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ABSTRACT

Large Language Models (LLMs) require frequent updates to correct errors and
keep pace with continuously evolving knowledge in a timely and effective man-
ner. Recent research in model editing has highlighted the challenges in balancing
generalization and locality, especially in the context of lifelong model editing.
We discover that inserting knowledge directly into the model often causes con-
flicts and potentially disrupts other unrelated pre-trained knowledge. To address
this problem, we introduce UniAdapt, a universal adapter for knowledge calibra-
tion. Inspired by the Mixture of Experts architecture and Retrieval-Augmented
Generation, UniAdapt is designed with a vector-assisted router that is responsi-
ble for routing inputs to appropriate experts. The router maintains a vector store,
including multiple shards, to construct routing vectors based on semantic similar-
ity search results. UniAdapt is fully model-agnostic and designed for seamless
plug-and-play integration. Experimental results show that UniAdapt outperforms
existing lifelong model editors and achieves exceptional results in most metrics.

1 INTRODUCTION

Large Language Models (LLMs) have shown their outstanding abilities in understanding and gen-
erating texts, resulting in widespread deployment across various applications with significant social
impacts Vaswani (2017); Radford et al. (2018). Although LLM is trained with up-to-date and highly
accurate data, it still can make mistakes Huang et al. (2023), generating hallucinated responses. Fur-
thermore, its world knowledge may quickly become out-dated. Due to computational cost, retraining
or fine-tuning the model frequently is impractical. This demands a model editor that corrects the
errors and keeps pace with continuously evolving knowledge in a timely and effective manner.

In recent years, model editing has emerged as a highly effective method for updating knowledge
within LLMs. It aims to insert or update the responses for certain target queries, referred to as ed-
its, while ensuring that responses on unrelated queries remain intact. For instance, ROME Meng
et al. (2022a) locates and edits knowledge within LLMs. It treats a multi-layer perceptron (MLP)
as a key-value store, where the key encodes a subject and the value encodes knowledge about that
subject. ROME uses rank-one modification to insert key-value pairs into the MLP module directly.
In contrast to ROME, MEND Mitchell et al. (2021) trains a meta-network to edit the target LLM.
The meta-network learns to generate parameter updates that adapt the LLM to perform well on a
set of tasks, without modifying the original model weights. SERAC Mitchell et al. (2022) takes
a different approach. It utilizes an external cache to store edits. Rather than modifying the LLM
itself, SERAC retrieves relevant information from the cache to augment the model’s responses when
necessary. This allows SERAC to flexibly incorporate new knowledge without directly altering the
LLM’s parameters. While these approaches can apply multiple edits sequentially, they often en-
counter challenges such as over-fitting and a tendency to forget previous edits quickly. In a harder
setting, known as lifelong model editing, the editor is expected to insert thousands of edits effec-
tively. Multiple approaches have been proposed. GRACE Hartvigsen et al. (2024) constructs a
codebook that caches the edits, enabling longer sequences of edits than prior works. In contrast,
WISE Wang et al. (2024) employs a dual parametric memory scheme that consists of a main mem-
ory for pre-trained knowledge and a side memory for edited knowledge. It further introduces an
activation routing mechanism that determines which memory to access when given a query, thus
optimizing the knowledge retrieval process. MEMoE Wang & Li (2024b) and LEMoE Wang &
Li (2024a) introduce an adapter based on the Mixture of Experts (MoE) architecture. Their rout-
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ing algorithm performs classification based on anchor embeddings, which overlooks the relation
in a sentence and thus considers a dataset-specific approach. Despite the extensive effort, existing
methods still suffer from either limited success in achieving generalizability (i.e., successfully in-
troducing the new knowledge) or locality (i.e., successfully maintaining the model performance on
unrelated knowledge).

To address the above-mentioned problem, we introduce UniAdapt, a universal adapter leveraging
the MoE Shazeer et al. (2017); Fedus et al. (2022) architecture and Retrieval-Augmented Genera-
tion (RAG) Lewis et al. (2020); Sachan et al. (2021); Asai et al. (2023) for knowledge calibration.
UniAdapt edits a model by adding an adapter to the selected MLP layer, never changing the model’s
weights. The adapter comprises a vector-assisted router and multiple parallel experts. The core
idea is that the router is responsible for routing relevant queries to the corresponding experts. Ad-
ditionally, if no suitable expert is found, the output of the selected layer remains unaltered to save
resources. To achieve this, the vector-assisted router maintains multiple shards of a vector store,
storing the sentence embeddings of newly introduced knowledge. When a query is received, the
router constructs a routing vector where each element represents the highest semantic similarity
score regarding each shard. This routing vector determines which experts are activated to handle
the current query. The output of our adapter is combined with the original output to achieve precise
calibration. Overall, UniAdapt is a fully model-agnostic, plug-and-play, and cost-effective lifelong
model editor.

Our contributions are summarized as follows.

• We analyze and identify the weakness of the existing lifelong model editors relying on
memory, highlighting opportunities for potential enhancements.

• We develop UniAdapt, a lifelong model editor that is designed to route queries to the most
relevant experts based on semantic similarity. Our architecture is model-agnostic.

