
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BOOSTING NEURAL COMBINATORIAL OPTIMIZATION
FOR LARGE-SCALE VEHICLE ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Combinatorial Optimization (NCO) methods have exhibited promising
performance in solving Vehicle Routing Problems (VRPs). However, most NCO
methods rely on the conventional self-attention mechanism that induces excessive
computational complexity, thereby struggling to contend with large-scale VRPs
and hindering their practical applicability. In this paper, we propose a lightweight
cross-attention mechanism with linear complexity, by which a Transformer network
is developed to learn efficient and favorable solutions for large-scale VRPs. We
also propose a Self-Improved Training (SIT) algorithm that enables direct model
training on large-scale VRP instances, bypassing extensive computational overhead
for attaining labels. By iterating solution reconstruction, the Transformer network
itself can generate improved partial solutions as pseudo-labels to guide the model
training. Experimental results on the Travelling Salesman Problem (TSP) and the
Capacitated Vehicle Routing Problem (CVRP) with up to 100K nodes indicate that
our method consistently achieves superior performance for synthetic and real-world
benchmarks, significantly boosting the scalability of NCO methods.

1 INTRODUCTION

The vehicle routing problem (VRP) is a typical type of combinatorial optimization problem (COP)
and is often encountered in numerous real-world applications (Garaix et al., 2010; Brophy & Voigt,
2014; Elgarej et al., 2021). Due to the NP-hard nature, solving VRPs remains extremely challeng-
ing (Ausiello et al., 2012). Traditional methods are generally hindered by their heavy reliance on
domain expertise and tuning work in algorithm design. Meanwhile, they often suffer from low
computational efficiency that hampers their applicability on large-scale VRP instances.

Recently, the neural combinatorial optimization (NCO) methods for solving VRPs in an end-to-end
manner have attracted considerable attention (Bengio et al., 2021). These methods build deep neural
models to automatically learn problem-solving policies from data, significantly mitigating the need
for costly manual effort in algorithm design. The learned policy can efficiently generate approximate
solutions for VRP instances. NCO methods have gained comparable or even superior performance
to traditional methods on small-scale problem instances with no more than 100 nodes (Kool et al.,
2019; Kwon et al., 2020; Hottung et al., 2022), especially on Traveling Salesman Problem (TSP) and
Capacitated Vehicle Routing Problem (CVRP) instances.

Nevertheless, existing NCO methods often struggle when applied to large-scale VRPs. Some efforts
have been devoted to training neural models on larger VRPs with up to 500 nodes (Jin et al., 2023;
Zhou et al., 2023), aiming to enhance their generalization for solving large-scale VRPs. However, the
difficulty of training will increase drastically as the size of the problem grows, resulting in the inability
to obtain sufficient generalization capabilities. Consequently, some methods resort to simplifying
large-scale VRPs via decomposition or learning local policies (Pan et al., 2023; Ye et al., 2024;
Gao et al., 2024; Fang et al., 2024). The decomposition-based subproblem solver can be trained
by learning to construct either a complete solution of a small-scale VRP or partial solutions (e.g.,
some segments of a TSP solution) of a large-scale one (Kim et al., 2021; Cheng et al., 2023; Luo
et al., 2023). The method based on local policy reduces the decision space into the current node’s
neighborhood in each construction step.

Despite the above efforts in solving large-scale VRPs, current NCO methods still suffer from two
obstacles in terms of scalability. First, they usually rely on the conventional self-attention mechanism

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

with high computational complexity (Vaswani et al., 2017), which severely restricts the model’s
efficiency in constructing a complete solution or multiple partial solutions with large sizes for a
large-scale VRP. Second, their models are often trained in supervised learning (SL) or reinforcement
learning (RL) manner, both of which grapple with effective training on large-scale VRPs. On the one
hand, the SL-based NCO has difficulty in obtaining sufficient (near)-optimal solutions as labels; on
the other hand, the RL-based model training suffers from severe sparse rewards as well as high GPU
memory usage. We provide a comprehensive literature review on NCO methods for large-scale VRPs
in Appendix 2.

In this paper, we propose a lightweight cross-attention mechanism with linear computational com-
plexity, which can significantly improve the efficiency of the NCO model in solving large-scale VRPs.
Unlike the conventional self-attention that makes each node attend to all the other nodes in an instance,
the cross-attention reforms the computational process through representative nodes. In particular, the
representative nodes first attend to each node of an instance to update their own embeddings, and
then the instance nodes’ embeddings are updated via attending to the representative nodes. With a
fixed number of representative nodes, the computational complexity is greatly reduced in comparison
to the conventional self-attention while maintaining effective attention computation between nodes.
Based on the proposed cross-attention mechanism, we develop a novel Transformer network for
solving large-scale VRPs more efficiently. In addition, we propose an innovative Self-Improved
Training (SIT) algorithm that empowers our model to be successfully trained on large-scale instances.
The SIT employs the Transformer network itself to refine the solution via iterative reconstruction.
The improved solutions, in turn, serve as pseudo-labels to train the network. By iterating solution
reconstruction and network training, the SIT enables our NCO method to effectively solve large-scale
VRP instances without any labeled data.

We conduct comprehensive experiments on both synthetic and real-world TSP and CVRP benchmarks.
The results demonstrate that our NCO method achieves state-of-the-art performance on large-scale
VRPs with up to 100K nodes. Our ablation study reveals the effect of the cross-attention and SIT
algorithm in improving computational efficiency and solving performance for large-scale VRPs.

