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ABSTRACT

Markov Logic Networks (MLNs), which elegantly combine logic rules and proba-
bilistic graphical models, can be used to address many knowledge graph problems.
However, inference in MLN is computationally intensive, making the industrial-
scale application of MLN very difficult. In recent years, graph neural networks
(GNNs) have emerged as efficient and effective tools for large-scale graph prob-
lems. Nevertheless, GNNs do not explicitly incorporate prior logic rules into the
models, and may require many labeled examples for a target task. In this paper, we
explore the combination of MLNs and GNNs, and use graph neural networks for
variational inference in MLN. We propose a GNN variant, named ExpressGNN,
which strikes a nice balance between the representation power and the simplicity of
the model. Our extensive experiments on several benchmark datasets demonstrate
that ExpressGNN leads to effective and efficient probabilistic logic reasoning.

1 INTRODUCTION

Knowledge graphs collect and organize relations and attributes about entities, which are playing
an increasingly important role in many applications, including question answering and information
retrieval. Since knowledge graphs may contain incorrect, incomplete or duplicated records, additional
processing such as link prediction, attribute classification, and record de-duplication is typically
needed to improve the quality of knowledge graphs and derive new facts.

Markov Logic Networks (MLNs) were proposed to combine hard logic rules and probabilistic
graphical models, which can be applied to various tasks on knowledge graphs (Richardson &
Domingos, 2006). The logic rules incorporate prior knowledge and allow MLNs to generalize in
tasks with small amount of labeled data, while the graphical model formalism provides a principled
framework for dealing with uncertainty in data. However, inference in MLN is computationally
intensive, typically exponential in the number of entities, limiting the real-world application of
MLN. Also, logic rules can only cover a small part of the possible combinations of knowledge graph
relations, hence limiting the application of models that are purely based on logic rules.

Graph neural networks (GNNs) have recently gained increasing popularity for addressing many graph
related problems effectively (Dai et al., 2016; Li et al., 2016; Kipf & Welling, 2017; Schlichtkrull
et al., 2018). GNN-based methods typically require sufficient labeled instances on specific end tasks
to achieve good performance, however, knowledge graphs have the long-tail nature (Xiong et al.,
2018), i.e., a large portion the relations in only are a few triples. Such data scarcity problem among
long-tail relations poses tough challenge for purely data-driven methods.

In this paper, we explore the combination of the best of both worlds, aiming for a method which is
data-driven yet can still exploit the prior knowledge encoded in logic rules. To this end, we design a
simple variant of graph neural networks, named ExpressGNN, which can be efficiently trained in the
variational EM framework for MLN. An overview of our method is illustrated in Fig. 1. ExpressGNN
and the corresponding reasoning framework lead to the following desiderata:
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Figure 1: Overview of our method for combining MLN and GNN using the variational EM framework.

• Efficient inference and learning: ExpressGNN can be viewed as the inference network for MLN,
which scales up MLN inference to much larger knowledge graph problems.

• Combining logic rules and data supervision: ExpressGNN can leverage the prior knowledge
encoded in logic rules, as well as the supervision from graph structured data.

• Compact and expressive model: ExpressGNN may have small number of parameters, yet it is
sufficient to represent mean-field distributions in MLN.

• Capability of zero-shot learning: ExpressGNN can deal with the zero-shot learning problem where
the target predicate has few or zero labeled instances.

2 RELATED WORK

Statistical relational learning. There is an extensive literature relating the topic of logic reasoning.
Here we only focus on the approaches that are most relevant to statistical relational learning on
knowledge graphs. Logic rules can compactly encode the domain knowledge and complex depen-
dencies. Thus, hard logic rules are widely used for reasoning in earlier attempts, such as expert
systems (Ignizio, 1991) and inductive logic programming (Muggleton & De Raedt, 1994). However,
hard logic is very brittle and has difficulty in coping with uncertainty in both the logic rules and the
facts in knowledge graphs. Later studies have explored to introduce probabilistic graphical model in
logic reasoning, seeking to combine the advantages of relational and probabilistic approaches. Repre-
sentative works including Relational Markov Networks (RMNs; Taskar et al. (2007)) and Markov
Logic Networks (MLNs; Richardson & Domingos (2006)) were proposed in this background.

Markov Logic Networks. MLNs have been widely studied due to the principled probabilistic model
and effectiveness in a variety of reasoning tasks, including entity resolution (Singla & Domingos,
2006a), social networks (Zhang et al., 2014), information extraction (Poon & Domingos, 2007), etc.
MLNs elegantly handle the noise in both logic rules and knowledge graphs. However, the inference
and learning in MLNs is computationally expensive due to the exponential cost of constructing the
ground Markov network and the NP-complete optimization problem. This hinders MLNs to be applied
to industry-scale applications. Many works appear in the literature to improve the original MLNs in
both accuracy (Singla & Domingos, 2005; Mihalkova & Mooney, 2007) and efficiency (Singla &
Domingos, 2006b; 2008; Poon & Domingos, 2006; Khot et al., 2011; Bach et al., 2015). Nevertheless,
to date, MLNs still struggle to handle large-scale knowledge bases in practice. Our framework
ExpressGNN overcomes the scalability challenge of MLNs by efficient stochastic training algorithm
and compact posterior parameterization with graph neural networks.

Graph neural networks. Graph neural networks (GNNs; Dai et al. (2016); Kipf & Welling (2017))
can learn effective representations of nodes by encoding local graph structures and node attributes.
Due to the compactness of model and the capability of inductive learning, GNNs are widely used
in modeling relational data (Schlichtkrull et al., 2018; Battaglia et al., 2018). Recently, Qu et al.
(2019) proposed Graph Markov Neural Networks (GMNNs), which employs GNNs together with
conditional random fields to learn object representations. These existing works are simply data-driven,
and not able to leverage the domain knowledge or human prior encoded in logic rules. To the best
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of our knowledge, ExpressGNN is the first work that connects GNNs with first-order logic rules to
combine the advantages of both worlds.

Knowledge graph embedding. Another line of research for knowledge graph reasoning is in the
family of knowledge graph embedding methods, such as TransE (Bordes et al., 2013), NTN (Socher
et al., 2013), DistMult (Kadlec et al., 2017), ComplEx (Trouillon et al., 2016), and RotatE (Sun et al.,
2019). These methods design various scoring functions to model relational patterns for knowledge
graph reasoning, which are very effective in learning the transductive embeddings of both entities
and relations. However, these methods are not able to leverage logic rules, which can be crucial
in some relational learning tasks, and have no consistent probabilistic model. Compared to these
methods, ExpressGNN has consistent probabilistic model built in the framework, and can incorporate
knowledge from logic rules. A recent concurrent work Qu & Tang (2019) has proposed probabilistic
Logic Neural Network (pLogicNet), which integrates knowledge graph embedding methods with
MLNs with EM framework. Compared to pLogicNet which uses a flattened embedding table as the
entity representation, our work explicitly captures the structure knowledge encoded in the knowledge
graph with GNNs and supplement the knowledge from logic formulae for the prediction task.

3 PRELIMINARY
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Figure 2: Bottom: A knowledge
base as a factor graph. {A,C,D}
are entities, and F (Friend) and
S (Smoke) are predicates. Top:
Markov Logic Network (MLN)
with formula f(c, c′) := ¬S(c)∨
¬F(c, c′) ∨ S(c′). Shaded circles
correspond to latent variables.