• Our experiments show that UniAdapt outperforms existing lifelong model editors by a
substantial margin. UniAdapt possesses the ability to memorize and generalize effectively,
making it a superior choice for lifelong learning tasks.

2 PRELIMINARIES

This section presents an overview of lifelong model editing and reviews state-of-the-art approaches
that leverage memory to enhance the editing process. We also introduce common metrics used to
evaluate the editor’s performance.

2.1 LIFELONG MODEL EDITING

The lifelong model editing task Hartvigsen et al. (2024); Wang et al. (2024) involves making nu-
merous updates to a pre-trained model over time, ensuring that it consistently refreshes its knowl-
edge and stays aligned with the fast-changing information encountered in everyday life. This
task modifies an initial base model fθ0 , parameterized by θ at the time step 0, using a dataset
Dedit = {(Xe,Ye) | (x1, y1), · · · , (xT , yT )}. Formally, at the time step T , the model editor, de-
noted by ME, inserts the T-th edit into the model fθT−1

and produces an edited model fθT . Let P(·)
be a function that rephrases x to a set of semantic equivalent inputs (we assume x ∈ P(x)). The
task of lifelong model editing is defined as follows:

fθT = ME(fθT−1
, xT , yT ) s.t. fθT (x) =

{
ye if x ∈ P(xe) ∧ (xe, ye) ∈ Dedit

fθ0(x) otherwise.
(1)

The edited model fθT should produce a desired output ye for each in-scope input x ∈ P(xe) and
(xe, ye) ∈ Dedit, while maintaining the original model’s performance fθ0(x) on an irrelevant input
(x, y) ∈ Dirr where Dirr = {(x, y) | x /∈ P(xe),∀xe ∈ Xe}. It also preserves knowledge from
past edits (x<T , y<T ) ∈ Dedit. Additionally, the result of applying fθT to x and P(x) should be
identical.

To measure the efficiency of a model editor, the edited model is subject to evaluation using the
following metrics.
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Method Memory Router

Parametric Retrieval Algorithm Input

SERAC Mitchell et al. (2022) Ë Ë Binary classifier Sentence embedding
GRACE Hartvigsen et al. (2024) é Ë Clustering Activation score
WISE Wang et al. (2024) Ë Ë Activation routing Activation score
MEMoE Wang & Li (2024b) Ë é Knowledge anchor Anchor embedding
LEMoE Wang & Li (2024a) Ë é Knowledge anchor Anchor embedding
UniAdapt Ë Ë Vector-assisted routing Sentence embedding

Table 1: Different routing strategies of recent methods. Parametric memory encodes knowledge
within the model’s parameters, whereas retrieval memory stores information in an external memory
system for future access. Sentence embeddings preserve the semantic meaning of entire sentences,
while activation scores represent the outputs from the activation layers of the neural network. Anchor
embedding is formed by combining the embeddings of entities (such as subjects and objects) in a
sentence with token embeddings through a concatenation operation.

Reliability: The edited model fθT should generate the expected responses on intended edits:

E(xe,ye)∈Dedit 1{argmaxyfθT (y | xe) = ye} (2)

Locality: The edited model fθT should retain original responses on inputs that are irrelevant to
intended edits:

E(x,y)∈Dirr 1{argmaxyfθT (y | x) = fθ0(y | x)} (3)

Generality: The model fθT should generalize edits over other semantic equivalent inputs:

E(xe,ye)∈Dedit 1{argmaxyfθT (y | x) = ye} s.t. x ̸= xe ∧ x ∈ P(xe) (4)

2.2 LIFELONG MODEL EDITING USING MEMORY

Multiple recent methods, shown in Table 1, incorporate memories and routing mechanisms to pro-
cess inputs efficiently. The router is crucial in detecting and forwarding inputs to designated mem-
ories. If an input falls inside the scope of the existing edits, the router forwards it to the designated
memory, which contains the new knowledge, thereby increasing reliability and generality. Con-
versely, inputs that fall outside of the edits are routed to the original model, maintaining locality.
Due to the importance of the router Zhou et al. (2022); Dikkala et al. (2023), we prioritize optimiz-
ing routing mechanisms over memory enhancements. In the following, we discuss existing efforts
on improving both routing inputs and routing algorithms and justify the design choices that we make
for developing our method.

Routing Input. Recent research opts for activation scores, sentence embeddings, or anchor em-
beddings to construct the routing vectors. In our method, we rely on sentence embeddings over
activation scores and anchor embeddings for the following reasons. First, the works Geva et al.
(2020); Dai et al. (2021) discover that activation scores at a specific block capture various patterns
(i.e., shallow, semantic, or shallow + semantic). They also suggest that lower blocks capture shal-
low patterns, while upper blocks capture semantic patterns. However, there is no definitive evidence
that the activation scores at any specific layer can effectively capture the complete semantics of the
input. Anchor embedding enhances the classification algorithm within the router. However, this ap-
proach is dataset-specific. When applied to factual knowledge, anchor embedding overlooks the full
sentence context, focusing only on the subject and objects. This may lead to misclassification if the
relation between the entities changes. In contrast, sentence embeddings are widely recognized for
their ability to compute the semantic similarity of the inputs Reimers (2019); Gao et al. (2021); Cer
et al. (2018); Feng et al. (2020). Second, sentence embeddings are model-agnostic, which means
that they remain the same across different target models (i.e., the models that we aim to edit). On
the other hand, activation scores and anchor embeddings are model-specific, varying across different
target models. This potentially compromises the generalizability of methods that rely on them.

