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Abstract001

With the rapid development of spatial audio002
technologies today, applications in AR, VR and003
other scenarios have garnered extensive atten-004
tion. Unlike traditional mono sound, spatial005
audio offers a more realistic and immersive au-006
ditory experience. Despite notable progress007
in the field, there remains a lack of compre-008
hensive surveys that systematically organize009
and analyze these methods and their underly-010
ing technologies. In this paper, we provide011
a comprehensive overview of spatial audio012
and systematically review recent literature in013
the area. To address this, we chronologically014
outline existing work related to spatial audio015
and categorize these studies based on input-016
output representations, as well as generation017
and understanding tasks, thereby summariz-018
ing various research aspects of spatial audio.019
In addition, we review related datasets, eval-020
uation metrics, and benchmarks, offering in-021
sights from both training and evaluation per-022
spectives. Related materials are available at023
https://github.com/ASAudio/ASAudio.024

1 Introduction025

Spatial audio delivers an immersive, three-026

dimensional listening experience by simulating027

how sound propagates and is perceived in space,028

representing the culmination of audio’s evolution029

from mono to surround sound (Poeschl et al., 2013).030

Fueled by its adoption as a core feature in products031

from Apple, Google, and Meta, the technology032

has seen accelerated development and widespread033

application in film, gaming, and the emerging meta-034

verse (Chen et al., 2025; Wuolio and Moreira Kares,035

2023; Lee et al., 2023a; Broderick et al., 2018; Mur-036

phy and Neff, 2011), which in turn has sharpened037

the focus of academic research.038

As illustrated in Fig. 1, the research landscape039

of spatial audio has undergone a significant evo-040

lution. Before 2021, efforts primarily center on041

understanding tasks like sound event localization042

and detection (SELD) and source separation, domi- 043

nated by foundational CNN-based models (Zhou 044

et al., 2020; Gao and Grauman, 2019; Wu et al., 045

2021; Richard et al., 2021; Nguyen et al., 2022; Shi- 046

mada et al., 2021) and limited by the scale of early 047

datasets (Donley et al., 2021; Morgado et al., 2020). 048

Since 2022, the field has entered a new phase of 049

rapid, synergistic advancement in both understand- 050

ing and generation, fueled by breakthroughs in gen- 051

erative models and the proliferation of multimodal 052

datasets (Zheng et al., 2024; Zhang et al., 2025; 053

Kim et al., 2025; Sun et al., 2024). This period 054

sees the rise of powerful generation models like 055

ImmerseDiffusion (Heydari et al., 2025) and Diff- 056

SAGe (Kushwaha et al., 2025), which drastically 057

improves audio quality and realism. Crucially, the 058

underlying technologies, such as attention mech- 059

anisms and large language models, also revolu- 060

tionize understanding. This propels the task from 061

traditional signal-level analysis toward higher-level 062

semantic reasoning, as seen in advanced models 063

for attention-based separation (Ye et al., 2024) and 064

LLM-based spatial inference (Zheng et al., 2024). 065

To systematically review these advances in repre- 066

sentation, understanding, generation, datasets, and 067

evaluation protocols, this paper is organized as fol- 068

lows: Section 2 discusses input-output represen- 069

tations, Sections 3 and 4 analyze understanding 070

and generation tasks, and Section 5 summarizes 071

existing datasets and evaluation standards. 072

2 Representations of Spatial Audio 073

2.1 Inputs Representations 074

Input representations aim to capture semantic, 075

acoustic, and spatial information. They are pro- 076

vided alone or in combination as mono audio, text, 077

visual signals, or spatial coordinates. We provide 078

a detailed explanation of input representation and 079

their primary processing method in Figure 2. 080
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Figure 1: A timeline of recent spatial audio models & datasets in recent years. The timeline is established mainly
according to the release date of the technical paper for each model. We mark the understanding models in green and
the generation models in yellow, while datasets are marked in blue. Arrows indicate the evolution of models.

Natural Language Prompts Natural language081

prompts specify semantic content and spatial at-082

tributes in an intuitive way. They describe events083

for generation (Kreuk et al., 2022; Liu et al., 2023)084

or serve as queries in understanding tasks. For085

example, BAT (Zheng et al., 2024) uses a large086

language model to process question–answer pairs087

about sound event detection, direction estimation,088

and spatial reasoning, and it extracts spatial infor-089

mation from natural language.090

Spatial Position Explicit spatial position data,091

such as Cartesian or spherical coordinates, provides092

direct guidance to place sources in generation tasks093

and serves as ground truth for localization models094

in understanding tasks. Some studies (Liu et al.,095

2022; Zhang et al., 2025) also include radial veloc-096

ity and orientation. They simulate Doppler effects097

to enhance dynamic properties.098

Visual Information Visual information (images099

or videos) strongly correlates with sound and pro-100

vides valuable spatial and semantic context. It of-101

fers key cues for audio–visual source separation102

and localization (Zhao et al., 2018; Ye et al., 2024;103

Zhou et al., 2018) and for audio–visual acoustic104

matching (Chen et al., 2022). It also guides mono-105

to-spatial generation (Gan et al., 2019; Gao and106

Grauman, 2019) and video-to-spatial-audio genera-107

tion (Liu et al., 2025a) tasks. 108

Monoaural Audio Mono audio serves as the 109

base acoustic content in many generation tasks. 110

It supplies core timbral and spectral cues. In two- 111

stage systems, the mono stream is first processed 112

and then “upmixed” into multichannel or binaural 113

formats under the guidance of spatial inputs such 114

as visuals or positions information. 115

2.2 Spatial Cues and Physical Modeling 116

A core aspect of spatial audio is the accurate mod- 117

eling of sound propagation and perception in three- 118

dimensional space, with two key concepts being the 119

room impulse response (RIR) and the head-related 120

transfer function (HRTF). 121

Room Impulse Response (RIR) The room im- 122

pulse response (RIR) characterizes all acoustic 123

paths from a source to a receiver, bridging vir- 124

tual and real acoustics. As direct measurement is 125

costly, research has focused on alternatives. Some 126

methods estimate RIRs from visual inputs to avoid 127

acoustic measurements (Kim et al., 2019; Ratnara- 128

jah et al., 2024; Majumder et al., 2022), while 129

others use simulation tools to generate data for 130

training and improving tasks like source separa- 131

tion (Roman et al., 2024; Ahn et al., 2023; Jeub 132

et al., 2009; Vacher et al., 2014; Mittag et al., 133
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2017; Di Carlo et al., 2021; Grondin et al., 2020;134

