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ABSTRACT

Contrastive learning is a powerful self-supervised learning method, but we have a
limited theoretical understanding of how it works and why it works. In this paper,
we prove that contrastive learning with the standard InfoNCE loss is equivalent to
spectral clustering on the similarity graph. Using this equivalence as the building
block, we extend our analysis to the CLIP model and rigorously characterize how
similar multi-modal objects are embedded together. Motivated by our theoretical
insights, we introduce the Kernel-InfoNCE loss, incorporating mixtures of kernel
functions that outperform the standard Gaussian kernel on several vision datasets‡.

1 INTRODUCTION

Contrastive learning has emerged as one of the most prominent self-supervised learning methods,
especially in the realm of vision tasks (Chen et al., 2020a; He et al., 2019b). This approach trains a
neural network to map a set of objects into an embedding space, ensuring that similar objects are
closely positioned while dissimilar objects remain distanced. The InfoNCE loss, exemplified by
SimCLR (Chen et al., 2020a), is a widely employed loss function for achieving this goal.

In their inspiring work, HaoChen et al. (2021) demonstrated that by replacing the standard InfoNCE
loss with their spectral contrastive loss, contrastive learning performs spectral clustering on the
population augmentation graph. However, the spectral contrastive loss is seldom utilized in practice
and is not applicable for analyzing the performance of various similarity functions in the embedding
space. Furthermore, when employing the spectral contrastive loss, the final embedding constitutes a
combination of standard spectral clustering and an additional linear transformation. Consequently,
existing results do not establish a connection between the original InfoNCE loss and standard spectral
clustering.

In this paper, we prove that SimCLR, the standard contrastive learning method, performs spectral
clustering without modifying the InfoNCE loss or applying additional transformations to the em-
beddings. Our analysis involves a collection of n objects X = [X1, · · · ,Xn] within space X . For
these objects, we define a similarity graph with an adjacency matrix π, such that πi,j represents the
probability of Xi and Xj being paired together in the data augmentation step of contrastive learning.
Notice that π can be in general asymmetric.

Given this similarity graph, we aim to discover an embedding function f : X → Z . Denote
Z ≜ f(X) as the embedding of X, and our objective is to ensure that the Gram matrix KZ with
kernel k representing the similarities for Z closely approximates π. Please refer to Figure 1 for an
illustration.

However, directly comparing π with KZ can be difficult, as there are too many edges in both graphs.
Therefore, we define two Markov random fields (MRFs) based on π and KZ and compare the MRFs
instead. Each MRF introduces a probability distribution of unweighted directed subgraphs on n

∗Equal contribution.
†Corresponding author.
‡The code is available at https://github.com/yifanzhang-pro/Kernel-InfoNCE.
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Figure 1: An illustration of our analysis. The similarity matrix π encapsulates the relationships
between various images. Given the large size of the matrix, we employ a technique known as
Markov Random Field sampling to sidestep the issue of direct utilization. Through our research, we
discovered an equivalence between InfoNCE loss and a method known as spectral clustering when a
Gaussian kernel function was utilized, thus validating our approach.

objects (Van Assel et al., 2022), denoted as WX and WZ respectively. As a natural approximation
to the ideal loss between π and KZ, we employ the cross-entropy loss between WX and WZ. Our
paper’s surprising discovery is that the InfoNCE loss is equivalent to the cross-entropy loss when
each subgraph is constrained to have an out-degree of exactly one. Furthermore, when k is the
Gaussian kernel, optimizing the cross-entropy loss corresponds to executing spectral clustering on π.
By combining these two observations, we conclude that employing the InfoNCE loss is equivalent to
performing spectral clustering.

Our characterization of contrastive learning hinges on two crucial factors: the augmentation step
that defines a similarity graph, and the InfoNCE loss that measures the distance between two MRFs.
Consequently, any other models incorporating these two factors can be similarly analyzed. Notably,
the CLIP (Radford et al., 2021) model for multi-modal learning fits within this paradigm. Utilizing
the same framework, we establish a representation theorem for CLIP, demonstrating that it performs
spectral clustering on the bipartite graph induced by the paired training data.

Is it possible to improve the InfoNCE loss by using a different kernel? Based on the maximum
entropy principle, we demonstrate that the exponential kernels are the natural choices for capturing
the local similarity structure for contrastive learning. Empirically, we observe that taking the mixture
of Gaussian and Laplacian kernels, which maintain the aforementioned properties, can achieve better
performance than the Gaussian kernel on several benchmark vision datasets.

In summary, our main contributions include:

• We prove the equivalence of SimCLR and spectral clustering on the similarity graph.
• We extend our analysis to the multi-modal setting and prove the equivalence of CLIP and spectral

clustering on the multi-modal similarity graph.
• Inspired by theory, we propose a new Kernel-InfoNCE loss with mixture of kernel functions

that achieves better performance than the standard Gaussian kernel (SimCLR) empirically on the
benchmark vision datasets.

