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ABSTRACT

Machine learning has invaded various domains of computer science, including
black-box optimization. Recent research is particularly concerned with Bayesian
Optimization and with Monte Carlo Tree Search. However, comparative experi-
ments are usually performed on rather small benchmarks and there are visible is-
sues in the experimental setup, such as poor initialization of baselines, overfitting
by specifying hyperparameters specifically for each test function, and low statisti-
cal significance. In addition, the interface is sometimes very problem-specific and
has more impact on the results than the algorithm itself.
We compare several black-box optimization tools from the machine learning
world and benchmark them on the classical BBOB benchmark suite, well known
in the black-box optimization field, and on Direct Policy Search for OpenAI Gym,
a classical Machine Learning benchmark.
The benchmarks in this work include randomization of the optimum. For BBOB,
we consider 15 random instances per test function and dimension, resulting in a
total of 24 functions × 6 dimensionalities × 15 random instances = 2160 in-
stances. For OpenAI Gym, we consider tiny and larger neural networks, on a total
number of 13 problems × 8 budgets × 10 repetitions = 1040 and 18 problems ×
8 budgets × 10 repetitions = 1440 instances, respectively.

1 INTRODUCTION

Black-Box Optimization (BBO) is an affirmed and rapidly growing field of optimization and a topic
of critical importance in many application areas including complex systems engineering, energy and
the environment, materials design, drug discovery, chemical process synthesis, and computational
biology (Bajaj et al., 2021). As in other classical optimization contexts, BBO assumes that we are
facing an objective function f for which we aim to provide a solution x with f(x) as good as possible
with as few calls to f as possible. The key distinguishing property of BBO is that we assume that
we no not have any information about f other than the quality of the solution candidates that have
already been evaluated. In particular, we do not have direct access to gradients. A typical BBO
scenario is the optimization of a problem that requires simulations or physical experiments to assess
and to compare the quality of the solution candidates.

Because of its high practical relevance, people with many different backgrounds are drawn into
BBO, leading to a multitude of approaches in the area, ranging from heuristics to local/global mod-
eling approaches. To understand strengths and weaknesses of these different methods, fair per-
formance comparisons are needed. Several platforms and benchmark suites (i.e., collections of
benchmark problems) address this empirical comparison, among them the Black-Box Optimization
Benchmarking (BBOB) collection (Hansen et al., 2009b; Varelas et al., 2020; Hansen et al., 2021),
Large-Scale Global Optimization (LSGO) (Tang et al., 2010), Nevergrad (Rapin & Teytaud, 2018),
Pseudo-Boolean Optimization (PBO) (Doerr et al., 2018), and Machine Learning and Data Analysis
(MLDA) (Marcus Gallagher, 2018; Rapin et al., 2019).1 The proposed benchmarks are reproducible
and, depending on the platform, are rooted in the real-world, have randomized optima, and may
involve large-scale problems.

1Non-surprisingly, many other benchmarking environments for evaluating and comparing performances
for specific BBO tasks, such as hyperparameter optimization (Bischl et al., 2016; Hutter et al., 2014), neural
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Without knowing the structure of the objective function, the optimization problem can be addressed
through learning (Wang et al., 2020b). Based on a training set, i.e., a set of samples whose objective
function value is known, a surrogate regressor or model f̂ is learned and optimized through an
iterative procedure. In fact, surrogate models allow for the construction of a computationally cheap-
to-evaluate approximation of the considered expensive objective function and replace the direct
optimization of the real objective with the model. Specifically, if the true nature of the high-fidelity
model is represented by a vector of variables x and an output y such that y = f(x), f : X ⊂ RD →
R, then the surrogate model is an approximation of the form:

ŷ = f̂(x,x(i), y(i)), i = 1, . . . , n, (1)

where n is the number of training points such that y(i) = f(x(i)). The set of training points
{x(i) 7→ y(i) = f(x(i)) | i = 1, . . . , n} represents the only insight one can gain into the true
model function f and, since it is expensive to obtain, it must be intelligently chosen.