Xu et al., 2021). To support complex applica-135

tions, precise RIRs have been measured for spe-136

cific scenarios like dense grids or dynamic sources137

(Koyama et al., 2021; Ratnarajah et al., 2022; Poli-138

tis et al., 2020; McKenzie et al., 2021b,a), and139

perceptual evaluation often relies on measured bin-140

aural RIRs (BRIRs) to assess synthesis authenticity141

(Brinkmann et al., 2017).142

Head-Related Transfer Function (HRTF)143

Head-related transfer function (HRTF) is a144

subject-specific filter describing how an individ-145

ual’s anatomy alters incoming sound, encoding146

the binaural and monaural cues essential for147

3D perception. Because HRTFs are highly148

individualized, personalization is critical to avoid149

perceptual artifacts like in-head localization and150

front-back confusion. To this end, researchers151

have developed several methods. Some predict152

HRTFs from anthropometric features like ear153

shape using neural networks (Warnecke et al.,154

2022; Arbel et al., 2024; Zhao et al., 2022).155

Others select the best-matching HRTF from a156

database, guided by perception-aligned metrics157

(Lee et al., 2023b; Marggraf-Turley et al., 2024).158

The most mainstream approach, however, is spatial159

upsampling from sparse data, which uses deep160

models to interpolate a full HRTF from a few161

measurements. This includes using various deep162

architectures like CNNs and Transformers for163

reconstruction (Jiang et al., 2023; Ito et al., 2022;164

Hogg et al., 2024; Ma et al., 2023; Zhang et al.,165

2023), incorporating physical priors to improve166

performance (Chen et al., 2023; Thuillier et al.,167

2024), and leveraging neural fields to represent168

HRTFs as continuous functions (Zhang et al.,169

2023; Masuyama et al., 2024). Future work aims to170

fuse these methods and deploy them on consumer171

devices (Warnecke et al., 2022; Jiang et al., 2023).172

2.3 Output Representations173

Spatial audio is mainly represented in three formats.174

Channel-based formats (e.g., 5.1 or 7.1 surround)175

assign signals to predefined loudspeaker positions.176

Scene-based formats (e.g., higher-order Ambison-177

ics (HOA)) represent the full three-dimensional178

sound field using spherical harmonic decomposi-179

tion. Object-based formats, such as Dolby Atmos,180

treat each source as an independent object with181

positional metadata and render it dynamically at182

playback. We analyze three output paradigms and183

discuss binaural rendering separately. 184

Channel-Based Audio Channel-based audio 185

maps signals to predefined loudspeaker positions, 186

such as stereo, 5.1, or 7.1. Spatial position is im- 187

plied by level and time differences across channels. 188

The psychoacoustic basis is summing localization. 189

Amplitude panning follows the sine law: 190

sin θI =
EL − ER

EL + ER
sin θ0. (1) 191

This paradigm is widely used but depends on stan- 192

dardized layouts. It has a small “sweet spot” and 193

limited flexibility and scalability. 194

Scene-Based Audio Scene-based audio aims to 195

capture and physically reproduce the entire sound 196

field within a region. Key methods include higher- 197

order Ambisonics (HOA) and wave field synthe- 198

sis (WFS). Ambisonics represents the 3D field by 199

spherical harmonic decomposition: 200

P (x, ω) =

N∑
n=0

n∑
m=−n

αm
n (ω) jn(kr)Y

m
n (x̂). (2) 201

This paradigm produces a wide and stable listening 202

area. However, it places high demands on the sys- 203

tem, which limits adoption in the consumer market. 204

Object-Based Audio Object-based audio treats 205

each source as an independent audio object that 206

carries content and metadata, such as position and 207

trajectory. The final mix is rendered in real time 208

on the playback device. Dolby Atmos is a repre- 209

sentative system. By decoupling content from the 210

physical playback setup, this paradigm achieves 211

strong scalability and interactivity and becomes a 212

core of next-generation immersive media. 213

Binaural Audio Binaural audio is a key render- 214

ing method and the final form that delivers ad- 215

vanced spatial formats to the ears over headphones. 216

It uses HRTFs to reconstruct the ear-canal pres- 217

sure and thus tricks the brain into perceiving a 3D 218

scene. Convincing experiences require dynamic 219

head tracking and room acoustics (reverberation) 220

modeling. These components reduce front–back 221

confusion and promote externalization. 222

2.4 Representation Discussion 223

Input representations We observe three axes 224

that govern design choices: (i) Abstraction vs 225

Control precision. Natural language and vision 226

information are human-friendly and scalable for 227
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high-level intent, but suffer from ambiguity and228

lower precision; spatial coordinates deliver exact,229

reproducible control but lack semantics and are230

tedious to author. (ii) Semantics vs Geometry.231

High-level intents require an interpretation layer232

(often an LLM or structured parsers) to map se-233

mantics to machine-executable spatial parameters;234

geometric inputs bypass this layer but reduce ex-235

pressivity. (iii) Content vs Spatialization. Monau-236

ral audio supplies core acoustic content (timbre,237

pitch), while other modalities guide spatial render-238

ing; a two-stage pipeline (content generation, then239

spatialization) yields modularity and controllability.240

We make a concise comparison and discussion in241

Appendix A.1, Table 1.242

Output representations The three output forms243

differ in device dependence, scalability, listening244

freedom, and playback-side complexity. Channel-245

based formats have high device dependence but246

low playback complexity. Scene-based formats of-247

fer high listening freedom but place strict demands248

on the system. Object-based formats provide un-249

matched flexibility and scalability and act as a core250

driver of next-generation immersive media. These251

paradigms are not mutually exclusive, and each252

suits different applications best. A concise compar-253

ison is deferred to Appendix A.2, Table 2.254

3 Understanding Approaches255

Spatial audio understanding aims to analyze com-256

plex acoustic scenes by exploiting spatial cues.257

Core tasks include sound event localization and258

detection (SELD), spatial audio separation, and259

joint learning with visual and language modalities.260

3.1 SELD Tasks261

Sound event localization and detection (SELD) an-262

swers two questions at once: what sound occurs263

(sound event detection, SED) and where it comes264

from (direction of arrival estimation, DOAE). Tra-265

ditional methods rely on signal processing while266

modern work increasingly adopts deep learning267

models on SELD tasks.268

Deep learning achieves strong progress on SELD269

with diverse network architectures. Early work270

(May et al., 2010) models binaural cues (ITD/ILD)271

with Gaussian mixtures to estimate azimuth and272

lays the foundation for later studies. SELDnet273

(Adavanne et al., 2018a) uses a CRNN to process274

SED and DOA in parallel and becomes a key base-275

line. To further improve performance, researchers276

explore alternative representations and mappings. 277

For example, (Pavlidi et al., 2015) estimates the 278

active intensity vector, while (Rana et al., 2019) 279

builds an automated pipeline for Ambisonics esti- 280

mation from audio–visual features. For binaural 281

devices such as hearing aids, DeepEar (Yang and 282

Zheng, 2022) designs a multi-sector network that 283

localizes multiple sources. To handle unknown 284

numbers of sources in the wild, (Kim et al., 2023) 285

proposes a YOLO-inspired, event-driven localizer 286

that is robust to concurrent events. 287

Jointly learning SED and DOA often degrades 288

performance. Several strategies address this is- 289

sue. (Cao et al., 2019) shows that two-stage train- 290

ing allows SED features to benefit DOAE. (Cao 291

et al., 2021) introduces a track-wise output for- 292

mat, permutation-invariant training (PIT), and soft 293

parameter sharing to avoid sacrificing subtask ac- 294

curacy. (Shimada et al., 2021, 2022) proposes 295

ACCDOA and its multi-target extension, which 296

unify SELD as a single-target regression prob- 297

lem and remove the need to balance multi-task 298

losses. SALSA (Nguyen et al., 2022) designs a 299

joint time–frequency feature that maps signal en- 300

ergy and directional cues with high precision. 301

To fuse complementary strengths, (Yasuda et al., 302

2020) combines physics-based intensity vector (IV) 303

estimation with DNN denoising and source sepa- 304

ration to handle overlaps. With listener motion, 305

(Krause et al., 2023) confirms the benefit of motion 306

cues for localization, and (García-Barrios et al., 307

2022) analyzes how head rotations affect accuracy. 308

In model design, self-supervised methods (Sun 309

et al., 2023; Santos et al., 2024) and audio–visual 310

learning (Gan et al., 2019; Tian et al., 2018) reduce 311

dependence on large labeled sets. Recent architec- 312

tures including CRNNs with SE modules (Naranjo- 313

Alcazar et al., 2020), Transformers (Kuang et al., 314

2022), autoencoders (Huang et al., 2020; Wu et al., 315

2021), and VAEs (Bianco et al., 2020, 2021) cap- 316

ture time–frequency structure and support unsuper- 317

vised or semi-supervised settings. 318

3.2 Spatial Audio Separation 319

Source separation aims to recover individual 320

sources from a mixture. With binaural or multi- 321

channel inputs, inter-channel spatial cues provide 322

strong leverage, especially for challenging “cock- 323

tail party” scenarios. 324

Binaural Audio Separation Binaural separation 325

uses ITD and ILD cues between the two ears to dis- 326
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entangle overlapping sources. Early machine learn-327