Knowledge Graph. A knowledge graph is a tuple K = (C,R,O)
consisting of a set C = {c1, . . . , cM} of M entities, a set R =
{r1, . . . , rN} of N relations, and a collection O = {o1, . . . , oL} of
L observed facts. In the language of first-order logic, entities are
also called constants. For instance, a constant can be a person or
an object. Relations are also called predicates. Each predicate is a
logic function defined over C, i.e., r(·) : C × . . .× C 7→ {0, 1} . In
general, the arguments of predicates are asymmetric. For instance,
for the predicate r(c, c′) := L(c, c′) (L for Like) which checks
whether c likes c′, the arguments c and c′ are not exchangeable.

With a particular set of entities assigned to the arguments, the pred-
icate is called a ground predicate, and each ground predicate ≡ a
binary random variable, which will be used to define MLN. For
a d-ary predicate, there are Md ways to ground it. We denote an
assignment as ar. For instance, with ar = (c, c′), we can simply
write a ground predicate r(c, c′) as r(ar). Each observed fact in knowledge bases is a truth value
{0, 1} assigned to a ground predicate. For instance, a fact o can be [L(c, c′) = 1]. The number of
observed facts is typically much smaller than that of unobserved facts. We adopt the open-world
paradigm and treat these unobserved facts ≡ latent variables.

As a clearer representation, we express a knowledge base K by a bipartite graph GK = (C,O, E),
where nodes on one side of the graph correspond to constants C and nodes on the other side correspond
to observed factsO, which is called factor in this case. The set of T edges, E = {e1, . . . , eT }, connect
constants and the observed facts. More specifically, an edge e = (c, o, i) between node c and o exists,
if the ground predicate associated with o uses c as an argument in its i-th argument position (Fig. 2).

Markov Logic Networks. MLNs use logic formulae to define potential functions in undirected
graphical models. A logic formula f(·) : C × . . .× C 7→ {0, 1} is a binary function defined via the
composition of a few predicates. For instance, a logic formula f(c, c′) can be
Smoke(c) ∧ Friend(c, c′)⇒ Smoke(c′) ⇐⇒ ¬Smoke(c) ∨ ¬Friend(c, c′) ∨ Smoke(c′),

where ¬ is negation and the equivalence is established by De Morgan’s law. Similar to predicates, we
denote an assignment of constants to the arguments of a formula f as af , and the entire collection of
consistent assignments of constants as Af = {a1f , a2f , . . .}. A formula with constants assigned to all
of its arguments is called a ground formula. Given these logic representations, MLN can be defined
as a joint distribution over all observed facts O and unobserved factsH as

Pw (O,H) := 1
Z(w) exp

(∑
f∈F wf

∑
af∈Af φf (af )

)
, (1)

where Z(w) is the partition function summing over all ground predicates and φf (·) is the potential
function defined by a formula f as illustrated in Fig. 2. One form of φf (·) can simply be the truth
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value of the logic formula f . For instance, if the formula is f(c, c′) := ¬S(c)∨¬F(c, c′)∨S(c′), then
φf (c, c

′) can simply take value 1 when f(c, c′) is true and 0 otherwise. Other more sophisticated φf
can also be designed, which have the potential to take into account complex entities, such as images
or texts, but will not be the focus of this paper. The weight wf can be viewed as the confidence score
of the formula f : the higher the weight, the more accurate the formula is.

Difference between KG and MLN. We note that the graph topology of knowledge graphs and MLN
can are very different, although MLN is defined on top of knowledge graphs. Knowledge graphs
are typically very sparse, where the number of edges (observed relations) is typically linear in the
number of entities. However, the graphs associated with MLN are much denser, where the number
of nodes can be quadratic or more in the number of entities, and the number of edges (dependency
between variables) is also high-order polynomials in the number of entities.

4 VARIATIONAL EM FOR MARKOV LOGIC NETWORKS

In this section, we introduce the variational EM framework for MLN inference and learning, where
we will use ExpressGNN as a key component (detailed in Sec. 5). Markov Logic Networks model
the joint probabilistic distribution of all observed and latent variables, as defined in Eq. 1. This model
can be trained by maximizing the log-likelihood of all the observed facts logPw(O). However, it
is intractable to directly maximize the objective, since it requires to compute the partition function
Z(w) and integrate over all variables O andH. We instead optimize the variational evidence lower
bound (ELBO) of the data log-likelihood, as follows

logPw (O) > LELBO(Qθ, Pw) := EQθ(H|O)

[
logPw (O,H)

]
− EQθ(H|O)

[
logQθ (H|O)

]
, (2)

where Qθ (H | O) is a variational posterior distribution of the latent variables given the observed
ones. The equality in Eq. 2 holds if the variational posterior Qθ (H|O) equals to the true posterior
Pw (H|O). We then use the variational EM algorithm (Ghahramani et al., 2000) to effectively
optimize the ELBO. The variational EM algorithm consists of an expectation step (E-step) and a
maximization step (M-step), which will be called in an alternating fashion to train the model: 1) In
the E-step (Sec. 4.1), we infer the posterior distribution of the latent variables, where Pw is fixed
and Qθ is optimized to minimize the KL divergence between Qθ (H|O) and Pw (H|O); 2) In the
M-step (Sec. 4.2), we learn the weights of the logic formulae in MLN, where Qθ is fixed and Pw is
optimized to maximize the data log-likelihood.

4.1 E-STEP: INFERENCE

In the E-step, which is also known as the inference step, we are minimizing the KL divergence between
the variational posterior distribution Qθ (H|O) and the true posterior distribution Pw (H|O). The
exact inference of MLN is computationally intractable and proven to be NP-complete (Richardson
& Domingos, 2006). Therefore, we choose to approximate the true posterior with a mean-field
distribution, since the mean-field approximation has been demonstrated to scale up large graphical
models, such as latent Dirichlet allocation for modeling topics from large text corpus (Hoffman et al.,
2013). In the mean-field variational distribution, each unobserved ground predicate r(ar) ∈ H is
independently inferred as follows:

Qθ(H|O) :=
∏
r(ar)∈HQθ(r(ar)), (3)

where each factorized distribution Qθ(r(ar)) follows the Bernoulli distribution. We parameterize the
variational posterior Qθ with deep learning models as our neural inference network. The design of
the inference network is very important and has a lot of considerations, since we need a compact yet
expressive model to accurately approximate the true posterior distribution. We employ graph neural
networks with tunable embeddings as our inference network (detailed in Sec. 5), which can trade-off
between the model compactness and expressiveness.

With the mean-field approximation, LELBO(Qθ, Pw) defined in Eq. 2 can be reorganized as below:(∑
f∈F

wf
∑

af∈Af

EQθ(H|O)

[
φf (af )

]
− logZ(w)

)
−
( ∑
r(ar)∈H

EQθ(r(ar))
[
logQθ(r(ar))

])
, (4)

where wf is fixed in the E-step and thus the partition function Z(w) can be treated as a constant.
We notice that the first term EQθ(H|O)[logPw (O,H)] has the summation over all formulae and all
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possible assignments to each formula. Thus this double summation may involve a large number of
terms. The second term EQθ(H|O)[logQθ (H|O)] is the sum of entropy of the variational posterior
distributions Qθ(r(ar)), which also involves a large number of terms since the summation ranges
over all possible latent variables. Typically, the number of latent facts in database is much larger
than the number of observed facts. Thus, both terms in the objective function pose the challenge of
intractable computational cost.