Recently, Machine Learning (ML) has gone down this road and proposed several tools for BBO
along these lines. In particular, a large field of research is Bayesian Optimization (BO), which is
based on the pioneering Efficient Global Optimization (EGO) algorithm (Jones et al., 1998). Despite
its success, BO is stated to be limited to less than 15 parameters (Nayebi et al., 2019; Wang et al.,
2016) and a few thousand evaluations (Wang et al., 2018) according to the literature. To overcome
this issue, recent research started to explore space partitioning and local modeling. In fact, learning
a classifier that locates the samples on a promising subregion of the domain with high probability
might be more effective that learning a regressor on the whole domain. Among other partitioning
strategies, LA-MCTS (Wang et al., 2020b) recursively learns space partition in a hierarchical manner
using Monte Carlo Tree Search (MCTS) (Coulom, 2007). Therefore, in addition to BO, MCTS has
also been adapted from control and games to BBO (Munos, 2011; Wang et al., 2020a). However,
both the BO and MCTS tools for BBO have rarely been compared to existing BBO methods in a
systematic and satisfactory manner. For example, the comparisons in the LA-MCTS paper (Wang
et al., 2020b) heavily depend on poor initialization of competitors, while the comparisons in (Turner
et al., 2021) – despite mentioning a reference Nevergrad – consider only the simple (1+1) sampling
method and not the BBO methods provided by the Nevergrad platform. However, we note some
efforts to make neutral and comprehensive comparisons. Extensive comparisons in Cotton (2020)
and Rapin & Teytaud (2018) tend to favor more classical methods such as tools from mathematical
programming like Cobyla and others (Powell, 1994; Cartis et al., 2018; Powell, 1964) or evolution
strategies (Beyer, 2001) like CMA (Hansen & Ostermeier, 2003), possibly equipped with surrogate
models (Auger et al., 2005; Khowaja et al., 2021; Luksic et al., 2019). Hutter et al. (2013) ran a
well-known BO framework on the most popular benchmark suite, namely BBOB, and got positive
results for BO for limited settings only.

In this work, we extend the comparison made in (Hutter et al., 2013) by adding several state-of-the-
art solvers and by comparing not only on the BBOB benchmark, but also – as it is closer to ML – on
direct policy search for OpenAI Gym problems. We focus on moderate budgets, which are supposed
to be the killer application of BO.

2 STATE OF THE ART: WELL KNOWN TOOLS IN BBO, AND RECENT NEW
METHODS FROM ML

We compare tools from the ML world to classical BBO tools on classical benchamrks. As baselines
classically used in BBO, we consider CMA, which stands for CMA-ES, a classical evolution strat-
egy (Hansen & Ostermeier, 2003), Cobyla, a tool from mathematical programming (Powell, 1994),
and NGOpt from Nevergrad (Rapin & Teytaud, 2018). NGOpt is a wizard (Liu et al., 2020; Me-
unier et al., 2021) that combines many classical algorithms in various ways (Meunier et al., 2021).
In the use-cases considered in this work (sequential, low-dimensional, noise-free problems), NGOpt
mainly uses CMA, Cobyla, and (1+1)-type sampling equipped with metamodels.

Extensive comparisons have already been proposed in Nevergrad (Meunier et al., 2021), focusing
on reproducibility, real-world, and different problem sizes. We propose here additional experiments

architecture search (Zela et al., 2020), expensive global optimization (Bliek et al., 2021) exist, but have a much
more limited scope than the above-mentioned packages.

2



Under review as a conference paper at ICLR 2022

in the well-known BBOB framework (Hansen et al., 2009a), chosen for its simplicity/canonicity.
Indeed, the tested framework only needs to optimize dozens of objective functions within given
bounds, and the interface typically consists of one or two lines of code (see Appendix B). We also
tested several optimizers on OpenAI Gym with Direct Policy Search. Compared to Nevergrad’s ex-
periments (Rapin & Teytaud, 2018; 2020), we have a focus on bounded domains in BBOB, which
makes the comparison easier: most BBO frameworks have a bounded setting mode, while BBOB
randomizes the position of the optimum to avoid overfitting, which makes the results more reliable.
In addition, BBOB was developed independently of the ML tools, Cobyla and NGOpt, which we are
comparing. This should lead to a more neutral comparison. For readers familiar with NGOpt, we
note that NGOpt is based in part on the results obtained on YABBOB, which is similar to BBOB but
assumes unbounded domains. We nevertheless carefully check that our conclusions hold even with-
out considering NGOpt. Also, we include DefaultCMA (Hansen & Ostermeier, 2003), a version
of CMA without the BBOB-specific initialization used in BBOB specifically for the experiments
of CMA on BBOB (Hansen et al., 2009a): results are less good, but without big impact on the
conclusion.

