of magnitude more data to achieve similar performance levels compared to Share-
Lock. This remains true even for more sophisticated data filtering methods as used in the DataComp
models. While sharing a similar improvement trajectory, suggesting comparable scaling charac-
teristics, ShareLock also consistently outperforms LiT. This underlines that features of extensively
trained unimodal models possess a semantic understanding that can be efficiently aligned across
modalities with minimal paired data.

Limitations As shown in the previous section, ShareLock outperforms existing methods across
zero-shot classification tasks. However, we find that it performs less competitively in other problem
settings. As we believe that such negative results can yield useful insights into the workings of our
method to the research community, we explicitly highlight some persisting limitations.

For retrieval tasks, having more tunable model components can be advantageous, as seen in Table
5. Here, CLIP and LiT frequently achieve higher scores compared to ShareLock with a relative
advantage of 10.4 and 1.1 percentage points across evaluation datasets for the CC12M-trained vari-
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Figure 4: Scaling of zero-shot performance across dataset sizes. ShareLock achieves best-in-class
performance using significantly fewer image-caption pairs compared to CLIP and LiT models.

Table 5: Recall@5 scores for image and text retrieval. Previous models with encoder-based and
fully fine-tuned language features achieve better performance in most retrieval tasks. For space, the
full table including CC3M model performances is provided in the Appendix.

Model Training Dataset Flickr8k Flickr30k MS COCO Average
Size Name T → I I → T T → I I → T T → I I → T T → I I → T

LiT 83k COCO Captions 57.5 77.1 61.3 80.6 50.7 69.1 56.5 75.6
ASIF 83k COCO Captions 10.4 20.6 12.1 24.9 8.9 17.1 10.4 20.9
ShareLock 83k COCO Captions 50.5 69.6 56.9 78.4 27.0 41.9 50.2 69.5

CLIP 12M CC12M 73.1 84.5 73.9 86.3 51.0 65.4 66.0 78.7
LiT 8.5M CC12M 60.0 72.8 69.1 82.1 36.5 53.4 55.2 69.4
ShareLock 8.5M CC12M 55.0 73.0 67.1 81.7 32.7 50.1 51.6 68.3

DataComp-LAION 38.4M CommonPool-M 39.4 52.6 39.2 52.4 26.0 35.9 34.9 47.0
DataComp-LAION 384M CommonPool-L 78.1 89.0 81.0 90.7 57.6 71.7 72.2 83.8
CLIP 400M Propriatary 82.9 91.4 85.6 96.2 58.4 76.8 75.6 88.1

ants, respectively. This may be due to the reduced internal post-hoc adaptation capacity during
contrastive alignment of frozen task-unspecific textual representations. However, when utilizing
retrieval-specific LLM features such as from NV-Embed Lee et al. (2024), the ShareLock paradigm
experiences a significant boost in retrieval abilities of up to 17%, as shown in Table 7.

6.3 QUALITATIVE RESULTS

In addition to the extensive suite of quantitative evaluations, we present several qualitative results in
Figure 5 to illustrate the effectiveness of our method. Across diverse textual prompts, our approach
demonstrates strong alignment between textual and visual representations. Compared to versions
of CLIP and LiT also trained on CC3M, we find that ShareLock generally performs better for fine-
grained (i.e., “a photo of a BMW.”) and more abstract (i.e., “[...] heavy seas.”) prompts.

6.4 ABLATIONS

As the nature of the frozen input features is of great significance in the ShareLock paradigm, the
choice of vision and language encoders is ablated. In addition, alternative projection network archi-
tectures are compared in Section A.3. All ablations are performed on the CC3M dataset.

Vision encoder. ShareLock is agnostic to the specific type of vision encoder employed. There-
fore, we ablate different choices of supervised and unsupervised supervision approaches as well as
different model architectures in Table 6. As ShareLock projects language embeddings into the vi-
sion space, the model choice is pivotal, as demonstrated by the DINOv2 backbone yielding almost
double the classification scores compared to the worst performing encoder and a 36% lead over
the second-best vision transformer. Models supervised on datasets limited in scope clearly show
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CLIP

A photo of a banana.
Sim: 0.62 Sim: 0.52 Sim: 0.52

A person horseback
riding.