To address this challenge, we sample mini-batches of ground formulae to break down the exponential
summations by approximating it with a sequence of summations with a controllable number of terms.
More specifically, in each optimization iteration, we first sample a batch of ground formulae. For each
ground formula in the sampled batch, we compute the first term in Eq. 4 by taking the expectation of
the corresponding potential function with respect to the posterior of the involved latent variables. The
mean-field approximation enables us to decompose the global expectation over the entire MLN into
local expectations over ground formulae. Similarly, for the second term in Eq. 4, we use the posterior
of the latent variables in the sampled batch to compute a local sum of entropy.

For tasks that have sufficient labeled data as supervision, we can add a supervised learning objective
to enhance the inference network, as follows:

Llabel(Qθ) =
∑
r(ar)∈O logQθ(r(ar)). (5)

This objective is complementary to the ELBO on predicates that are not well covered by logic rules
but have sufficient observed facts. Therefore, the overall E-step objective function becomes:

Lθ = LELBO(Qθ, Pw) + λLlabel(Qθ), (6)
where λ is a hyperparameter to control the weight. This overall objective essentially combines the
knowledge in logic rules and the supervision from labeled data.

4.2 M-STEP: LEARNING

In the M-step, which is also known as the learning step, we are learning the weights of logic formulae
in Markov Logic Networks with the variational posterior Qθ (H|O) fixed. The partition function
Z(w) in Eq. 4 is not a constant anymore, since we need to optimize those weights in the M-step.
There are exponential number of terms in the partition function Z(w), which makes it intractable to
directly optimize the ELBO. To tackle this problem, we adopt the widely used pseudo-log-likelihood
(Richardson & Domingos, 2006) as an alternative objective for optimization, which is defined as:

P ∗w(O,H) := EQθ(H|O)

[∑
r(ar)∈H logPw(r(ar) |MBr(ar))

]
, (7)

where MBr(ar) is the Markov blanket of the ground predicate r(ar), i.e., the set of ground predicates
that appear in some grounding of a formula with r(ar). For each formula i that connects r(ar) to its
Markov blanket, we optimize the formula weight wi by gradient descent, with the derivative:

∇wiEQθ [logPw(r(ar) |MBr(ar))] ' yr(ar) − Pw(r(ar) |MBr(ar)), (8)
where yr(ar) = 0 or 1 if r(ar) is an observed fact, and yr(ar) = Qθ(r(ar)) otherwise. With the
independence property of Markov Logic Networks, the gradients of the logic formulae weights can
be efficiently computed on the Markov blanket of each variable.

For the M-step, we design a different sampling scheme to make it computationally efficient. For each
variable in the Markov blanket, we take the truth value if it’s observed and draw a sample from the
variational posterior Qθ if it’s latent. In the M-step, the ELBO of a fully observed ground formula
depends on the formula weight, thus we need to consider all the fully observed ground formulae. It is
computationally intractable to use all possible ground predicates to compute the gradients in Eq. 8.
To tackle this challenge, we simply consider all the ground formulae with at most one latent predicate,
and pick up the ground predicate if its truth value determines the formula’s truth value. Therefore,
we keep a small subset of ground predicates, each of which can directly determine the truth value
of a ground formula. Intuitively, this small subset contains all representative ground predicates, and
makes good estimation of the gradients with much cheaper computational cost.

5 INFERENCE NETWORK DESIGN: EXPRESSGNN

In the neural variational EM framework, the key component is the posterior model, or the inference
network. We need to design the inference network that is both expressive and efficient to approximate
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the true posterior distribution. A recent concurrent work Qu & Tang (2019) uses a flattened embedding
table as the entity representation to model the posterior. However, such simple posterior model is
not able to capture the structure knowledge encoded in the knowledge graph. We employ graph
neural networks with tunable embeddings to design our inference network. We also investigate the
expressive power of GNN from theoretical perspective, which justifies our design.

Our inference network, named ExpressGNN, consists of three parts: the first part is a vanilla
graph neural network (GNN), the second part uses tunable embeddings, and the third part uses the
embeddings to define the variational posterior. For simplicity, we assume that each predicate has two
arguments (i.e., consider only r(c, c′)). We design each part as follows:

• We build a GNN on the knowledge graph GK, which is much smaller than the ground graph of
MLN (see comparison in Fig. 2). The computational graph of the GNN is given in Algorithm 1.
The GNN parameters θ1 and θ2 are shared across the entire graph and independent of the number
of entities. Therefore, the GNN is a compact model with O(d2) parameters given d dimensional
embeddings, µc ∈ Rd.

• For each entity in the knowledge graph, we augment its GNN embedding with a tunable embedding
ωc ∈ Rk as µ̂c = [µc,ωc]. The tunable embeddings increase the expressiveness of the model. As
there are M entities, the number of parameters in tunable embeddings is O(kM).

• We use the augmented embeddings of c1 and c2 to define the variational posterior. Specifically,
Qθ(r(c1, c2)) = σ(MLP3(µ̂c1 , µ̂c2 , r;θ3)), where σ(·) = 1

1+exp(−·) . The number of parameters
in θ3 is O(d+ k).

Algorithm 1: GNN()

Initialize entity node: µ(0)
c = µ0, ∀c ∈ C

for t = 0 to T − 1 do
. Compute message ∀r(c, c′) ∈ O
m

(t)
c′→c = MLP1(µ

(t)
c′ , r;θ1)

. Aggregate message ∀c ∈ C
m

(t+1)
c = AGG({m(t)

c′→c}c′:r(c,c′)∈O)
. Update embedding ∀c ∈ C
µ
(t+1)
c = MLP2(µ

(t)
c ,m

(t+1)
c ;θ2)

return embeddings {µ(T )
c }

In summary, ExpressGNN can be viewed as a two-level
encoding of the entities: the compact GNN assigns
similar embeddings to similar entities in the knowl-
edge graph, while the expressive tunable embeddings
provide additional model capacity to encode entity-
specific information beyond graph structures. The over-
all number of trainable parameters in ExpressGNN is
O(d2 + kM). By tuning the embedding size d and k,
ExpressGNN can trade-off between the model compact-
ness and expressiveness. For large-scale problems with
a large number of entities (M is large), ExpressGNN
can save a lot of parameters by reducing k.

5.1 EXPRESSIVE POWER OF GNN AS INFERENCE NETWORK

The combination of GNN and tunable embeddings makes the model sufficiently expressive to
approximate the true posterior distributions. Here we provide theoretical analysis on the expressive
power of GNN in the mean-field inference problem, and discuss the benefit of combining GNN and
tunable embeddings in ExpressGNN.

Recent studies (Shervashidze et al., 2011; Xu et al., 2018) show that the vanilla GNN embeddings can
represent the results of graph coloring, but fail to represent the results of the more strict graph isomor-
phism check, i.e., GNN produces the same embedding for some nodes that should be distinguished.
We first demonstrate this problem by a simple example:
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=?

F(A,E)
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Figure 3: Bottom: A knowledge
base with 0-1-0-1 loop. Top: MLN.