Compared to other benchmarks, the original BBOB is based on low dimension (≤ 40), average
budget (1000D), continuous optimization, and a fully sequential setting (Hansen et al., 2021). BO
is supposed to be well suited for small dimensions and moderate budgets. Therefore, we adjust the
BBOB setting for lower budgets, such as 10D and 100D, as suggested in (Hutter et al., 2013). We
note that running BO for large budgets is difficult due to the computational cost. Moreover, BO
is usually not competitive for larger budgets. In our OpenAI Gym experiments, we maintain the
low-dimensional focus by using tiny neural networks. Our goal is not top performance, but neutral
comparison between BBO methods. We chose OpenAI Gym because it has become a standard in
the reinforcement learning environment (Thoma, a;b; Manukyan et al., 2019; Lewis-II et al., 2019;
Henry & Ernst, 2021; Zubow et al., 2021; Green et al., 2018; Sinha et al., 2020; Rezazadeh et al.,
2021).

In the BBOB benchmark with our specific setting using a low budget, we observe that there are
elements that have a significant impact on the overall result:

• The LinearSlope function, which has optima in the corners, is difficult for methods that
assume that the optimum is supposed to be clearly inside. We have adapted Nevergrad’s
NGOpt so that it can also search the boundary.

• The precision parameter, 1e−8 by default, has a significant impact on results. As we focus
on a lower budget than BBOB’s classical setting, we use 1e− 5.

However, we verified that removing LinearSlope or changing the precision parameter has an impact
on the results, but not on the overall picture of comparing new optimization methods from the ML
literature with known established methods from the rest of the literature.

3 BACKGROUND

3.1 BAYESIAN OPTIMIZATION

In this section, we now provide a brief description of BO (Jones et al., 1998; Mockus, 2012). BO is a
sequential design strategy targeting global optimization of black-box functions that does not assume
any functional forms. It is particularly advantageous for problems where the objective function is
difficult to evaluate, is a black box with some known structure, relies upon less than 15/20 dimen-
sions, and where no sensitivity and derivative information is available. Since the objective function
does not have an explicit mathematical formulation, BO treats it as a random function and places a
prior over it. A Kriging model, also known as Gaussian Process Regression (GPR), can be used as
a prior probability distribution over functions in BO, also known as Efficient Global Optimization
(EGO) (Jones et al., 1998).

BO starts with sampling an initial Design of Experiments (DoE) of size n0: X =
[x1,x2, . . . ,xn0

]> ⊆ Dn0 (Santner et al., 2003; Forrester et al., 2008). The corresponding objective
function values are denoted as y = (f(x1), f(x2), . . . , f(xn0

))>. Conventionally, a centered Gaus-
sian process prior is assumed on the objective function: f ∼ gp(0,K(·, ·)), where K : D×D→ R
is a positive definite function – also known as kernel function – which computes the autocovariance
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of the process. Often, a Gaussian likelihood is taken, leading to a conjugate posterior process (Ras-
mussen & Williams, 2006), i.e., f | y ∼ gp(f̂(·),K ′(·, ·)), where f̂ and K ′ are the posterior mean
and covariance function, respectively.

On an unknown point x, f̂(x) yields the maximum a posteriori estimate of f(x) whereas ŝ2(x) :=
K ′(x,x) quantifies the uncertainty of this estimation. The posterior process is, again, a GPR. Based
on the posterior process, promising points are identified via the so-called infill-criterion, i.e., by
optimizing an acquisition function that typically balances f̂ with ŝ2 (exploitation vs. exploration).
A variety of infill-criteria has been proposed in the literature, e.g., Probability of Improvement (For-
rester et al., 2008; Mockus, 2012), Expected Improvement (Forrester et al., 2008), and the Upper
Confidence Bound (Lai & Robbins, 1985; Srinivas et al., 2012). When a new candidate point is
selected by the infill-criterion, it is evaluated and added to the BO data set, which is used to update
the GPR posterior. This process is repeated until a stopping condition is met, i.e., a good enough
result is located or resources are exhausted.