2 RELATED WORK

2.1 GENERALIZATION-BASED METHOD

The generalization-based methods usually train the neural models on small-scale instances and then
test them on the same-scale or larger-scale instances. It generally refers to the construction-based
method that learns a model to construct approximate solutions for given problem instances in an
autoregressive manner. Pioneering works (Vinyals et al., 2015; Bello et al., 2016; Nazari et al., 2018)
show that neural models trained with supervised learning (SL) or reinforcement learning (RL) can
achieve promising results on small-scale CO problems. Kool et al. (2019) and Deudon et al. (2018)
leverage the Transformer structure Vaswani et al. (2017) to develop powerful attention-based models
to solve small-scale VRPs. Since then, various Transformer-based methods have been proposed with
different improvements (Xin et al., 2021; 2020; Kwon et al., 2020; Hottung et al., 2022; Kim et al.,
2021; Choo et al., 2022; Manchanda et al., 2022). Subsequently, many studies attempt to enhance
the performance of neural models on large-scale VRPs (Son et al., 2023; Zhou et al., 2023; Drakulic
et al., 2023; Luo et al., 2023). Among them, Drakulic et al. (2023); Luo et al. (2023) employ SL to
train the model on 100-node and equip the model with good generalization ability on VRPs with
up to 1K nodes. BQ reformulates the Markov Decision Process (MDP) of solution construction to
effectively leverage common symmetries of COPs, while LEHD proposes a light encoder and heavy
decoder structure to achieve the same goal. However, since the distribution of 100-node instances
differs drastically from that of instances with more than 10K nodes, the features learned from such
small-scale instances are not applicable to very large-scale instances, resulting in poor performance
on instances with more than 10K nodes. Recent attempts propose to train models on larger-scale
instances with up to 500 nodes (Jin et al., 2023; Zhou et al., 2024; Wang et al., 2024; Zhou et al.,
2023). However, the training difficulty increases dramatically as the problem sizer grows, resulting in
the inability to obtain sufficient generalization capabilities.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 SIMPLIFICATION-BASED METHOD

Some methods resort to simplifying large-scale VRPs via decomposition or learning local policies.
On the one hand, decomposition-based methods generally transform a large-scale problem into
multiple simpler small-scale subproblems, solve them, and then merge their solutions to construct the
complete solution of the original large-scale problem. These methods propose different strategies to
learn individual models for problem decomposition and subproblem-solving, respectively (Li et al.,
2021; Zong et al., 2022; Hou et al., 2023; Pan et al., 2023; Ye et al., 2024). The decomposition-based
subproblem solver can be trained by learning to construct either a complete solution of a small-scale
VRP or partial solutions (e.g., some segments of a TSP solution) of a large-scale one (Kim et al., 2021;
Cheng et al., 2023; Luo et al., 2023). On the other hand, the local policy-based method reduces the
decision space into the current node’s neighborhood in each construction step. While Gao et al. (2024)
adopt an auxiliary policy to bias the model to make decisions within the current node’s neighborhood,
Fang et al. (2024) directly restricts the decisions to the neighborhood.

2.3 HEATMAP-BASED METHOD

In addition to the above works, some heatmap-based methods are proposed to address large-scale
TSP instances (Fu et al., 2021; Qiu et al., 2022; Li et al., 2023; Min et al., 2023; Sun & Yang, 2023).
This kind of method first builds a graph neural network (GNN) model to predict a heatmap that
measures the probability for each edge to be in the optimal solution, and then iteratively searches for
an approximate solution using the heatmap (Joshi et al., 2019). Since they rely on the search strategy
(e.g., MCTS (Fu et al., 2021)) specifically designed for TSP, they cannot be applied to solve other
complicated CO problems such as CVRP. In this work, we primarily focus on the construction-based
method without requiring expert knowledge.

3 PRELIMINARIES

VRP Definition. A VRP instance S can be represented by a graph G = (V, E), where V = {vi}ni=0
denotes the node set and E = {(vi, vj)|vi, vj ∈ V, vi ̸= vj} denotes the edge set. In particular, v0
denotes the depot in some problems (e.g., CVRP).

On the VRP graph, each node is featured by a vector xi ∈ Rdx , with the elements including the node
coordinates and other problem-specific attributes (e.g., demands {δi}ni=0 in CVRP). A solution to a
VRP instance is a tour π, which is a permutation of the nodes. Given a cost function c(·), solving
the VRP instance is to search the tour with minimal cost, i.e., π∗ = argminπ∈Ω c(π|G), from the
feasible tour set Ω. Specifically, the cost function of TSP and CVRP is defined as the Euclidean
length of the tour in this work.

A VRP solution is feasible if it adheres to problem-specific constraints, e.g., a feasible solution to
a TSP instance is a tour that visits each node in the graph exactly once. Constraints in the CVRP
further entail the limited capacity of a vehicle, which are detailed in Appendix B.

Solution Construction for VRP. Most NCO methods adopt encoder-decoder-based neural networks
to learn the solution construction. The encoder produces node embedding hi for each node vi. With
node embeddings {hi}ni=0, the decoder sequentially constructs the solution by appending one node
to the partial solution at each step. In particular, if none of the nodes have been visited, the partial
solution is empty. At each construction step, one node is selected from the unvisited nodes to be
added to the partial solution and marked as visited. For example, a partial solution at step t can
be represented by (π1, π2, . . . , πt−1), where π1, πt−1 ∈ V are the first and last visited node. The
process continues until all nodes are visited and the complete solution is returned.

(Self-)Attention Mechanism. Given the embedding matrices X ∈ Rn×d and C ∈ Rm×d, where d
is the dimension of the embeddings, the scaled dot-product attention can be formulated as:

X̂ = Attn(X,C) = softmax

(
XWQ(CWK)⊺√

d

)
· CWV , (1)

where WQ,WK ,WV ∈ Rd×d are learnable matrices. The attention Attn(·, ·) can aggregate the
information from C to X . The commonly used Multi-Head Attention (MHA) further performs h

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Add

Add

Cross-Attention Module

Softmax

Linear Projection

Embedding Layer

Selection Probabilities

Multi-head Attention
K,V

×

...

...

Cross-Attention:

...

...

Representative Node

Self-Attention:

Decoder

First Node Last Node

Unvisited Node

Feed Forward

Add

Add

Feed Forward

Multi-head Attention
QK,V

(a) Idea of the Proposed Cross-Attention. (b) Cross-Attention Module. (c) Transformer Network.

Q

Figure 1: Cross-attention-based Transformer network. Given less complexity of the cross-attention
in (a), we employ it to design the cross-attention module in (b), which utilizes a certain number
of representative nodes to lighten the attention in the Transformer network in (c). The resultant
Transformer network significantly reduces the amount of computations between nodes, potentially
achieving more efficiency in solving large-scale VRPs than current self-attention-based Transformers.

attention computations in parallel. We omit h for simplicity throughout this paper. In general, the most
complexity of the conventional Transformer architectures originates from calculating the attention in
Eq.(1) with O(nm) computational and memory complexities. Especially if the embedding matrices
are identical (i.e., X = C), Eq.(1) defines the self-attention with O(n2) complexities.