2 BACKGROUND

In this section, we will introduce the basic knowledge we will use throughout the paper. In this paper,
we use objects to denote data points like images or texts. Given a matrix X, we use Xi to denote
its i-th row, and Xi,j to denote its (i, j)-th entry. Same holds for matrices like WX, where we use
WX,i and WX,i,j , respectively.
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2.1 CONTRASTIVE LEARNING: SIMCLR

Given a query object q ∈ X , one similar object (positive samples) p1 for q, and N − 1 other objects
{pi}Ni=2, SimCLR finds a function f (usually a neural network) that maps these objects to Z , to
minimize the InfoNCE loss of q:

L(q,p1, {pi}Ni=2) = − log
exp(sim(f(q),f(p1))/τ)∑N
i=1 exp(sim(f(q),f(pi))/τ)

(1)

Here, the actual loss of f takes the summation over different qs, and τ is a temperature hyperparameter.
The sim(Zi,Zj) function measures the similarity between Zi,Zj in Z , and is commonly defined as

sim(Zi,Zj) =
Z⊤

i Zj

∥Zi∥∥Zj∥ , or Z⊤
i Zj , or −∥Zi − Zj∥2/2. In this paper, we consider the case that Z is

the unit sphere, i.e., ∥Zi∥ = ∥Zj∥ = 1. This is because both SimCLR and CLIP have a normalization

step in the implementation (Chen et al., 2020a; Radford et al., 2021). Hence, Z⊤
i Zj

∥Zi∥∥Zj∥ = Z⊤
i Zj , and

−∥Zi − Zj∥2/2 = −Z2
i /2− Z2

j/2 + Z⊤
i Zj = −1 + Z⊤

i Zj . (2)
Therefore, these losses are the same up to a constant.

2.2 MULTI-MODAL LEARNING: CLIP

CLIP (Radford et al., 2021) is a multi-modal model with a dataset containing millions of (image,
text) pairs. During pretraining, for each batch of N pairs of data points, CLIP uses an image encoder
and a text encoder to get N pairs of embeddings, and uses the InfoNCE loss to compute the correct
N pairs out of N × N possible connections. Specifically, given an image ai, we compare the its
matching score of the paired text bi, with the matching scores of other N − 1 texts {bj}j ̸=i, using

the loss L(ai,bi, {bj}j ̸=i) defined in Eqn. (1) by setting sim(Zi,Zj) =
Z⊤

i Zj

∥Zi∥∥Zj∥ . One can define
the loss similarly for text, and the actual loss of the embedding network f takes the summation over
all the images and texts.

2.3 REPRODUCING KERNEL HILBERT SPACE

Given two objects Zi,Zj ∈ Z , consider a feature map φ : Z → H, where the feature space H is
usually much larger than Z . We may define a kernel k that measures the similarity of Zi,Zj as
k(Zi,Zj) ≜ ⟨φ(Zi), φ(Zj)⟩H, i.e., the inner product between the two objects after mapping them to
the feature space. For any vector h ∈ H, it also corresponds to a function h(·) : Z → R, defined as
h(Zi) = ⟨h, φ(Zi)⟩H. Specifically, φ(Zj) as a vector in H represents the function k(·,Zj) : Z → R,
because for any Zi ∈ Z , we have k(Zi,Zj) = ⟨φ(Zi), φ(Zj)⟩H. Formally, we have:
Definition 2.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space of R-valued functions
defined on a non-empty set Z . A function k : Z × Z → R is called a reproducing kernel of H, and
H is a reproducing kernel Hilbert space, if k satisfies

• ∀Zi ∈ Z, k(·,Zi) ∈ H,
• ∀Zi ∈ Z,∀h ∈ H, ⟨h, k(·,Zi)⟩H = h(Zi).

We focus on the translation-invariant kernel in our paper, where the kernel k(Zi,Zj) can always
be written as k′(Zi − Zj) for k′ ∈ Z → R. The Moore–Aronszajn’s theorem states that if k is a
symmetric, positive definite kernel on Z , there is a unique Hilbert space of functions H on Z for
which k is a reproducing kernel.

For instance, the Gaussian kernel is a symmetric, positive definite kernel that yields an RKHS with
infinite dimensions. One of the advantages of a reproducing kernel is that the similarity can be
computed directly in Z without using the feature map to go to the potentially infinite dimensional
Hilbert space. However, a reproducing kernel’s similarity structure should ideally align with the
semantic meanings of specific tasks. For example, it is unlikely to calculate the semantic similarity of
two images directly using a predefined reproducing kernel in the pixel space.

Consequently, we ask if it is possible to find an embedding function f : X → Z , where Z can
compute the similarity of two objects in X with a predefined kernel function, i.e., whether KZ

matches with π in Figure 1. In other words, we hope to map the objects to a space where the semantic
similarity in X is naturally embedded. This is the starting point of our paper.
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Figure 2: Sampling probabilities of the subgraphs defined by P(W;π). The first subfigure represents
the underlying graph π, the next three subfigures represent three different subgraphs with their
sampling probabilities. The last subfigure has sampling probability 0 because the purple node has
out-degree larger than 1.

2.4 MARKOV RANDOM FIELD

In this subsection, we present the framework (without proofs) of MRF for dimension reduc-
tion (Van Assel et al., 2022). We have modified some definitions and lemmas for our learning
scenarios, and the readers may check the paper for more details on this framework.

Consider n objects Z = [Z1, · · · ,Zn] in Z . We use a symmetric and translation invariant kernel
k : Z → R+ to represent the similarities in Z , where symmetric means k(x) = k(−x). Given Z and
k, we define the gram matrix as KZ ≜ (k(Zi − Zj))(i,j)∈[n]2 , which is also the adjacency matrix
representing the similarities of objects in Z.