3.2 MONTE CARLO TREE SEARCH

While BO is widely used in ML, other tools have also migrated from ML to BBO. For example,
Monte Carlo Tree Search (MCTS) (Coulom, 2007) migrated from trees of bandits for games and
control, including alpha-zero (Silver et al., 2016; 2017), to applications in BBO (Munos, 2014; Wang
et al., 2020a). In particular, LA-MCTS (Wang et al., 2020a) progressively learns and generalizes
promising regions in the problem space by recursively partitioning so that solvers like BO can access
these regions to improve their performance.

At any iteration t of the main algorithm, we have a training dataset Dt = (X,Y) of all the points
evaluated so far. A tree node A represents a subregion of the search space ΩA. Therefore, Dt∩ΩA is
the set of all the samples falling in the subregion ΩA. Let us consider ΩB and ΩC as a high and a low
performing disjoint subregion of ΩA. MCTS uses the Monte Carlo simulation to accumulate value
estimates that lead to highly rewarding trajectories in the search tree. In other words, MCTS pays
more attention to promising nodes (i.e., subregions of the search space), in order to avoid the need to
brute force all possibilities. This is done by using a Upper Confidence Bound (UCB) policy. More
specifically, each node has an associated UCB value and, during selection, we always chose the
child node, associated with a suitable subregion of ΩA, with the highest UCB value. The statistics
used to compute the UCB are (1) nA, which is the number of samples in Dt ∩ΩA, and (2) the node
value vA := 1

nA

∑
xi∈Dt∩ΩA

f(xi).

Therefore, in LA-MCTS, which is the MCTS-based optimizer analyzed in this study and compared
to the other optimizers, promising regions are found by recursively partitioning the search space
using latent actions. In one iteration, LA-MCTS starts building the tree by splitting and then selects
a region based on UCB. Finally, sampling is performed in the selected region using BO. In this way,
BO avoids over-exploration of the search space and its performance is supposed to be improved,
especially for high-dimensional problems.

4 EXPERIMENTAL RESULTS

We now discuss our key findings for the two benchmark suites, BBOB and OpenAI Gym. In particu-
lar, our results allow for drawing considerations about different BO-based methods on the considered
test beds.

4.1 EXPERIMENTAL SETUP

Algorithms: From the large collection of existing solvers from the ML world, we have selected the
following ones, which we compare to the standard BBO approaches mentioned in Section 2:

• BO: the Bayesian Optimization algorithm (Snoek et al., 2012) implemented in Nevergrad.
The python class is a wrapper over the bayes opt package (Nogueira, 2014).

• Turbo: trust-region inspired algorithm proposed at NeurIPS 2019 (Eriksson et al., 2019).
Turbo20 denotes the multi-trust-regions counterpart of Turbo.
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• AX: a ML system to help iteratively exploring parameter spaces in order to identify optimal
configurations in a resource-efficient manner, proposed in (FacebookResearch, 2020).

• SMAC (Hutter et al., 2011): sequential model-based algorithm for the hyperparameter op-
timization of ML algorithms, specifically suitable for high dimensions and discrete input
dimensions. SMAC2 refers to SMAC-HPO, i.e., SMAC with Hyperparameter Optimiza-
tion.

• HyperOpt (Bergstra et al., 2015): library for serial and parallel hyperparameter optimiza-
tion, designed to accommodate Bayesian optimization algorithms based on Gaussian pro-
cesses and regression trees.

• Optuna (Akiba et al., 2019): automatic hyperparameter optimization software framework,
particularly designed for ML. Thanks to its high modularity, the user can dynamically
construct the search spaces for the hyperparameters.

• LA-MCTS (Wang et al., 2020a): MCTS-based derivative-free meta-solver that recursively
learns space partition in a hierarchical manner. Sampling is then performed in the selected
region using BO.