4 METHODOLOGY

In this section, we first introduce the cross-attention mechanism tailored for solving VRPs. Then,
we provide the cross-attention-based Transformer network and the SIT algorithm. Without loss of
generality, we present our method by taking TSP as an example. The implementation details for
CVRP are described in Appendix B.

4.1 LIGHTWEIGHT CROSS-ATTENTION FOR VRPS

As shown in Figure 1(a), the self-attention (stacked in the encoder or decoder) enforces each input
node to interact comprehensively with all the other nodes of a VRP instance for updating their
embeddings (Kwon et al., 2020; Pirnay & Grimm, 2024; Luo et al., 2023). However, it inevitably
results in O(n2) computational and memory complexities, where n is the number of nodes in an
instance, i.e., the problem size. As the size increases, these complexities increase drastically, making
the model can be hardly trained on large-scale VRP instances. Our empirical results on representative
NCO methods verify their quadratic complexities, as shown in Table 4 in the experiments.

To address this issue, we design a lightweight cross-attention mechanism that significantly reduces the
computational and memory complexities. As shown in Figure 1(a), we use two representative nodes
in the attention calculation. The two representative nodes are first updating their embeddings based on
the attention between them and all nodes of the instance. Subsequently, the node embeddings of the
instance are updated by conducting attention calculations on the representative nodes. Compared to
self-attention, this cross-attention owns aO(nm) complexity, where m is the number of representative
nodes. Thanks to propagating node embeddings through representative nodes, the cross-attention
mechanism maintains effective interactions between nodes while achieving low complexity.

4.2 TRANSFORMER NETWORK

We develop a cross-attention-based Transformer network for solving large-scale VRPs, following the
heavy decoder paradigm in (Drakulic et al., 2023; Luo et al., 2023). As shown in Figure 1(c), the
network consists of a single embedding layer and a decoder with L stacked cross-attention modules,
which are delineated in the following.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Embedding Layer. Given a VRP instance S with n nodes, the embedding layer transforms node
features {xi}ni=1 ∈ Rn×dx to initial node embeddings {hi}ni=1 ∈ Rn×d by a linear projection such
that hi = W (0)xi + b(0), ∀i ∈ {1, . . . , n}, where W (0) ∈ Rdx×d and b(0) ∈ Rd are learnable.

Decoder with Cross-Attention Modules. At the t-th decoding step, we select the first and last
nodes π1, πt−1 from the current partial solution (π1, . . . , πt−1) as the representative nodes. These
representative nodes reflect the dynamics in the solution construction process, which are commonly
used as the context nodes in the literature (Kwon et al., 2020; Luo et al., 2023; Kool et al., 2019).
We also explore other configurations of representative nodes and assess their impact on performance.
More details can be found in Appendix C.

Given the representative nodes, we design the cross-attention module to advance the node embeddings,
as depicted in Figure 1(b). At the t-th decoding step, the embeddings of the first and last nodes
are denoted by hπ1

and hπt−1
, respectively. The embeddings of unvisited nodes are denoted by

Ht
a = {hi|i ∈ {1, . . . , n}\{π1:t−1}}. At the first decoding step, one node π1 is randomly selected

to be the partial solution, and we view it as both the first and last nodes for the next decoding. All the
other nodes remain unvisited, i.e., H0

a = {hi|i ∈ {1, . . . , n}\π1}. Accordingly, we define the initial
representative node embeddings Z(0) and graph node embeddings H̃(0) at the t-th decoding step as

Z(0) = [hπ1W1, hπt−1W2],

H̃(0) = [hπ1
W1, hπt−1

W2, H
t
a],

(2)

where [·, ·] means the vertical concatenation operator, and W1, W2 ∈ Rd×d are learnable matrices.
Next, Z(0) ∈ R2×d and H̃(0) ∈ RN×d are processed by L cross-attention modules. In the l-th
cross-attention module, we first apply representative nodes to attend to the graph node embeddings
H̃(l−1) to update the representative node embeddings, i.e.,

Ẑ(l) = Attn(Z(l−1), H̃(l−1)) + Z(l−1),

Z(l) = FF(Ẑ(l)) + Ẑ(l),
(3)

where FF denotes the feed-forward layer that is formulated as FF(X) = max(0, XWf1+bf1)Wf2+
bf2, where Wf1 ∈ Rd×df ,bf1 ∈ Rdf , Wf2 ∈ Rdf×d,bf2 ∈ Rd are learnable matrices, and df is
the hidden dimension of the layer. Subsequently, the graph node embeddings H̃(l−1) attend to the
representative nodes for updating their embeddings, i.e.,

Ĥ(l) = Attn(H̃(l−1), Z(l)) + H̃(l−1),

H̃(l) = FF(Ĥ(l)) + Ĥ(l).
(4)

After L cross-attention modules, the output H̃(L) include the advanced embeddings of the first, last,
and unvisited nodes. A linear projection and softmax function are applied to embeddings of unvisited
nodes {h̃(L)

i |i ∈ {1, . . . , n}\{π1:t−1}} in order to produce probabilities of selecting each unvisited
node, i.e.,

ui =

{
h̃
(L)
i WO, i /∈ {π1:t−1}
−∞, otherwise

,

p = softmax(u),

(5)

where WO ∈ Rd×1 is a learnable matrix. Each pi ∈ p corresponds to the probability of selecting
the unvisited node i. We sample the node by the probabilities and add it to the partial solution. A
complete VRP solution π = (π1, . . . , πn) is constructed with n decoding steps.

Complexity Analysis. According to Eq.(3), the dimensions of input to cross-attention modules are
R2×d for Z(l−1) and Rñ×d for H̃(l−1), where ñ ≤ (n+ 1) is the number of node embeddings input
to the decoder. Except for the constant d (d = 128 for most Transformers in NCO methods), the
cross-attention between node embeddings Z(l−1) and H̃(l−1) yields a complexity O(2ñ). Similarly,
Eq.(4) exhibits the same linear complexity. By setting a fixed number of representative nodes, the
cross-attention significantly reduces the computations between all nodes, which is more lightweight
than prevailing self-attention-based Transformers in NCO methods.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

�1

�2
�3

� �

Model Loss

Local
Reconstruction

Training

Reconstruction
Performed

by the Model

Unvisited NodeLast NodeFirst Node Selection Probability

Optimize

Pseudo-LableSubgraph

Remove Solution Information

Complete Solution Partial Solution Enhanced Partial Solution

Selection Probability

Sample

Figure 2: The self-improved training process. In each iteration, the neural model performs multiple
local reconstructions (in parallel) to improve the solution quality, and then, the enhanced partial
solutions as pseudo-labels are used to train the model to improve its performance.