Routing Algorithm. In recent studies, research on the routing algorithms primarily focuses on
searching for thresholds for separating relevant and irrelevant input. In the binary classification set-
tings, SERAC defines a single threshold β = 0.5 for any pair of inputs. In multi-class classification
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Attention MLP RouterInput OutputWeighted Sum

UniAdapt

Transformer Block

1

Figure 1: The architecture of UniAdapt inspired by MoE architecture. UniAdapt contains a router
and multiple parallel feed-forward layers (a.k.a experts), denoted as FFN1, FFN2, · · · , FFNk.
The router maintains a vector store containing multiple shards labeled S1, S2, · · · , Sk. The match-
ing colors of shards and experts indicate that each expert may hold knowledge relevant to queries
associated with the shard. In the inference phase, the router computes a routing vector to selectively
choose appropriate FFNs, ensuring precise calibration of the original MLP’s output (more details
in 3.2).

settings, the clustering algorithm in GRACE creates multiple pairs of thresholds (i.e., deferral radius
ϵ) and corresponding cluster centers (i.e., key Ki). For an input x, WISE computes its routing acti-
vation indicator ∆x and compares it with a fixed threshold ϵ to either forward it to the main memory
or a side memory. Additionally, the choice of the side memory is determined by the value of ∆x.
In our work, we generalize the routing algorithms as a sub-class of MoE where a router aims to
forward inputs to relevant experts.

To achieve an effective lifelong model editor, we design a model-agnostic adapter that harnesses the
strength of sentence embeddings and the MoE architecture. By employing sentence embeddings,
the adapter can capture the semantic meaning of inputs effectively. The MoE architecture operates
without altering the model’s parameters, minimizing the potential conflicts with other unrelated pre-
trained knowledge and preserving the overall performance.

3 METHOD

In this section, we present the details of UniAdapt, a universal adapter based on the MoE architecture
and a vector-assisted routing strategy, as illustrated in Figure 1. UniAdapt is appended immediately
after a selected MLP layer to calibrate the output.

3.1 UNIADAPT ARCHITECTURE

The core idea of UniAdapt is to introduce several MoE-style experts to facilitate knowledge updates
and learning, while keeping all the original parameters of LLM frozen to maintain its original behav-
ior. Figure 1 introduces the forward pass of UniAdapt. UniAdapt consists of a router and multiple
parallel experts. This module is appended to the original MLP to calibrate the original knowledge.
The outputs of all experts are aggregated as a weighted sum to produce the final output. This choice
aligns with recent experimental findings based on knowledge probing technologies, i.e., the MLP
layers store knowledge Geva et al. (2020). Unlike traditional MoE, the router has a vector store for
sentence embeddings. Given a token xi within the input sequence x = {xi}Li=1, our adapter with K
experts computes a gate decision vector G that decides which expert to send the token xi to. This is
defined as follows.

G = H ◦ Topk(R(x)) (5)

where R(·) defines a routing strategy (refer to details in 3.2). Note that the router makes the routing
decision based on the whole sentence x. Consequently, all tokens xi within the sentence x are
directed to the same experts. The function Topk(·) keeps only the top-k values and sets all others to
zero. The function H is the Heaviside step function that outputs 1 for any non-negative input and
0 otherwise. Once the gate decision vector G is obtained, the corresponding output hi is generated
through a weighted aggregation of each expert’s computation on xi, as follows:

hi =

K∑
k=1

Gk ·Wk · xi (6)
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where Wk represents the linear projection weights of the k-th expert, and the gate decision Gk

determines the contribution of the k-th expert to the output hi. For efficiency, experts with Gk = 0
do not require computation.

Overall, the forward pass of the UniAdapt layer, combined with the frozen original parameters W0,
can be expressed as:

hi = W0 · xi︸ ︷︷ ︸
old knowledge

+λ

K∑
k=1

Gk ·Wk ·
old knowledge︷ ︸︸ ︷
(W0 · xi)︸ ︷︷ ︸

knowledge update

(7)

where λ is a non-negative weighting coefficient used to balance the old knowledge and the knowl-
edge update. The formula (7) shows that UniAdapt can minimize the knowledge update by setting
λ close to 0 to retain the original output.

3.2 VECTOR-ASSISTED ROUTER

The core concept of UniAdapt is that the router has its own vector store to streamline the routing
process. Our goal is to direct inputs that share similar knowledge with the edits to the appropriate ex-
perts, while inputs unrelated to any edits will bypass expert activation, leaving the output unchanged.
To achieve this, we start with training a router to distinguish between related and unrelated inputs
using our modified loss function. Once trained, the router’s parameters are frozen. We fine-tune
the adapter to incorporate edits using the default loss function of the model. In the following, we
introduce the details of the router.