It should be noted that, to estimate the variability of results, we ran SMAC2 in 3 versions, resulting
in SMAC2b and SMAC2c, which are exactly equivalent to SMAC2. We only report results from
codes that are available and, therefore, reproducible. All results were independently computed by
us, i.e., we did not make use of existing tables of results.

Benchmark Problems: For the standard single-objective BBOB benchmark suite, results are aver-
aged over 24 noiseless, scalable test functions (f1 – f24). Although all functions are defined and can
be evaluated over RD, the actual search domain is [5, 5]D. We consider six different dimensions (2,
3, 5, 10, 20, and 40) and 15 random instances per test function and dimension.

Afterward, we work on a multi-deterministic Open AI Gym with tiny neural nets. Here, a random
seed is randomly drawn for each run, to avoid overfitting. Within the gym library, we select a few
environments to compare algorithms based on simple regret, i.e., the error between the algorithm’s
recommendation and the optimal solution: MountainCarContinuous-v0 (D = 8), NChain-v0 (D =
40), Acrobot-v1 (D = 60), LunarLanderContinuous-v2 (D = 88), GuessingGame-v0 (D = 24),
MountainCar-v0 (D = 12), CartPole-v1 (D = 28), CartPole-v0 (D = 28). We selected those
problems as being, in our context of tiny nets, sufficiently challenging and not too hard, i.e., not all
algorithms performing equally. Here we use a neural factor of 1, i.e., the scaling coefficient used
by Nevergrad to choose the size of neural networks is set to 1. The dimension is a consequence
of the number of neurons, which in turn is based on the scaling factor, and the number of inputs
and outputs. Aggregate plots based on average winning rates are also presented, where we include
problems with dimensions D < 50 for a neural factor of 1 and D ≤ 264 for larger networks defined
by setting the neural factor to 3 inside Nevergrad. Both regret and winning percentage are evaluated
at fixed budgets of 25, 50, 100, 200, 400, and 800 function evaluations.

4.2 RESULTS ON BBOB

As suggested in (Hutter et al., 2013), we focus on a lower budget (10D or 100D) compared to
classical experiments with BBOB. In case of crash of a method, we rerun it with the remaining
budget. Figs. 1 and 2 present results with budget equal to 10D and 100D, respectively, in dimension
D. The x-axis is the budget divided by the dimension, in logarithmic scale, while the y-axis shows
the frequency of problem solving, i.e., the higher, the better. We use the plots built by COCO/BBOB,
which include a horizontal line at the end (the rightmost points are not actual data, but are just for
readability). The last x-tick corresponds to the allowed budget: the framework sometimes plots
values that are slightly above the budget, when the code under consideration exceeds the limit, but
the correct x-axis value is used.

Our experiments for a budget of 10D reproduce the results in (Hutter et al., 2013), where SMAC
outperforms CMA. Hutter et al. (2013) mentioned that BO, specifically SMAC, can compete with
CMA on BBOB for low budgets such as 10D. However, CMA is poorly suited for such a context.
Although we tested fewer optimizers for the 20D and 40D cases due to the high computational cost,
it is interesting to note that Cobyla, which is simply based on linear interpolation, often performs
better than all other solvers. Although there is no tuning for our present results from Cobyla on
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Figure 1: BBOB with precision 1e − 5 and budget 10D. X-axis: budget/dimension in log-scale.
Y-axis: frequency of solving at the requested precision. The right-most point after each horizontal
line is added for readability of lines by the BBOB framework. Plots for dimensions 2, 3, 5, 10, 20,
and 40 are shown.

BBOB, it outperformed all BO-based algorithms. Cobyla is the algorithm chosen by a wizard like
NGOpt for the test cases considered. This is the reason for the similar performance and also a proof
of the good tuning of the Nevergrad wizard NGOpt.

4.3 DIRECT POLICY SEARCH ON OPENAI GYM

LA-MCTS (Wang et al., 2020a) claims good results for some OpenAI Gym problems, but the plots
provided in the paper clearly show the influence of bad initialization of its competitors. We therefore
provide an independent comparison. To this end, we consider Ng-Full-Gym, which is Nevergrad’s
direct policy search applied to OpenAI Gym. This is optimizing a neural network as a controller for
OpenAI Gym problems. However, we consider a small version (small number of neurons, low bud-
get) for matching the low-budget context of the present work. The values of the objective function
are noisy.