Sim: 0.48 Sim: 0.47 Sim: 0.46

A lighthouse caught in
heavy seas.

Sim: 0.47 Sim: 0.46 Sim: 0.46

A photo of a BMW.
Sim: 0.48 Sim: 0.47 Sim: 0.46

LiT

A photo of a banana.
Sim: 0.67 Sim: 0.67 Sim: 0.66

A person horseback
riding.

Sim: 0.57 Sim: 0.56 Sim: 0.52

A lighthouse caught in
heavy seas.

Sim: 0.68 Sim: 0.66 Sim: 0.64

A photo of a BMW.
Sim: 0.47 Sim: 0.47 Sim: 0.46

ShareLock

A photo of a banana.
Sim: 0.71 Sim: 0.69 Sim: 0.68

A person horseback
riding.

Sim: 0.53 Sim: 0.49 Sim: 0.49

A lighthouse caught in
heavy seas.

Sim: 0.69 Sim: 0.67 Sim: 0.65

A photo of a BMW.
Sim: 0.56 Sim: 0.56 Sim: 0.55

Figure 5: Comparison on text-to-image retrieval. We show qualitative top-3 retrieval results for
CLIP, LiT and ShareLock all trained on CC3M. Green border color indicates correctly retrieved
samples.

Table 6: Ablation of the vision encoder used in ShareLock. Strong and comprehensive image
features are essential for generalization.

Vision Encoder Dataset Avg. Classification Scores Avg. Retrieval Score WinoGround
Robustness Fine-Grained T → I I → T Text Image Group

ResNet101 IN-1k (sup.) 28.0 16.5 28.3 44.9 21.8 15.3 8.8
ViT-B/16 IN-1k (sup.) 36.2 14.8 36.0 47.3 21.8 10.8 6.0
DINO ViT-B/16 IN-1k (unsup.) 25.8 16.1 38.8 54.5 21.5 15.3 8.8
ShareLock (DINOv2) Various (unsup.) 49.4 22.9 48.2 62.7 22.8 15.8 9.0

Table 7: Ablation of language model used for dual-locked tuning. Decoder-based language mod-
els are key to enable the strong performance of ShareLock.

Language Model Avg. Classification Scores Avg. Retrieval Score WinoGround
Robustness Fine-Grained T → I I → T Text Image Group

BERT-Base 36.2 7.2 36.6 50.3 19.5 9.0 5.0
ShareLock (NV-Embed) 50.9 25.8 56.5 69.2 27.0 14.8 8.3
ShareLock default (Llama-3 8B) 49.4 22.9 48.2 62.7 22.8 15.8 9.0

reduced robustness and less generality compared to DINOv2, illustrating how generalization can
benefit from broad pretraining across various concepts – even without explicit supervision.

Language model. Similarly, we compare variations of ShareLock using different language models
and list their performance in Table 7. These results illustrate the effectiveness of decoder-based
approaches previously highlighted by the ViTeRB benchmark in Section 5. Despite serving as the
starting point in LiT models, the BERT encoder fails to achieve competitive results without any fine-
tuning. In contrast, frozen decoder-based representations consistently outperform their BERT-based
counterparts, with improvements ranging from 40% to 450%. This demonstrates the expressiveness
and high information content of strong LLM representations obtained through text-only pretraining.

