
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIADAPT: A UNIVERSAL ADAPTER FOR
KNOWLEDGE CALIBRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) require frequent updates to correct errors and
keep pace with continuously evolving knowledge in a timely and effective man-
ner. Recent research in model editing has highlighted the challenges in balancing
generalization and locality, especially in the context of lifelong model editing.
We discover that inserting knowledge directly into the model often causes con-
flicts and potentially disrupts other unrelated pre-trained knowledge. To address
this problem, we introduce UniAdapt, a universal adapter for knowledge calibra-
tion. Inspired by the Mixture of Experts architecture and Retrieval-Augmented
Generation, UniAdapt is designed with a vector-assisted router that is responsi-
ble for routing inputs to appropriate experts. The router maintains a vector store,
including multiple shards, to construct routing vectors based on semantic similar-
ity search results. UniAdapt is fully model-agnostic and designed for seamless
plug-and-play integration. Experimental results show that UniAdapt outperforms
existing lifelong model editors and achieves exceptional results in most metrics.

1 INTRODUCTION

Large Language Models (LLMs) have shown their outstanding abilities in understanding and gen-
erating texts, resulting in widespread deployment across various applications with significant social
impacts Vaswani (2017); Radford et al. (2018). Although LLM is trained with up-to-date and highly
accurate data, it still can make mistakes Huang et al. (2023), generating hallucinated responses. Fur-
thermore, its world knowledge may quickly become out-dated. Due to computational cost, retraining
or fine-tuning the model frequently is impractical. This demands a model editor that corrects the
errors and keeps pace with continuously evolving knowledge in a timely and effective manner.

In recent years, model editing has emerged as a highly effective method for updating knowledge
within LLMs. It aims to insert or update the responses for certain target queries, referred to as ed-
its, while ensuring that responses on unrelated queries remain intact. For instance, ROME Meng
et al. (2022a) locates and edits knowledge within LLMs. It treats a multi-layer perceptron (MLP)
as a key-value store, where the key encodes a subject and the value encodes knowledge about that
subject. ROME uses rank-one modification to insert key-value pairs into the MLP module directly.
In contrast to ROME, MEND Mitchell et al. (2021) trains a meta-network to edit the target LLM.
The meta-network learns to generate parameter updates that adapt the LLM to perform well on a
set of tasks, without modifying the original model weights. SERAC Mitchell et al. (2022) takes
a different approach. It utilizes an external cache to store edits. Rather than modifying the LLM
itself, SERAC retrieves relevant information from the cache to augment the model’s responses when
necessary. This allows SERAC to flexibly incorporate new knowledge without directly altering the
LLM’s parameters. While these approaches can apply multiple edits sequentially, they often en-
counter challenges such as over-fitting and a tendency to forget previous edits quickly. In a harder
setting, known as lifelong model editing, the editor is expected to insert thousands of edits effec-
tively. Multiple approaches have been proposed. GRACE Hartvigsen et al. (2024) constructs a
codebook that caches the edits, enabling longer sequences of edits than prior works. In contrast,
WISE Wang et al. (2024) employs a dual parametric memory scheme that consists of a main mem-
ory for pre-trained knowledge and a side memory for edited knowledge. It further introduces an
activation routing mechanism that determines which memory to access when given a query, thus
optimizing the knowledge retrieval process. MEMoE Wang & Li (2024b) and LEMoE Wang &
Li (2024a) introduce an adapter based on the Mixture of Experts (MoE) architecture. Their rout-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ing algorithm performs classification based on anchor embeddings, which overlooks the relation
in a sentence and thus considers a dataset-specific approach. Despite the extensive effort, existing
methods still suffer from either limited success in achieving generalizability (i.e., successfully in-
troducing the new knowledge) or locality (i.e., successfully maintaining the model performance on
unrelated knowledge).

To address the above-mentioned problem, we introduce UniAdapt, a universal adapter leveraging
the MoE Shazeer et al. (2017); Fedus et al. (2022) architecture and Retrieval-Augmented Genera-
tion (RAG) Lewis et al. (2020); Sachan et al. (2021); Asai et al. (2023) for knowledge calibration.
UniAdapt edits a model by adding an adapter to the selected MLP layer, never changing the model’s
weights. The adapter comprises a vector-assisted router and multiple parallel experts. The core
idea is that the router is responsible for routing relevant queries to the corresponding experts. Ad-
ditionally, if no suitable expert is found, the output of the selected layer remains unaltered to save
resources. To achieve this, the vector-assisted router maintains multiple shards of a vector store,
storing the sentence embeddings of newly introduced knowledge. When a query is received, the
router constructs a routing vector where each element represents the highest semantic similarity
score regarding each shard. This routing vector determines which experts are activated to handle
the current query. The output of our adapter is combined with the original output to achieve precise
calibration. Overall, UniAdapt is a fully model-agnostic, plug-and-play, and cost-effective lifelong
model editor.

Our contributions are summarized as follows.

• We analyze and identify the weakness of the existing lifelong model editors relying on
memory, highlighting opportunities for potential enhancements.

• We develop UniAdapt, a lifelong model editor that is designed to route queries to the most
relevant experts based on semantic similarity. Our architecture is model-agnostic.

• Our experiments show that UniAdapt outperforms existing lifelong model editors by a
substantial margin. UniAdapt possesses the ability to memorize and generalize effectively,
making it a superior choice for lifelong learning tasks.