We consider the multi-deterministic case, i.e., we randomly draw a seed and keep it for each op-
timization run. This is somewhat analogous to random perturbation of the optimum in classical
BBO benchmarks in the sense that the objective function is deterministic but drawn randomly. DE,
PSO, TwoPointsDE, CMandAS2, CMA, DiagonalCMA and other solvers can all be found in (Rapin
& Teytaud, 2018) and are classical BBO tools from the black-box optimization community. QO-
RandomSearch (Rahnamayan et al., 2007), MetaTuneRecentering (Meunier et al., 2020), MetaRe-
centering (Cauwet et al., 2019) are variants of random search that are fully parallel and reduce
redundancies compared to random search.

On the OpenAI Gym task, we obtain good results for some BO methods for low budgets. We plot
simple regrets in Fig. 3. Here, the lower the curve, the better. It can be noted that Cobyla does not
perform as well as for BBOB, while PSO performs impressively well. As shown in the aggregated
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Figure 2: As Fig. 1 but with a 100d budget. Turbo’s speed makes its for this higher budget. Results
are shown for dimensions 2, 3, 5, and 10.

comparison in Fig. 4, it is the only algorithm that reliably outperforms all other methods by a sig-
nificant margin. This is actually good for fast low-precision approximations on difficult problems.
After PSO, many other methods perform more or less equivalently, with some BO-based solvers also
showing potential. At budget 400, SMAC and SMAC2 actually perform better than PSO, which has
the upper hand for all the other evaluation budgets. For higher dimensions, Fig. 5 shows that BO
becomes less competitive, and for high budgets, Meunier et al. (2021) (or Appendix F) shows that
(possibly Diagonal) CMA or wizards perform best. Nevertheless, BO was not too far off on the
smallest OpenAI Gym problems, and would have been successful on the lowest dimensions if PSO
had not been included: many of the reasonably good methods were some form of BO in Fig. 4
(though not for Fig. 5, at larger dimension, nor in (Meunier et al., 2021), for larger budget).

5 CONCLUSION

Both BBOB and Nevergrad (see Appendix A), with their randomized optima, many repetitions, and
large number of test functions, combined with a framework that prevents users from optimizing
hyperparameters for each objective function separately, are more reliable than ad hoc benchmarks
designed specifically for a new method.

Our results provide insight into the comparison between different BO methods. SMAC performed
best among the tested BO methods for both BBOB and OpenAI Gym. We note that it was also
part of the best solution for the BBO challenge (Turner et al., 2021; Awad et al., 2020). Turner
et al. (2021) highlights Turbo as a strong BO, but SMAC was consistently better in our experiments.
However, Turbo and HyperOpt have the advantage of being computationally cheaper. HyperOpt did
not perform poorly on low-budget neurocontrol for OpenAI-Gym. We note that this benchmark is
very sensitive to variable scaling. While BBOB focuses on uniform translations of optima, a good
method here should be able to check the center of the domain and quickly move closer to it if needed.

More generally, despite efforts to consider the most favorable settings for ML-based methods (in
particular for OpenAI Gym, where we restricted the setting until the dimension and budget match
the capabilities of BO), and despite the fact that tools from ML are not penalized in the present paper
for their internal computational costs, there is no tool from ML that outperforms classical algorithms
in our experiments, neither in BBOB nor in the direct policy search for OpenAI Gym.
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Figure 3: Multi-deterministic Open AI Gym with tiny neural net: a random seed is randomly drawn
for each optimization run, so that overfitting is more difficult. See Fig. 4 for an aggregated view.