Example. Fig. 3 involves four entities (A, B, E, F), two predi-
cates (Friend: F(·, ·), Like: L(·, ·)), and one formula (F(c, c′)⇒
L(c, c′)). In this example, MLN variables have different posteri-
ors, but GNN embeddings result in the same posterior represen-
tation. More specifically,

• EntityA andB have opposite relations withE, i.e., F(A,E) =
1 versus F(B,E) = 0 in the knowledge graph, but running
GNN on the knowledge graph will always produce the same
embeddings for A and B, i.e., µA = µB .
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• L(A,E) and L(B,E) apparently have different posteriors.
However, using GNN embeddings, Qθ(L(A,E)) = σ (MLP3(µA, µE ,L)) is always identical
to Qθ(L(B,E)) = σ (MLP3(µB , µE ,L)).

We can formally prove that solving the problem in the above example requires the graph embeddings
to distinguish any non-isomorphic nodes in the knowledge graph. A formal statement is provided
below (see Appendix E for the proof).
Definition 5.1. Two ordered sequences of nodes (c1, . . . , cn) and (c′1, . . . , c

′
n) are isomorphic in a

graph GK if there exists an isomorphism π : GK → GK such that π(c1) = c′1, . . . , π(cn) = c′n.

Theorem 5.1. Two latent variables r(c1, . . . , cn) and r(c′1, . . . , c
′
n) have the same posterior dis-

tribution in any MLN if and only if the nodes (c1, · · · , cn) and (c′1, · · · , c′n) are isomorphic in the
knowledge graph GK.

Implied by the theorem, to obtain an expressive enough representation for the posterior, we need a
more powerful GNN variant. A recent work has proposed a powerful GNN variant (Maron et al.,
2019), which can handle small graphs such as chemical compounds and protein structures, but it is
computationally expensive due to the usage of high-dimensional tensors. As a simple yet effective
solution, ExpressGNN augments the vanilla GNN with additional tunable embeddings, which is a
trade-off between the compactness and expressiveness of the model.

In summary, ExpressGNN has the following nice properties:

• Efficiency: ExpressGNN directly works on the knowledge graph, instead of the huge MLN
grounding graph, making it much more efficient than the existing MLN inference methods.

• Compactness: The compact GNN model with shared parameters can be very memory efficient,
making ExpressGNN possible to handle industry-scale problems.

• Expressiveness: The GNN model can capture structure knowledge encoded in the knowledge graph.
Meanwhile, the tunable embeddings can encode entity-specific information, which compensates
for GNN’s deficiency in distinguishing non-isomorphic nodes.

• Generalizability: With the GNN embeddings, ExpressGNN may generalize to new entities or even
different but related knowledge graphs unseen during training time without the need for retraining.

6 EXPERIMENTS

Benchmark datasets. We evaluate ExpressGNN and other baseline methods on four benchmark
datasets: UW-CSE (Richardson & Domingos, 2006), Cora (Singla & Domingos, 2005), synthetic
Kinship datasets, and FB15K-237 (Toutanova & Chen, 2015) constructed from Freebase (Bollacker
et al., 2008). Details and full statistics of the benchmark datasets are provided in Appendix B.

General settings. We conduct all the experiments on a GPU-enabled (Nvidia RTX 2080 Ti) Linux
machine powered by Intel Xeon Silver 4116 processors at 2.10GHz with 256GB RAM. We implement
ExpressGNN using PyTorch and train it with Adam optimizer (Kingma & Ba, 2014). To ensure a
fair comparison, we allocate the same computational resources (CPU, GPU and memory) for all the
experiments. We use the default tuned hyperparameters for competitor methods, which can reproduce
the experimental results reported in their original works.

Model hyperparameters. For ExpressGNN, we use 0.0005 as the initial learning rate, and decay
it by half for every 10 epochs without improvement of validation loss. For Kinship, UW-CSE
and Cora, we run ExpressGNN with a fixed number of iterations, and use the smallest subset
from the original split for hyperparameter tuning. For FB15K-237, we use the original validation
set to tune the hyperparameters. We use a two-layer MLP with ReLU activation function as the
nonlinear transformation for each embedding update step in the GNN model. We learn different MLP
parameters for different steps. To increase the model capacity of ExpressGNN, we also use different
MLP parameters for different edge type, and for a different direction of embedding aggregation.
For each dataset, we search the configuration of ExpressGNN on either the validation set or the
smallest subset. The configuration we search includes the embedding size, the split point of tunable
embeddings and GNN embeddings, the number of embedding update steps, and the sampling batch
size. For the inference experiments, the weights for all the logic formulae are fixed as 1. For the
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Table 1: Inference accuracy (AUC-PR) of different methods on three benchmark datasets.

Method Kinship UW-CSE Cora

S1 S2 S3 S4 S5 AI Graphics Language Systems Theory (avg)

MCMC 0.53 - - - - - - - - - -
BP / Lifted BP 0.53 0.58 0.55 0.55 0.56 0.01 0.01 0.01 0.01 0.01 -
MC-SAT 0.54 0.60 0.55 0.55 - 0.03 0.05 0.06 0.02 0.02 -
HL-MRF 1.00 1.00 1.00 1.00 - 0.06 0.06 0.02 0.04 0.03 -

ExpressGNN-E 0.97 0.97 0.99 0.99 0.99 0.09 0.19 0.14 0.06 0.09 0.64

learning experiments, the weights are initialized as 1. For the choice of λ in the combined objective
Lθ in Eq. 6, we set λ = 0 for the inference experiments, since the query predicates are never seen in
the training data and no supervision is available. For the learning experiments, we set λ = 1.

6.1 COMPARISON TO MLN INFERENCE METHODS AND ABLATION STUDY

We first evaluate the inference accuracy and efficiency of ExpressGNN. We compare our method with
several strong MLN inference methods on UW-CSE, Cora and Kinship datasets. We also conduct
ablation study to explore the trade-off between GNN and tunable embeddings.

Experiment settings. For the inference experiments, we fix the weights of all logic rules as 1. A key
advantage of MLN is that it can handle open-world setting in a consistent probabilistic framework.
Therefore, we adopt open-world setting for all the experiments, as opposed to closed-world setting
where unobserved facts (except the query predicates) are assumed to be false. We also report the
performance under closed-world setting in Appendix C.

Prediction tasks. The deductive logic inference task is to answer queries that typically involve single
predicate. For example in UW-CSE, the task is to predict the AdvisedBy(c,c′) relation for all
persons in the set. In Cora, the task is to de-duplicate entities, and one of the query predicates is
SameAuthor(c,c′). As for Kinship, the task is to predict whether a person is male or female, i.e.,
Male(c). For each possible substitution of the query predicate with different entities, the model is
tasked to predict whether it’s true or not.

Evaluation metrics. Following existing studies (Richardson & Domingos, 2006; Singla & Domingos,
2005), we use area under the precision-recall curve (AUC-PR) to evaluate the inference accuracy. To
evaluate the inference efficiency, we use wall-clock running time in minutes.

Competitor methods. We compare our method with several strong MLN inference algorithms,
including MCMC (Gibbs Sampling; Gilks et al. (1995); Richardson & Domingos (2006)), Belief
Propagation (BP; Yedidia et al. (2001)), Lifted Belief Propagation (Lifted BP; Singla & Domingos
(2008)), MC-SAT (Poon & Domingos, 2006) and Hinge-Loss Markov Random Field (HL-MRF;
Bach et al. (2015); Srinivasan et al. (2019)).