2 PRELIMINARIES

This section presents an overview of lifelong model editing and reviews state-of-the-art approaches
that leverage memory to enhance the editing process. We also introduce common metrics used to
evaluate the editor’s performance.

2.1 LIFELONG MODEL EDITING

The lifelong model editing task Hartvigsen et al. (2024); Wang et al. (2024) involves making nu-
merous updates to a pre-trained model over time, ensuring that it consistently refreshes its knowl-
edge and stays aligned with the fast-changing information encountered in everyday life. This
task modifies an initial base model fθ0 , parameterized by θ at the time step 0, using a dataset
Dedit = {(Xe,Ye) | (x1, y1), · · · , (xT , yT)}. Formally, at the time step T , the model editor, de-
noted by ME, inserts the T-th edit into the model fθT−1

and produces an edited model fθT . Let P(·)
be a function that rephrases x to a set of semantic equivalent inputs (we assume x ∈ P(x)). The
task of lifelong model editing is defined as follows:

fθT = ME(fθT−1
, xT , yT) s.t. fθT (x) =

{
ye if x ∈ P(xe) ∧ (xe, ye) ∈ Dedit

fθ0(x) otherwise.
(1)

The edited model fθT should produce a desired output ye for each in-scope input x ∈ P(xe) and
(xe, ye) ∈ Dedit, while maintaining the original model’s performance fθ0(x) on an irrelevant input
(x, y) ∈ Dirr where Dirr = {(x, y) | x /∈ P(xe),∀xe ∈ Xe}. It also preserves knowledge from
past edits (x<T , y<T) ∈ Dedit. Additionally, the result of applying fθT to x and P(x) should be
identical.

To measure the efficiency of a model editor, the edited model is subject to evaluation using the
following metrics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Method Memory Router

Parametric Retrieval Algorithm Input

SERAC Mitchell et al. (2022) Ë Ë Binary classifier Sentence embedding
GRACE Hartvigsen et al. (2024) é Ë Clustering Activation score
WISE Wang et al. (2024) Ë Ë Activation routing Activation score
MEMoE Wang & Li (2024b) Ë é Knowledge anchor Anchor embedding
LEMoE Wang & Li (2024a) Ë é Knowledge anchor Anchor embedding
UniAdapt Ë Ë Vector-assisted routing Sentence embedding

Table 1: Different routing strategies of recent methods. Parametric memory encodes knowledge
within the model’s parameters, whereas retrieval memory stores information in an external memory
system for future access. Sentence embeddings preserve the semantic meaning of entire sentences,
while activation scores represent the outputs from the activation layers of the neural network. Anchor
embedding is formed by combining the embeddings of entities (such as subjects and objects) in a
sentence with token embeddings through a concatenation operation.

Reliability: The edited model fθT should generate the expected responses on intended edits:

E(xe,ye)∈Dedit 1{argmaxyfθT (y | xe) = ye} (2)

Locality: The edited model fθT should retain original responses on inputs that are irrelevant to
intended edits:

E(x,y)∈Dirr 1{argmaxyfθT (y | x) = fθ0(y | x)} (3)

Generality: The model fθT should generalize edits over other semantic equivalent inputs:

E(xe,ye)∈Dedit 1{argmaxyfθT (y | x) = ye} s.t. x ̸= xe ∧ x ∈ P(xe) (4)

2.2 LIFELONG MODEL EDITING USING MEMORY

Multiple recent methods, shown in Table 1, incorporate memories and routing mechanisms to pro-
cess inputs efficiently. The router is crucial in detecting and forwarding inputs to designated mem-
ories. If an input falls inside the scope of the existing edits, the router forwards it to the designated
memory, which contains the new knowledge, thereby increasing reliability and generality. Con-
versely, inputs that fall outside of the edits are routed to the original model, maintaining locality.
Due to the importance of the router Zhou et al. (2022); Dikkala et al. (2023), we prioritize optimiz-
ing routing mechanisms over memory enhancements. In the following, we discuss existing efforts
on improving both routing inputs and routing algorithms and justify the design choices that we make
for developing our method.

Routing Input. Recent research opts for activation scores, sentence embeddings, or anchor em-
beddings to construct the routing vectors. In our method, we rely on sentence embeddings over
activation scores and anchor embeddings for the following reasons. First, the works Geva et al.
(2020); Dai et al. (2021) discover that activation scores at a specific block capture various patterns
(i.e., shallow, semantic, or shallow + semantic). They also suggest that lower blocks capture shal-
low patterns, while upper blocks capture semantic patterns. However, there is no definitive evidence
that the activation scores at any specific layer can effectively capture the complete semantics of the
input. Anchor embedding enhances the classification algorithm within the router. However, this ap-
proach is dataset-specific. When applied to factual knowledge, anchor embedding overlooks the full
sentence context, focusing only on the subject and objects. This may lead to misclassification if the
relation between the entities changes. In contrast, sentence embeddings are widely recognized for
their ability to compute the semantic similarity of the inputs Reimers (2019); Gao et al. (2021); Cer
et al. (2018); Feng et al. (2020). Second, sentence embeddings are model-agnostic, which means
that they remain the same across different target models (i.e., the models that we aim to edit). On
the other hand, activation scores and anchor embeddings are model-specific, varying across different
target models. This potentially compromises the generalizability of methods that rely on them.