FURTHER WORK & LIMITATIONS

In future work, we plan to compare BO and other methods in a discrete setting as well. We plan
to look for reproducible, error-free benchmarks where BO performs better than the classical meth-
ods. At the moment, there is only anecdotal evidence that BO performs well in BBO, but our
low-dimensional low-budget control tasks in Fig. 4 suggest that BO may perform well in some
cases, although it suffers from competition with PSO. These neurocontrol tasks are quite sensitive
to the scaling of the variables. There is room for further investigation, PSO might be good at finding
the right scale around the center of its domain. In this context, we note the impressive performance
of quasi-opposite sampling despite its extreme simplicity: we plan to investigate algorithms that
are robust to scaling, e.g., using Cauchy sampling or bet-and-run over multiple scalings, or bandit
algorithms for choosing between different scalings. Our benchmarks cover only a limited range of
problems: we refer to (Rapin & Teytaud, 2018; Gould et al., 2015; Gallagher & Saleem, 2018; Li
et al., 2013) and the many variants of BBOB (Hansen et al., 2009a) for more. Another possibility for
which the tools from BO might be well suited are benchmarks that focus on conditional variables.
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Budget 25 Budget 50 Budget 100

Budget 200 Budget 400 Budget 800

All budgets aggregated.

Figure 4: Same problem as Fig. 3, but aggregated comparison as provided by Nevergrad, best
methods first: row A col B shows the frequency at which method A outperformed method B for the
given budget. 13 distinct problems per budget. We include only problems for which dimension is
D < 50. Methods are ranked per average winning rate. Note that winning rates are all very close
to each other: only PSO is significantly better. Fig. 5 presents similar experiments but with bigger
neural nets. Fig. 6 extends the present results to budgets 1600 and 3200.
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REPRODUCIBILITY STATEMENT

The results in this paper are easily reproducible. Appendix B contains the essential lines of code to
run each of the considered ML-based black-box algorithms on the COCO/BBOB benchmark suite.
This can be used by cloning a repository and following the steps provided in the COCO/BBOB
documentation, as described in Appendix C. The OpenAI Gym benchmark is already included in
Nevergrad. Therefore, we apply the standard Nevergrad’s direct policy search to it. The steps to
perform optimization studies using Nevergrad are available at https://facebookresearch.
github.io/nevergrad/ and developed in Appendix D of the present paper.
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A DISCUSSION: DIFFERENCES BETWEEN BBOB AND NEVERGRAD

There are differences between the main benchmarking suites.

A.1 DOMAINS

First, working in unbounded domains with a Gaussian distributed optimum (as in some benchmarks
in Nevergrad) leads to differences compared to benchmarks on bounded domains such as BBOB,
especially for functions with an optimum at the boundary. Both contexts look interesting, but some
adaptation of NGOpt was needed to make it tackle optima on the boundary.

A.2 BUDGETS AND INDEPENDENCE

In BBOB, when specifying a maximum budget of 100D, the results plotted for a lower budget of
10D are obtained as a truncation of the 100D-budget runs. On the contrary, Nevergrad runs each
budget separately, which is more expensive from a computational point of view, but gives a more
complete picture for the different budgets. This can be remedied by launching distinct runs for
different budgets for BBOB.

A.3 PARALLELIZATION

Nevergrad was more suitable for testing very slow algorithms like AX (FacebookResearch, 2020)
because it is easy to massively parallelize it on a cluster.

B BBOB INTERFACES

A strength of BBOB is that the interfacing is quite small, making reproducibility feasible.

1 % Nevergrad’s NGOpt.
2 % Also SMAC, SMAC2, AX, BO: using Nevergrad’s API.
3 ng.optimizers.NGOpt(ng.p.Array(lower=lbounds, upper=ubounds, shape=[dim])

, num_workers=1, budget=evals).minimize(f)
4

5 % HyperOpt.
6 fmin(fn=lambda x: f([x[’w’+str(i)] for i in range(dim)]), space={’w’+str(

i): hp.uniform(’w’ + str(i), -5, 5) for i in range(dim)}, algo=tpe.
suggest, max_evals=evals)

7

8 % Optuna.
9 class OptunaObjective(object):

10 def __init__(self, problem):
11 self.problem = problem
12

13 def __call__(self, trial):
14 x = []
15 for i in range(self.problem.dimension):
16 x.append(trial.suggest_float("x{}".format(i), problem.

lower_bounds[i], problem.upper_bounds[i]))
17 return self.problem(x)
18

19 study = optuna.create_study(direction="minimize")
20 study.optimize(OptunaObjective(problem), n_trials=evalsleft())
21