Router Construction. Similar to the existing approaches De Cao et al. (2021); Mitchell et al. (2021;
2022), our vector-assisted router is trained with a dataset. To decide whether an input x is in P(xe)
of some edit xe, we introduce a threshold ϵ. If the similarity score ∆(x, xe) ≥ ϵ, x is considered
an in-scope input of xe. Otherwise, x is irrelevant to xe. Thus, we want the similarity scores of
in-scope edits to be larger than out-scope edits by a large margin.

min{∆(xi, xe)} ≫ max{∆(xo, xe)},∀xe ∈ Xe, xi ∈ P(xe), xo /∈ P(xe) (8)

Note that when the number of edits increases, we observe that even though the edit x is related to
xe and not to xa, there are numerous cases where ∆(x, xe) < ∆(x, xa). Therefore, we want to
distinguish between in-scope edits of multiple edits. That is,

min{∆(xi, xe)} ≫ max{∆(xi, xa)},∀xe ∈ Xe, xa ∈ Xe ∧ xa ̸= xe, xi ∈ P(xe) (9)

To achieve both objectives in (8) and (9), we design a loss that is inspired by the multiple negative
ranking loss Henderson et al. (2017). For a single in-scope edit xe ∈ Xe, we form a batch of K
sentence pairs that contain a positive pair (xe, xi) where xi ∈ P(xe)∧ xi ̸= xe and K − 1 negative
pairs (xe, xa) where xa ∈ Xe ∧ xa ̸= xe. The training goal is to minimize the data’s approximated
mean negative log probability. For a single batch, the loss is:

L = − 1

K

K∑
i=1

[
∆(xe, xi)− log

K−1∑
a=1

e∆(xe,xa)

]
(10)

The loss aims to maximize the distance between a positive pair and multiple negative pairs. Note
that the objective in (8) is typically satisfied by most pre-trained sentence embedding frame-
works Reimers (2019); Gao et al. (2021). Therefore, fine-tuning them with the loss function in
(10) is sufficient to produce accurate similarity scores.

Routing Strategy. Similar to SERAC, we need a memory to store the edits to make semantic
similarity queries. Unlike SERAC, we aim to store sentence embeddings (rather than the sentences
themselves) in a vector store, both to reduce memory usage and to ensure compatibility with a
wide range of frameworks Douze et al. (2024); Johnson et al. (2019). An example illustrating the
functionality of the router is shown in Figure 2.

We have multiple experts to handle input queries. A router is used to distribute the input queries, and
only a few experts are activated to enhance knowledge capacity Wang et al. (2024). To efficiently
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Figure 2: An example of the router’s functionality, similar to a retriever in RAG. Instead of retriev-
ing related documents, the router computes decision vectors based on the similarity scores. The
similarity scores [1.0, 0.4, 0.3] indicate that there are three shards. The first shard has the highest
similarity score thus the answer will be stored in expert 1 (also known as FFN1).

utilize these experts, we would like to dynamically route inputs to the most relevant experts and
balance the number of edits calibrated by each expert. To achieve this goal, we propose a vector
store sharding mechanism. We equally divide the embeddings of N edits into K shards, each shard
stores around N/K embeddings where K is the number of experts. Given an input x = {xi}Li=0
and a shard Sk, the router computes the routing score for each shard as follows:

αk = max{∆(x, xe) | ∀xe ∈ Sk} − ϵ (11)

where ϵ is a non-negative threshold derived from the router construction step. The routing score is
in the range [−1, 1], if αk is close to 1 then the input is the most similar to the shard Sk and the
router likely activates the expert Ek to handle the input. If αk ≤ 0 the expert Ek is deactivated to
reduce resource consumption. Given the routing scores for all shards, the decision vector is formed
as follows:

R(x) = (α1, . . . , αj , . . . , αK) (12)

4 EXPERIMENTS

In this section, we first present our experimental setup. Then, we discuss the performance of our
method on two settings: single editing and lifelong editing.

4.1 EXPERIMENT SETUPS

Datasets and Metrics. We use two prominent model editing datasets: zsRE Levy et al. (2017)
and Counterfact Meng et al. (2022a) for performance evaluation. zsRE is a context-free Question-
Answering (QA) dataset built upon zero-shot relation extraction. Counterfact is a more challenging
dataset containing factual knowledge with diverse subjects, relations, and linguistic variations. We
evaluate the capability of UniAdapt using Reliability, Generality, and Locality (defined in Sect 2.1)
along with the average scores over these metrics. Specifically, each edit record contains an editing
pair (xe, ye) along with a related edit xr and an unrelated edit xo. The Reliability assesses if the
edited model can recall the response ye from xe. The Generality evaluates whether the edited model
can produce ye given xr. The Locality measures whether the edited model produces a consistent
response for xr both before and after the edit.