Routing Algorithm. In recent studies, research on the routing algorithms primarily focuses on
searching for thresholds for separating relevant and irrelevant input. In the binary classification set-
tings, SERAC defines a single threshold β = 0.5 for any pair of inputs. In multi-class classification

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Attention MLP RouterInput OutputWeighted Sum

UniAdapt

Transformer Block

1

Figure 1: The architecture of UniAdapt inspired by MoE architecture. UniAdapt contains a router
and multiple parallel feed-forward layers (a.k.a experts), denoted as FFN1, FFN2, · · · , FFNk.
The router maintains a vector store containing multiple shards labeled S1, S2, · · · , Sk. The match-
ing colors of shards and experts indicate that each expert may hold knowledge relevant to queries
associated with the shard. In the inference phase, the router computes a routing vector to selectively
choose appropriate FFNs, ensuring precise calibration of the original MLP’s output (more details
in 3.2).

settings, the clustering algorithm in GRACE creates multiple pairs of thresholds (i.e., deferral radius
ϵ) and corresponding cluster centers (i.e., key Ki). For an input x, WISE computes its routing acti-
vation indicator ∆x and compares it with a fixed threshold ϵ to either forward it to the main memory
or a side memory. Additionally, the choice of the side memory is determined by the value of ∆x.
In our work, we generalize the routing algorithms as a sub-class of MoE where a router aims to
forward inputs to relevant experts.

To achieve an effective lifelong model editor, we design a model-agnostic adapter that harnesses the
strength of sentence embeddings and the MoE architecture. By employing sentence embeddings,
the adapter can capture the semantic meaning of inputs effectively. The MoE architecture operates
without altering the model’s parameters, minimizing the potential conflicts with other unrelated pre-
trained knowledge and preserving the overall performance.

3 METHOD

In this section, we present the details of UniAdapt, a universal adapter based on the MoE architecture
and a vector-assisted routing strategy, as illustrated in Figure 1. UniAdapt is appended immediately
after a selected MLP layer to calibrate the output.

3.1 UNIADAPT ARCHITECTURE

The core idea of UniAdapt is to introduce several MoE-style experts to facilitate knowledge updates
and learning, while keeping all the original parameters of LLM frozen to maintain its original behav-
ior. Figure 1 introduces the forward pass of UniAdapt. UniAdapt consists of a router and multiple
parallel experts. This module is appended to the original MLP to calibrate the original knowledge.
The outputs of all experts are aggregated as a weighted sum to produce the final output. This choice
aligns with recent experimental findings based on knowledge probing technologies, i.e., the MLP
layers store knowledge Geva et al. (2020). Unlike traditional MoE, the router has a vector store for
sentence embeddings. Given a token xi within the input sequence x = {xi}Li=1, our adapter with K
experts computes a gate decision vector G that decides which expert to send the token xi to. This is
defined as follows.

G = H ◦ Topk(R(x)) (5)

where R(·) defines a routing strategy (refer to details in 3.2). Note that the router makes the routing
decision based on the whole sentence x. Consequently, all tokens xi within the sentence x are
directed to the same experts. The function Topk(·) keeps only the top-k values and sets all others to
zero. The function H is the Heaviside step function that outputs 1 for any non-negative input and
0 otherwise. Once the gate decision vector G is obtained, the corresponding output hi is generated
through a weighted aggregation of each expert’s computation on xi, as follows:

hi =

K∑
k=1

Gk ·Wk · xi (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where Wk represents the linear projection weights of the k-th expert, and the gate decision Gk

determines the contribution of the k-th expert to the output hi. For efficiency, experts with Gk = 0
do not require computation.

Overall, the forward pass of the UniAdapt layer, combined with the frozen original parameters W0,
can be expressed as:

hi = W0 · xi︸ ︷︷ ︸
old knowledge

+λ

K∑
k=1

Gk ·Wk ·
old knowledge︷ ︸︸ ︷
(W0 · xi)︸ ︷︷ ︸

knowledge update

(7)

where λ is a non-negative weighting coefficient used to balance the old knowledge and the knowl-
edge update. The formula (7) shows that UniAdapt can minimize the knowledge update by setting
λ close to 0 to retain the original output.

3.2 VECTOR-ASSISTED ROUTER

The core concept of UniAdapt is that the router has its own vector store to streamline the routing
process. Our goal is to direct inputs that share similar knowledge with the edits to the appropriate ex-
perts, while inputs unrelated to any edits will bypass expert activation, leaving the output unchanged.
To achieve this, we start with training a router to distinguish between related and unrelated inputs
using our modified loss function. Once trained, the router’s parameters are frozen. We fine-tune
the adapter to incorporate edits using the default loss function of the model. In the following, we
introduce the details of the router.