ing approaches, such as (Weiss et al., 2009), em-328

ploy probabilistic models. To support human–robot329

interaction, (Deleforge and Horaud, 2012) proposes330

a generative model with active binaural hearing so331

that a robot performs robust separation and localiza-332

tion in cocktail-party conditions. To handle multi-333

speaker separation under reverberation, (Zhang and334

Wang, 2017) introduces a novel 2D ITD feature,335

while (Wang and Wang, 2018) tightly integrates336

spectral and spatial features in a deep framework.337

To preserve spatial cues that matter to downstream338

applications, (Han et al., 2020) proposes MIMO339

TasNet for real-time speech separation with binau-340

ral cue retention.341

Audio–visual fusion is another major direction.342

The pioneering 2.5D Visual Sound (Gao and Grau-343

man, 2019) adopts a mix-and-separate strategy,344

where visual cues guide binaural separation. To345

go beyond systems that only model acoustics and346

ignore spatial position, LAVSS (Ye et al., 2024)347

introduces audio–visual spatial source separation348

(AVSS). It encodes object locations explicitly to349

steer the separation process.350

Multichannel Audio Separation Multichannel351

separation uses richer spatial information and ar-352

ray geometry to address the underdetermined case353

where sources outnumber channels. Traditional354

methods such as spatial clustering (Wang et al.,355

2018) cluster time–frequency bins with GMMs356

using inter-channel cues (ITD, ILD, etc.). Early357

DNN work (Nugraha et al., 2016) combines DNN-358

modeled spectra with a classical multichannel359

Gaussian model to exploit spatial structure. Recent360

unsupervised methods, such as (Zmolikova et al.,361

2021), adopt variational Bayes to unify spectral and362

spatial cues and achieve end-to-end spatial separa-363

tion. In addition, (Wang et al., 2018) proposes an364

efficient algorithm that extends two-channel deep365

clustering to arbitrary microphone arrays. Simi-366

larly, (Morgado et al., 2018) converts mono audio367

to multichannel spatial audio via video analysis and368

implicitly separates and localizes unknown sources.369

3.3 Joint Learning370

To reach comprehensive scene understanding, spa-371

tial audio is increasingly learned together with372

other modalities, such as vision and natural lan-373

guage. The goal is to align and exploit the rich374

cues present across modalities.375

Alignment Between Audio & Visual Informa- 376

tion Aligning spatial audio with vision is key to 377

cross-modal reasoning. (Morgado et al., 2020) pro- 378

pose audio–visual spatial alignment (AVSA) and 379

use contrastive learning to capture correspondences 380

between 360° videos and their spatial audio. (Yang 381

et al., 2020) design a self-supervised task that asks 382

the model to detect whether left–right audio chan- 383

nels are swapped. This task forces the model to 384

learn spatial correspondence between audio modal- 385

ity and video modality. 386

Environment Information Understanding room 387

acoustics is essential for realistic reproduction. 388

(Liang et al., 2023) integrates propagation priors 389

into NeRF to synthesize spatial audio consistent 390

with novel views. (Luo et al., 2022) proposes neu- 391

ral acoustic fields (NAFs) that learn an implicit rep- 392

resentation of sound propagation directly from im- 393

pulse responses. Many studies (Savioja and Svens- 394

son, 2015; Ratnarajah et al., 2024; Bryan, 2020; 395

ISO, 2009; Coldenhoff et al., 2024; Majumder 396

et al., 2022; Srivastava et al., 2021) simulate or 397

measure room impulse responses to analyze indoor 398

acoustic parameters and capture geometry and ma- 399

terial properties. 400

Visual Segmentation & Depth Estimation 401

Depth and segmentation provide precise geomet- 402

ric supervision for spatial audio processing. (Liu 403

et al., 2025b) integrates YOLOv8(Varghese and 404

Sambath, 2024) detection with Depth Anything 405

to estimate depth. It then computes accurate 3D 406

source positions and supplies key cues for down- 407

stream spatialization. 408

Natural Language Guided Natural language 409

guidance is a new frontier for spatial audio un- 410

derstanding. Because existing audio foundation 411

models usually lack spatial awareness, ELSA (De- 412

vnani et al., 2024) uses contrastive learning and 413

spatial regression targets to align spatial audio with 414

text for the first time. BAT (Zheng et al., 2024) 415

builds a new dataset, SPATIALSOUNDQA, with 416

spatial question–answer pairs and fine-tunes a large 417

language model (LLaMA-2). It shows the strong 418

potential of LLMs for spatial audio reasoning. 419

3.3.1 Future Work 420

Future work moves beyond simple acoustic-event 421

perception toward higher-level cognitive scene 422

analysis. It aims to develop unified models that 423

reason about causality in complex acoustic environ- 424
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ments. Spatial-audio understanding now undergoes425