Due to the large size of π and in practice π is usually formed by using positive samples sampling and
hard to explicitly construct, directly comparing KZ and π can be difficult, so we treat them as MRFs
and compare the induced probability distributions on subgraphs instead. In our paper, subgraphs are
directed unweighted graphs from the set SW ≜ {W ∈ {0, 1}n×n | ∀(i, j) ∈ [n]2,Wi,i = 0}. The
distribution of W is generally defined as follows.
Definition 2.2 (Distribution of W). Let π ∈ Rn×n+ , we define the distribution P(W;π) ∝
Ω(W)Π(i,j)∈[n]2π

Wi,j

i,j , where Ω(W) ≜ ΠiI∑
j Wi,j=1 is called a unitary out-degree filter.

To provide a clearer interpretation of the definition, we can break down the expression
Ω(W)Π(i,j)∈[n]2π

Wi,j

i,j into two parts. Firstly, if we view W as the adjacency of a graph, the
unitary out-degree filter Ω(W) checks if each node i of the graph has exactly one out-going edge.
Therefore, only subgraphs with a unitary out-degree will be preserved, while subgraphs with other
out-degree values will be filtered out. As we will see later, this exactly corresponds to the setting
that the InfoNCE loss uses exactly one positive neighbor. Secondly, Π(i,j)∈[n]2π

Wi,j

i,j multiplies
the scores of each edge in π compared with Wi,j . This multiplication results in the un-normalized
likelihood of W under π, it is noticeable that the constraint of single outgoing edge of each node
that ensures that the multiplication results reflect the consistent of W and π. See Figure 2 for an
illustration.

By applying Definition 2.2 to KZ, we obtain the following expression for P(W;KZ): P(W;KZ) ∝
Ω(W)Π(i,j)∈[n]2k(Zi − Zj)

Wi,j . This expression represents the prior probability of W under KZ.

Due to the unitary out-degree filter, P(W;π) has the following property.
Lemma 2.3. For W ∼ P(·;π), ∀i ∈ [n],Wi ∼ M(1,πi/

∑
j πi,j), where M is the multinomial

distribution. Moreover, given any i, i′ ∈ [n], Wi is independent to Wi′ . Where Wi is the i-th row of
W, πi is the i-th row of π.

Below we define the cross entropy loss given distribution π and the similarity matrix KZ.

Hk
π(Z) ≜ −EWX∼P(·;π)[logP(WZ = WX;KZ)] (3)

The following lemma will be helpful in analyzing the cross-entropy loss, which states that when the
two distributions can be aligned and decomposed, their cross-entropy loss can also be decomposed.
Lemma 2.4. Assume X = X1 × · · · × Xk and there are two probability distributions P and Q
supported on X . Suppose P = P1 ⊗ · · · ⊗Pk and Q = Q1 ⊗ · · · ⊗Qk, with Pi and Qi supported
on Xi. Let H(P,Q) ≜ −Ex∼P[logQ(x)]. Then H(P,Q) =

∑k
i=1 H(Pi,Qi).
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The next lemma shows that the cross-entropy loss can be converted to the combination of repulsion
and attraction terms.

Lemma 2.5. minZ Hk
π(Z) is equivalent to

min
Z

−
∑

(i,j)∈[n]2

Pi,j log k(Zi − Zj) + logR(Z), (4)

where P = EWX∼P(·;π)[WX], and R(Z) =
∑

W∈SW
P(Z,W) with P(Z,W) ∝

fk(Z,W)Ω(W).

The second term in Eqn. (4) punishes trivial solutions like Z = 0, as 0 is a mode for fk(·,W) for
any W, which incurs large logR(Z). The first term can be interpreted using the graph Laplacian
operator, defined below.

Definition 2.6 (Graph Laplacian operator). The graph Laplacian operator is a function L that maps a
n× n non-negative matrix to a positive semi-definite matrix such that:

∀i, j ∈ [n]2,L(W)i,j =


−Wi,j if i ̸= j∑

k∈[n]

Wi,k o.w.

We will then introduce the definition of spectral clustering used in our paper.

Definition 2.7 (Spectral Clustering). Let W ∈ Rn×n+ be the adjacency matrix of a graph and L be
the graph Laplacian operator. Then the following optimization problem is called performing spectral
clustering on the graph whose adjacency matrix is W:

min
Z

tr(Z⊤L(W)Z) + E(Z), (5)

where E(Z) is a regularization term.

By simple calculation, when k is the Gaussian kernel, the first term in Eqn. (4) becomes tr(Z⊤L∗Z)
where L∗ = EWX∼P(·;π)[L(WX)]. In other words, Eqn. (4) is equivalent to doing spectral clustering
with a repulsion regularizer logR(Z).

3 CONSTRASTIVE LEARNING: SIMCLR

In this section, we will prove our main theorem that contrastive learning is spectral clustering on a
similarity graph. We assume that there are finitely many objects in X , denoted as n. This is the same
assumption used by HaoChen et al. (2021), who also demonstrated that the finite case can be easily
extended to the infinite case by replacing sum by integral, adjacency matrix by adjacency operator,
etc. For continuous augmentation methods like adding Gaussian noise, we can discretize it in a
natural way. Assuming a finite number of objects can help us avoid non-essential technical jargon.

With n objects in X , consider a similarity graph defined on these objects, which gives a similarity
matrix π of size n × n. However, for real scenarios like learning images, it is extremely difficult
to obtain such π from human labeling. Therefore, we compute π using the prior knowledge of
the dataset. For example, in the original SimCLR paper (Chen et al., 2020a), there are 9 different
augmentation methods. Each augmentation method may generate many different augmented images
that look similar to the original image. For every original image Xi, we define a probability
distribution πi, such that each object Xj gets sampled with probability πi,j . For example, during
the augmentation process, suppose Xj has a probability, say 1/9, to be an augmentation of Xi, then
πi,j = 1/9. Therefore, πi can be represented as a vector in Rn+.