Router Construction. Similar to the existing approaches De Cao et al. (2021); Mitchell et al. (2021;
2022), our vector-assisted router is trained with a dataset. To decide whether an input x is in P(xe)
of some edit xe, we introduce a threshold ϵ. If the similarity score ∆(x, xe) ≥ ϵ, x is considered
an in-scope input of xe. Otherwise, x is irrelevant to xe. Thus, we want the similarity scores of
in-scope edits to be larger than out-scope edits by a large margin.

min{∆(xi, xe)} ≫ max{∆(xo, xe)},∀xe ∈ Xe, xi ∈ P(xe), xo /∈ P(xe) (8)

Note that when the number of edits increases, we observe that even though the edit x is related to
xe and not to xa, there are numerous cases where ∆(x, xe) < ∆(x, xa). Therefore, we want to
distinguish between in-scope edits of multiple edits. That is,

min{∆(xi, xe)} ≫ max{∆(xi, xa)},∀xe ∈ Xe, xa ∈ Xe ∧ xa ̸= xe, xi ∈ P(xe) (9)

To achieve both objectives in (8) and (9), we design a loss that is inspired by the multiple negative
ranking loss Henderson et al. (2017). For a single in-scope edit xe ∈ Xe, we form a batch of K
sentence pairs that contain a positive pair (xe, xi) where xi ∈ P(xe)∧ xi ̸= xe and K − 1 negative
pairs (xe, xa) where xa ∈ Xe ∧ xa ̸= xe. The training goal is to minimize the data’s approximated
mean negative log probability. For a single batch, the loss is:

L = − 1

K

K∑
i=1

[
∆(xe, xi)− log

K−1∑
a=1

e∆(xe,xa)

]
(10)

The loss aims to maximize the distance between a positive pair and multiple negative pairs. Note
that the objective in (8) is typically satisfied by most pre-trained sentence embedding frame-
works Reimers (2019); Gao et al. (2021). Therefore, fine-tuning them with the loss function in
(10) is sufficient to produce accurate similarity scores.

Routing Strategy. Similar to SERAC, we need a memory to store the edits to make semantic
similarity queries. Unlike SERAC, we aim to store sentence embeddings (rather than the sentences
themselves) in a vector store, both to reduce memory usage and to ensure compatibility with a
wide range of frameworks Douze et al. (2024); Johnson et al. (2019). An example illustrating the
functionality of the router is shown in Figure 2.

We have multiple experts to handle input queries. A router is used to distribute the input queries, and
only a few experts are activated to enhance knowledge capacity Wang et al. (2024). To efficiently

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: An example of the router’s functionality, similar to a retriever in RAG. Instead of retriev-
ing related documents, the router computes decision vectors based on the similarity scores. The
similarity scores [1.0, 0.4, 0.3] indicate that there are three shards. The first shard has the highest
similarity score thus the answer will be stored in expert 1 (also known as FFN1).

utilize these experts, we would like to dynamically route inputs to the most relevant experts and
balance the number of edits calibrated by each expert. To achieve this goal, we propose a vector
store sharding mechanism. We equally divide the embeddings of N edits into K shards, each shard
stores around N/K embeddings where K is the number of experts. Given an input x = {xi}Li=0
and a shard Sk, the router computes the routing score for each shard as follows:

αk = max{∆(x, xe) | ∀xe ∈ Sk} − ϵ (11)

where ϵ is a non-negative threshold derived from the router construction step. The routing score is
in the range [−1, 1], if αk is close to 1 then the input is the most similar to the shard Sk and the
router likely activates the expert Ek to handle the input. If αk ≤ 0 the expert Ek is deactivated to
reduce resource consumption. Given the routing scores for all shards, the decision vector is formed
as follows:

R(x) = (α1, . . . , αj , . . . , αK) (12)

4 EXPERIMENTS

In this section, we first present our experimental setup. Then, we discuss the performance of our
method on two settings: single editing and lifelong editing.

4.1 EXPERIMENT SETUPS

Datasets and Metrics. We use two prominent model editing datasets: zsRE Levy et al. (2017)
and Counterfact Meng et al. (2022a) for performance evaluation. zsRE is a context-free Question-
Answering (QA) dataset built upon zero-shot relation extraction. Counterfact is a more challenging
dataset containing factual knowledge with diverse subjects, relations, and linguistic variations. We
evaluate the capability of UniAdapt using Reliability, Generality, and Locality (defined in Sect 2.1)
along with the average scores over these metrics. Specifically, each edit record contains an editing
pair (xe, ye) along with a related edit xr and an unrelated edit xo. The Reliability assesses if the
edited model can recall the response ye from xe. The Generality evaluates whether the edited model
can produce ye given xr. The Locality measures whether the edited model produces a consistent
response for xr both before and after the edit.

Baselines. We compare UniAdapt with multiple recently proposed baselines. We categorize them
into non-memory based methods including FT-L Meng et al. (2022a), MEND Mitchell et al. (2021),
MEMIT Meng et al. (2022b) and memory-based methods including SERAC Mitchell et al. (2022),
GRACE Hartvigsen et al. (2024), WISE Wang et al. (2024). Note that we exclude the results of
MEMoe Wang & Li (2024b) and LEMoE Wang & Li (2024a), as their source code has not yet been
made available.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Model ZsRE Counterfact
Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

GRACE

GPT2-XL

0.34 0.00 1.00 0.45 0.00 0.00 1.00 0.33
FT 0.57 0.30 0.88 0.58 0.93 0.16 0.73 0.61
MEMIT 0.65 0.50 1.00 0.72 0.62 0.24 0.99 0.62
SERAC 0.43 0.29 0.85 0.52 0.44 0.01 0.95 0.47
MEND 0.07 0.07 0.99 0.37 0.00 0.00 0.97 0.32
UniAdapt 1.00 0.99 1.00 1.00 1.00 0.96 0.98 0.98
GRACE