a profound shift from perception to cognition. As a426

result, models not only process acoustic signals but427

also infer context, relations, and causality within428

the entire sound scene.429

4 Spatial Audio Generation Methods430

Spatial audio generation evolves from traditional431

digital signal processing to advanced deep learn-432

ing methods. This progress is driven by rapid ad-433

vances in generative models. This section reviews434

recent developments, covering both cascade mod-435

els and end-to-end models. A summary of recent436

deep learning models is presented in the Appendix437

B and Table 3 with their input/output format and438

model framework.439

4.1 Cascade Models440

This part focuses on a core topic in spatial audio441

generation: upmixing monaural audio into bin-442

aural audio with three-dimensional spatial cues.443

The “mono-to-binaural” process builds immersive444

listening. It aims to reproduce the spatial cues445

that humans perceive and traces the technical path446

from structured physical models to deep, especially447

vision-guided, frameworks.448

Traditional Methods Humans localize sound449

with binaural hearing. This mechanism involves450

an ITD, an ILD, and spectral changes described by451

HRTF. Early work such as (Brown and Duda, 1998)452

explicitly models wave propagation and diffraction453

with a simplified time-domain description. The454

model is interpretable and efficient. With deep455

learning, (Richard et al., 2021) introduces a neural456

rendering network that synthesizes binaural wave-457

forms from a mono input and the listener position.458

The work shows the limits of a plain L2 loss on459

raw waveforms.460

Visually Guided Audio Spatialization A mono461

signal lacks spatial location information. Visually462

guided spatialization uses synchronized video to463

provide key context. The pioneering 2.5D Visual464

Sound framework (Gao and Grauman, 2019) em-465

ploys a deep convolutional network to recover spa-466

tial cues and sets the basic paradigm. (Li et al.,467

2024c) adds object-level visual cues and designs468

a cyclic locate-and-upmix (CLUP) framework. It469

jointly learns visual source localization and binau-470

ral generation. To improve accuracy, researchers471

add 3D geometry. (Parida et al., 2022) stresses472

depth maps and designs an encoder–decoder with 473

hierarchical attention. (Garg et al., 2021) sep- 474

arates geometry cues with a multi-task network 475

and learns geometry-aware features. Efficient 476

cross-modal fusion becomes a focus. (Zhang and 477

Shao, 2021) proposes the multi-attention fusion 478

network (MAFNet). (Liu et al., 2024) adds a novel 479

audio–visual matching loss. (Zheng et al., 2022) 480

defines a “binaural ratio” linked to physical cues 481

to improve interpretability. (Li et al., 2024b) intro- 482

duces a GAN framework with shared visual guid- 483

ance and proposes a new spatial metric. 484

Audio Quality Enhancement After solving lo- 485

calization, another line improves audio fidelity and 486

physical realism. (Leng et al., 2022) first applies 487

diffusion. It generates shared and ear-specific in- 488

formation in two stages. (Liu et al., 2022) adds 489

a plug-and-play DopplerBAS module that uses ra- 490

dial velocity to handle Doppler effects. (Lee and 491

Lee, 2023) proposes the Neural Fourier Shift (NFS) 492

network, which renders in the Fourier domain and 493

predicts early reflections, cutting computation. 494

Weakly-Supervised/Self-Supervised Paradigms 495

To break data limits, researchers propose new learn- 496

ing paradigms. (Xu et al., 2021) creates PseudoBin- 497

aural. It uses physical priors to make pseudo la- 498

bels from many mono videos. (Rachavarapu et al., 499

2021) uses source localization as a proxy task for 500

weak supervision. Multi-task and self-supervised 501

learning also help. Sep-Stereo (Zhou et al., 2020) 502

adds visual-guided separation as a second task. 503

(Lin and Wang, 2021) enforces left–right consis- 504

tency. (Li et al., 2021) adds a channel-flip classifi- 505

cation task for self-supervision. 506

4.2 End-to-End Models 507

End-to-end spatial audio generation no longer up- 508

mixes an existing mono track. It synthesizes a 509

complete sound field from high-dimensional, multi- 510

modal inputs such as silent video, natural language, 511

or 3D geometry. The rise of diffusion models, 512

large multimodal datasets, and cross-modal repre- 513

sentation learning (e.g., CLIP) drives this paradigm. 514

Early systems include the VQ-VAE framework in 515

(Huang et al., 2022) and the surround-to-binaural 516

network in (Yang et al., 2022). 517

Video-Driven Spatial Audio Generation The 518

video-driven generation paradigm turns AI from a 519

post-production tool into a creative engine. ViS- 520

AGe (Kim et al., 2025) generates first-order Am- 521

6



bisonics (FOA) from silent video and surpasses cas-522

cade methods. With VR/AR, generating immersive523

audio for 360◦ videos becomes important. Omni-524

Audio (Liu et al., 2025a) tackles the 360V2SA task525

with a dual-branch design that uses panoramic and526

normal views. Other work (Rana et al., 2019; Liang527

et al., 2023) estimates 3D source positions from528

audio–visual cues and encodes them in panoramic529

sound.530

Text and Multimodal Conditioned Generation531

Controlling spatial audio with natural language is a532

cutting-edge direction. Diffusion models drive this533

change. (Heydari et al., 2025) uses a latent diffu-534

sion model to produce 3D immersive soundscapes535

from text. It supports descriptive and parametric536

control. (Sun et al., 2024) notes that plain text537

embeddings blur spatial cues. It proposes Spatial-538

Sonic, which adds a spatial encoder and an azimuth-539

elevation matrix for explicit guidance. Architec-540

tural innovation then improves controllability. Du-541

alSpec (Zhao et al., 2025) introduces a pretrained542

separator and a channel-shift loss to enhance spa-543

tialization. Other studies, such as (Kushwaha et al.,544

2025; Zang et al., 2024), generate FOA from class545

labels and positions or directly from text. The546

trend extends to complex dialog and music. IS-547

Drama (Zhang et al., 2025) accepts scripts, video,548

and pose and produces multi-speaker spatial dialog549

with dramatic prosody. MusicGen (Copet et al.,550

2023), Moûsai (Schneider et al., 2023), and (Evans551

et al., 2024b) generate high-quality stereo music552

from text input.553

Environmental Acoustic Modeling For higher554

realism and interactivity, research splits into two555

philosophies: holistic and compositional. Envi-556

ronmental acoustic modeling represents the holis-557

tic view. (Ratnarajah and Manocha, 2024) ren-558

ders sound for a 3D scene with a graph neural559

network that encodes material and geometry. (Kim560

et al., 2019) estimates room geometry and acous-561

tics from 360◦ images to synthesize scene-aware562

audio. Modular and zero-shot generation illustrates563

the compositional view. SEE-2-Sound (Dagli et al.,564

2024) breaks the visual-to-audio task into region565

recognition, 3D localization, mono generation, and566

spatialization. The modular design lets the system567

produce matching spatial audio for novel visual568

content and shows strong generalization.569

4.3 Future Work 570

Despite significant progress in both cascade and 571

end-to-end spatial audio generation models, sev- 572

eral challenges remain. First, improving computa- 573

tional efficiency and real-time performance while 574

maintaining quality is crucial. Second, achieving 575

high-quality spatial audio generation without high- 576

quality annotated data is another important research 577

direction. Finally, deeper integration of spatial au- 578

dio with other modalities is a key trend for future 579

research. 580

5 Dataset and Evaluation of Spatial Audio 581

5.1 Datasets 582

Spatial audio data exists in a variety of formats, 583

each reflecting different characteristics and tailored 584

to specific tasks. This section provides an in-depth 585

analysis of existing spatial audio datasets, illus- 586

trating the diverse methods of data collection and 587

processing, and explaining how these elements 588

contribute to the understanding of spatial audio. 589

Sources including real-world recordings, physics- 590

based simulations, and web-crawled material are 591

shown in Appendix C and Table 4. 592

5.1.1 Multi-Channel Audio Datasets 593

Multi-channel datasets are crucial for developing 594

far-field speech interaction and scene analysis sys- 595

tems. Early corpora like REVERB Challenge (Ki- 596

noshita et al., 2016), DIRHA (Ravanelli et al., 597

2015), and Sweet-Home (Vacher et al., 2014) focus 598

on speech enhancement and ASR in reverberant 599

home environments. To support more precise spa- 600

tial hearing research, datasets such as Voice-Home 601

(Bertin et al., 2016), SECL-UMons (Brousmiche 602

et al., 2020), and AVRI (Qian et al., 2022) provide 603

detailed geometric annotations for localization and 604

speaker tracking. Recent efforts capture dynamic 605

and complex scenes, including pedestrian environ- 606

ments in the Wearable SELD dataset (Nagatomo 607

et al., 2022) and diverse indoor/outdoor settings in 608

the high-channel-count RealMAN dataset (Yang 609

et al., 2024). 610

5.1.2 First-Order Ambisonics Datasets 611

First-Order Ambisonics (FOA) is a standard format 612

for tasks requiring 3D acoustic information, with 613

datasets collected via crawling, simulation, and 614

real-world recording. Crawled datasets like YT- 615

ALL (Morgado et al., 2018) and YT-360 (Morgado 616

et al., 2020) provide large-scale, in-the-wild data 617
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for pre-training, while YT-AMBIGEN (Kim et al.,618