Inference accuracy. The results of inference accuracy on three benchmark datasets are reported in
Table 1. A hyphen in the entry indicates that it is either out of memory or exceeds the time limit (24
hours). We denote our method as ExpressGNN-E since only the E-step is needed for the inference
experiments. Note that since the lifted BP is guaranteed to get identical results as BP (Singla &
Domingos, 2008), the results of these two methods are merged into one row. For these experiments,
ExpressGNN-E uses 64-dim GNN embeddings and 64-dim tunable embeddings. On Cora, all the
baseline methods fail to handle the data scale under open-world setting, and ExpressGNN-E achieves
good inference accuracy. On UW-CSE, ExpressGNN-E consistently outperforms all baselines. The
Kinship dataset is synthesized and noise-free, and the number of entities increases linearly on the five
sets S1–S5. HL-MRF achieves perfect accuracy for S1–S4, but is infeasible on the largest set S5.
ExpressGNN-E yields similar but not perfect results, which is presumably caused by the stochastic
nature of our sampling and optimization procedure.

Inference efficiency. The inference time corresponding to the experiments in Table 1 is summarized
in Fig. 4. On UW-CSE (left table), ExpressGNN-E uses much shorter time for inference compared to
all the baseline methods, and meanwhile ExpressGNN-E achieves the best inference performance.
On Kinship (right figure), as the data size grows linearly from S1 to S5, the inference time of most
baseline methods grows exponentially, while ExpressGNN-E maintains a nearly constant time cost,
demonstrating its nice scalability. Some baseline methods such as MCMC and MC-SAT become
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infeasible for larger sets. HL-MRF maintains a comparatively short inference time, however, it has a
huge increase of memory cost and is not able to handle the largest set S5.

Method Inference Time (minutes)

AI Graphics Language Systems Theory

MCMC >24h >24h >24h >24h >24h
BP 408 352 37 457 190
Lifted BP 321 270 32 525 243
MC-SAT 172 147 14 196 86
HL-MRF 135 132 18 178 72

ExpressGNN-E 14 20 5 7 13
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Figure 4: Left / Right: Inference time on UW-CSE / Kinship respectively. N/A indicates the method is infeasible.

Table 2: AUC-PR for different combi-
nations of GNN and tunable embeddings.
Tune d stands for d-dim tunable embed-
dings and GNN d stands for d-dim GNN
embeddings.

Configuration Cora

S1 S2 S3 S4 S5

Tune64 0.57 0.74 0.34 0.55 0.70
GNN64 0.57 0.58 0.38 0.54 0.53
GNN64+Tune4 0.61 0.75 0.39 0.54 0.70

Tune128 0.62 0.76 0.42 0.60 0.73
GNN128 0.60 0.59 0.45 0.55 0.61
GNN64+Tune64 0.62 0.79 0.46 0.57 0.75

Ablation study. ExpressGNN can trade-off the compactness
and expressiveness of model by tuning the dimensionality of
GNN and tunable embeddings. We perform ablation study
on the Cora dataset to investigate how this trade-off affects
the inference accuracy. Results of different configurations
of ExpressGNN-E are shown in Table 2. It is observed that
GNN64+Tune4 has comparable performance with Tune64,
but is consistently better than GNN64. Note that the number
of parameters in GNN64+Tune4 is O(642 +4|C|), while that
in Tune64 is O(64|C|). When the number of entities is large,
GNN64+Tune4 has much less parameters to train. This is
consistent with our theoretical analysis result: As a compact
model, GNN saves a lot of parameters, but GNN alone is
not expressive enough. A similar conclusion is observed
for GNN64+Tune64 and Tune128. Therefore, ExpressGNN seeks a combination of two types of
embeddings to possess the advantage of both: having a compact model and being expressive. The
best configuration of their embedding sizes can be varied on different tasks, and determined by the
goal: getting a portable model or better performance.

6.2 COMPARISON TO KNOWLEDGE BASE COMPLETION METHODS

We evaluate ExpressGNN in the knowledge base completion task on the FB15K-237 dataset, and
compare it with state-of-the-art knowledge base completion methods.

Experiment settings. To generate logic rules, we use Neural LP (Yang et al., 2017) on the training
set and pick up the candidates with top confidence scores. See Appendix D for examples of selected
logic rules. We evaluate both inference-only and inference-and-learning version of ExpressGNN,
denoted as ExpressGNN-E and ExpressGNN-EM, respectively.

Prediction task. For each test query r(c, c′) with respect to relation r, the model is tasked to generate
a rank list over all possible instantiations of r and sort them according to the model’s confidence on
how likely this instantiation is true.

Evaluation metrics. Following existing studies (Bordes et al., 2013; Sun et al., 2019), we use filtered
ranking where the test triples are ranked against all the candidate triples not appearing in the dataset.
Candidate triples are generated by corrupting the subject or object of a query r(c, c′). For evaluation,
we compute the Mean Reciprocal Ranks (MRR), which is the average of the reciprocal rank of all the
truth queries, and Hits@10, which is the percentage of truth queries that are ranked among the top 10.

Competitor methods. Since none of the aforementioned MLN inference methods can scale up to
this dataset, we compare ExpressGNN with a number of state-of-the-art methods for knowledge base
completion, including Neural Tensor Network (NTN; Socher et al. (2013)), Neural LP (Yang et al.,
2017), DistMult (Kadlec et al., 2017), ComplEx (Trouillon et al., 2016), TransE (Bordes et al., 2013),
RotatE (Sun et al., 2019) and pLogicNet (Qu & Tang, 2019). The results of MLN and pLogicNet are
directly taken from the paper Qu & Tang (2019). For all the other baseline methods, we use publicly
available code with the provided best hyperparameters to run the experiments.
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Table 3: Performance on FB15K-237 with varied training set size.

Model MRR Hits@10

0% 5% 10% 20% 100% 0% 5% 10% 20% 100%

MLN - - - - 0.10 - - - - 16.0
NTN 0.09 0.10 0.10 0.11 0.13 17.9 19.3 19.1 19.6 23.9
Neural LP 0.01 0.13 0.15 0.16 0.24 1.5 23.2 24.7 26.4 36.2
DistMult 0.23 0.24 0.24 0.24 0.31 40.0 40.4 40.7 41.4 48.5
ComplEx 0.24 0.24 0.24 0.25 0.32 41.1 41.3 41.9 42.5 51.1
TransE 0.24 0.25 0.25 0.25 0.33 42.7 43.1 43.4 43.9 52.7
RotatE 0.25 0.25 0.25 0.26 0.34 42.6 43.0 43.5 44.1 53.1
pLogicNet - - - - 0.33 - - - - 52.8

ExpressGNN-E 0.42 0.42 0.42 0.44 0.45 53.1 53.1 53.3 55.2 57.3
ExpressGNN-EM 0.42 0.42 0.43 0.45 0.49 53.8 54.6 55.3 55.6 60.8

Table 4: Zero-shot learning
performance on FB15K-237.

Model MRR Hits@10

NTN 0.001 0.0
Neural LP 0.010 2.7
DistMult 0.004 0.8
ComplEx 0.013 2.2
TransE 0.003 0.5
RotatE 0.006 1.5

ExpressGNN-E 0.181 29.3
ExpressGNN-EM 0.185 29.6

Performance analysis. The experimental results on the full training data are reported in Table 3
(100% columns). Both ExpressGNN-E and ExpressGNN-EM significantly outperform all the baseline
methods. With learning the weights of logic rules, ExpressGNN-EM achieves the best performance.
Compared to MLN, ExpressGNN achieves much better performance since MLN only relies on the
logic rules while ExpressGNN can also leverage the labeled data as additional supervision. Compared
to knowledge graph embedding methods such as TransE and RotatE, ExpressGNN can leverage the
prior knowledge in logic rules and outperform these purely data-driven methods.