LLaMA2-7B

0.97 0.00 0.34 0.44 1.00 0.00 0.78 0.59
FT 0.55 0.47 0.86 0.63 0.45 0.25 0.28 0.33
SERAC 0.52 0.41 1.00 0.64 0.45 0.12 1.00 0.52
MEND 0.07 0.06 0.87 0.33 0.03 0.03 0.88 0.31
WISE 1.00 0.94 1.00 0.98 1.00 0.76 1.00 0.92
UniAdapt 0.97 0.96 1.00 0.98 0.97 0.95 0.98 0.97

Table 2: Main editing results with the number of edits T =1. Bold is the best result, and underline
is the second-best result.

FT-L is a direct fine-tuning method that aims to limit the extent of weight modifications. MEND is
a meta-learning method that learns auxiliary models to predict weight changes in the editing model.
MEMIT inserts thousands of key-value pairs into multiple layers of the network by considering a
feed-forward layer as linear associative memory.

SERAC uses external memory to explicitly cache the edits and route an input query to either the
counterfact model or the original model. GRACE replaces the hidden states of inputs if its activation
scores fall inside a cluster of a codebook. WISE routes an input query to either side memories or the
main memory using activation scores.

Implementation Details: We apply our edits to GPT2-XL and LLaMA2-7B. Our router is built
on top of SBERT Reimers & Gurevych (2019) for similarity scores computation. We opt for two
tasks: single editing and lifelong editing tasks. For single editing, following Meng et al. (2022a), the
batch size is set to 5, we evaluate edits and roll back to the initial state after each batch of edits. For
lifelong editing, the batch size is set to 5. We insert 1000 edits and evaluate without rolling back.
For the baselines, WISE is only implemented for LLaMA2-7B and MEMIT is only implemented
for GPT2-XL.

4.2 MAIN RESULTS

Single Editing. We evaluate the performance of UniAdapt in the single editing setting, T=1, and
compute the average of 1000 runs. The evaluation results are shown in Table 2. We observe that Uni-
Adapt consistently outperforms baselines across all tested models and most metrics. The results are
balanced as it achieves scores of at least 0.97 in all metrics. In the zsRE setting, UniAdapt achieves
scores of 1.00 and 0.98 on GPT2-XL and LLaMA2, respectively, achieving improvements of 28%
and 0% over the second-best competitor. Similarly, the improvements are 36% and 5% in the Coun-
terfact setting. A closer investigation shows that other tools often sacrifice their generality to achieve
higher locality. GRACE and MEND achieve 0.0 in generality but 1.0 in the locality within the zsRE
setting of GPT2-XL. Overall, this result demonstrates the efficacy and stability of UniAdapt’s capa-
bility on handling a hard dataset (i.e., Counterfact).

Although the results of UniAdapt vary across different datasets like other baselines, it demonstrates
consistent performance across different model architectures. Specifically, the difference remains
below 3% in all metrics and under 2% in the average score. For the average score, the discrepancies
in GRACE, FT, and SERAC range from 1% to 28%. FT is considered the least stable tool as its
difference is 28%. In summary, the results indicate that UniAdapt not only achieves the highest
scores but also maintains stability across diverse models.

Lifelong Editing. We evaluate the performance of UniAdapt in the lifelong editing setting, T=1000.
The evaluation results are shown in table 3. The results clearly show a decline in the performance
across all methods as T increases from 1 to 1000. For example, FT and MEMIT experience a drop
of over 50% and 20% respectively in almost all settings. This is attributed to the fact that new edits
tend to overwrite previous ones. Among these methods, UniAdapt shows a negligible decline on the
easier zsRE, and a significant advantage in terms of generalizing ability on Counterfact. A further

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Model ZsRE Counterfact
Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

GRACE

GPT2-XL

0.34 0.00 1.00 0.45 0.00 0.00 0.99 0.33
FT 0.07 0.05 0.02 0.05 0.19 0.07 0.00 0.09
MEMIT 0.51 0.45 0.31 0.42 0.82 0.55 0.05 0.47
SERAC 0.19 0.19 0.85 0.41 0.00 0.00 0.96 0.32
MEND 0.21 0.20 0.99 0.47 0.00 0.00 0.99 0.33
UniAdapt 0.98 0.93 1.00 0.97 0.98 0.53 0.91 0.81
GRACE

LLaMA2-7B

0.98 0.01 0.34 0.44 0.99 0.00 0.77 0.59
FT 0.16 0.14 0.04 0.11 0.04 0.01 0.01 0.02
SERAC 0.36 0.35 1.00 0.57 0.15 0.12 1.00 0.42
MEND 0.29 0.29 0.85 0.48 0.15 0.12 0.96 0.41
WISE 0.83 0.77 1.00 0.87 0.42 0.26 0.64 0.44
UniAdapt 0.96 0.80 1.00 0.92 0.99 0.57 0.94 0.83

Table 3: Main editing results with the number of edits T=1000. Bold is the best result, and underline
is the second-best result.

analysis reveals that UniAdapt significantly outperforms the nearest competitor by a large margin.
In the GPT2-XL setting, UniAdapt has a remarkable gap of around 40% over MEMIT on the zsRE
dataset. In the LLaMA2-7B setting, UniAdapt proves to be the best with around 40% difference
compared to WISE in the Counterfact dataset. In both datasets, our overall score is the highest,
significantly outperforming the other methods. Furthermore, while the lifelong editing setting has
proved to be more challenging than the single editing setting, UniAdapt maintains impressive sta-
bility across models. The difference remains below 7% in all metrics and under 5% in the average
score. In summary, UniAdapt excels at learning extensive new knowledge while preserving other
unrelated pre-trained knowledge.