Baselines. We compare UniAdapt with multiple recently proposed baselines. We categorize them
into non-memory based methods including FT-L Meng et al. (2022a), MEND Mitchell et al. (2021),
MEMIT Meng et al. (2022b) and memory-based methods including SERAC Mitchell et al. (2022),
GRACE Hartvigsen et al. (2024), WISE Wang et al. (2024). Note that we exclude the results of
MEMoe Wang & Li (2024b) and LEMoE Wang & Li (2024a), as their source code has not yet been
made available.
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Method Model ZsRE Counterfact
Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

GRACE

GPT2-XL

0.34 0.00 1.00 0.45 0.00 0.00 1.00 0.33
FT 0.57 0.30 0.88 0.58 0.93 0.16 0.73 0.61
MEMIT 0.65 0.50 1.00 0.72 0.62 0.24 0.99 0.62
SERAC 0.43 0.29 0.85 0.52 0.44 0.01 0.95 0.47
MEND 0.07 0.07 0.99 0.37 0.00 0.00 0.97 0.32
UniAdapt 1.00 0.99 1.00 1.00 1.00 0.96 0.98 0.98
GRACE

LLaMA2-7B

0.97 0.00 0.34 0.44 1.00 0.00 0.78 0.59
FT 0.55 0.47 0.86 0.63 0.45 0.25 0.28 0.33
SERAC 0.52 0.41 1.00 0.64 0.45 0.12 1.00 0.52
MEND 0.07 0.06 0.87 0.33 0.03 0.03 0.88 0.31
WISE 1.00 0.94 1.00 0.98 1.00 0.76 1.00 0.92
UniAdapt 0.97 0.96 1.00 0.98 0.97 0.95 0.98 0.97

Table 2: Main editing results with the number of edits T =1. Bold is the best result, and underline
is the second-best result.

FT-L is a direct fine-tuning method that aims to limit the extent of weight modifications. MEND is
a meta-learning method that learns auxiliary models to predict weight changes in the editing model.
MEMIT inserts thousands of key-value pairs into multiple layers of the network by considering a
feed-forward layer as linear associative memory.

SERAC uses external memory to explicitly cache the edits and route an input query to either the
counterfact model or the original model. GRACE replaces the hidden states of inputs if its activation
scores fall inside a cluster of a codebook. WISE routes an input query to either side memories or the
main memory using activation scores.

Implementation Details: We apply our edits to GPT2-XL and LLaMA2-7B. Our router is built
on top of SBERT Reimers & Gurevych (2019) for similarity scores computation. We opt for two
tasks: single editing and lifelong editing tasks. For single editing, following Meng et al. (2022a), the
batch size is set to 5, we evaluate edits and roll back to the initial state after each batch of edits. For
lifelong editing, the batch size is set to 5. We insert 1000 edits and evaluate without rolling back.
For the baselines, WISE is only implemented for LLaMA2-7B and MEMIT is only implemented
for GPT2-XL.

4.2 MAIN RESULTS

Single Editing. We evaluate the performance of UniAdapt in the single editing setting, T=1, and
compute the average of 1000 runs. The evaluation results are shown in Table 2. We observe that Uni-
Adapt consistently outperforms baselines across all tested models and most metrics. The results are
balanced as it achieves scores of at least 0.97 in all metrics. In the zsRE setting, UniAdapt achieves
scores of 1.00 and 0.98 on GPT2-XL and LLaMA2, respectively, achieving improvements of 28%
and 0% over the second-best competitor. Similarly, the improvements are 36% and 5% in the Coun-
terfact setting. A closer investigation shows that other tools often sacrifice their generality to achieve
higher locality. GRACE and MEND achieve 0.0 in generality but 1.0 in the locality within the zsRE
setting of GPT2-XL. Overall, this result demonstrates the efficacy and stability of UniAdapt’s capa-
bility on handling a hard dataset (i.e., Counterfact).

Although the results of UniAdapt vary across different datasets like other baselines, it demonstrates
consistent performance across different model architectures. Specifically, the difference remains
below 3% in all metrics and under 2% in the average score. For the average score, the discrepancies
in GRACE, FT, and SERAC range from 1% to 28%. FT is considered the least stable tool as its
difference is 28%. In summary, the results indicate that UniAdapt not only achieves the highest
scores but also maintains stability across diverse models.

Lifelong Editing. We evaluate the performance of UniAdapt in the lifelong editing setting, T=1000.
The evaluation results are shown in table 3. The results clearly show a decline in the performance
across all methods as T increases from 1 to 1000. For example, FT and MEMIT experience a drop
of over 50% and 20% respectively in almost all settings. This is attributed to the fact that new edits
tend to overwrite previous ones. Among these methods, UniAdapt shows a negligible decline on the
easier zsRE, and a significant advantage in terms of generalizing ability on Counterfact. A further
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Method Model ZsRE Counterfact
Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

GRACE

GPT2-XL

0.34 0.00 1.00 0.45 0.00 0.00 0.99 0.33
FT 0.07 0.05 0.02 0.05 0.19 0.07 0.00 0.09
MEMIT 0.51 0.45 0.31 0.42 0.82 0.55 0.05 0.47
SERAC 0.19 0.19 0.85 0.41 0.00 0.00 0.96 0.32
MEND 0.21 0.20 0.99 0.47 0.00 0.00 0.99 0.33
UniAdapt 0.98 0.93 1.00 0.97 0.98 0.53 0.91 0.81
GRACE