2025) improves alignment by filtering for camera619

metadata. Simulated datasets, including the TUT620

Sound Events series (Adavanne et al., 2018a) and621

DCASE2021 Task 3 (Politis et al., 2021), offer622

controlled benchmarks for SELD, whereas Spa-623

tial LibriSpeech (Sarabia et al., 2023) and Sonic-624

Set (Li et al., 2024a) spatialize large existing cor-625

pora. Scarce but highly realistic recorded datasets626

like REC-STREET (Morgado et al., 2018) and the627

STARSS series (Politis et al., 2022; Shimada et al.,628

2023) provide invaluable data for outdoor scenes629

and high-resolution SELD benchmarks.630

5.1.3 Binaural Datasets631

Binaural audio offers a perceptually plausible for-632

mat for headphone-based immersion by directly633

mimicking human hearing. Real-world recordings634

capture naturalistic scenes, from musical perfor-635

mances in FAIR-Play (Gao and Grauman, 2019)636

to challenging noisy conversations in EasyCom637

(Donley et al., 2021) and head-tracked dialogues638

in the dataset by Richard et al. (Richard et al.,639

2021). Simulated datasets like SimBinaural (Garg640

et al., 2023) enable large-scale, controllable data641

generation, while hybrid approaches like YouTube-642

Binaural (Garg et al., 2023) convert existing sur-643

round audio to a pseudo-binaural format. Recent644

efforts integrate richer multimodal and semantic645

information, with BEWO-1M (Sun et al., 2024)646

enabling text-guided generation and MRSDrama647

(Zhang et al., 2025) providing a unique corpus of648

expressive spatial speech for narrative tasks.649

5.2 Evaluation Metrics650

5.2.1 Evaluation Metrics for Understanding651

SELD Evaluation covers SED and DOA estima-652

tion. SED uses segment-based F-score and error653

rate (ER) (Mesaros et al., 2016). DOA uses two654

frame-wise metrics: DOA error, which measures655

the angular deviation between estimates and refer-656

ences, and frame recall, which measures the frac-657

tion of frames with the correct number of detected658

sources (Adavanne et al., 2018b). DOA error aver-659

ages the assignment cost between reference DOAs660

DOAt
R and estimated DOAs DOAt

E based on the661

Hungarian algorithm.662

Spatial Audio Separation Separation quality is663

measured with mir_eval metrics such as signal-664

to-distortion ratio (SDR) and signal-to-interference665

ratio (SIR)(Ye et al., 2024).666

Joint Learning For audio–visual tasks, evalua- 667

tion often uses binary classification metrics, such 668

as audio–visual correspondence (AVC-Bin) and 669

audio–visual spatial alignment (AVSA-Bin) (Mor- 670

gado et al., 2020). Downstream tasks, such as se- 671

mantic segmentation, use pixel accuracy and mean 672

Intersection over Union (mIoU). 673

5.2.2 Evaluation Metrics for Generation 674

Monaural-to-Binaural Audio Generation Fi- 675

delity is evaluated with objective measures in the 676

time domain (Wave L2), spectral domain (Ampli- 677

tude L2, Phase L2, multi-resolution STFT loss), 678

and perceptual scores (PESQ, MOS) (Leng et al., 679

2022; Liu et al., 2022). The multi-resolution STFT 680

loss (MRSTFT) combines spectral convergence 681

LSC and log-magnitude loss Lmag. 682

End-to-End Binaural Audio Generation Evalu- 683

ation focuses on key spatial cues. Objective metrics 684

include mean absolute error (MAE) of interaural 685

phase difference (IPD) and interaural level differ- 686

ence (ILD) (Zhang et al., 2025). Perceptual evalua- 687

tion often measures cosine similarity between an- 688

gle/distance embeddings from a pretrained model 689

(e.g., SPATIAL-AST (Zheng et al., 2024)) and 690

those from generated audio. 691

End-to-End FOA Generation Evaluation com- 692

bines spatial accuracy, codec quality, and percep- 693

tual plausibility (Heydari et al., 2025). Spatial 694

accuracy reports errors of azimuth (θ), elevation 695

(ϕ), and distance (d), which are derived from the 696

intensity vector of FOA channels. The overall 697

spatial-angle error ∆Spatial-Angle is also reported 698

(Van Brummelen, 2012). Codec quality uses STFT 699

and Mel distances. Plausibility uses Fréchet Audio 700

Distance (FAD) and KL divergence. The CLAP 701

score measures consistency between text prompts 702

and generated audio. 703

Detailed formulas are presented in Appendix D. 704

6 Conclusion 705

This paper presents a comprehensive survey of the 706

rapidly advancing spatial audio field covering foun- 707

dational spatial audio input and output representa- 708

tions; the core research paradigms of understanding 709

and generation; and the landscape of datasets and 710

evaluation metrics.We hope this survey serves as a 711

valuable resource for researchers, further guiding 712

future work and fostering innovation in immersive 713

audio technology. 714
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Limitations715

While this survey provides a broad overview of716

the algorithmic and data-centric aspects of spatial717

audio, its scope has certain limitations, leaving718

several important areas underexplored.719

First, our review is heavily centered on software,720

models, and datasets, with only a cursory treat-721

ment of the specialized hardware that underpins722

the entire spatial audio pipeline. We do not offer723

a detailed analysis of different microphone array724

geometries (e.g., spherical, tetrahedral), the design725

of dedicated audio processors (DSPs) for real-time726

rendering, or the technologies behind head-tracking727

sensors (e.g., IMUs) and their integration into con-728

sumer devices. A deeper dive into these hardware729

components would be necessary for a complete730

picture of the field’s engineering challenges.731

Second, while we touch upon perceptual con-732

cepts like HRTF personalization and evaluation733

metrics like MOS, the survey does not delve deeply734

into the fundamentals of psychoacoustics and hu-735

man spatial hearing. A dedicated discussion on the736

perceptual mechanisms that enable sound localiza-737

tion and immersion would provide crucial context738

for the engineering solutions presented. Similarly,739

our section on evaluation metrics focuses exten-740

sively on objective, formula-based measures but741

does not detail the methodologies of subjective lis-742

tening tests (e.g., MUSHRA, A/B testing), which743

remain the gold standard for assessing the percep-744

tual quality of spatial audio systems.745

Ethical Considerations746

The increasing sophistication and accessibility of747

spatial audio technologies also raise important748

ethical considerations that the research commu-749

nity must address. The deployment of multi-750

microphone arrays in personal and public spaces751

for high-fidelity spatial audio capture creates signif-752

icant privacy risks. Such systems could be used for753

covert surveillance, capturing and localizing con-754

versations without consent. Clear guidelines and755

robust privacy-preserving mechanisms are needed756

to prevent misuse.757
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Appendix1482

A Extended Representation Discussions1483

A.1 Input Representationsn1484

Figure 2 shows the input modalities for spatial1485

audio tasks, natural language, spatial position, vi-1486

sual information, and monaural audio, each offers a1487

unique perspective for the system to perceive, inter-1488

pret, or generate soundscapes. While they can be1489

used independently, their true potential is often real-1490

ized through synergistic multimodal combinations.1491

The choice of input representation is not merely a1492

technical decision but a fundamental architectural1493

one that dictates the system’s capabilities, complex-1494

ity, and the nature of its interaction with the user1495

or environment. This section will comparatively1496

analyze these input paradigms, examining their in-1497

trinsic properties, task suitability, and the emerging1498

trends in their combined application.1499

As shown in Table 1, these input representations1500

exhibit a core trade-off between the level of ab-1501

straction and control precision. Natural language1502

and visual information reside at the highest level1503

of abstraction. They are intuitive for humans and1504

well-suited for high-level scene description or con-1505

tent querying. However, this intuitiveness intro-1506

duces challenges of lower control precision and1507

semantic ambiguity, necessitating complex models1508

to bridge the gap between semantics and machine-1509

processable signals.1510

Conversely, spatial position coordinates offer the1511

highest control precision, making them ideal for1512

defining precise source trajectories or serving as1513

ground truth for evaluation. However, they lack se-1514

mantic context, and manually specifying complex1515

scenes is a tedious process. Monaural audio plays a1516

unique role. Positioned at a low level of abstraction,1517

it does not directly provide spatial control. Instead,1518

it serves as the foundational acoustic content for1519

generation tasks, providing core acoustic features1520

such as timbre and pitch. It acts as raw material1521

that other modalities spatialize.1522

Therefore, the selection of an input representa-1523

tion is fundamentally a trade-off between the in-1524

tuitive, abstract control preferred by humans and1525

the precise, geometric data required by machines,1526

a choice contingent on the specific requirements of1527

the task.1528

Abstract intent vs. geometric precision A fun-1529

damental trade-off exists among the different input1530

representations: the opposition between the level1531

of abstraction in control and its precision. Natu- 1532

ral language and visual information represent the 1533

pinnacle of abstract, human-centric control. Natu- 1534

ral language provides an intuitive way to specify 1535

semantic content (e.g., "a bird is chirping") and re- 1536

lational spatial attributes ("on the left"). Similarly, 1537

visual information from images or videos offers 1538

rich spatial and semantic context. These inputs 1539

describe what exists in a scene and how its compo- 1540

nents are related, which aligns closely with human 1541

perception. 1542

However, this intuitiveness comes at the cost 1543

of reduced precision. The system must infer pre- 1544

cise physical parameters from abstract descriptions. 1545

The BAT model (Zheng et al., 2024) exemplifies 1546

this challenge, utilizing a large language model to 1547

interpret complex natural language queries regard- 1548

ing "sound event detection, direction and distance 1549

estimation, and spatial reasoning". This highlights 1550

a critical point: high-level abstract inputs require 1551

a sophisticated, AI-based interpretation layer to 1552

translate human intent into machine-executable in- 1553

structions. 1554

In contrast, spatial position data provides the 1555

highest degree of precision. Cartesian or spherical 1556

coordinates offer direct and unambiguous guidance 1557

for placing sound sources. This makes it indispens- 1558

able for tasks requiring absolute accuracy, such as 1559

providing ground truth for training and evaluating 1560

sound localization models, or simulating precise 1561

physical phenomena like the Doppler effect by in- 1562

corporating velocity vectors. The inherent trade-off 1563

is that this representation lacks semantic context 1564

and is non-intuitive and tedious for manually speci- 1565

fying complex acoustic scenes. 1566

Monaural audio as the acoustic substrate Un- 1567

like other inputs that primarily define where a 1568

sound is, monaural audio defines what the sound 1569

itself is. It constitutes the "foundational acoustic 1570

content" for many spatial audio tasks, providing 1571

core acoustic characteristics such as timbre of a spe- 1572

cific instrument or the phonetic features of speech. 1573

Therefore, monaural audio plays a unique role in 1574

the ecosystem of input representations. 1575

Many advanced generative systems follow a two- 1576

stage principle: first, a source model (such as Au- 1577

dioGen (Kreuk et al., 2022) or AudioLDM (Liu 1578

et al., 2023)) generates a monaural audio stream; 1579

then, this stream is spatialized or upmixed into a 1580

multichannel or binaural format under the guidance 1581

of other input modalities, such as visual or posi- 1582
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Attribute Natural
Language

Spatial
Position

Visual
Information

Monaural
Audio

Primary Info Semantic, relational,
implicit spatial

Explicit spatial, dynamic Semantic, spatial,
dynamic

Acoustic (timbre, pitch,
content)

Control Precision Low Very high High N/A
Abstraction Level High Low High Low
Interpretability Indirect Direct Indirect Indirect
Key Challenges Ambiguity;

semantic–signal gap
No semantics; tedious

authoring
Ambiguity; occlusion;

compute cost
Lack of spatial cues

Table 1: Comparative analysis of spatial audio input representations.