22 % Turbo.
23 class turbo_function:
24 def __init__(self, dim=len(lbounds)):
25 self.dim = dim
26 self.lb = lbounds
27 self.ub = ubounds
28

29 def __call__(self, x):
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30 assert len(x) == self.dim
31 assert x.ndim == 1
32 assert np.all(x <= self.ub) and np.all(x >= self.lb)
33 return f(x)
34

35 my_turbo = Turbo1(f=turbo_function(), lb=lbounds, ub=ubounds, max_evals=
evals, n_init=min(evals, 20))

36

37 my_turbo.optimize()
38

39 % LA-MCTS.
40 % We tested several successive variants of the code,
41 % without much impact: the version below is the last.
42 % We also tested several values
43 % of ninits, without much change.
44

45 agent = MCTS(lb = f.lb,
46 ub = f.ub,
47 dims = f.dims,
48 ninits = 40, # We tested variants without much change.
49 func = f
50 )
51 agent.search(iterations = evalsleft())

C HOW TO INTERFACE YOUR FAVORITE OPTIMIZATION METHOD WITH
BBOB

First you have to git clone COCO/BBOB at https://github.com/numbbo/coco. There are
7 steps, but this is pretty simple, as one just needs to download the package and run experiments.
There is a single file to modify, where we optimize a given function f between−5 and 5 in dimension
D.

Hundreds of examples are available at https://numbbo.github.io/data-archive/
bbob/.

D HOW TO RUN THE EXPERIMENTS ON OPENAI GYM

OpenAI Gym was recently introduced in Nevergrad. Therefore, starting experiments is straight-
forward than interfacing with COCO. After cloning Nevergrad at https://github.com/
facebookresearch/nevergrad.git, experiments are launched with the following com-
mand line:

1 python -m nevergrad.benchmark ng_full_gym --repetitions=10 --plot

However, in order to run a reduced experiment like the one presented in this paper, we changed
the definition of the budget, dimension, and scaling (budget 25, 50, 100, 200, 400, 800, scaling-
factor 1, and add a limit 40 to the dimension) in the ng_full_gym experiment in nevergrad/
benchmarks/gymexperiments.py (Line 80) for obtaining the setup as in Section 4.1.

E BIGGER NEURAL NETS FOR OPENAI GYM

Fig. 5 is a more complete version of the Ng-Full-Gym problem, where the neural factor parameter,
which scales the size of the neural networks, is equal to 3. Dimensions up to 264 are considered.
This benchmark is unbounded: the scale of algorithms (the standard deviation of the first samples)
is critical, and makes comparisons difficult.

We note that PSO is still quite good. However, this remains small compared to traditional direct
policy search. Quasi-Opposite random search is still strong, although it is a fully parallel, feedback-
free method. This confirms that scaling properly and avoiding redundancy can be sufficient for such
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moderate budgets. Quasi-Opposite (Rahnamayan et al., 2007) sampling is a random search that
combines many scalings (by randomly drawing the scale) and reduces redundancies (by mirroring).

Budget 25 Budget 50 Budget 100

Budget 200 Budget 400 Budget 800

All budgets aggregated.

Figure 5: Same as Fig. 4, but with bigger nets (neural factor 3 in Nevergrad). 18 distinct problems
per budget. We truncated at dimension ≤ 264. Dimension ranges from 24 to 264 instead of 8 to 40
in Fig. 4. We note that PSO still dominates by far. Due to the computational cost, it was not possible
to finish the runs for SMAC. Fig. 6 extends the present results to budgets 1600 and 3200.
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F BUDGETS 1600 AND 3200

While Figs. 4 and 5 present results restricted to budget ≤ 800, Fig. 6 presents results for a larger
budget of 1600 evaluations applied to multi-deterministic Open AI Gym with both tiny and bigger
neural nets. As in Meunier et al. (2021), CMA or NGOpt get better as the budget grows. We also find
that, while most BO-based methods weaken, HyperOpt performs satisfactorily. The reader should
refer to Meunier et al. (2021) for larger budgets.

Budget 1600

Budget 3200

Figure 6: Extension of Fig. 4 and 5, for budget 1600 (top row) and 3200 (bottom row) for algorithms
that were sufficiently fast (faster than 3 days wall-clock time).
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