Stacking all probability distributions πi together for i ∈ [n], we get a matrix π ∈ Rn×n+ . In
this section, we assume the sampling process is symmetric, i.e., πi,j = πj,i. The stochastic data
augmentation samples WX based on π, i.e., WX ∼ P(·;π).

5



Published as a conference paper at ICLR 2024

3.1 MAIN THEOREM

Theorem 3.1. For the SimCLR algorithm, denote f as the neural network, Z := f(X), and π as the
similarity graph defined by the data augmentation process where objects are connected iff they are
positive samples of each other. Then SimCLR is equivalent to solving the following program:

min
Z

tr(Z⊤L(π)Z) + logR(Z),

which runs spectral clustering on π.

Proof. Please refer to Appendix A.

Discussions. Empirically, the InfoNCE loss is applied to a large batch of the object, rather than all
the n objects that Theorem 3.1 requires. This explains why SimCLR benefits from larger batch size,
e.g. Chen et al. (2020a) use a batch size of 4096, and He et al. (2019b) use an even large memory
bank for storing more samples.

While using the same framework from (Van Assel et al., 2022), our Theorem 3.1 is significantly
different from their results on dimension reduction from at least two aspects. Firstly, in the object
space X , we have a predefined similarity graph π, but they were using a kernel matrix KX based on
X and a kernel kX . This is because in the dimension reduction setting, the input objects are assumed
to be well-structured data points, but in the self-supervised learning setting, the input objects are
images or texts, where a translation invariant kernel cannot be used for computing the similarities.
Secondly, their cross-entropy loss is directly computed from KX, while WX is never explicitly
sampled. In contrast, in our method, π is never explicitly used, and the cross entropy loss is indirectly
computed from the randomly sampled WX.

The equivalence we proved is exact. Therefore, after learning, the embedding space contains different
components, corresponding to various (sub-) classes of the objects. This characterization naturally
explains why contrastive learning works well for classification-related downstream tasks.

4 MULTI-MODAL LEARNING: CLIP

In this subsection, we extend Theorem 3.1 to the multi-modal setting by analyzing CLIP, which
applies the contrastive loss to the image-text pairs. The image-text pairs can be represented with the
following pair graph.
Definition 4.1 (Pair graph). Consider two modalities of objects A,B, and undirected unit-weight
edges E = {(ai,bi) | ai ∈ A,bi ∈ B}Mi=1. The pair graph between A,B is a directed bipartite
graph πA,B = (A,B,E), with the weight of each outgoing edge normalized by the out-degree of
the node.

By definition, πA,B is not necessarily symmetric. Consider the case where the dataset contains 10
images of “dog”, all of them are connected to the same text “dog”. In this case, the text dog has 1/10
probability to each image, while each image has only one edge with 100% probability to the text.
However, since each row of πA,B is still a probability distribution, we still have the next theorem.
Theorem 4.2 (CLIP’s objective). For the CLIP algorithm, denote πA,B as the pair graph. Then
CLIP is equivalent to running the generalized spectral clustering on πA,B.

Proof. Please refer to Appendix A.

Discussions. In Theorem 4.2, we say CLIP runs the generalized spectral clustering because L(πA,B)
is not necessarily the Laplacian of a symmetric graph, although one can still compute the optimal
embedding Z following Eqn. (4). The pair graph may contain a huge number of isolated edges.
Empirically, CLIP picks strong image and text encoders with good prior knowledge about the dataset.
Such prior knowledge may bias towards a better embedding for grouping the isolated edges with
more semantics.

Theorem 4.2 also assumes that all the objects are sampled in WX, while empirically a really big
batch size of 32,768 is used in Radford et al. (2021). Moreover, the probability distribution P(·;πA,B)
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used in Theorem 4.2 is slightly different from the implementation of CLIP, in the sense that CLIP
uniformly samples the edges in E, but here we uniformly sample the objects in A ∪ B. When
the image-text pairs dataset has high quality, the difference between these two sampling schemes
becomes negligible as the variance of object out-degrees is extremely small.

4.1 APPLYING TO LACLIP

Due to computation resources limitations, we haven’t implemented an improved CLIP algorithm
ourselves. Interestingly, a direct improvement to CLIP based on our theory was recently conducted.
We shall present this algorithm LaCLIP carefully (Fan et al., 2023) and discuss why it can be seen as
a direct application of our theory.

Roughly speaking, LaCLIP is a direct extension of CLIP by not only incorporating image augmen-
tations but using text augmentation as well. Specifically, we can treat language rewrites as text
augmentations. For each image text pair (xI , xT ), the text augmentation can be derived as follows:

augT (xT ) ∼ Uniform ([xT0
, xT1

. . . , xTM
]) , (6)

where xTi is the text xT itself or its rewrite.

Then training loss over the images in LaCLIP becomes:

LI := −
N∑
i=1

log
exp

(
sim

(
fI
(
augI

(
xiI
))
,fT

(
augT

(
xiT
)))

/τ
)∑N

k=1 exp
(
sim

(
fI
(
augI

(
xiI
))
,fT

(
augT

(
xkT
)))

/τ
) ,

where fI and fT are image and text encoders respectively.

From the pair graph point of view, LaCLIP expands the nodes in the “text side” of the pair graph
by including the nodes of the rewrite (augmented) texts. Moreover, as the augmented images are
connected to augmented texts, this augmented pair graph will have more clusters between similar
objects than the original CLIP pair graph. Thus, from the spectral clustering, it will be natural to
expect LaCLIP shall cluster similar objects across modalities better than CLIP. Indeed, the zero-shot
transfer ability of LaCLIP significantly improves (Fan et al., 2023).