4.3 SELF-IMPROVED TRAINING

Construction-based NCO models exhibit bias in decoding, where variations in starting nodes, desti-
nation nodes, and directions can result in vastly different solutions (Kwon et al., 2020). Benefiting
from this bias, the model can gradually improve the solution quality by performing iterative local
reconstruction until convergence (Luo et al., 2023; Ye et al., 2024). This paradigm holds significant
potential to efficiently discover superior solutions without the need to explore complete solutions.
However, current local reconstruction techniques still rely on SL or RL, which hinders their applica-
bility to large-scale VRPs due to the scarcity of labels or the sparsity of rewards. Instead, we propose
a Self-Improved Training (SIT) algorithm to specialize in local reconstruction for more effective
solution exploration on large-scale VRPs. As illustrated in Figure 2, SIT involves iterative local
reconstruction and model training, which are elaborated in the following. The pseudocode of SIT is
presented in Algorithm 1.

Local Reconstruction. The local reconstruction comprises two steps. In the first step, a partial
solution πp of a random size 4 ≤ ω ≤ lmax is sampled from π, where lmax refers to the maximum
size of the partial solution. Since π can be expressed as a circle of nodes, we allow either clockwise
or counterclockwise sampling direction. In the second step, the neural model reconstructs the partial
solution node by node from its first node to the last node, i.e., the order of nodes between the first
and the last nodes is rearranged. This generated partial solution πp′ is compared with πp, so that the
better one (e.g., the one with shorter length) is adopted in the complete solution π. In other words, a
better partial solution can result in a better complete solution. Through iterative local reconstructions,
the quality of the solution π can be significantly improved.

To improve the reconstruction efficiency, M non-overlapping partial solutions are sampled and
reconstructed in parallel. The overlap is avoided by evenly dividing the solution into M consecutive
segments of equal length ω, in which the sampling and reconstruction can be parallelly performed. In
this paper, we set M to ⌊n/ω⌋ with n denoting the problem size. Throughout the SIT process, we
maintain a dataset D containing VRP instances and their solutions updated by local reconstructions.
In each SIT iteration, the local reconstructions progressively enhance the quality of solutions in the
dataset, which avoids revisiting previously explored solutions and thus improves the efficiency.

Model Training. The enhanced solutions from local reconstructions serve as pseudo-labels for
training the model in a supervised manner. For a large-scale VRP instance (e.g., TSP instance with
100K nodes), the learning for constructing its complete solution can be difficult due to the massive
GPU memory usage. To relieve the issue, we restrict the model’s learning scope to local parts of
the solution. Specifically, a random size 4 ≤ ω ≤ lmax is adopted to sample partial solutions
from the dataset D. Let π̂p

1:ω = (π̂p
1 , π̂

p
2 , . . . , π̂

p
ω) be a sampled partial solution. Taking it as a

pseudo-label, the model learns to predict the order from π̂p
1 to π̂p

ω using the proposed Transformer

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Self-Improved Training
1: Input: Problem size N , dataset size D, batch size B, maximum length of partial solution lmax.
2: Output: The trained model with parameters θ∗.
3: Randomly initialize the model with parameters θ;
4: Si ∼ SampleInstance(N) ∀i ∈ {1, . . . , D};
5: πi← GenerateInitialSolution(Si) ∀i ∈ {1, . . . , D}; ▷ Serve as initial pseudo-labels.
6: for each iteration do
7: πi← LocalReconstruction(θ,πi, Si, N, lmax) ∀i ∈ {1, . . . , D};
8: θ ←ModelTraining(θ, {πi}, {Si}, D,B, lmax) ∀i ∈ {1, . . . , D};
9: end for

network parameterized by θ. The loss function can be formulated as
L(θ) = ESp∼D[− log pθ(π̂

p
t | Sp, π̂p

1:t−1, π̂
p
ω)], ∀t ∈ {2, . . . , ω − 1}, (6)

where π̂p
1 and π̂p

ω denote the first and last nodes of the partial solution, and their embeddings constitute
the representative node embeddings and graph node embeddings in Eq.(2). π̂p

1:t−1 represents the
sequence of visited nodes till the t-th decoding step. By training with the partial solutions, the model
can be more efficient in enhancing solutions during the local reconstruction.

The SIT process alternates between the local reconstruction and the model training, until a predefined
time budget is reached. The detailed training process and pseudocodes are provided in Appendix D.

5 EXPERIMENTS

We empirically evaluate the proposed method from two perspectives. Firstly, we compare the proposed
method with diverse baseline methods to demonstrate its performance on synthetic and real-world
large-scale TSP and CVRP instances. We then analyze the impact of the proposed method’s critical
components to verify our method’s capability in reducing computational and memory complexities
and analyze key hyperparameters.

Dataset. Following the common approach in literature Kool et al. (2019); Kwon et al. (2020); Luo
et al. (2023), we generate five synthetic datasets with instances of scales 1K, 5K, 10K, 50K, and
100K, respectively. We denote TSP and CVRP instances of these scales as TSP/CVRP1K, 5K, 10K,
50K, and 100K, respectively. According to Fu et al. (2021), we set the number of instances for the
TSP1K test dataset to 128. For datasets with larger instances, each contains 16 instances. Similarly,
the CVRP test dataset includes the same number of instances, with capacities set to 250 for CVRP1K,
500 for CVRP5K, 1, 000 for CVRP10K, and 2,000 for CVRP50K/100K. The optimal solutions of
TSP instances are computed using LKH3 (Helsgaun, 2017), while CVRP instances are solved via
HGS (Vidal, 2022). To evaluate our method on real-world large-scale instances, we also extract all
symmetric instances with EUC_2D features and more than 1K nodes from TSPLIB Reinelt (1991)
and CVRPLIB Uchoa et al. (2017), a total of 33 TSP instances and 14 CVRP instances.

Model Setting&Training. For our Transformer network, we set the embedding dimension d = 128.
The decoder employs L = 6 stacked cross-attention modules, with each attention layer including
8 attention heads and a feed-forward layer with a hidden dimension of 512. The model initially
undergoes a warm-up training process on instances of scale 1K using the pseudo-labels generated by
random insertion (see Appendix D). After that, we continue the self-improved training on instances of
scale 1K and then leverage the trained model to conduct separate training on larger scales, including
5K, 10K, 50K, and 100K.