Downstream Tasks
Mel Spectrogram

STFT Spectrogram

Q: In which direction and 
how far away is the source 
of drum sound?

A: Left, behind, 1.2m.

Speaker is walking slowly from left 
behind to right behind, facing right.

STFT

Textual
Encoder

Text
 Embeddings

Downstream Tasks

Spatial Prompt

QA Pair

(θ, φ, r)

(x, y, z)

Spherical Coordinates
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Position
Encoder

Position
  Embeddings

Downstream Tasks
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Orientation
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Image

Video

Image
Encoder
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Encoder

Trajectory

Image
Embeddings

Video
Spatio-temporal

Embeddings

Downstream Tasks

Downstream Tasks

(a) Natural Language Prompt (b) Spatial Position

(c) Visual Information (d) Monaural Audio

Figure 2: An overview of input representations of spatial audio and their primary processing methods.

tional data. This architecture clearly separates the1583

problem of content generation from that of spatial1584

rendering, enabling modular and flexible system1585

design. Consequently, monaural audio is not an1586

alternative option parallel to other input forms, but1587

rather the fundamental substrate upon which they1588

act.1589

Multimodal synergy The most powerful spa-1590

tial audio systems are increasingly moving to-1591

wards multimodality, creating comprehensive con-1592

trol schemes by combining the strengths of differ-1593

ent input types to overcome the limitations of any1594

single modality. The synergy between vision and1595

audio is particularly potent. In audio-visual source1596

separation tasks, the visual presence of an object1597

(e.g., a speaking person) provides a strong, albeit1598

implicit, cue for isolating its corresponding sound1599

from a noisy mixture. In generation tasks, visual in-1600

formation can guide the spatialization process; for 1601

example, a U-Net architecture can take a monaural 1602

input and, guided by a video, render a spatially 1603

correct binaural or stereo output. The audio-visual 1604

matching task is considered crucial, highlighting 1605

the deeply learned correspondences between these 1606

modalities. 1607

Similarly, adding explicit spatial position data 1608

(such as source orientation and velocity) to a 1609

monaural audio stream allows for the simulation of 1610

highly realistic dynamic effects, like the Doppler 1611

shift , elevating realism to a level unattainable with 1612

static spatialization. 1613

A.2 Output Representations 1614

Table 2 presents a comparative analysis of the three 1615

primary spatial audio output representations. Each 1616

paradigm possesses unique advantages and limita- 1617

tions, making it suitable for different application 1618
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Attribute Channel-Based Scene-Based Object-Based

Freedom of Listening Position Limited High Moderate
Playback System Dependency Very high High Low
Scalability Low Moderate Excellent
Playback-End Complexity Low High Moderate

Common Formats Stereo; 5.1/7.1 surround Ambisonics; wave-field
synthesis (WFS)

Dolby Atmos; DTS:X;
MPEG-H 3D Audio

Table 2: Comparative analysis of spatial audio output representations.

scenarios and user requirements.1619

Playback system dependency and scalability are1620

key to understanding the evolution of these three1621

paradigms. Channel-based formats exhibit very1622

high system dependency but poor scalability. This1623

is because their audio mix is baked-in for a specific,1624

standardized loudspeaker layout (e.g., 5.1 surround1625

sound). Any playback system that deviates from1626

this layout will degrade the intended spatial effect.1627

In contrast, object-based formats feature low de-1628

pendency and excellent scalability. They achieve1629

this by decoupling the audio content from its meta-1630

data, which allows the playback device to render1631

the audio in real-time according to its own arbitrary1632

loudspeaker configuration. Consequently, a single1633

master file can be adapted to any system. Scene-1634

based formats occupy a middle ground. Their high1635

dependency stems from the requirement for numer-1636

ous loudspeakers and complex processing systems1637

to physically reconstruct the sound field. Their1638

moderate scalability is demonstrated by the ability1639

to improve performance by increasing the system1640

order (e.g., Higher-Order Ambisonics), though this1641

significantly increases system cost and complexity.1642

Freedom of listening position and playback-end1643

complexity are directly related to user experience1644

and implementation cost. Channel-based formats1645

confine the listener to a narrow sweet spot, but their1646

playback-end complexity is low, requiring only1647

simple channel-to-loudspeaker mapping. Scene-1648

based formats offer high freedom, allowing listen-1649

ers to move freely within a designated area. How-1650

ever, this comes at the cost of very high playback-1651

end complexity, which involves real-time decoding1652

and substantial signal processing. Object-based1653

formats provide moderate freedom of movement1654

(depending on the rendering system). Their mod-1655

erate to high playback-end complexity arises from1656

the need for a real-time rendering engine to process1657

metadata and dynamically generate the mix.1658

Overall, these three paradigms are not mutu-1659

ally exclusive; rather, each has its optimal applica- 1660

tion domain. Channel-based technology retains its 1661

place in traditional media due to its simplicity and 1662

broad compatibility. Scene-based techniques offer 1663

irreplaceable advantages in applications requiring 1664

high physical fidelity and large-scale public experi- 1665

ences. Meanwhile, object-based technology, with 1666

its unparalleled flexibility and interactivity, has be- 1667

come the core driver for next-generation immersive 1668

media, such as VR/AR, gaming, and streaming. 1669

Understanding their fundamental differences is cru- 1670

cial for selecting and implementing the most appro- 1671

priate spatial audio solution. 1672

B Generation Details 1673

This section provides a detailed description of the 1674

input and output formats for the generative models 1675

summarized in Table 3. These formats represent 1676

the diverse ways in which spatial audio systems are 1677

controlled and the types of immersive experiences 1678

they can produce. 1679

Spatial audio generation has evolved from two- 1680

stage upmixing approaches to fully end-to-end syn- 1681

thesis, driven by increasingly powerful deep learn- 1682

ing architectures. Early and still prevalent methods, 1683

often based on CNNs like U-Net, focus on spa- 1684

tializing existing audio. These models typically 1685

take a monaural audio track and visual information 1686

from an image or video as input, and output a corre- 1687

sponding binaural or multi-channel audio signal, as 1688

seen in pioneering works like 2.5D Visual-Sound 1689

(Gao and Grauman, 2019). More recent research 1690

has shifted towards direct, end-to-end synthesis 1691

from more abstract or multimodal inputs. Diffu- 1692

sion and flow-matching models are at the forefront 1693

of this trend, capable of generating high-fidelity 1694

FOA or binaural audio directly from text prompts, 1695

images, class labels, and explicit spatial positions 1696

(e.g., ImmerseDiffusion (Heydari et al., 2025), Son- 1697

icMotion (Templin et al., 2025), OmniAudio (Liu 1698

et al., 2025a)). Transformer-based models excel at 1699
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integrating complex, heterogeneous data streams;1700