LLaMA2-7B

0.98 0.01 0.34 0.44 0.99 0.00 0.77 0.59
FT 0.16 0.14 0.04 0.11 0.04 0.01 0.01 0.02
SERAC 0.36 0.35 1.00 0.57 0.15 0.12 1.00 0.42
MEND 0.29 0.29 0.85 0.48 0.15 0.12 0.96 0.41
WISE 0.83 0.77 1.00 0.87 0.42 0.26 0.64 0.44
UniAdapt 0.96 0.80 1.00 0.92 0.99 0.57 0.94 0.83

Table 3: Main editing results with the number of edits T=1000. Bold is the best result, and underline
is the second-best result.

analysis reveals that UniAdapt significantly outperforms the nearest competitor by a large margin.
In the GPT2-XL setting, UniAdapt has a remarkable gap of around 40% over MEMIT on the zsRE
dataset. In the LLaMA2-7B setting, UniAdapt proves to be the best with around 40% difference
compared to WISE in the Counterfact dataset. In both datasets, our overall score is the highest,
significantly outperforming the other methods. Furthermore, while the lifelong editing setting has
proved to be more challenging than the single editing setting, UniAdapt maintains impressive sta-
bility across models. The difference remains below 7% in all metrics and under 5% in the average
score. In summary, UniAdapt excels at learning extensive new knowledge while preserving other
unrelated pre-trained knowledge.

4.3 ABLATION STUDIES

In this section, we examine the effects of various hyper-parameters on the performance of UniAdapt.
Given that zsRE has been extensively evaluated in numerous studies, we have implemented lifelong
editing settings on the zsRE dataset with LLaMA2-7b.

Effect of the Target Layer. We conduct multiple experiments to assess the impact of the choice
of target layer on the performance. We sequentially append UniAdapt to the MLP module of each
transformer block and evaluate the performance of UniAdapt with 1000 edits. The results are illus-
trated in Figure 3a across various target layers. While locality remains stable, both reliability and
generality encounter significant fluctuations, peaking at layer 3 and reaching their lowest point at
the final layer. Our finding aligns with the work Zhao et al. (2024) that confirms the importance of
editing the model at layer 3. Notably, regardless of the layer modified, generality consistently hits
the lowest accuracy among all metrics, indicating that it is the most challenging metric to improve.
Overall, performance tends to decline sharply as the target layer approaches the last layer.

Effect of the Number of Experts. We perform multiple experiments to study how the number of
experts impacts the performance. Due to computational resource limitations, we sequentially set
the number of experts to values in the range [1–10] and evaluate UniAdapt’s performance with 1000
edits. Figure 3b illustrates the performance of UniAdapt with different numbers of experts. We
find that the locality of model editing does not change with the number of experts, i.e., there is
neither a decrease nor a performance improvement. This is expected because only relevant inputs
are forwarded to experts. The reliability exhibits slight fluctuation (i.e., going upward and then
downward) when the number of experts increases. Furthermore, it consistently remains above 0.95
across all scenarios. Unlike reliability and locality, the generalization of knowledge fluctuates with
the number of experts, peaking when the number of experts is 4, i.e., increasing the number of
experts initially boosts overall performance, but eventually leads to a decline. We hypothesize that
the reason is that while having more experts can enhance recall by providing specialized knowledge,
it may also make it more challenging for the router to effectively choose the most suitable experts.

Effect of ϵ. We conduct multiple experiments to evaluate the impacts of ϵ on the performance. We
sequentially set the ϵ to values in the range [0.1–0.9] and evaluate UniAdapt’s performance after
1000 edits. Figure 3c depicts the performance of UniAdapt across various ϵ. The results show that ϵ
has little impact on the reliability and generality. In contrast, locality increases sharply as ϵ is raised
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(a) Effect of Target Layer (b) Effect of Expert Number

(c) Effect of ϵ (d) Effect of top K

Figure 3: The performances of UniAdapt regarding to different hyper-parameters where the notation
rel, gen, loc are Reliability, Generality, and Locality respectively.

from 0.1 to 0.6. This can be attributed to the behavior of the router at low ϵ values. With a low
ϵ, the router tends to misclassify unrelated inputs, while relevant inputs remain unchanged. As ϵ
increases, the router becomes more selective and only forwards inputs that are highly likely to be
relevant, leading to higher locality.

Effect of top-k routing. We conduct multiple experiments to evaluate the impacts of top-k routing
on UniAdapt’s performance. We sequentially set K to values in the range [1–5], fix the number
of experts at 5, and evaluate our performance after 1000 edits. Figure 3d depicts the performance
of UniAdapt across various K. The results show that the locality remains unchanged across the
different K values. However, reliability and generality consistently decrease as K increases. This
suggests that while top-k routing does not impact locality, it hurts reliability and generality as the
number of routing options increases. Interestingly, the best overall performance is achieved when
K=1, indicating that using a single optimal routing path leads to the highest reliability and generality.
As K increases, the UniAdapt becomes less focused and may allocate resources to less relevant
routing options, leading to decreased performance in terms of reliability and generality.