7 CONCLUSION

We introduce ViTeRB, a benchmark for evaluating the visual capabilities and alignment of language
models. With it, we show that LLM quality, measured by MMLU, correlates with visual under-
standing, and decoder-based LLMs excel in extracting visually informed representations. Building
on these insights, we propose ShareLock, a simple CLIP-like VLM that leverages the large-scale
pretraining and internal knowledge of frozen LLMs. Our method achieves strong performances and
requires fewer image-caption pairs than models like CLIP or LiT for similar performances. Com-
bined with its extremely fast training time, this work highlights the potential of frozen decoder-only
LLMs for vision-language tasks.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

We acknowledge and emphasize the importance of reproducibility in our work and take active mea-
sures to facilitate reproducibility efforts. Besides providing comprehensive documentation of our
methods throughout the main paper, with additional details in the supplementary materials, we will
publish source code for the proposed ShareLock model.

A.2 TEXTUAL CLASS REPRESENTATIONS FOR VISUAL TEXT REPRESENTATION
BENCHMARK

More details about the characteristics and acquisition of these class representations are provided
in Section A.2 of the appendix. Besides the template-based targets proposed by Radford et al.
(2021) that solely substitute the respective class names, we generate more comprehensive auxiliary
information about classes (e.g., visual descriptions) using the instruction-tuned version of the Llama-
3-8B model and acquire human-curated information from Wikipedia (details provided in A.2).

Class representations are essential for facilitating the knowledge transfer between classes in the
traditional definition of zero-shot learning. Compared to attributes or other forms of class semantics,
language-based class representations are more conveniently accessible at various scales and may
come in diverse manifestations. The advent of LLMs adds further possibilities for generating and
obtaining such auxiliary information. The following paragraphs specify the respective properties
and acquisition process. Here, all LLM-based class representations are generated using the instruct-
tuned version of LLama-3 8B.

Class Names. A set of 80 human-engineered prompt templates in the style of "a photo of a
<class name>" are adopted from Radford et al. (2021).

Description. This type of class representation is generated by tasking an LLM to generate short,
one-sentence descriptions of how a given class looks like. Multiple descriptions are generated for
each class by slightly varying the LLM prompt and utilizing different seeds as a form of augmenta-
tion.

Wikipedia Page. Being a comprehensive and mostly factually correct source of information,
Wikipedia constitutes an interesting source of auxiliary information in the context of zero-shot clas-
sification. To obtain class-article correspondences, class names are automatically matched with page
names, after which additional manual quality checks are performed. Nonetheless, an ideal match
does not always exist due to high class specificity or generality, in which case superordinate articles
are considered or template-based fallbacks are employed.

LLM-based Wikipedia Style Articles. Despite being specifically prompted for articles mimick-
ing Wikipedia, the Llama-3-generated texts tend to show significant differences in style compared
to their real counterparts.

As the lengthy nature of Wikipedia(-style) articles might dilute the information content captured
by the language embeddings, the texts are split into individual sentences, which are used as targets
during training. For all types of class representations, predictions are made by aggregating class
scores through averaging over all individual class-specific texts.

A.3 PROJECTION NETWORK ARCHITECTURE

The multi-layer perceptron (MLP) projection networks of ShareLock as introduced in Section 3 are
conceivably simple. As these are the only unfrozen and tunable parts of the model architecture
and thus responsible for aligning vision and language inputs, they are of particular significance to
aptly process and transform the inputs. Following Zhai et al. (2022), no transformation to the vision
inputs is applied for any of the architectures. With a hidden size of 4096 and four layers, the MLP
processing the language features comprises approximately 53M parameters.
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In addition to the straightforward MLP-based networks, also more sophisticated Transformer-based
architectures are inspired by recent works. First introduced as part of the BLIP-2 model (Li et al.,
2023), the Q-Former is a lightweight Transformer-based model that extracts features from an input
modality using cross-attention with learnable query tokens. Similarly, albeit introduced in a differ-
ent context, NV-Embed (Lee et al., 2024) uses a latent attention layer to pool language tokens and
receive a global embedding. Slight adjustments are made to both baseline architectures to better suit
late-fusion vision-language modeling. The hyperparameters were selected based on the implemen-
tation details suggested in the original publications and to approximately match the MLP baseline
in learnable parameter count. Both the Q-Former and the NV-Embed projection networks have a to-
ken dimension of 1024 in the Transformer parts of the models, eight learnable queries (Q-Former),
and key/values (NV-Embed). Whereas the Q-Former consists of 3 blocks and 4 attention heads,
NV-Embed comprises a total of four layers with eight cross-attention heads each.