Data efficiency. We investigate the data efficiency of ExpressGNN and compare it with baseline
methods. Following (Yang et al., 2017), we split the knowledge base into facts / training / validation /
testing sets, and vary the size of the training set from 0% to 100% to feed the model with complete
facts set for training. From Table 3, we see that ExpressGNN performs significantly better than
the baselines on smaller training data. With more training data as supervision, data-driven baseline
methods start to close the gap with ExpressGNN. This clearly shows the benefit of leveraging the
knowledge encoded in logic rules when there data is insufficient for supervised learning.

Zero-shot relational learning. In practical scenarios, a large portion of the relations in the knowledge
base are long-tail, i.e., most relations may have only a few facts (Xiong et al., 2018). Therefore, it
is important to investigate the model performance on relations with insufficient training data. We
construct a zero-shot learning dataset based on FB15K-237 by forcing the training and testing data
to have disjoint sets of relations. Table 4 shows the results. As expected, the performance of all
the supervised relational learning methods drop to almost zero. This shows the limitation of such
methods when coping with sparse long-tail relations. Neural LP is designed to handle new entities in
the test set (Yang et al., 2017), but still struggles to perform well in zero-shot learning. In contrast,
ExpressGNN leverages both the prior knowledge in logic rules and the neural relational embeddings
for reasoning, which is much less affected by the scarcity of data on long-tail relations. Both variants
of our framework (ExpressGNN-E and ExpressGNN-EM) achieve significantly better performance.

7 CONCLUSION

This paper studies the probabilistic logic reasoning problem, and proposes ExpressGNN to combine
the advantages of Markov Logic Networks in logic reasoning and graph neural networks in graph
representation learning. ExpressGNN addresses the scalability issue of Markov Logic Networks
with efficient stochastic training in the variational EM framework. ExpressGNN employs GNNs to
capture the structure knowledge that is implicitly encoded in the knowledge graph, which serves as
supplement to the knowledge from logic formulae. ExpressGNN is a general framework that can
trade-off the model compactness and expressiveness by tuning the dimensionality of the GNN and
the embedding part.
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Appendix

A COUNTER EXAMPLES

We provide more examples in this section to show that it is more than a rare case that GNN embeddings
alone are not expressive enough.

A.1 EXAMPLE 1

L(A,E)
=?

𝑓(A,E) 𝑓(B,E)

L(B,E)
=?

F(A,E)
=1

F(B,E)
=?

A

B

E

F

F(A,E)=1

F(B,F)=1

Figure 5: Example 1. Top: Knowledge base. Bottom: MLN

Unlike the example shown in main text, where A and B have OPPOSITE relation with E, Fig. 5
shows a very simple example where A and B have exactly the same structure which makes A and B
indistinguishable and isomorphic. However, since (A,E) and (B,E) are not isomorphic, it can be easily
seen that L(A,E) has different posterior from L(B,E).

A.2 EXAMPLE 2

F(A,E)=1

F(B,F)=1

F(B,E)=0F(
A
,F
)=
0

A

B

E

F

L(A,E)
=?

𝑓(A,E) 𝑓(B,E)

L(B,E)
=?

F(A,E)
=1

F(B,E)
=0

Figure 6: The same example as in Fig. 3. Top: Knowledge base. Bottom: MLN

Fig. 6 shows an example which is the same as in Fig. 3. However, in this example, it is already
revealed in the knowledge base that (A,E) and (B,E) have different local structures as they are
connected by different observations. That is, (A, [F(A,E) = 1] ,E) and (B, [F(B,E) = 0] ,E) can be
distinguished by GNN.

Now, we use another example in Fig. 7 to show that even when the local structures are the same, the
posteriors can still be different, which is caused by the formulae.
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F(A,E)=1
C H

D

KG

M

F(D
,K
)=1

F(G
,M
)=1

F(D
,H
)=0

F(G,K)=0

F(
C,
M
)=
0

F(A,E)=1

F(B,F)=1

F(B,E)=0F(
A
,F
)=
0

A

B

E

F

𝑓 𝑐#,𝑐%,𝑐&,𝑐' ≔ F 𝑐#,𝑐% ∧ F 𝑐&,𝑐%¬ ∧ F 𝑐&,𝑐'  ∧ F 𝑐#,𝑐'¬ ⇒ L(𝑐#,𝑐%)

L(A,E)
=?

𝑓(A,E,B,F) 𝑓(C,H,D,K)

L(C,H)
=?

F(A,E)
=1

F(B,E)
=0

F(B,F)
=1

F(A,F)
=0

F(C,H)
=1

F(H,D)
=0

F(D,K)
=1

F(C,K)
=?

... … 𝑓(C,H,G,M) ... … 

F(C,H)
=1

F(G,M)
=1

F(G,H)
=?

F(C,M)
=0

Figure 7: Example 2. Top: Knowledge base. Bottom: MLN

In Fig. 7, (A,E) and (C,H) have the same local structure, so that the tuple (A, [F(A,E) = 1] ,E) and
(C, [F(C,H) = 1] ,H) can NOT be distingushed by GNN. However, we can make use of subgraph
(A,E,B,F) to define a formula, and then the resulting MLN gives different posterior to L(A,E) and
L(C,H), as can be seen from the figure. Note that this construction of MLN is the same as the
construction steps stated in the proof in Sec. E.
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Table 5: Complete statistics of the benchmark datasets.

Dataset # entity # relation # fact # query # ground # ground
predicate formula

FB15K-237 15K 237 272K 20K 50M 679B

Kinship-S1 62 15 187 38 50K 550K
Kinship-S2 110 15 307 62 158K 3M
Kinship-S3 160 15 482 102 333K 9M
Kinship-S4 221 15 723 150 635K 23M
Kinship-S5 266 15 885 183 920K 39M

UW-CSE-AI 300 22 731 4K 95K 73M
UW-CSE-Graphics 195 22 449 4K 70K 64M
UW-CSE-Language 82 22 182 1K 15K 9M
UW-CSE-Systems 277 22 733 5K 95K 121M
UW-CSE-Theory 174 22 465 2K 51K 54M

Cora-S1 670 10 11K 2K 175K 621B
Cora-S2 602 10 9K 2K 156K 431B
Cora-S3 607 10 18K 3K 156K 438B
Cora-S4 600 10 12K 2K 160K 435B
Cora-S5 600 10 11K 2K 140K 339B

B DATASET DETAILS

For our experiments, we use the following benchmark datasets:

• The social network dataset UW-CSE (Richardson & Domingos, 2006) contains publicly available
information of students and professors in the CSE department of UW. The dataset is split into five
sets according to the home department of the entities.

• The entity resolution dataset Cora (Singla & Domingos, 2005) consists of a collection of citations
to computer science research papers. The dataset is also split into five subsets according to the
field of research.