for instance, ViSAGe (Kim et al., 2025) generates1701

FOA audio from video combined with camera posi-1702

tion metadata, while ISDrama (Zhang et al., 2025)1703

synthesizes expressive binaural speech from a rich1704

mix of video, audio, text, and positional data. Other1705

architectures serve specialized functions: VAEs are1706

often used to learn disentangled latent representa-1707

tions for flexible spatial manipulation or to generate1708

intermediate outputs like impulse responses (IRs)1709

from 360° images (Kim et al., 2019), while GANs1710

can incorporate detailed geometric data like 3D1711

meshes to generate physically accurate binaural1712

IRs, as demonstrated by Listen2Scene (Ratnarajah1713

and Manocha, 2024).1714

C Dataset Details1715

Spatial audio data exists in a variety of formats,1716

each reflecting different characteristics and tailored1717

to specific tasks. Due to variations in recording1718

equipment and application scenarios, spatial audio1719

data comes in multiple formats, often accompanied1720

by annotations and auxiliary data from other modal-1721

ities. Moreover, because recording spatial audio is1722

typically costly and resource-intensive, many exist-1723

ing approaches resort to using simulation systems1724

to generate synthetic data from current monaural1725

audio datasets. Some datasets also include real-1726

world spatial audio crawled from the YouTube plat-1727

form. The following subsections focus on the ac-1728

quisition and processing methods—both recorded1729

and simulated—associated with various spatial au-1730

dio formats, including multi-channel audio, First-1731

Order Ambisonics, and binaural audio. A summary1732

of commonly used datasets is presented in the Table1733

4.1734

D Evaluation Metrics Details1735

D.1 Evaluation Metrics for Spatial Audio1736

Understanding1737

SELD. The SELD task is evaluated using sepa-1738

rate metrics for Sound Event Detection (SED) and1739

Direction-of-Arrival (DOA) estimation. For SED,1740

the one-second segment F-score and Error Rate1741

(ER) are commonly used (Mesaros et al., 2016).1742

For DOA estimation, two frame-wise metrics1743

are frequently employed (Adavanne et al., 2018b):1744

DOA Error and Frame Recall. Let T be the total1745

number of time frames. Denote by DOAt
R the set1746

of reference DOAs at frame t and by DOAt
E the1747

set of estimated DOAs. Define 1748

Dt
R =

∣∣DOAt
R

∣∣, Dt
E =

∣∣DOAt
E

∣∣. 1749

The DOA Error is defined as 1750

1∑T
t=1D

t
E

T∑
t=1

Hungarian
(
DOAt

R,DOAt
E

)
,

(3) 1751

where Hungarian(·, ·) denotes the optimal assign- 1752

ment cost computed by the Hungarian algorithm, 1753

using as the pairwise cost the central angle between 1754

a reference DOA (ϕR, λR) and an estimated DOA 1755

(ϕE , λE): 1756

σ = arccos
(
sinλE sinλR 1757

+ cosλE cosλR cos|ϕR − ϕE |
)
. (4) 1758

Here ϕ ∈ [−π, π] is the azimuth and λ ∈ 1759

[−π
2 ,

π
2 ] is the elevation. 1760

To account for frames where the number of esti- 1761

mated DOAs does not match the number of refer- 1762

ence DOAs, the Frame Recall is defined as 1763

Frame Recall =
1

T

T∑
t=1

1
(
Dt

R = Dt
E

)
, (5) 1764

where 1(·) is the indicator function, equal to 1 if 1765

its argument is true and 0 otherwise. 1766

An ideal SELD method achieves an error rate 1767

of zero, an F-score of 1 (100%), a DOA Error of 1768

0°, and a Frame Recall of 1 (100%). To compare 1769

submitted methods, each method is ranked individ- 1770

ually for all four metrics, and final positions are 1771

determined by the cumulative minimum of these 1772

ranks. 1773

The four cross-validation folds are treated as 1774

a single experiment: metrics are computed only 1775

after training and testing all folds. Intermediate 1776

measures (insertions, deletions, substitutions) are 1777

aggregated across folds before calculating the final 1778

metrics, rather than averaging per fold (Forman and 1779

Scholz, 2010). 1780

Spatial Audio Separation. Metrics to measure 1781

the quality of separation, usually adopt the widely- 1782

used mir eval library metrics: Signal-to-Distortion 1783

Ratio (SDR) measures both interference and arti- 1784

facts, Signal-to-Interference-Ratio (SIR) measures 1785

interference. Higher values indicate a better degree 1786

of separation (Ye et al., 2024). 1787
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Model Input Format Output Format Framework

Xu et al. 2021 Mono; Image Binaural

Diffusion-based

Binauralgrad (Leng et al., 2022) Mono Binaural
Moûsai (Schneider et al., 2023) Text Binaural
See-2-Sound (Dagli et al., 2024) Image; (Text) Multi
Evans et al. 2024b Text; (Audio; Duration) Binaural
DualSpec (Zhao et al., 2025) Text Binaural
ImmerseDiffusion (Heydari et al., 2025) Text; (Position) FOA
SonicMotion (Templin et al., 2025) Text; Position FOA

Huang et al. 2022 Mono; Position Binaural LatentYang et al. 2022 Binaural/Multi Multi

Lee and Lee 2023 Mono; Position;
Orientation

Binaural

Transformer-based
MusicGen (Copet et al., 2023) Text Mono/Binaural
Ambisonizer (Zang et al., 2024) Mono/Binaural FOA
ViSAGe (Kim et al., 2025) Video; Camera Position FOA
ISDrama (Zhang et al., 2025) Video; Audio; Text;

Position
Binaural

OmniAudio (Liu et al., 2025a) 360◦ Video FOA Flow MatchingDiff-SAGe (Kushwaha et al., 2025) Class Label; Position FOA

Listen2Scene (Ratnarajah and Manocha, 2024) 3D Mesh; (Source &
Listener Position)

Binaural IRs
GANs

SAGM (Li et al., 2024b) Mono; Video Binaural

Table 3: Comparison of current spatial audio generative models. FOA denotes first-order ambisonics; Multi denotes
multi-channel audio. Inputs/outputs in parentheses are optional. CNN-based models are omitted.

Joint Learning. In joint learning, they typically1788

employ two binary-classification-based evaluation1789

metrics(Morgado et al., 2020). AVC-Bin (Au-1790

dio–Visual Correspondence) determines whether1791

an audio–video clip pair originates from the same1792

video instance. AVSA-Bin (Audio–Visual Spa-1793

tial Alignment) assesses the spatial consistency1794

between the audio and visual streams.1795

For semantic segmentation, the model’s dense-1796

prediction capability is evaluated using pixel accu-1797

racy and mean Intersection-over-Union (mean1798

IoU). Additionally, clip-level accuracy is em-1799

ployed for action recognition.1800

D.2 Evaluation Metrics for Spatial Audio1801

Generation1802

Monaural-to-Binaural Audio Generation. To1803

comprehensively assess the fidelity of the synthe-1804

sized binaural signal x̂ concerning the reference1805

binaural recording x, previous works (Leng et al.,1806

2022; Liu et al., 2022) on monaural-to-binaural1807

audio generation adopt both objective and subjec-1808

tive criteria. Except for the perceptual measures,1809

PESQ and MOS, all metrics are lower-is-better.1810

Notation is unified as follows: n ∈ {1, . . . , T}1811

indicates time-domain samples; c ∈ {L,R} in-1812

dexes the two output channels; k ∈ {1, . . . ,K}1813

and m ∈ {1, . . . ,M} denote STFT frequency1814

and frame indices; STFT{·} yields the complex 1815

time–frequency representation. 1816

For Wave L2, The time-domain mean-squared 1817

error (MSE) captures sample-by-sample devia- 1818

tions: 1819

Lwave
L2

=
1

T

T∑
n=1

∑
c∈{L,R}

(
x̂c[n]− xc[n]

)2
. (6) 1820

Although it provides a well-behaved gradient and 1821

is easy to implement, it ignores the non-uniform 1822

frequency sensitivity of human hearing. 1823

For Amplitude L2, after converting both signals 1824

to their magnitude spectra, 1825

X(k,m) = | STFT{x}(k,m)|,
X̂(k,m) = | STFT{x̂}(k,m)|.

(7) 1826

The energy envelope mismatch is quantified as 1827

Lamp
L2

=
1

KM

K∑
k=1

M∑
m=1

(
X̂(k,m)−X(k,m)

)2
.