The choice of projection network architecture is ablated in Table 8. While no single architecture
consistently scores best, the MLP-based ShareLock configuration performs competitively compared
to NV-Embed and QFormer throughout the evaluation cases. Additionally, Transformer-based ar-
chitectures entail increased computational complexity due to the more evolved attention mechanism
and processing of more tokens, making MLPs an attractive choice from an efficiency perspective as
well. These results suggest that the additional information contained across all tokens of an input
is not significantly more adjuvant compared to solely considering the last token representation as is
done with the MLP.

Table 8: Ablation of the projection network architectures tuned as part of ShareLock training.
Simple MLPs perform competitively compared to more advanced Transformer-based architectures.

Architecture Avg. Classification Scores Avg. Retrieval Score WinoGround
Robustness Fine-Grained T → I I → T Text Image Group

NV-Embed 41.9 20.3 49.5 65.8 21.5 10.0 6.0
QFormer 48.3 26.8 49.4 65.2 24.5 14.0 8.5
ShareLock (MLP) 49.4 22.9 48.2 62.7 22.8 15.8 9.0

A.4 SUPPLEMENTARY QUANTITATIVE RESULTS

The following tables include additional results and analyses that were omitted in the main body
of the paper due to space constraints. These supplementary results offer extended insights from
additional model variants and further buttress previously drawn conclusions.

Table 9: Extended results for zero-shot classification on ImageNet variants.

Model Training Dataset Test Dataset AverageSize Name IN-1k IN-V2 IN-R IN-A IN Sketch ObjectNet
LiT 83k COCO Captions 23.3 20.8 34.4 21.1 18.4 29.2 24.5
ASIF 83k COCO Captions 9.4 8.7 14.4 8.8 6.9 16.1 10.7
ShareLock 83k COCO Captions 32.2 28.6 36.6 22.8 22.4 30.4 28.8

LiT 563k CC3M Subset 41.7 37.5 59.2 44.4 32.4 40.7 42.6
ASIF 563k CC3M Subset 21.6 20.5 27.7 24.4 14.9 21.5 21.8
ShareLock 563k CC3M Subset 50.5 45.8 60.5 47.0 36.9 41.1 47.0

CLIP 2.8M CC3M 16.0 13.2 17.6 3.6 6.4 8.2 10.8
LiT 2.8M CC3M 44.1 39.3 62.7 45.6 34.8 43.3 45.0
ShareLock 2.8M CC3M 52.1 47.1 64.1 50.9 39.0 43.1 49.4
DataComp-LAION 3.84M CommonPool-S 3.0 2.7 4.4 1.5 1.3 3.7 2.8

CLIP 12M CC12M 41.6 35.4 52.6 10.7 28.8 24.0 32.2
LiT 8.5M CC12M 56.2 49.9 70.3 52.8 43.9 47.8 53.5
ShareLock 8.5M CC12M 59.1 53.2 68.8 53.4 44.5 46.7 54.3
DataComp 12.8M CommonPool-S 2.7 2.3 4.1 1.4 1.1 3.7 2.5

DataComp 128M CommonPool-M 17.5 14.4 19.8 3.9 9.5 15.8 13.5
DataComp-LAION 38.4M CommonPool-M 23.0 18.9 28.0 4.3 15.1 17.7 17.8
DataComp-LAION 384M CommonPool-L 55.3 47.9 65.0 20.2 43.2 46.5 46.3
CLIP 400M Proprietary 68.4 61.8 77.6 50.1 48.2 55.4 60.2