• We introduce a synthetic dataset that resembles the popular Kinship dataset (Denham, 1973). The
original dataset contains kinship relationships (e.g., Father, Brother) among family members
in the Alyawarra tribe from Central Australia. The synthetic dataset closely resembles the original
Kinship dataset but with a controllable number of entities. To generate a dataset with n entities,
we randomly split n entities into two groups which represent the first and second generation
respectively. Within each group, entities are grouped into a few sub-groups representing the sister-
and brother-hood. Finally, entities from different sub-groups in the first generation are randomly
coupled and a sub-group in the second generation is assigned to them as their children. To generate
the knowledge base, we traverse this family tree, and record all kinship relations for each entity.
We generate five kinship datasets (Kinship S1–S5) by linearly increasing the number of entities.
• The knowledge base completion benchmark FB15K-237 (Toutanova & Chen, 2015) is a generic

knowledge base constructed from Freebase (Bollacker et al., 2008), which is designed to a more
challenging variant of FB15K. More specifically, FB15K-237 is constructed by removing near-
duplicate and inverse relations from FB15K. The dataset is split into training / validation / testing
and we use the same split of facts from training as in prior work (Yang et al., 2017).

The complete statistics of these datasets are shown in Table 5. Examples of logic formulae used in
four benchmark datasets are listed in Table 7.

C INFERENCE WITH CLOSED-WORLD SEMANTICS FOR BASELINE METHODS

In Sec. 6.1 we compare ExpressGNN with five probabilistic inference methods under open-world
semantics. This is different from the original works, where they generally adopt the closed-world
setting due to the scalability issues. More specifically, the original works assume that the predicates
(except the ones in the query) observed in the knowledge base is closed, meaning for all instantiations
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Table 6: Inference performance of competitors and our method under the closed-world semantics.

Method Cora UW-CSE

S1 S2 S3 S4 S5 AI Graphics Language Systems Theory

MCMC 0.43 0.63 0.24 0.46 0.56 0.19 0.04 0.03 0.15 0.08
BP / Lifted BP 0.44 0.62 0.24 0.45 0.57 0.21 0.04 0.01 0.14 0.05
MC-SAT 0.43 0.63 0.24 0.46 0.57 0.13 0.04 0.03 0.11 0.08
HL-MRF 0.60 0.78 0.52 0.70 0.81 0.26 0.18 0.06 0.27 0.19

of these predicates that do not appear in the knowledge base are considered false. Note that only the
query predicates remain open-world in this setting.

For sanity checking, we also conduct these experiments with a closed-world setting. We found the
results summarized in Table 6 are close to those reported in the original works. This shows that
we have a fair setup (including memory size, hyperparameters, etc.) for those competitor methods.
Additionally, one can find that the AUC-PR scores compared to those (Table 1) under open-world
setting are actually better. This is due to the way the datasets were originally collected and evaluated
generally complies with the closed-world assumption. But this is very unlikely to be true for real-
world and large-scale knowledge base such as Freebase and WordNet, where many true facts between
entities are not observed. Therefore, in general, the open-world setting is much more reasonable,
which we follow throughout this paper.
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D LOGIC FORMULAE

We list some examples of logic formulae used in four benchmark datasets in Table 7. The full list of
logic formulae is available in our source code repository. Note that these formulae are not necessarily
as clean as being always true, but are typically true.

For UW-CSE and Cora, we use the logic formulae provided in the original dataset. UW-CSE provides
94 hand-coded logic formulae, and Cora provides 46 hand-coded rules. For Kinship, we hand-code
22 first-order logic formulae. For FB15K-237, we first use Neural LP (Yang et al., 2017) on the full
data to generate candidate rules. Then we select the ones that have confidence scores higher than 90%
of the highest scored formulae sharing the same target predicate. We also de-duplicate redundant
rules that can be reduced to other rules by switching the logic variables. Finally, we have generated
509 logic formulae for FB15K-237.

Table 7: Examples of logic formulae used in four benchmark datasets.

Dataset First-order Logic Formulae

Kinship

Father(X,Z) ∧ Mother(Y,Z)⇒ Husband(X,Y)
Father(X,Z) ∧ Husband(X,Y)⇒ Mother(Y,Z)
Husband(X,Y)⇒ Wife(Y,X)
Son(Y,X)⇒ Father(X,Y) ∨ Mother(X,Y)
Daughter(Y,X)⇒ Father(X,Y) ∨ Mother(X,Y)

UW-CSE

taughtBy(c, p, q) ∧ courseLevel(c, Level500)⇒ professor(p)
tempAdvisedBy(p, s)⇒ professor(p)
advisedBy(p, s)⇒ student(s)
tempAdvisedBy(p, s)⇒ student(s)
professor(p) ∧ hasPosition(p, Faculty)⇒ taughtBy(c, p, q)

Cora

SameBib(b1,b2) ∧ SameBib(b2,b3)⇒ SameBib(b1,b3)
SameTitle(t1,t2) ∧ SameTitle(t2,t3)⇒ SameTitle(t1,t3)
Author(bc1,a1) ∧ Author(bc2,a2) ∧ SameAuthor(a1,a2)⇒ SameBib(bc1,bc2)
HasWordVenue(a1, +w) ∧ HasWordVenue(a2, +w)⇒ SameVenue(a1, a2)
Title(bc1,t1) ∧ Title(bc2,t2) ∧ SameTitle(t1,t2)⇒ SameBib(bc1,bc2)

FB15K-237

position(B, A) ∧ position(C, B)⇒ position(C, A)
ceremony(B, A) ∧ ceremony(C, B)⇒ categoryOf(C, A)
film(B, A) ∧ film(C, B)⇒ participant(A, C)
storyBy(A, B)⇒ participant(A, B)
adjoins(A, B) ∧ country(B, C)⇒ serviceLocation(A, C)
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E PROOF OF THEOREM

First, we re-state the definition and theorem in a more mathematical form:

Definition. [Isomorphic Nodes] Two ordered sequences of nodes (c1, . . . , cn) and (c′1, . . . , c
′
n)

are isomorphic in a graph GK if there exists an isomorphism from GK = (C,O, E) to itself, i.e.,
π : C ∪ O → C ∪ O, such that π(c1) = c′1, . . . , π(cn) = c′n. Further, we use the following notation

(c1, · · · , cn)
GK⇐⇒ (c′1, · · · , c′n) : (c1, · · · , cn) and (c′1, · · · , c′n) are isomorphic in GK.

Theorem. Consider a knowledge base K = (C,R,O) and any r ∈ R. Two latent random variables
X := r(c1, . . . , cn) and X ′ := r(c′1, . . . , c

′
n) have the same posterior distribution in any MLN if

and only if (c1, · · · , cn)
GK⇐⇒ (c′1, · · · , c′n).

Then we give the proof as follows.

Proof. A graph isomorphism from G to itself is called automorphism, so in this proof, we will use
the terminology - automorphism - to indicate such a self-bijection.

(⇐=) We first prove the sufficient condition:
If ∃ automorphism π on the graph GK such that π(ci) = c′i,∀i = 1, ..., n,
then for any r ∈ R, r(c1, . . . , cn) and r(c′1, . . . , c

′
n) have the same posterior in any MLN.