5 USING NEW KERNELS

5.1 MAXIMUM ENTROPY PRINCIPLE

In this subsection, we offer an interpretation of InfoNCE-like loss, suggesting that exponential kernels
are natural choices to use in this type of loss. Given a query sample q, let ψi represent the similarity
between q and the contrastive sample pi for i ∈ [n], computed by a kernel k. Without loss of
generality, assume p1 is the (positive) neighbor of q according to prior knowledge, but ψ1 is not
necessarily the largest value in ψi. Ideally, we desire ψ1 to be the largest or at least among the few
largest similarities, which indicates that our kernel properly aligns with the prior knowledge of X .

To optimize toward this goal, we must design a loss function that captures the ranking of ψ1.
Since the ordering function is discrete and lacks gradient information, we need to convert it into a
soft and continuous function that enables gradient-based optimization. Specifically, we employ a
probability distribution α to represent the neighborhood structure of q in relation to ψ1, satisfying
ψ1 ≤

∑n
i=1 αiψi, and ∀i, αi ≥ 0. If ψ1 is the largest, α = e1 is the sole solution; otherwise, α can

be more diverse. For instance, when all ψi values are equal, α can be a uniform distribution.

Intuitively, if there are numerous other ψi values similar to ψ1, the neighborhood structure of q is
not as optimal as when ψ1 is the only object close to q. Formally, this means α should have fewer
non-zero entries or at least concentrate on α1. We use its entropy H(α) = −

∑n
i=1 αi logαi to

represent this diversity, which results in the following optimization problem.

(P1) maxα H(α)
s.t. α⊤1n = 1, α1, . . . , αn ≥ 0

ψ1 −
∑n
i=1 αiψi ≤ 0

By minimizing the solution of (P1), we can discover an embedding that more accurately approximates
the prior knowledge. However, how can we solve (P1)? By introducing the Lagrangian dual variable
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τ > 0, we obtain the subsequent program (P2)’s solution upper bound τ times the solution of (P1).
Consequently, minimizing (P2) simultaneously produces a smaller upper bound of (P1) as well,
indirectly aiding us in achieving our objective.

(P2) maxα −E(α)
s.t. α⊤1n = 1, α1, . . . , αn ≥ 0

where E(α) = ψ1 −
∑n
i=1 αiψi + τ

∑n
i=1 αi logαi.

We present the following theorem for solving (P2).
Theorem 5.1 (Exponential kernels are natural). The solution of (P2) satisfies:

−E (α∗) = −τ log
exp

(
1
τ ψ1

)∑n
i=1 exp

(
1
τ ψi
) .

Proof. Please refer to Appendix A.

Using this framework, we can derive results akin to the max-min optimization formulation from Tian
(2022) as a corollary.

5.2 KERNEL-INFONCE LOSS

In this subsection, we will show how to use the derivation above to improve InfoNCE loss. The-

orem 5.1 suggests that the loss function of the form −τ log exp( 1
τ ψ1)∑n

i=1 exp( 1
τ ψi)

is a natural choice for

characterizing the neighborhood similarity structure. When the similarity between the query sample
p and neighbourhood sample pi is defined as ψi = C−∥f(q)−f(pi)∥γ , where C is a large positive
constant and γ > 0. We find it recovers the exponential kernels defined as follows:

Kγ,τ
exp(x,y) := exp

(
−∥x− y∥γ

τ

)
(γ, τ > 0) (7)

We then define our kernel-based contrastive loss, Kernel-InfoNCE, as follows:

Lγ,τKernel-InfoNCE(q,p1, {pi}Ni=2) := − log
Kγ,τ

exp(q,p1)∑N
i=1K

γ,τ
exp(q,pi).

(8)

Note equation (8) can be easily derived by setting the kernel k in equation (3) to exponential kernel.
Our framework in Section 3 is suitable for explaining losses that are adapted from InfoNCE by
changing kernels. We consider generalizing the exponential kernel a bit. We propose to use the
mixture of two exponential kernels as potential candidates for replacing the Gaussian kernel. There
are two kinds of mixing methods. The first one is taking the weighted average of two positive definite
kernels.

The other mixing method is concatenation, which splits the input vectors into two parts, where the
first part uses the first kernel, and the second part uses the second kernel. It is easy to see that both
mixing methods maintain the strictly positive definite property of the base kernels. We list the two
types of kernel mixtures below.

Simple Sum Kernel:

K(xi, xj) := exp(−∥f(xi)− f(xj)∥22/τ2) + exp(−∥f(xi)− f(xj)∥12/τ1)

Concatenation Sum Kernel:

K(xi, xj) := exp(−∥f(xi)[0 : n]− f(xj)[0 : n]∥22/τ2) + exp(−∥f(xi)[n : 2n]− f(xj)[n : 2n]∥12/τ1)

6 EXPERIMENTS

In our experiments, we reproduce the baseline algorithm SimCLR (Chen et al., 2020a), and replace
SimCLR’s Gaussian kernel with other kernels. We then test against SimCLR using Kernel-InfoNCE

8
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Table 1: Results on CIFAR-10, CIFAR-100, and TinyImageNet datasets.