Scale up to 6K. We conduct multiple experiments to assess the capability of UniAdapt on handling
long continual edits. We sequentially scale the number of edits to 2000, 3000, and 6000 and report
our results along with WISE (the second-best competitor in our experiments) in Table 4. From the
results, we observe that UniAdapt remains the best editor. WISE experiences a significant decline
in both generality and reliability, dropping from 0.64 to 0.48 and 0.70 to 0.50 respectively. This
is expected because WISE tends to incorrectly select the side memory when the number of edits
increases. UniAdapt experiences a slight decrease of less than 0.02 in both metrics. Overall, the
results highlight UniAdapt’s exceptional performance on handling long continual edits, which makes
it a practical solution.
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Method T Reliability↑ Generality↑ Locality↑ Score↑

WISE 2000 0.70 0.64 1.00 0.78
UniAdapt 0.97 0.80 0.99 0.92
WISE 3000 0.64 0.58 1.00 0.74
UniAdapt 0.96 0.77 0.99 0.91
WISE 6000 0.50 0.48 1.00 0.66
UniAdapt 0.95 0.79 0.98 0.90

Table 4: Scaling to 6000 edits on zsRE dataset with LLaMA2-7b

5 RELATED WORK

Lifelong model editing is an active research area with many attempts Wang et al. (2024); Meng
et al. (2022b); Yu et al. (2024) demonstrating encouraging results. Recently, MoE gained significant
research attention for enhancing the performance of large language models. They have shown their
potential in various applications. In the following, we highlight some of the most relevant works.

Model editing. UniAdapt is related to model editing which aims to update knowledge of pre-
trained LLMs. Instead of retraining the model which is infeasible, the task of model editing is to
fine-tune the model by either directly modifying the model parameters or dynamically loading new
knowledge from external storage. MEND Mitchell et al. (2021) trains a meta-network that modifies
the parameters of the target model. ROME Meng et al. (2022a) insert key-value pairs into a layer
of a feed-forward layer by considering the layer as linear associative memory. While MEND and
ROME are effective, they suffer from low locality. To address this, SERAC Mitchell et al. (2022)
employs a router mechanism that directs inputs to the appropriate model (i.e., either the new model
or the original model). IKE Zheng et al. (2023) teaches the targeted model to revise the output
with high-quality demonstrations. Both SERAC and IKE achieve comparable results to MEND and
ROME.

Lifelong model editing. UniAdapt is closely related to lifelong model editing, where thousands of
edits are inserted continually. MEMIT Meng et al. (2022b) extends ROME to insert thousands of
key-value pairs. GRACE Hartvigsen et al. (2024) assigns knowledge into multiple clusters, allowing
the system to query and apply appropriate patches when needed. MELO Yu et al. (2024) extends
GRACE by using dynamic Lora to store patches. WISE Wang et al. (2024) relies on activation
scores to route inputs to either the main memory or side memory. Overall, these tools employ a
routing mechanism, except for MEMIT. Both MEMoE Wang & Li (2024b) and LEMoE Wang & Li
(2024a) rely on anchor embeddings to distribute tokens to the corresponding experts.

Spare Mixture of Experts (SMoE). UniAdapt is closely related to SMoE, where a gate network
or router is responsible for dispatching tokens to a subset of experts. The work Fedus et al. (2022)
introduces an approach named switch transformer to scale neural networks up to a trillion parame-
ters. It selectively activates relevant experts for each input. Shazeer et al. (2017) features a trainable
gating network to optimize expert selection.

6 CONCLUSION

In this work, we present UniAdapt, a universal adapter for knowledge calibration. UniAdapt is fully
model-agnostic and designed for seamless plug-and-play integration. It has MoE-style architecture
and is attached to the MLP layer to calibrate the original output. The router with multiple shards
can precisely forward queries to the experts that store knowledge and make no modifications when
the queries are irrelevant. The experimental results show that UniAdapt achieves the significantly
improved performance on various models and datasets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder for
english. In Proceedings of the 2018 conference on empirical methods in natural language pro-
cessing: system demonstrations, pp. 169–174, 2018.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv
preprint arXiv:2104.08164, 2021.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang. On the
benefits of learning to route in mixture-of-experts models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9376–9396, 2023.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion
for smart reply. arXiv preprint arXiv:1705.00652, 2017.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.
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A APPENDIX

A.1 DESCRIPTION OF DATASETS

We utilized two standard datasets: zsRE Levy et al. (2017) and Counterfact Meng et al. (2022a). Ta-
ble 5 illustrates examples from these datasets, where each row has three pairs: (xe, ye), (xirr, yirr)
and (P(xe), ye) for the evaluation. ZsRE is a context-free Question-answering (QA) dataset contain-
ing factual information. In contrast, Counterfact focuses on counterfactual information. Compared
to zsRE, the Counterfact dataset is considered more challenging to apply, as it attempts to erase the
model’s existing contradictory information. Consequently, it often yields lower accuracy. In our
experiments with these datasets, we adopt the version proposed by Yao et al. (2023)

# zsRE Counterfact

xe, ye Which college or university is related
with Mobolaji Johnson? Royal Military
Academy Sandhurst