The size D of the training dataset for scales 1K, 5K/10K, 50K/100K are 20K, 200, and 100, respec-
tively. Each iteration in our SIT algorithm comprises 100 times of local reconstruction and 20 epochs
of model training. The Adam optimizer (Kingma & Ba, 2015) is utilized for training the models,
with an initial learning rate 1e-4 and a decay rate 0.97 per epoch. Throughout the SIT process, the
maximum length of partial solutions lmax is 1,000 to balance efficiency and effectiveness. In all
experiments, we use a single NVIDIA GeForce RTX 3090 GPU with 24GB memory for both training
and testing. We provide more detailed training settings in Appendix E.

Baselines. We compare our method with 1) Classical Solvers: Concorde (Applegate et al., 2006),
LKH3 (Helsgaun, 2017), and HGS (Vidal, 2022); 2) Insertion Heuristic: Random Insertion;

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparative results on synthetic TSP and CVRP instances. *: results are cited directly
from original publications. N/A: the method exceeds the time limit (e.g., seven days) or produces
infeasible solutions. OOM: the method exceeded memory limits.

TSP1K TSP5K TSP10K TSP50K TSP100K
Method Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

LKH3 23.12 (0.00%) 1.7m 50.97 (0.00%) 12m 71.78 (0.00%) 33m 159.93 (0.00%) 10h 225.99 (0.00%) 25h
Concorde 23.12 (0.00%) 1m 50.95 (-0.05%) 31m 72.00 (0.15%) 1.4h N/A N/A N/A N/A
Random Insertion 26.11 (12.9%) <1s 58.06 (13.9%) <1s 81.82 (13.9%) <1s 182.65 (14.2%) 15.4s 258.13 (14.2%) 1.7m

DIFUSCO* 23.39 (1.17%) 11.5s − − 73.62 (2.58%) 3.0m − − − −
H-TSP 24.66 (6.66%) 48s 55.16 (8.21%) 1.2m 77.75 (8.38%) 2.2m OOM OOM
GLOP 23.78 (2.85%) 10.2s 53.15 (4.26%) 1.0m 75.04 (4.39%) 1.9m 168.09 (5.10%) 1.5m 237.61 (5.14%) 3.9m

POMO aug×8 32.51 (40.6%) 4.1s 87.72 (72.1%) 8.6m OOM OOM OOM
ELG aug×8 25.738 (11.33%) 0.8s 60.19 (18.08%) 21s OOM OOM OOM
LEHD RRC1,000 23.29 (0.72%) 3.3m 54.43 (6.79%) 8.6m 80.90 (12.5%) 18.6m OOM OOM
BQ bs16 23.43 (1.37%) 13s 58.27 (10.7%) 24s OOM OOM OOM
SIGD bs16 23.36 (1.03%) 17.3s 55.77 (9.42%) 30.5m OOM OOM OOM

INViT-3V greedy 24.66 (6.66%) 9.0s 54.49 (6.90%) 1.2m 76.85 (7.07%) 3.7m 171.42 (7.18%) 1.3h 242.26 (7.20%) 5.0h
LEHD greedy 23.84 (3.11%) 0.8s 58.85 (15.46%) 1.5m 91.33 (27.24%) 11.7m OOM OOM
BQ greedy 23.65 (2.30%) 0.9s 58.27 (14.31%) 22.5s 89.73 (25.02%) 1.0m OOM OOM
SIGD greedy 23.573 (1.96%) 1.2s 57.19 (12.20%) 1.8m 93.80 (30.68%) 15.5m OOM OOM

Ours greedy 23.569 (1.95%) 0.2s 52.59 (3.17%) 5.2s 74.69 (4.05%) 20.1s 168.50 (5.36%) 7.7m 239.84 (6.13%) 33.0m
Ours PRC10 23.396 (1.20%) 0.9s 52.36 (2.73%) 5.1s 73.99 (3.08%) 10.0s 166.69 (4.22%) 1.33m 235.38 (4.16%) 3.0m
Ours PRC50 23.279 (0.69%) 4.6s 51.92 (1.85%) 23.4s 73.41 (2.27%) 49.0s 165.01 (3.17%) 4.9m 233.13 (3.16%) 9.2m
Ours PRC100 23.254 (0.58%) 9.4s 51.82 (1.67%) 52.0s 73.29 (2.11%) 1.7m 164.59 (2.91%) 8.6m 232.55 (2.90%) 17m
Ours PRC500 23.217 (0.43%) 46s 51.70 (1.43%) 4.6m 73.12 (1.87%) 8.5m 164.09 (2.60%) 42.2m 231.75 (2.55%) 1.4h
Ours PRC1,000 23.207 (0.38%) 1.5m 51.67 (1.36%) 9.4m 73.08 (1.81%) 17.0m 163.95 (2.51%) 1.38h 231.52 (2.45%) 2.6h

CVRP1K CVRP5K CVRP10K CVRP50K CVRP100K
Method Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

HGS 36.29 (0.00%) 2.5m 89.74 (0.00%) 2.0h 107.40 (0.00%) 5.0h 267.73 (0.00%) 8.1h 476.11 (0.00%) 24h
LKH3 37.09 (2.21%) 3.3m 93.71 (5.19%) 1.33h 118.76 (10.6%) 1.74h 399.12 (49.1%) 15.8h N/A N/A
Random Insertion 57.42 (58.2%) <1s 154.38 (72.0%) <1s 191.80 (78.6%) <1s 490.56 (83.2%) <1s 943.87 (98.3%) 2s

GLOP-G (LKH3) 39.50 (8.83%) 1.3s 98.90 (10.2%) 6.8s 116.28 (8.27%) 11.2s OOM OOM

POMO aug×8 84.89 (134%) 4.8s 393.27 (338%) 11m OOM OOM OOM
ELG aug×8 41.57 (14.56%) 1.1s 109.54 (22.06%) 30s OOM OOM OOM
LEHD RRC1,000 37.43 (3.15%) 3.4m 101.07 (12.6%) 31m 138.73 (29.2%) 41m OOM OOM
BQ bs16 38.17 (5.17%) 14s 104.40 (16.3%) 2.6m OOM OOM OOM
SIGD bs16 39.15 (7.91%) 17.3s 103.46 (15.3%) 1.91m 131.48 (22.4%) 3.97m 477.43 (78.3%) 25.9m OOM