4.3 ABLATION STUDIES

In this section, we examine the effects of various hyper-parameters on the performance of UniAdapt.
Given that zsRE has been extensively evaluated in numerous studies, we have implemented lifelong
editing settings on the zsRE dataset with LLaMA2-7b.

Effect of the Target Layer. We conduct multiple experiments to assess the impact of the choice
of target layer on the performance. We sequentially append UniAdapt to the MLP module of each
transformer block and evaluate the performance of UniAdapt with 1000 edits. The results are illus-
trated in Figure 3a across various target layers. While locality remains stable, both reliability and
generality encounter significant fluctuations, peaking at layer 3 and reaching their lowest point at
the final layer. Our finding aligns with the work Zhao et al. (2024) that confirms the importance of
editing the model at layer 3. Notably, regardless of the layer modified, generality consistently hits
the lowest accuracy among all metrics, indicating that it is the most challenging metric to improve.
Overall, performance tends to decline sharply as the target layer approaches the last layer.

Effect of the Number of Experts. We perform multiple experiments to study how the number of
experts impacts the performance. Due to computational resource limitations, we sequentially set
the number of experts to values in the range [1–10] and evaluate UniAdapt’s performance with 1000
edits. Figure 3b illustrates the performance of UniAdapt with different numbers of experts. We
find that the locality of model editing does not change with the number of experts, i.e., there is
neither a decrease nor a performance improvement. This is expected because only relevant inputs
are forwarded to experts. The reliability exhibits slight fluctuation (i.e., going upward and then
downward) when the number of experts increases. Furthermore, it consistently remains above 0.95
across all scenarios. Unlike reliability and locality, the generalization of knowledge fluctuates with
the number of experts, peaking when the number of experts is 4, i.e., increasing the number of
experts initially boosts overall performance, but eventually leads to a decline. We hypothesize that
the reason is that while having more experts can enhance recall by providing specialized knowledge,
it may also make it more challenging for the router to effectively choose the most suitable experts.

Effect of ϵ. We conduct multiple experiments to evaluate the impacts of ϵ on the performance. We
sequentially set the ϵ to values in the range [0.1–0.9] and evaluate UniAdapt’s performance after
1000 edits. Figure 3c depicts the performance of UniAdapt across various ϵ. The results show that ϵ
has little impact on the reliability and generality. In contrast, locality increases sharply as ϵ is raised

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Effect of Target Layer (b) Effect of Expert Number

(c) Effect of ϵ (d) Effect of top K

Figure 3: The performances of UniAdapt regarding to different hyper-parameters where the notation
rel, gen, loc are Reliability, Generality, and Locality respectively.

from 0.1 to 0.6. This can be attributed to the behavior of the router at low ϵ values. With a low
ϵ, the router tends to misclassify unrelated inputs, while relevant inputs remain unchanged. As ϵ
increases, the router becomes more selective and only forwards inputs that are highly likely to be
relevant, leading to higher locality.

Effect of top-k routing. We conduct multiple experiments to evaluate the impacts of top-k routing
on UniAdapt’s performance. We sequentially set K to values in the range [1–5], fix the number
of experts at 5, and evaluate our performance after 1000 edits. Figure 3d depicts the performance
of UniAdapt across various K. The results show that the locality remains unchanged across the
different K values. However, reliability and generality consistently decrease as K increases. This
suggests that while top-k routing does not impact locality, it hurts reliability and generality as the
number of routing options increases. Interestingly, the best overall performance is achieved when
K=1, indicating that using a single optimal routing path leads to the highest reliability and generality.
As K increases, the UniAdapt becomes less focused and may allocate resources to less relevant
routing options, leading to decreased performance in terms of reliability and generality.

Scale up to 6K. We conduct multiple experiments to assess the capability of UniAdapt on handling
long continual edits. We sequentially scale the number of edits to 2000, 3000, and 6000 and report
our results along with WISE (the second-best competitor in our experiments) in Table 4. From the
results, we observe that UniAdapt remains the best editor. WISE experiences a significant decline
in both generality and reliability, dropping from 0.64 to 0.48 and 0.70 to 0.50 respectively. This
is expected because WISE tends to incorrectly select the side memory when the number of edits
increases. UniAdapt experiences a slight decrease of less than 0.02 in both metrics. Overall, the
results highlight UniAdapt’s exceptional performance on handling long continual edits, which makes
it a practical solution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method T Reliability↑ Generality↑ Locality↑ Score↑

WISE 2000 0.70 0.64 1.00 0.78
UniAdapt 0.97 0.80 0.99 0.92
WISE 3000 0.64 0.58 1.00 0.74
UniAdapt 0.96 0.77 0.99 0.91
WISE 6000 0.50 0.48 1.00 0.66
UniAdapt 0.95 0.79 0.98 0.90

Table 4: Scaling to 6000 edits on zsRE dataset with LLaMA2-7b

5 RELATED WORK

Lifelong model editing is an active research area with many attempts Wang et al. (2024); Meng
et al. (2022b); Yu et al. (2024) demonstrating encouraging results. Recently, MoE gained significant
research attention for enhancing the performance of large language models. They have shown their
potential in various applications. In the following, we highlight some of the most relevant works.