MLN is a graphical model that can also be represented by a factor graph MLN = (O ∪ H,Fg, E)
where ground predicates (random variables) and ground formulae (potential) are connected. We
will show that ∃ an automorphism φ on MLN such that φ (r(c1, . . . , cn)) = r(c′1, . . . , c

′
n). Then the

sufficient condition is true. This automorphism φ is easy to construct using the automorphism π on
GK. More precisely, we define φ : (O ∪H,Fg)→ (O ∪H,Fg) as

φ(r(ar)) = r(π(ar)), φ(f(af )) = f(π(af )), (9)
for any predicate r ∈ R, any assignments ar to its arguments, any formula f ∈ F , and any
assignments af to its arguments. It is easy to see φ is an automorphism:

1. Since π is a bijection, apparently φ is also a bijection.
2. The above definition preserves the biding of the arguments. r(ar) and f(af ) are connected if and

only if φ(r(ar)) and f(π(af )) are connected.
3. Given the definition of π, we know that r(ar) and r(π(ar)) have the same observation value.

Therefore, in MLN, NodeType(r(ar)) = NodeType(φ(r(ar))).

This completes the proof of the sufficient condition.

(=⇒) To prove the necessary condition, it is equivalent to show the following assumption
(A 1): there is no automorphism π on the graph GK such that π(ci) = c′i,∀i = 1, ..., n,

can imply:
there must exists a MLN and a predicate r in it such that
r(c1, . . . , cn) and r(c′1, . . . , c

′
n) have different posterior.

Before showing this, let us first introduce the factor graph representation of a single logic formula
f .
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A logic formula f can be represented as
a factor graph, Gf = (Cf ,Rf , Ef ), where
nodes on one side of the graph is the set of
distinct constants Cf needed in the formula,
while nodes on the other side is the set of
predicates Rf used to define the formula.
The set of edges, Ef , will connect constants
to predicates or predicate negation. That is,
an edge

e = (c, r, i) between
node c and predicate r ex-
ists, if the predicate r use
constant c in its i-th argu-
ment.

We note that the set of distinctive constants
used in the definition of logic formula are
templates where actual constant can be in-

stantiated from C. An illustration of logic
formula factor graph can be found in Fig. 8.
Similar to the factor graph for the knowledge
base, we also differentiate the type of edges
by the position of the argument.

Y ZX

Daughter(Z, X)¬ Mother(Y, Z)¬ Husband(X, Y)

Figure 8: An example of the factor graph
for the logic formula ¬Husband(X,Y) ∨
¬Mother(Y,Z) ∨ Daughter(Z,X).

Therefore, every single formula can be represented by a factor graph. We will construct a factor graph
representation to define a particular formula, and show that the MLN induced by this formula will
result in different posteriors for r(c1, . . . , cn) and r(c′1, . . . , c

′
n). The factor graph for the formula is

constructed in the following way (see Fig. 7 as an example of the resulting formula constructed using
the following steps):

(i) Given the above assumption (A 1), we claim that:

∃ a subgraph G∗c1:n = (C∗c ,O∗c , E∗c ) ⊆ GK such that all subgraphs Gc′1:n = (Cc′ ,Oc′ , Ec′) ⊆ GK
satisfy:

(Condition) if there exists an isomorphism φ : G∗c1:n → Gc′1:n satisfying φ(ci) =
c′i,∀i = 1, . . . , n after the observation values are IGNORED (that is, [rj(· · · ) = 0]
and [rj(· · · ) = 1] are treated as the SAME type of nodes), then the set of fact nodes
(observations) in these two graphs are different (that is, O∗c 6= Oc′ ).

The proof of this claim is given at the end of this proof.

(ii) Next, we use G∗c1:n to define a formula f . We first initialize the definition of the formula value as

f(c1, . . . , cn, c̃1, . . . , c̃n) =
(
∧
{
r̃(ar̃) : r̃(ar̃) ∈ G∗c1:n

})
⇒ r(c1, . . . , cn). (10)

Then, we change r̃(ar̃) in this formula to the negation ¬r̃(ar̃) if the observed value of r̃(ar̃) is 0
in G∗c1:n .

We have defined a formula f using the above two steps. Suppose the MLN only contains this formula
f . Then

the two nodes r(c1, . . . , cn) and r(c′1, . . . , c
′
n) in this MLN must be distinguishable.

The reason is, in MLN, r(c1, . . . , cn) is connected to a ground formula f(c1, . . . , cn, c̃1, . . . , c̃n),
whose factor graph representation is G∗c1:n ∪ r(c1, . . . , cn). In this formula, all variables are observed
in the knowledge base K except for r(c1, . . . , cn) and and the observation set is O∗c . The formula
value is

f(c1, . . . , cn, c̃1, . . . , c̃n) = (1⇒ r(c1, . . . , cn)) . (11)
Clarification: Eq. 10 is used to define a formula and ci in this equation can be replaced by other con-
stants, while Eq. 11 represents a ground formula whose arguments are exactly c1, . . . , cn, c̃1, . . . , c̃n.
Based on (Condition), there is NO formula f(c′1, . . . , c

′
n, c̃
′
1, . . . , c̃

′
n) that contains r(c′1, . . . , c

′
n) has
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an observation set the same as O∗c . Therefore, r(c1, . . . , cn) and r(c′1, . . . , c
′
n) are distinguishable in

this MLN.

Proof of claim:

We show the existence by constructing the subgraph G∗c1:n ⊆ GK in the following way:

(i) First, we initialize the subgraph as G∗c1:n := GK. Given assumption (A 1) stated above, it is clear
that

(S 1) ∀ subgraph G′ ⊆ GK, there is no isomorphism π : G∗c1:n → G
′ satisfying π(ci) =

c′i,∀i = 1, . . . , n.

(ii) Second, we need to check wether the following case occurs:

(C 1) ∃ a subgraph G′ = (C′,O′, E ′) such that (1) there EXISTS an isomorphism φ :
G∗c1:n → G

′ satisfying φ(ci) = c′i,∀i = 1, . . . , n after the observation values are IGNORED
(that is, [rj(· · · ) = 0] and [rj(· · · ) = 1] are treated as the same type of nodes); and (2) the
set of factor nodes (observations) in these two graphs are the same (that is, O∗c = O′).

(iii) Third, we need to modify the subgraph if the case (C 1) is observed. Since
∣∣G∗c1:n ∣∣ ≥ |G′|, the

only subgraph that will lead to the case (C1) is the maximal subgraph G∗c1:n . The isomorphism φ is
defined by ignoring the observation values, while the isomorphism π in (S 1) is not ignoring them.
Thus,

(S 1) and (C 1) =⇒ ∃ a set of nodes S :=
{[
rj(a

(1)) = 0
]
, . . . ,

[
rj(a

(n)) = 0
]}

such
that for any isomorphism φ satisfying the conditions in (C 1), the range φ(S) contains at
least one node [rj(·) = 1] which has observation value 1.

Otherwise, it is easy to see a contradiction to statement (S 1).

(M 1) Modify the subgraph by G∗c1:n ←− G
∗
c1:n \ S. The nodes (and also their edges) in the

set S :=
{[
rj(a

(1)) = 0
]
, . . . ,

[
rj(a

(n)) = 0
]}

are removed.

For the new subgraph G∗c1:n after the modification (M 1), the case (C 1) will not occur. Thus, we’ve
obtained a subgraph that satisfies the conditions stated in the claim. Finally, we can remove the nodes
that are not connected with {c1, . . . , cn} (that is, there is no path between this node and any one of
{c1, . . . , cn}). The remaining graph is connected to {c1, . . . , cn} and still satisfies the conditions that
we need.
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