INViT-3V greedy 42.75 (17.8%) 11.4s 109.85 (22.41%) 1.4m 141.41 (31.66%) 4.2m 402.05 (50.17%) 2.9h 688.80 (44.67%) 8.3h
LEHD greedy 38.91 (7.23%) 0.8s 105.61 (17.69%) 1.56m 146.24 (36.16%) 11.85m OOM OOM
BQ greedy 39.28 (8.23%) 1.03s 108.09 (20.48%) 8.1s 196.44 (82.9%) 1.2m OOM OOM
SIGD greedy 40.18 (10.7%) 1.2s 106.14 (18.3%) 7.9s 135.12 (25.8%) 45s 493.64 (84.4%) 4.3m OOM

Ours greedy 38.11 (5.01%) 0.2s 92.44 (3.01%) 5.49s 109.02 (1.50%) 20.62s 269.34 (0.60%) 8.06m 475.06 (-0.22%) 33.1m
Ours PRC10 37.93 (4.52%) 0.7s 93.92 (4.65%) 3.9s 112.17 (4.43%) 6.8s 285.20 (6.52%) 28s 496.24 (4.23%) 59s
Ours PRC50 37.57 (3.54%) 3.5s 92.06 (2.58%) 19.9s 108.79 (1.29%) 34s 271.77 (1.51%) 2.3m 476.71 (0.13%) 4.8m
Ours PRC100 37.49 (3.31%) 8.0s 91.58 (2.05%) 46s 108.04 (0.59%) 1.3m 268.02 (0.11%) 5.49m 471.35 (-1.00%) 11.5m
Ours PRC500 37.33 (2.88%) 44.6s 91.00 (1.41%) 4.4m 106.85 (-0.51%) 7.6m 263.56 (-1.56%) 31.1m 465.18 (-2.30%) 1.1h
Ours PRC1,000 37.28 (2.72%) 1.5m 90.81 (1.19%) 8.8m 106.69 (-0.66%) 15.2m 262.82 (-1.83%) 1.04h 463.95 (-2.55%) 2.17h

3) Construction-based NCO Methods: POMO (Kwon et al., 2020), BQ (Drakulic et al., 2023),
LEHD (Luo et al., 2023), INViT (Fang et al., 2024), and SIGD (Pirnay & Grimm, 2024); 4) Heatmap-
based Methods: DIFUSCO (Sun & Yang, 2023); 5) Decomposition-based Method: GLOP (Ye
et al., 2024), and H-TSP (Pan et al., 2023); 6) Local Policy-based Method: ELG (Gao et al., 2024).

Metrics&Inference. For comparison, we provide the average objective value (Obj.), optimality gap
(Gap), and inference time (Time) of each method. Obj. indicates the length of the VRP solution, with
shorter values indicating better performance. Gap measures the solution difference from the ground
truth (i.e., results produced by LKH for TSP and HGS for CVRP). Time, recorded in seconds (s),
minutes (m), or hours (h), reflects the efficiency in generating solutions for test instances.

For our method, we present the results of the greedy search and Parallel local ReConstruction (PRC)
under different numbers of iterations. For PRC, we adopt random insertion to generate initial solutions.
We refer to Appendix F for the impact of different initialization methods on PRC performance.

5.1 COMPARATIVE RESULTS

We present the results on synthetic TSP and CVRP instances in Table 1. From the results, we can
observe that our method consistently demonstrates superior performance. For both TSP and CVRP,
when all baseline methods use the greedy search for inference, our method significantly outperforms
the representative construction-based NCO methods with much smaller gaps and runtime. Our
method, with only 50 PRC iterations, can beat the other learning-based methods in terms of both
solution quality and solving efficiency across all scales except for CVRP1K. On CVRP1K, our
method needs 500 or more PRC iterations to achieve the best among all the competitors. Overall, our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results on TSPLIB and CVRPLIB. OOM: The method is inapplicable due to the memory
limit. †: There exist instances that are not solvable by the NCO method due to the OOM issue.

TSPLIB CVRPLIB

Method 1K < n ≤ 5K n > 5K All Solved # 1K < n ≤ 7K n > 7K All Solved #

GLOP 5.017% 6.870%† 5.495% 31/33 15.335% 21.317% 17.898% 14/14
ELG aug×8 11.34% OOM 11.34% 23/33 10.57%† OOM 10.57% 6/14
BQ bs16 10.648% 30.579%† 12.948% 26/33 13.918% OOM 13.918% 8/14
LEHD RRC1,000 3.996% 18.458%† 7.371% 30/33 8.423% 21.525%† 11.043% 10/14

SIGD greedy 12.369% 152.879%† 48.630% 31/33 14.733% 49.491% 29.629% 14/14
BQ greedy 11.640% 162.116%† 64.649% 32/33 16.923% 52.267% 32.071% 14/14
INViT greedy 11.492% 9.996% 11.038% 33/33 15.873% 26.637% 20.486% 14/14
LEHD greedy 11.139% 39.343%† 17.720% 30/33 15.203% 32.797%† 18.722% 10/14

Ours greedy 6.767% 10.697% 8.244% 33/33 15.806% 15.504% 15.677% 14/14
Ours PRC1,000 1.576% 4.043% 2.556% 33/33 8.347% 11.209% 9.574% 14/14

Table 3: Effects of self-improved training and cross-attention. w/o SIT: Our model is trained by SL
rather than SIT. w/o Cross-Attention: Our model uses the conventional self-attention rather than
cross-attention. Ours: The model is equipped with both cross-attention and SIT. The trained models
are tested by using greedy search. Gap (%), Time (s), and Memory (MB) are averaged over instances.

Scale 1K 5K 10K
Gap Time Memory Gap Time Memory Gap Time Memory

w/o SIT 12.69 0.21 9.65 24.98 5.41 47.94 37.63 19.83 94.41
w/o Cross-Attention 5.20 0.75 96.94 6.04 82.22 2317.50 12.03 705.90 9219.09
Ours 5.01 0.21 9.65 5.37 5.41 47.94 7.58 19.83 94.41

method shows good scalability and can achieve outstanding performance even for very large-scale
problem instances with up to 100K nodes. Remarkably, our method outperforms the classical solver
HGS on CVRP10K, CVRP50K, and CVRP100K. As we know, this is the first time that a learning-
based method gains a significant advantage over the specialized solver on large-scale VRP instances,
manifesting a notable achievement for the NCO methods.