Model editing. UniAdapt is related to model editing which aims to update knowledge of pre-
trained LLMs. Instead of retraining the model which is infeasible, the task of model editing is to
fine-tune the model by either directly modifying the model parameters or dynamically loading new
knowledge from external storage. MEND Mitchell et al. (2021) trains a meta-network that modifies
the parameters of the target model. ROME Meng et al. (2022a) insert key-value pairs into a layer
of a feed-forward layer by considering the layer as linear associative memory. While MEND and
ROME are effective, they suffer from low locality. To address this, SERAC Mitchell et al. (2022)
employs a router mechanism that directs inputs to the appropriate model (i.e., either the new model
or the original model). IKE Zheng et al. (2023) teaches the targeted model to revise the output
with high-quality demonstrations. Both SERAC and IKE achieve comparable results to MEND and
ROME.

Lifelong model editing. UniAdapt is closely related to lifelong model editing, where thousands of
edits are inserted continually. MEMIT Meng et al. (2022b) extends ROME to insert thousands of
key-value pairs. GRACE Hartvigsen et al. (2024) assigns knowledge into multiple clusters, allowing
the system to query and apply appropriate patches when needed. MELO Yu et al. (2024) extends
GRACE by using dynamic Lora to store patches. WISE Wang et al. (2024) relies on activation
scores to route inputs to either the main memory or side memory. Overall, these tools employ a
routing mechanism, except for MEMIT. Both MEMoE Wang & Li (2024b) and LEMoE Wang & Li
(2024a) rely on anchor embeddings to distribute tokens to the corresponding experts.

Spare Mixture of Experts (SMoE). UniAdapt is closely related to SMoE, where a gate network
or router is responsible for dispatching tokens to a subset of experts. The work Fedus et al. (2022)
introduces an approach named switch transformer to scale neural networks up to a trillion parame-
ters. It selectively activates relevant experts for each input. Shazeer et al. (2017) features a trainable
gating network to optimize expert selection.

6 CONCLUSION

In this work, we present UniAdapt, a universal adapter for knowledge calibration. UniAdapt is fully
model-agnostic and designed for seamless plug-and-play integration. It has MoE-style architecture
and is attached to the MLP layer to calibrate the original output. The router with multiple shards
can precisely forward queries to the experts that store knowledge and make no modifications when
the queries are irrelevant. The experimental results show that UniAdapt achieves the significantly
improved performance on various models and datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder for
english. In Proceedings of the 2018 conference on empirical methods in natural language pro-
cessing: system demonstrations, pp. 169–174, 2018.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv
preprint arXiv:2104.08164, 2021.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang. On the
benefits of learning to route in mixture-of-experts models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9376–9396, 2023.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-
agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852, 2020.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural
Information Processing Systems, 36, 2024.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion
for smart reply. arXiv preprint arXiv:1705.00652, 2017.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv:1706.04115, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 35, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Devendra Singh Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping, William L
Hamilton, and Bryan Catanzaro. End-to-end training of neural retrievers for open-domain ques-
tion answering. arXiv preprint arXiv:2101.00408, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models. arXiv preprint arXiv:2405.14768, 2024.

Renzhi Wang and Piji Li. Lemoe: Advanced mixture of experts adaptor for lifelong model editing
of large language models. arXiv preprint arXiv:2406.20030, 2024a.

Renzhi Wang and Piji Li. Memoe: Enhancing model editing with mixture of experts adaptors. arXiv
preprint arXiv:2405.19086, 2024b.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. arXiv
preprint arXiv:2305.13172, 2023.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19449–19457, 2024.

Wei Zhao, Zhe Li, Yige Li, Ye Zhang, and Jun Sun. Defending large language models against
jailbreak attacks via layer-specific editing. arXiv preprint arXiv:2405.18166, 2024.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? arXiv preprint arXiv:2305.12740, 2023.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

12

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DESCRIPTION OF DATASETS

We utilized two standard datasets: zsRE Levy et al. (2017) and Counterfact Meng et al. (2022a). Ta-
ble 5 illustrates examples from these datasets, where each row has three pairs: (xe, ye), (xirr, yirr)
and (P(xe), ye) for the evaluation. ZsRE is a context-free Question-answering (QA) dataset contain-
ing factual information. In contrast, Counterfact focuses on counterfactual information. Compared
to zsRE, the Counterfact dataset is considered more challenging to apply, as it attempts to erase the
model’s existing contradictory information. Consequently, it often yields lower accuracy. In our
experiments with these datasets, we adopt the version proposed by Yao et al. (2023)

zsRE Counterfact

xe, ye Which college or university is related
with Mobolaji Johnson? Royal Military
Academy Sandhurst

The native language of Francis
Jammes is German

xirr, yirr nq question: where were the olympics held
in the 1980s? Moscow, Soviet Union

The mother tongue of Frédéric Bas-
tiat is French

P(xe), ye Which university or university is associ-
ated with Mobolaji Johnson? Royal Mil-
itary Academy Sandhurst

Where Francis Jammes is from,
people speak the language of Ger-
man

Table 5: Editing dataset example

A.2 TRAINING DETAILS

In our reported results in Table 2 and Table 3, UniAdaptis reported with the following hyper-
parameters: number of experts = 1, ϵ = 0.6, TopK = 1, edited layer = 0, and number of epochs
to train the adapter = 25. It is worth noting that this configuration is not our best — our optimal
setup uses an edited layer of 3 and 4 experts.