Method
CIFAR-10 CIFAR-100 TinyImageNet

200 epochs 400 epochs 200 epochs 400 epochs 200 epochs 400 epochs

SimCLR (repro.) 88.11± 0.09 90.60± 0.15 62.57± 0.10 66.29± 0.12 34.00± 0.18 37.83± 0.09

Laplacian Kernel 89.26± 0.18 91.03± 0.17 63.16± 0.15 66.09± 0.11 35.91± 0.21 38.71± 0.18
γ = 0.5 Exponential Kernel 89.00± 0.07 91.23± 0.12 63.48± 0.22 65.81± 0.19 34.17± 0.13 38.75± 0.15

Simple Sum Kernel 89.82± 0.09 91.72± 0.10 66.67± 0.20 68.62± 0.15 36.61± 0.13 39.38± 0.16
Concatenation Sum Kernel 89.89± 0.18 91.28± 0.07 66.10± 0.21 68.57± 0.11 35.98± 0.17 38.77± 0.22

loss on various benchmark vision datasets, including CIFAR-10/100 (Krizhevsky et al., 2009) and
TinyImageNet (Le & Yang, 2015).

For each algorithm, we first train an encoder f on the training dataset to minimize the empirical loss
function generated by the kernel. Then, following the standard linear evaluation protocol, we freeze
the encoder f and train a supervised linear classifier, which takes the output representation of f as
input. Additional experimental details, dataset information, and results can be found in Appendix B.

Experimental Results. We summarize our empirical results on various benchmark datasets in
Table 1. It is evident that we have achieved better performance than SimCLR on all three benchmark
datasets, with the Simple Sum Kernel reaching the best average performance.

7 RELATED WORK

Contrastive learning constitutes a classical method extensively employed in representation learn-
ing (Hadsell et al., 2006; Becker & Hinton, 1992). Owing to its recent applications in self-supervised
learning, contrastive learning has garnered widespread attention and achieved state-of-the-art re-
sults in numerous downstream tasks within computer vision (Tian et al., 2020; Cui et al., 2021),
graph representation learning (You et al., 2020; Hassani & Khasahmadi, 2020; Deng et al., 2022),
multi-modality (Radford et al., 2021), and beyond. Contrastive predictive coding (Oord et al.,
2018) represents one of the pioneering methods to incorporate the concept of contrastive learning
in self-supervised learning. Subsequently, various methods have sought to enhance performance.
SimCLR (Chen et al., 2020a) and MoCo (Chen et al., 2020b) advocate for utilizing a large batch
size and momentum update mechanism to guarantee effective learning. Moreover, the hard negative
sampling method (Kalantidis et al., 2020) has been explored to mitigate the impact of false negative
sampling.

Despite the empirical success of contrastive learning, the theoretical comprehension of its underlying
mechanisms remains limited. Oord et al. (2018) demonstrate that the InfoNCE loss can be regarded
as a surrogate loss for maximizing mutual information. Arora et al. (2019) give the generalization
bound for contrastive learning under a latent class assumption. HaoChen et al. (2021) incorporate
the concept of augmentation graph to facilitate the analysis of contrastive learning and propose a
surrogate loss spectral contrastive loss. They show that this surrogate loss is equivalent to spectral
clustering on augmentation graph. Wang et al. (2022) propose that aggressive data augmentations
lead to overlapping support of intra-class samples, allowing for the clustering of positive samples
and the gradual learning of class-separated representations, providing new insights of understanding
contrastive learning. Balestriero & LeCun (2022) link a variant of contrastive loss to the ISOMAP
algorithm. Hu et al. (2022) connect contrastive learning with stochastic neighbor embedding. Wang
& Isola (2020) reveal that the quality of embedding can be decomposed into an alignment component
and a uniformity component, considering both the loss function and the embedding space.

8 CONCLUSION

In this paper, we take the probabilistic perspective of contrastive learning, and prove that it is
essentially running spectral clustering on the predefined similarity graph. Extending this result to
multi-modal learning, we show that CLIP is also doing the generalized spectral clustering on the pair
graph. Based on the maximum entropy principle and other useful properties, we propose to use the
mixtures of exponential kernels (Kernel-InfoNCE loss) to replace the Gaussian kernel, which has
achieved better performance empirically.
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REPRODUCIBILITY STATEMENT

For reproducibility, we share our code at https://github.com/yifanzhang-pro/
Kernel-InfoNCE. The experiment results can be reproduced following the instructions in the
README document. We also provide our experiment details in Appendix B.
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A APPENDIX FOR PROOFS

Proof of Theorem 3.1.

Proof. Our proof has two steps. In Step 1, we will show that SimCLR is equivalent to minimizing
the cross entropy loss defined in Eqn. (3). In Step 2, we will show that minimizing the cross-entropy
loss is equivalent to spectral clustering on π. Combining the two steps together, we have proved our
theorem.

Step 1: SimCLR is equivalent to minimizing the cross entropy loss.

The cross entropy loss takes expectation over WX ∼ P(·;π), which means WX has exactly one
non-zero entry in each row i. By Lemma 2.3, we know every row i of WX is independent of
other rows. Moreover, WX,i ∼ M(1,πi/

∑
j πi,j) = M(1,πi), because πi itself is a probability

distribution. Similarly, we know WZ also has the row-independent property by sampling over
P(·;KZ). Therefore, by Lemma 2.4, we know Eqn. (3) is equivalent to:

−
n∑
i=1

EWX,i
[logP(WZ,i = WX,i;KZ)],

This expression takes expectation over WX,i for the given row i. Notice that WX,i has exactly one
non-zero entry, which equals 1 (same for WZ,i). As a result we expand the above expression to be:

−
n∑
i=1

∑
j ̸=i

Pr(WX,i,j = 1) log Pr(WZ,i,j = 1). (9)

By Lemma 2.3, Pr(WZ,i,j = 1) = KZ,i,j/∥KZ,i∥1 for j ̸= i. Recall that KZ = (k(Zi −
Zj))(i,j)∈[n]2 , which means KZ,i,j/∥KZ,i∥1 =

exp(−∥Zi−Zj∥2/2τ)∑
k ̸=i exp(−∥Zi−Zk∥2/2τ) for j ̸= i, when k is the

Gaussian kernel with variance τ .