The native language of Francis
Jammes is German

xirr, yirr nq question: where were the olympics held
in the 1980s? Moscow, Soviet Union

The mother tongue of Frédéric Bas-
tiat is French

P(xe), ye Which university or university is associ-
ated with Mobolaji Johnson? Royal Mil-
itary Academy Sandhurst

Where Francis Jammes is from,
people speak the language of Ger-
man

Table 5: Editing dataset example

A.2 TRAINING DETAILS

In our reported results in Table 2 and Table 3, UniAdaptis reported with the following hyper-
parameters: number of experts = 1, ϵ = 0.6, TopK = 1, edited layer = 0, and number of epochs
to train the adapter = 25. It is worth noting that this configuration is not our best — our optimal
setup uses an edited layer of 3 and 4 experts.

A.3 ADDITIONAL EXPERIMENTS

In general, an adapter’s effectiveness heavily depends on the layers selected for editing. Choosing
the right layer for a specific dataset is crucial to achieving high accuracy. In addition to the re-
sults presented in the main content, we explored modifying different layers of two primary models:
GPT2-XL and LLaMA2-7B, to identify the optimal layer for editing. Table 6 shows that for GPT2-
XL, layer 16 achieves the highest score of 0.83, with layers 1 and 17 tying for second at 0.82. For
LLaMA2-7B, layer 4 performs best, followed closely by layer 3. Overall, the best layer for editing
varies between models. However, layer 0 emerges as a reliable choice, consistently yielding rela-
tively high accuracy across models. Moreover, earlier layers typically yield better results than later
ones.
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GPT2-XL LLaMA2-7B
Layer Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑
0 0.98 0.53 0.91 0.81 0.99 0.57 0.94 0.83
1 1.00 0.55 0.91 0.82 1.00 0.70 0.94 0.88
2 1.00 0.50 0.91 0.80 1.00 0.77 0.94 0.90
3 1.00 0.35 0.91 0.75 1.00 0.79 0.94 0.91
4 1.00 0.47 0.91 0.80 0.98 0.83 0.94 0.92
5 1.00 0.27 0.91 0.73 0.98 0.72 0.94 0.88
6 0.82 0.24 0.91 0.66 0.99 0.68 0.94 0.87
7 1.00 0.41 0.91 0.77 0.96 0.65 0.94 0.85
8 1.00 0.47 0.91 0.79 0.99 0.62 0.94 0.85
9 1.00 0.52 0.91 0.81 0.99 0.56 0.94 0.83
10 1.00 0.51 0.91 0.81 0.88 0.33 0.94 0.72
11 1.00 0.53 0.91 0.81 0.98 0.47 0.94 0.80
12 1.00 0.46 0.91 0.79 0.98 0.51 0.94 0.81
13 1.00 0.43 0.91 0.78 0.94 0.43 0.94 0.77
14 0.94 0.42 0.91 0.76 0.99 0.45 0.94 0.79
15 1.00 0.42 0.91 0.78 0.95 0.35 0.94 0.75
16 1.00 0.57 0.91 0.83 0.99 0.49 0.95 0.81
17 1.00 0.55 0.91 0.82 0.93 0.38 0.94 0.75
18 1.00 0.37 0.91 0.76 0.99 0.45 0.94 0.80
19 1.00 0.53 0.91 0.81 0.96 0.41 0.94 0.77
20 1.00 0.39 0.91 0.77 0.99 0.47 0.94 0.80
21 1.00 0.33 0.91 0.75 0.97 0.42 0.94 0.78
22 1.00 0.53 0.91 0.81 0.98 0.42 0.94 0.78
23 1.00 0.40 0.91 0.77 0.99 0.46 0.94 0.80
24 1.00 0.53 0.91 0.81 0.99 0.47 0.94 0.80
25 1.00 0.36 0.91 0.76 0.96 0.42 0.94 0.78
26 1.00 0.48 0.91 0.80 0.97 0.42 0.94 0.78
27 1.00 0.46 0.91 0.79 0.96 0.39 0.94 0.76
28 0.98 0.45 0.91 0.78 0.88 0.32 0.94 0.72
29 0.53 0.16 0.91 0.54 0.99 0.42 0.94 0.78
30 0.99 0.40 0.91 0.77 0.87 0.32 0.94 0.71
31 1.00 0.47 0.91 0.80 0.70 0.30 0.94 0.65
32 1.00 0.33 0.91 0.75
33 1.00 0.29 0.91 0.73
34 1.00 0.30 0.91 0.74
35 0.99 0.26 0.91 0.72
36 0.97 0.28 0.91 0.72
37 0.98 0.28 0.91 0.72
38 0.99 0.26 0.91 0.72
39 0.91 0.20 0.91 0.68
40 0.95 0.25 0.91 0.70
41 0.92 0.22 0.91 0.68
42 0.94 0.21 0.91 0.69
43 0.93 0.21 0.91 0.69
44 0.89 0.20 0.91 0.67
45 0.91 0.22 0.91 0.68
46 0.93 0.21 0.91 0.68
47 0.82 0.17 0.91 0.63

Table 6: Counterfact dataset. Editing performance across all layers
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