The experimental results on real-world large-scale TSPLIB and CVRPLIB instances are provided in
Table 2. When all methods perform the greedy search for inference, our method achieves smaller
gaps than the other construction-based NCO methods on 2 (out of 4) groups of instances. Using the
PRC method, our method consistently outperforms the other baseline methods, achieving the smallest
gaps for both TSP and CVRP. While some NCO methods struggle to solve large-scale instances due
to heavy self-attention-based Transformers, our method can solve all TSP and CVRP instances with
up to 85, 900 nodes.

5.2 ABLATION STUDY

We conduct an ablation study to demonstrate the impact of the key components (i.e., cross-attention
and SIT) of our method. First, we train the proposed cross-attention-based Transformer on large-
scale VRPs without the SIT algorithm (i.e., w/o SIT in Table 3). Due to the scarce labeled data
on larger VRP instances, we train the model on CVRP100 following (Luo et al., 2023). Then, we
replace the cross-attention in our Transformer network with the self-attention, and the resultant
model (i.e., w/o Cross-Attention in Table 3) is trained by our SIT algorithm. We test the above two
models on CVRP1K/5K/10K. From Table 3, we observe that our model trained with SIT significantly
outperforms the model trained without SIT, which indicates SIT enables more effective model training
on large-scale problems. On the other hand, the results verify that the proposed cross-attention is
more efficient than the self-attention in terms of both time and memory usage (e.g., over 30× speedup
and ≈100× memory saving on CVRP10K).

5.3 ADDITIONAL ANALYSIS

Efficiency analysis. We test our method and self-attention-based Transformers, including POMO,
LEHD, SIGD Kwon et al. (2020); Luo et al. (2023); Pirnay & Grimm (2024), on TSP instances

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: The time and memory usage of our model and representative NCO methods. All methods
are tested by using greedy search. Time (s) and Memory (MB) are averaged over instances.

Scale 1K 5K 10K 50K 100K

Time Memory Time Memory Time Memory Time Memory Time Memory

POMO 0.5 107.5 192.6 2599.1 553.2 10352.3 OOM OOM
SIGD 1.2 41.2 108.0 971.0 930.6 3846.8 OOM OOM
LEHD 0.8 97.4 119.2 2323.2 730.8 9224.3 OOM OOM
Ours 0.2 9.3 5.5 45.4 20.6 91.9 483.4 459.4 1983.3 918.6

Table 5: Impact of lmax in both training and inference.

lmax (Inference)→ 100 1,000 10,000

lmax (Training) ↓ Gap (Time) Gap (Time) Gap (Time)

100 4.568% (18s) 2.647% (1.7m) 2.731% (6.0m)
1,000 4.513% (18s) 2.319% (1.7m) 2.279% (6.0m)

10,000 4.566% (18s) 2.490% (1.7m) 2.365% (6.0m)

of different scales, and compare them in terms of inference time and memory usage. The results
in Table 4 demonstrate the superior time and space efficiency of our Transformer network across
all problem scales. For example, our model runs 4× faster and takes up 10× smaller memory than
LEHD on instances with 1K nodes. Moreover, the time and space efficiency significantly enlarge
as the problem scale grows. Especially for instances with 50K or 100K nodes, self-attention-based
models encounter out-of-memory (OOM) issues, highlighting their limitations in tackling large-
scale problems. In contrast, our model is consistently efficient on large-scale VRPs, indicating its
advantageous scalability. Furthermore, the time and memory usage in the methods empirically verify
the linear complexity of our cross-attention-based Transformer and the quadratic complexities of
self-attention-based models.

Sensitivity analysis. We evaluate the impact of the key hyperparameter lmax on model performance.
To this end, we train and test (with PRC100) our model with different values of lmax on TSP10K.
As shown in Table 5, the model trained to construct solutions with lmax = 10, 000 delivers inferior
policy compared to the one trained with lmax = 1, 000. Intuitively, learning to construct overly long
solutions overwhelms the model’s capability, which makes it hard to learn favorable representations
by a limited number of cross-attention computations. On the other hand, setting lmax to small values
leads to excessively local policies and sacrifices global performance. Therefore, we set lmax to an
intermediate value of 1,000 for balancing the training and inference performance.

6 CONCLUSION

In this paper, we have proposed a lightweight cross-attention mechanism with linear complexity to
improve the efficiency of the NCO model in solving large-scale VRPs. Benefiting from propagating
node embeddings through representative nodes, the cross-attention mechanism maintains effective
interactions between nodes while achieving low complexity. In addition, we have developed a
novel Transformer network to learn efficient and favorable solutions, in which the cross-attention
is iteratively used to advance the node embeddings. Moreover, we have proposed an innovative
Self-Improved Training (SIT) algorithm for direct model training on large-scale VRP instances
without the need for labeled data. Extensive experimental results on TSP and CVRP with up to 100K
nodes in both synthetic and real-world distributions fully demonstrate the superior performance of
our method. Since a specific range of random sizes is predefined when sampling the partial solutions,
a potential improvement is to develop an adaptive strategy for setting the sampling size of partial
solutions, thereby enabling more efficient model training and PRC. In addition, we will extend our
method to other types of combinatorial optimization problems, such as scheduling, bin packing, and
knapsack problems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-Spaccamela,
and Marco Protasi. Complexity and approximation: Combinatorial optimization problems and
their approximability properties. Springer Science & Business Media, 2012.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Jennifer AN Brophy and Christopher A Voigt. Principles of genetic circuit design. Nature methods,
11(5):508–520, 2014.

Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning
to aolve large-scale tsp instances. In International Conference on Artificial Intelligence and
Statistics, pp. 1219–1231. PMLR, 2023.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. In
Advances in Neural Information Processing Systems, volume 35, pp. 8760–8772, 2022.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In International conference on the integration of
constraint programming, artificial intelligence, and operations research, pp. 170–181. Springer,
2018.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for efficient neural combinatorial optimization. In Advances in Neural
Information Processing Systems, 2023.

Mouhcine Elgarej, Mansouri Khalifa, and Mohamed Youssfi. Optimized path planning for electric
vehicle routing and charging station navigation systems. In Research Anthology on Architectures,
Frameworks, and Integration Strategies for Distributed and Cloud Computing, pp. 1945–1967. IGI
Global, 2021.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INVit: A generalizable routing problem solver
with invariant nested view transformer. In International Conference on Machine Learning, 2024.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers
for vehicle routing problems via ensemble with transferrable local policy. In International Joint
Conference on Artificial Intelligence, 2024.