Notice that Zi = f(Xi), so we know

− log Pr(WZ,i,j = 1) = − log
exp(−∥f(Xi)− f(Xj)∥2/2τ)∑
k ̸=i exp(−∥f(Xi)− f(Xk)∥2/2τ),

(10)

The right hand side is exactly the InfoNCE loss defined in Eqn. (1). Inserting Eqn. (10) into Eqn. (9),
we get the SimCLR algorithm, which first samples augmentation pairs (i, j) with Pr(WX,i,j = 1)
for each row i, and then optimize the InfoNCE loss.

Step 2: minimizing the cross entropy loss is equivalent to spectral clustering on π.

By Lemma 2.5, we may further convert the loss to

min
Z

−
∑

(i,j)∈[n]2

Pi,j log k(Zi − Zj) + logR(Z). (11)

Since k is the Gaussian kernel, this reduces to

min
Z

tr(Z⊤L(π)Z) + logR(Z),

where we use the fact that EWX∼P(·;π)[L(WX)] = L(π), because the Laplacian operator is linear
and EWX∼P(·;π)(WX) = π.

Proof of Theorem 4.2.

Proof. Since WX ∼ P(·;πA,B), we know WX has exactly one non-zero entry in each row, denoting
the pair that got sampled. A notable difference compared to the previous proof is we now have
nA + nB objects in our graph. CLIP deals with this by taking a mini-batch of size 2N , such that
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nA = nB = N , and adding the 2N InfoNCE losses together. We label the objects in A as [nA], and
the objects in B as {nA + 1, · · · , nA + nB}.

Notice that πA,B is a bipartite graph, so the edges of objects in A will only connect to object in B and
vice versa. We can define the similarity matrix in Z as KZ, where KZ(i, j+nA) = KZ(j+nA, i) =
k(Zi − Zj) for i ∈ [nA], j ∈ [nB], and otherwise we set KZ(i, j) = 0. The rest is same as the
previous proof.

Proof of Theorem 5.1.

Proof. Since the objective function consists of a linear term combined with an entropy regularization,
which is a strongly concave function, the maximization problem is a convex optimization problem.
Owing to the implicit constraints provided by the entropy function, the problem is equivalent to
having only the equality constraint. We then introduce the Lagrangian multiplier λ and obtain the
following relaxed problem:

Ẽ(α) = ψ1 −
n∑
i=1

αiψi + τ

n∑
i=1

αi logαi + λ
(
α⊤1n − 1

)
.

As the relaxed problem is unconstrained, taking the derivative with respect to αi yields

∂Ẽ(α)

∂αi
= −ψi + τ

(
logαi + αi

1

αi

)
+ λ = 0.

Solving the above equation implies that αi takes the form αi = exp
(
1
τ ψi
)
exp

(−λ
τ − 1

)
. Since

αi lies on the probability simplex, the optimal αi is explicitly given by α∗
i =

exp( 1
τ ψi)∑n

i′=1
exp( 1

τ ψi′)
.

Substituting the optimal point into the objective function, we obtain

E (α∗) = ψ1 −
n∑
i=1

exp
(
1
τ ψi
)∑n

i′=1 exp
(
1
τ ψi′

)ψi + τ

n∑
i=1

exp
(
1
τ ψi
)∑n

i′=1 exp
(
1
τ ψi′

) log exp
(
1
τ ψi
)∑n

i′=1 exp
(
1
τ ψi′

)
= ψ1 − τ log

(
n∑
i=1

exp

(
1

τ
ψi

))
.

Thus, the Lagrangian dual function is given by

−E (α∗) = −τ log
exp

(
1
τ ψ1

)∑n
i=1 exp

(
1
τ ψi
) .

B MORE ON EXPERIMENT DETAILS

CIFAR-10 and CIFAR-100. CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky
et al., 2009) are well-known classic image classification datasets. Both CIFAR-10 and CIFAR-100
contain a total of 60k 32× 32 labeled images of different classes, with 50k for training and 10k for
testing. CIFAR-10 is similar to CIFAR-100, except there are 10 different classes in CIFAR-10 and
100 classes in CIFAR-100.

TinyImageNet. TinyImageNet (Le & Yang, 2015) is a subset of ImageNet (Deng et al., 2009).
There are 200 different object classes in TinyImageNet, with 500 training images, 50 validation
images, and 50 test images for each class. All the images in TinyImageNet are colored and labeled
with a size of 64× 64.

Pseudo-code. Algorithm 1 presents the pseudo-code for our empirical training procedure.