DataComp 1.28B CommonPool-L 45.9 39.2 52.7 15.9 34.5 41.1 38.2
DataComp-LAION 3.84B CommonPool-XL 75.4 68.5 87.0 57.0 63.5 68.5 70.0
DataComp 12.8B CommonPool-XL 72.3 65.1 85.9 56.4 61.1 70.6 68.6
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Table 10: Extended results for zero-shot classification on fine-grained datasets.
Training Dataset Test DatasetModel Size Name Aircraft Pets Flowers Cars EuroSAT Average

LiT 83k COCO Captions 1.6 28.8 7.7 1.8 21.9 12.3
ASIF 83k COCO Captions 2.8 7.0 1.6 1.3 21.5 6.8
ShareLock 83k COCO Captions 3.0 20.6 10.6 9.2 25.1 13.7

LiT 563k CC3M Subset 1.1 22.8 27.5 4.1 25.5 16.2
ASIF 563k CC3M Subset 2.1 11.7 6.4 2.3 19.5 8.4
ShareLock 563k CC3M Subset 8.4 38.3 33.3 5.4 29.4 23.0

CLIP 2.8M CC3M 1.4 13.0 10.8 0.8 12.9 7.8
LiT 2.8M CC3M 2.1 28.5 35.9 3.0 34.4 20.8
ShareLock 2.8M CC3M 6.5 43.1 32.8 4.4 27.9 22.9
DataComp-LAION 3.84M CommonPool-S 1.4 4.0 1.8 1.6 15.8 4.9

CLIP 12M CC12M 2.5 64.2 36.7 24.1 20.9 29.7
LiT 8.5M CC12M 5.0 74.4 48.2 13.2 35.3 35.2
ShareLock 8.5M CC12M 8.3 66.6 48.8 11.5 40.7 36.7
DataComp 12.8M CommonPool-S 0.8 4.4 2.3 1.4 14.9 4.8

DataComp-LAION 38.4M CommonPool-M 1.7 29.9 22.4 22.0 18.8 18.9
DataComp 128M CommonPool-M 1.3 16.8 8.1 13.3 25.4 13.0
DataComp-LAION 384M CommonPool-L 7.1 77.8 53.3 67.7 41.0 49.4
CLIP 400M Proprietary 24.4 89.0 71.2 64.7 55.9 61.0

DataComp 1.28B CommonPool-L 3.3 56.2 39.4 60.5 33.4 38.6
DataComp-LAION 3.84B CommonPool-XL 93.1 77.1 28.7 89.2 73.8 72.4
DataComp 12.8B CommonPool-XL 19.5 90.6 71.6 89.3 68.9 68.0

Table 11: Extended results for image and text retrieval.

Model Training Dataset Flickr8k Flickr30k MS COCO Average
Size Name T → I I → T T → I I → T T → I I → T T → I I → T

LiT 83k COCO Captions 57.5 77.1 61.3 80.6 50.7 69.1 56.5 75.6
ASIF 83k COCO Captions 10.4 20.6 12.1 24.9 8.9 17.1 10.4 20.9
ShareLock 83k COCO Captions 50.5 69.6 56.9 78.4 27.0 41.9 50.2 69.5

LiT 563k CC3M Subset 51.2 67.2 60.7 74.4 28.4 45.8 46.8 62.5
ASIF 563k CC3M Subset 10.3 20.3 15.9 29.6 5.7 12.1 10.6 20.7
ShareLock 563k CC3M Subset 49.9 64.6 57.9 73.9 29.8 45.9 44.9 60.1

CLIP 2.8M CC3M 43.5 56.9 40.4 54.7 25.3 30.9 36.4 47.5
LiT 2.8M CC3M 60.1 76.6 69.3 81.4 35.9 53.6 55.1 70.5
ShareLock 2.8M CC3M 54.9 70.1 60.1 74.2 29.5 43.9 48.2 62.7
DataComp-LAION 3.84M CommonPool-S 7.8 11.4 6.7 9.1 3.6 4.4 6.1 8.3