A.3 ADDITIONAL EXPERIMENTS

In general, an adapter’s effectiveness heavily depends on the layers selected for editing. Choosing
the right layer for a specific dataset is crucial to achieving high accuracy. In addition to the re-
sults presented in the main content, we explored modifying different layers of two primary models:
GPT2-XL and LLaMA2-7B, to identify the optimal layer for editing. Table 6 shows that for GPT2-
XL, layer 16 achieves the highest score of 0.83, with layers 1 and 17 tying for second at 0.82. For
LLaMA2-7B, layer 4 performs best, followed closely by layer 3. Overall, the best layer for editing
varies between models. However, layer 0 emerges as a reliable choice, consistently yielding rela-
tively high accuracy across models. Moreover, earlier layers typically yield better results than later
ones.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

GPT2-XL LLaMA2-7B
Layer Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑
0 0.98 0.53 0.91 0.81 0.99 0.57 0.94 0.83
1 1.00 0.55 0.91 0.82 1.00 0.70 0.94 0.88
2 1.00 0.50 0.91 0.80 1.00 0.77 0.94 0.90
3 1.00 0.35 0.91 0.75 1.00 0.79 0.94 0.91
4 1.00 0.47 0.91 0.80 0.98 0.83 0.94 0.92
5 1.00 0.27 0.91 0.73 0.98 0.72 0.94 0.88
6 0.82 0.24 0.91 0.66 0.99 0.68 0.94 0.87
7 1.00 0.41 0.91 0.77 0.96 0.65 0.94 0.85
8 1.00 0.47 0.91 0.79 0.99 0.62 0.94 0.85
9 1.00 0.52 0.91 0.81 0.99 0.56 0.94 0.83
10 1.00 0.51 0.91 0.81 0.88 0.33 0.94 0.72
11 1.00 0.53 0.91 0.81 0.98 0.47 0.94 0.80
12 1.00 0.46 0.91 0.79 0.98 0.51 0.94 0.81
13 1.00 0.43 0.91 0.78 0.94 0.43 0.94 0.77
14 0.94 0.42 0.91 0.76 0.99 0.45 0.94 0.79
15 1.00 0.42 0.91 0.78 0.95 0.35 0.94 0.75
16 1.00 0.57 0.91 0.83 0.99 0.49 0.95 0.81
17 1.00 0.55 0.91 0.82 0.93 0.38 0.94 0.75
18 1.00 0.37 0.91 0.76 0.99 0.45 0.94 0.80
19 1.00 0.53 0.91 0.81 0.96 0.41 0.94 0.77
20 1.00 0.39 0.91 0.77 0.99 0.47 0.94 0.80
21 1.00 0.33 0.91 0.75 0.97 0.42 0.94 0.78
22 1.00 0.53 0.91 0.81 0.98 0.42 0.94 0.78
23 1.00 0.40 0.91 0.77 0.99 0.46 0.94 0.80
24 1.00 0.53 0.91 0.81 0.99 0.47 0.94 0.80
25 1.00 0.36 0.91 0.76 0.96 0.42 0.94 0.78
26 1.00 0.48 0.91 0.80 0.97 0.42 0.94 0.78
27 1.00 0.46 0.91 0.79 0.96 0.39 0.94 0.76
28 0.98 0.45 0.91 0.78 0.88 0.32 0.94 0.72
29 0.53 0.16 0.91 0.54 0.99 0.42 0.94 0.78
30 0.99 0.40 0.91 0.77 0.87 0.32 0.94 0.71
31 1.00 0.47 0.91 0.80 0.70 0.30 0.94 0.65
32 1.00 0.33 0.91 0.75
33 1.00 0.29 0.91 0.73
34 1.00 0.30 0.91 0.74
35 0.99 0.26 0.91 0.72
36 0.97 0.28 0.91 0.72
37 0.98 0.28 0.91 0.72
38 0.99 0.26 0.91 0.72
39 0.91 0.20 0.91 0.68
40 0.95 0.25 0.91 0.70
41 0.92 0.22 0.91 0.68
42 0.94 0.21 0.91 0.69
43 0.93 0.21 0.91 0.69
44 0.89 0.20 0.91 0.67
45 0.91 0.22 0.91 0.68
46 0.93 0.21 0.91 0.68
47 0.82 0.17 0.91 0.63

Table 6: Counterfact dataset. Editing performance across all layers

14

	Introduction
	Preliminaries
	Lifelong Model Editing
	Lifelong Model Editing Using Memory

	Method
	UniAdapt Architecture
	Vector-Assisted Router

	Experiments
	Experiment Setups
	Main Results
	Ablation Studies

	Related Work
	Conclusion
	Appendix
	Description of Datasets
	Training Details
	Additional Experiments