We also provide the pseudo-code for our core loss function used in the training procedure in Algorithm
2. The pseudo-code is almost identical to SimCLR’s loss function, with the exception of an extra
parameter γ.
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Algorithm 1 Training Procedure
Require: trainable encoder network f , batch size N , augmentation strategy aug, loss function L

with hyperparameters args
1: for sampled minibatch xiNi=1 do
2: for all i ∈ 1, ..., N do
3: draw two augmentations ti = aug (xi), t′i = aug (xi)
4: zi = f (ti), z′i = f (t′i)
5: end for
6: compute loss L = L(N, z, z′, args)
7: update encoder network f to minimize L
8: end for
9: Return encoder network f

Algorithm 2 Core loss function C
Require: batch size N , two encoded minibatches z1, z2, γ, temperature τ

1: z = concat (z1, z2)
2: for i ∈ 1, ..., 2N, j ∈ 1, ..., 2N do
3: si,j = ∥zi − zj∥γ2
4: end for
5: define l(i, j) as l(i, j) = − log

exp(si,j/τ)∑2N
k=1 1[k ̸=i]exp(si,j/τ)

6: Return 1
2N

∑N
k=1 [l(i, i+N) + l(i+N, i)]

Utilizing the core loss function C, we can define all kernel loss functions used in our experiments in
Table 2. For all zi ∈ z with even dimensions n, we define zLi

= zi [0 : n/2] and zRi
= zi [n/2 : n].

Kernel Loss function

Laplacian C (N, z, z′, γ = 1, τ)

Sum λ ∗ C (N, z, z′, γ = 1, τ1) + (1− λ) ∗ C (N, z, z′, γ = 2, τ2)

Concatenation Sum λ ∗ C (N, zL, z
′
L, γ = 1, τ1) + (1− λ) ∗ C (N, zR, z

′
R, γ = 2, τ2)

γ = 0.5 C (N, z, z′, γ = 0.5, τ)

Table 2: Definition of kernel loss functions in our experiments

Baselines. We reproduce the SimCLR algorithm using PyTorch Lightning (Team, 2022).

Encoder details. The encoder f consists of a backbone network and a projection network. We
employ ResNet50 (He et al., 2016) as the backbone and a 2-layer MLP (connected by a batch
normalization (Ioffe & Szegedy, 2015) layer and a ReLU Nair & Hinton (2010) layer) with hidden
dimensions 2048 and output dimensions 128 (or 256 in the concatenation kernel case).

Encoder hyperparameter tuning. For each encoder training case, we randomly sample 500
hyperparameter groups (sample details are shown in Table 3) and train these samples simultaneously
using Ray Tune (Liaw et al., 2018), with the ASHA scheduler (Li et al., 2018). Ultimately, the
hyperparameter group that maximizes the online validation accuracy (integrated in PyTorch Lightning)
within 5000 validation steps is chosen for the given encoder training case.

Encoder training. We train each encoder using the LARS optimizer (You et al., 2017), LambdaLR
Scheduler in PyTorch, momentum 0.9, weight decay 10−6, batch size 256, and the aforementioned
hyperparameters for 400 epochs on a single A-100 GPU.

Image transformation. The image transformation strategy, including augmentation, is identical to
the default transformation strategy provided by PyTorch Lightning.

Linear evaluation. The linear head is trained using the SGD optimizer with a cosine learning rate
scheduler, batch size 64, and weight decay 10−6 for 100 epochs. The learning rate starts at 0.3 and
ends at 0.
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Hyperparameter Sample Range Sample Strategy

start learning rate
[
10−2, 10

]
log uniform

λ [0, 1] uniform

τ , τ1, τ2 [0, 1] log uniform

Table 3: Hyperparameters sample strategy

Moco Experiments. We also tested our method based on MoCo (He et al., 2019a). The results
are summarized in Table 4. Here we choose ResNet18 (He et al., 2016) as the backbone and set a
temperature of 0.1 as default. For our simple sum kernel, we set λ = 0.8. The results show that our
method outperforms the original MoCo method.

Table 4: MoCo Experiment Results on CIFAR-10 and CIFAR-100.

Method
CIFAR-10 CIFAR-100

200 epochs 400 epochs 1000 epochs 200 epochs 400 epochs 1000 epochs

MoCo (repro.) 76.41± 0.12 80.01± 0.15 84.45± 0.08 47.02± 0.11 52.50± 0.07 57.62± 0.15

Laplacian Kernel 78.09± 0.10 83.85± 0.09 88.34± 0.16 46.12± 0.22 53.44± 0.17 59.10± 0.14
Simple Sum Kernel 78.12± 0.15 83.23± 0.18 87.50± 0.20 46.65± 0.06 53.62± 0.19 59.83± 0.12

C EXPERIMENTS ON SYNTHETIC DATA

Consider a scenario with n clusters, each containing k vertices. Let the probability of vertices u and
v from the same cluster belonging to π be p. Conversely, for vertices u and v from different clusters,
let the probability of belonging to π be q. We generate the graph π randomly, based on p and q.
We experiment with values of k = 100 and n = 6 for ease of visualization, embedding all points
in a two-dimensional space. Each vertex’s initial position originates from a normal distribution. In
each iteration, we sample a subgraph of π uniformly, ensuring each vertex has an out-degree of 1.
We then optimize the corresponding vectors using InfoNCE loss with an SGD optimizer and iterate
until convergence. Our experimental setup consists of an SGD learning rate of 1, an InfoNCE loss
temperature of 0.5, and a batch size of 50. We evaluate two scenarios with different p and q values:
p = 1, q = 0, and p = 0.75, q = 0.2. The results of these experiments are visualized in Figure 3.
The obtained embeddings exhibit the hallmark pattern of spectral clustering of graph π.
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Figure 3: Visualizations of the optimization process using InfoNCE Loss on the vectors corresponding
to π. Points of identical color belong to the same cluster within π. To showcase the internal structure
of π, we randomly select 10 vertices from each cluster to display the edge distribution of π.
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