(8) 1828

For Phase L2, spatial cues rely strongly on in- 1829

teraural phase differences. To prevent phase-wrap 1830

20



Dataset Format Collect Hours Type Labels

Sweet-Home (Vacher et al., 2014) Multi Recorded 47.3 Speech Text
Voice-Home (Bertin et al., 2016) Multi Recorded 2.5 Speech Text, Geomrtric
YT-ALL (Morgado et al., 2018) FOA Crawled 113 Audio Video, Text
REC-STEEET (Morgado et al., 2018) FOA Recorded 3.5 Audio Video
FAIR-Play (Gao and Grauman, 2019) Binaural Recorded 5.2 Audio Video
SECL-UMons (Brousmiche et al., 2020) Multi Recorded 5 Audio Text, Geometric
YT-360 (Morgado et al., 2020) FOA Crawled 246 Audio Video
EasyCom (Donley et al., 2021) Binaural Recorded 5 Speech Geometric, Text
Binaural(Richard et al., 2021) Binaural Recorded 2 Speech Geometric
SimBinaural (Garg et al., 2023) Binaural Simulated 116 Audio Video, Geometric
YouTube-Binaural (Garg et al., 2023) Binaural Crawled 27 Audio Video
Spatial LibriSpeech (Sarabia et al., 2023) FOA Simulated 650 Speech Text, Geometric
STARSS23 (Shimada et al., 2023) FOA Recorded 7.5 Audio Video, Geometric
YT-Ambigen (Kim et al., 2025) FOA Crawled 142 Audio Video
BEWO-1M (Sun et al., 2024) Binaural Simulated 2.8k Audio Text/Image, Geometric
MRSDrama (Zhang et al., 2025) Binaural Recorded 98 Speech Text, Video, Geometric

Table 4: Comparison of current spatial audio datasets. FOA means first-order ambisonics, while Multi denotes
multi-channel audio.

artefacts, we minimize the wrapped phase distance:1831

Lphase
L2

=
1

KM

K∑
k=1

M∑
m=1

(
wrap

(
∠X̂(k,m)

− ∠X(k,m)
))2

,

(9)1832

where wrap(θ) ∈ [−π, π).1833

To align perceptual quality with spectral accu-1834

racy, we average three complementary losses over a1835

bank of M STFT configurations {·(i)}Mi=1 as Multi-1836

Resolution STFT Loss (MRSTFT):1837

L(i)
SC =

∥∥ |X(i)| − |X̂(i)|
∥∥
F∥∥ |X(i)|

∥∥
F

,

L(i)
mag =

1

N (i)

∥∥ |X(i)| − |X̂(i)|
∥∥
1
,

L(i)
log =

1

N (i)

∥∥ log(|X(i)|+ ε
)
− log

(
|X̂(i)|+ ε

) ∥∥
1
.

(10)18381839

LMRSTFT =
1

M

M∑
i=1

(
L(i)

SC + λmagL(i)
mag + λlogL(i)

log

)
.

(11)1840

This compound objective balances global spec-1841

tral convergence with fine-grained magnitude fi-1842

delity across multiple time–frequency resolutions.1843

For Perceptual Evaluation of Speech Quality1844

(PESQ), the ITU-T P.862 standard maps symmet-1845

ric (dsym) and asymmetric (dasym) perceptual dis-1846

tortions onto a MOS-like scale:1847

PESQ = 4.5 − 0.1 dsym − 0.0309 dasym,
(12)1848

yielding scores in [−0.5, 4.5]. Higher values de-1849

note closer perceptual similarity.1850

Finally, subjective quality Mean Opinion Score 1851

(MOS) is obtained by averaging listener ratings 1852

over a five-point Likert scale: 1853

MOS =
1

N

N∑
i=1

si, (13) 1854

where si is the score from the i-th participant. MOS 1855

serves as the definitive benchmark to which all 1856

objective metrics are ultimately calibrated. 1857

Wave/Amplitude/Phase L2 losses provide 1858

gradient-friendly objectives that capture comple- 1859

mentary signal aspects. MRSTFT augments them 1860

with multi-resolution spectral consistency. PESQ 1861

offers a single-ended perceptual estimate that 1862

correlates well with telecommunication speech 1863

quality, and MOS delivers the gold-standard 1864

human judgment. Together, this metric suite 1865

affords a balanced evaluation of both technical 1866

accuracy and perceptual realism in mono-to-stereo 1867

binaural conversion. 1868

End-to-End Binaural Audio Generation. Eval- 1869

uation metrics are highly varied for this task. 1870

In the case of binaural spatial audio, metrics 1871

can be computed based on interaural time dif- 1872

ference (ITD), interaural level difference (ILD), 1873

and embeddings from a pretrained spatial-audio- 1874

understanding model(Zheng et al., 2024) to calcu- 1875

late specific performance indicators(Zhang et al., 1876

2025). For the objective evaluation of IPD and 1877

ILD, they first convert the time-domain signal x(n) 1878

into the frequency-domain signal X(t, f) using the 1879
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short-time Fourier transform (STFT):1880

Xi(t, f) =
N−1∑
n=0

xi(n) · w(t− n) · e−j2πfn, i ∈ {1, 2},

(14)1881

where w(t−n) is a window function, N is the win-1882

dow length, and i indicates the channel of the binau-1883

ral audio. Next, they calculate the mel-spectrogram,1884

IPD, and ILD based on the frequency-domain sig-1885

nals Xi(t, f). The mel-spectrogram for each chan-1886

nel is calculated as:1887

Si(t,m) = log
(
|Xi(t, f)|2 × melW

)
, (15)1888

where melW is an M -bin mel filter bank. IPD is1889

derived from the phase spectrograms of the left and1890

right channels:1891

IPD(t, f) = ∠
X2(t, f)

X1(t, f)
. (16)1892

Then, ILD is extracted from the loudness spectrum1893

of the left and right channels:1894

ILD(t, f) = 20 log10

(
|X2(t, f)|+ ε

|X1(t, f)|+ ε

)
, ε = 1e−10.

(17)1895

They calculate Mean Absolute Error (MAE) met-1896

rics based on the IPD and ILD extracted from the1897

ground truth (GT) and the predicted speech. Since1898

the IPD here is in radians and the ILD uses log10,1899

the resulting values are quite small, especially af-1900

ter averaging the MAE over the time dimension.1901

So, they multiply by 100 to make the results more1902

intuitive.1903

Additionally, they analyze angular and distance1904

metrics using SPATIAL-AST (Zheng et al., 2024).1905

SPATIAL-AST encodes angle and distance em-1906

bedding for binaural audio. They compute and1907

average the cosine similarity for each 1-second seg-1908

ment based on the GT and predicted audio.1909

End-to-End FOA Generation. Current methods1910

usually assess spatial localization accuracy by mea-1911

suring azimuth error, elevation error, distance er-1912

ror, and spatial-angle difference (Heydari et al.,1913

2025). Codec quality is evaluated via STFT and1914

Mel distances between original and reconstructed1915

FOA audio on the test set, using AuraLoss with1916

default settings (Evans et al., 2024a,b). Plausibil-1917

ity of generated clips is quantified by the Fréchet1918

Audio Distance (FAD) between generated and ref-1919

erence embeddings, and by KL divergence com-1920

puted with a pretrained ELSA model. The CLAP1921

score, the cosine similarity between spatial text 1922

embeddings and corresponding audio embeddings, 1923

is also reported. For the parametric model, KL 1924

divergence and CLAP are computed using spatial 1925

captions from the test set, despite training on non- 1926

spatial captions and parameters. 1927

To measure spatial accuracy, they compare 1928

ground-truth and estimated azimuth θ, elevation ϕ, 1929

and distance d. Intensity vectors Ix, Iy, Iz are ob- 1930

tained by multiplying the omnidirectional channel 1931

W with the directional channels X,Y, Z: 1932

Ix = W ·X, Iy = W · Y, Iz = W · Z (18) 1933

1934

θ = tan−1 Iy
Ix

, ϕ = tan−1 Iz√
I2x + I2y

, (19) 1935

d =
√

I2x + I2y + I2z (20) 1936

They report the L1 norm of the differences for 1937

azimuth, elevation, and distance. For azimuth, they 1938

use the circular difference: 1939

L1θ = ||(|θ − θ̂|, 2π − |θ − θ̂|
)
||1 (21) 1940

Spatial-angle error ∆Spatial−Angle is defined as 1941

(Van Brummelen, 2012): 1942

a = sin2
(∆ϕ

2

)
+ cos(ϕ) cos(ϕ̂) sin2

(
∆θ
2

)
(22) 1943

1944
∆Spatial−Angle = 2arctan 2

(√
a,

√
1− a

)
(23) 1945

Here, ∆ϕ and ∆θ denote the linear and circular 1946

differences for elevation and azimuth, respectively. 1947

E Licenses and Availability 1948

We respect the original licenses of all referenced 1949

artifacts and do not redistribute them. This sur- 1950

vey does not create new deployable systems or 1951

redistribute data. Any consultation of third-party 1952

artifacts is limited to research/read-only use and 1953

complies with their intended-use statements and 1954

access conditions. 1955
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