CLIP 12M CC12M 73.1 84.5 73.9 86.3 51.0 65.4 66.0 78.7
LiT 8.5M CC12M 60.0 72.8 69.1 82.1 36.5 53.4 55.2 69.4
ShareLock 8.5M CC12M 55.0 73.0 67.1 81.7 32.7 50.1 51.6 68.3
DataComp 12.8M CommonPool-S 8.1 12.3 6.9 9.9 3.5 5.7 6.2 9.3

DataComp-LAION 38.4M CommonPool-M 39.4 52.6 39.2 52.4 26.0 35.9 34.9 47.0
DataComp 128M CommonPool-M 30.7 42.3 31.4 40.7 19.4 30.0 27.2 37.7
DataComp-LAION 384M CommonPool-L 78.1 89.0 81.0 90.7 57.6 71.7 72.2 83.8
CLIP 400M Propriatary 82.9 91.4 85.6 96.2 58.4 76.8 75.6 88.1

DataComp 1.28B CommonPool-L 64.3 78.6 69.9 81.4 45.7 60.2 60.0 73.4
DataComp-LAION 3.84B CommonPool-XL 90.9 96.1 92.9 99.0 71.4 84.6 85.1 93.2
DataComp 12.8B CommonPool-XL 84.6 92.1 86.4 94.6 63.1 77.1 78.0 87.9

A.5 SUPPLEMENTARY QUALITATIVE RESULTS

Figure 6 provides additional qualitative insights into the retrieval ability of CLIP, LiT, and ShareLock
models trained on CC3M.
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Table 12: Extended results for compositional reasoning.

Model Training Dataset Winoground SugarCrepe
Size Name Text Image Group Replace Swap Add

Human 89.5 88.5 85.5 99.6 99.5 99.0
Chance 25.0 25.0 16.7 50.0 50.0 50.0

LiT 83k COCO Captions 25.0 5.8 2.8 78.7 65.1 75.7
ASIF 83k COCO Captions 18.8 9.0 5.3 49.1 44.3 46.8
ShareLock 83k COCO Captions 21.0 11.8 6.5 70.5 55.4 68.4

LiT 563k CC3M Subset 24.3 8.3 5.5 69.5 57.7 67.2
ASIF 563k CC3M Subset 18.3 13.3 7.3 58.7 52.1 56.8
ShareLock 563k CC3M Subset 20.0 13.8 6.8 62.4 50.6 60.8

CLIP 2.8M CC3M 21.3 9.5 6.0 67.0 56.6 63.3
LiT 2.8M CC3M 23.8 6.0 4.5 74.0 62.4 73.6
ShareLock 2.8M CC3M 22.8 15.8 9.0 63.0 54.0 62.3
DataComp-LAION 3.84M CommonPool-S 19.3 12.0 7.5 56.5 53.6 58.1

CLIP 12M CC12M 22.3 9.5 5.3 77.5 61.9 73.5
LiT 8.5M CC12M 24.3 6.5 4.8 74.1 62.0 77.6
ShareLock 8.5M CC12M 26.3 12.8 5.3 66.3 53.1 65.5
DataComp 12.8M CommonPool-S 17.3 5.5 2.3 57.7 51.7 56.4

DataComp-LAION 38.4M CommonPool-M 25.0 8.3 6.3 69.1 56.7 66.2
DataComp 128M CommonPool-M 24.3 4.5 3.0 65.5 53.4 65.5
DataComp-LAION 384M CommonPool-L 27.0 9.5 7.0 79.8 62.8 79.3
CLIP 400M Propriatary 30.8 10.8 8.3 80.0 62.7 73.0

DataComp 1.28B CommonPool-L 24.0 6.5 4.3 73.4 58.7 75.2
DataComp-LAION 3.84B CommonPool-XL 34.0 11.8 10.0 79.7 58.7 81.4
DataComp 12.8B CommonPool-XL 28.8 7.5 6.0 84.3 66.7 87.5
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Figure 6: Qualitative comparison on text-to-image retrieval (ImageNet-1k).
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