Thierry Garaix, Christian Artigues, Dominique Feillet, and Didier Josselin. Vehicle routing prob-
lems with alternative paths: An application to on-demand transportation. European Journal of
Operational Research, 204(1):62–75, 2010.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2022.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In International Conference
on Learning Representations, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: deep reinforced multi-pointer transformer for the traveling salesman problem. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
In Advances in Neural Information Processing Systems, volume 34, pp. 10418–10430, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, San Diega, CA, USA, 2015.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles,
CA, USA, June 20-23, 2022, Proceedings, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Advances in Neural Information Processing Systems, volume 34, pp. 26198–26211, 2021.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to
gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Processing
Systems, 2023.

Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization of
neural combinatorial optimization heuristics. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 426–442. Springer, 2022.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. In Advances in Neural Information Processing Systems, 2023.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
Hierarchically solving the large-scale traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, February 2023.

Jonathan Pirnay and Dominik G. Grimm. Self-improvement for neural combinatorial optimization:
Sample without replacement, but improvement. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. Featured Certification.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems, 2022.

Gerhard Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on Computing, 3(4):
376–384, 1991.

Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-sage: Scale meta-learning scheduled
adaptation with guided exploration for mitigating scale shift on combinatorial optimization. In
International Conference on Machine Learning, pp. 32194–32210. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Advances in Neural Information Processing Systems, 2023.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, 2015.

Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping: En-
hance generalization of neural solver for large-scale vehicle routing problems. arXiv preprint
arXiv:2401.06979, 2024.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving
routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimization.
arXiv preprint arXiv:2405.01906, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4648–4658, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A COMPLEXITY ANALYSIS FOR ITERATIVE RECONSTRUCTION

For the iterative reconstruction process, the computational complexity is O(kl2max) and space com-
plexity is O(n), where k is the number of iterations and lmax is the maximum length of the partial
solutions during reconstruction progress. Specifically, a single reconstruction has O(l2max) com-
putational complexity, since 1) it consists of lmax sequential model predictions and 2) one time of
linear model prediction has O(lmax) complexity. Therefore, performing k reconstructions yields an
overall computational complexity of O(kl2max). As the space complexity is not cumulative, the space
required for performing k reconstructions remains O(lmax). In this paper, n

lmax
reconstructions are

executed parallelly in each iteration. Therefore, the space complexity is O(n
lmax

· lmax) = O(n),
while the overall computational complexity remains O(kl2max).

B IMPLEMENTATION DETAILS FOR CVRP

In this section, we introduce the problem setup, Transformer network details, complexity analysis,
and PRC implementation details for CVRP.

B.1 PROBLEM SETUP

A CVRP instance comprises one depot node and n customer nodes, where each customer node i has a
demand δi to fulfill. Our goal is to find a set of sub-tours that begin and end at the depot, ensuring the
sum of demands in each sub-tour adheres to the vehicle’s capacity constraint C. The objective is to
minimize the total distance across these sub-tours while maintaining the capacity constraint C. Our
CVRP instances are generated in a manner similar to that described in (Kool et al., 2019), featuring
customer and depot node coordinates uniformly sampled from a unit square [0, 1]2. Demands δi are
uniformly sampled from 1, . . . , 9.

In line with (Kool et al., 2022; Drakulic et al., 2023; Luo et al., 2023), we establish a feasible
CVRP solution formation. Instead of isolating a depot visit as a distinct step, we employ binary
variables to signify whether a customer node is accessed via the depot or another customer node.
In a feasible solution, a node is assigned 1 if accessed through the depot and 0 if accessed through
another customer node. For example, a viable CVRP solution {0, 1, 2, 3, 0, 4, 5, 0, 6, 7, 0, 8, 9, 10}
with 0 representing the depot can be represented as shown below:[

1 2 3 4 5 6 7 8 9 10
1 0 0 1 0 1 0 1 0 0

]
, (7)

where the first row displays the visited node sequence, while the second row signifies if each node is
accessed through the depot or another customer node.

This notation aims to maintain solution consistency. In CVRP cases, solutions with equal customer
node counts might have differing sub-tour quantities, causing potential misalignment. This notation
prevents such problems.

B.2 TRANSFORMER NETWORK

Embedding Layer. In CVRP, the node feature xi is a 3D vector, combining 2D coordinates and the
demand of node i, where x0 and {xi}ni=1 are depot node and customer node features, respectively.
The depot’s demand is set as 0. We normalize the vehicle capacity C to Ĉ = 1 and the demand
δi to δ̂i =

δi
C for simplicity. Given the node features {xi}ni=0, the encoder produces each node’s

embedding {hi}ni=0 by a linear projection such that hi = xiW
(0) + b(0), ∀i ∈ {0, . . . , n}, where

W (0) ∈ R3×d and b(0) ∈ Rd are learnable matrices.

Decoder with Cross-Attention Modules. Similar to Kwon et al. (2020), we add the dynamically
changing remaining capacity to the first and last node embeddings in the decoder. The remaining
capacity can be denoted as Cr ∈ R1, and the first and last node embeddings are hπ1 and hπt−1 ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

respectively. We fuse the remaining capacity to the first node and last nodes’ embeddings via

h′
π1

= [hπ1 , Cr]W1 + b1

h′
πt−1

= [hπt−1 , Cr]W2 + b2, (8)

where W1,W2 ∈ R(d+1)×d and b1,b2 ∈ Rd. Then the representative nodes’ initial embeddings
Z(0) and graph node embeddings H̃(0) are calculated as

Z(0) = [h′
π1
,h′

πt−1
], H̃(0) = [h′

π1
, h′

πt−1
, Ht

a], (9)

where W1, W2 ∈ Rd×d are learnable matrices, Ht
a is the set of unvisited customer nodes’ embeddings

at the t-th step. In the first decoding step, the depot node π1 is selected to be the initial partial solution,
and we treat it as both the first and last nodes for the second decoding step.

Similar to TSP, the output of our model’s L-th linear attention module is Z(L) and H̃(L), where
H̃(L) = {h̃(L)

i }. Then, a linear projection and softmax function are applied to it, producing the
selected probability of each unvisited node. The first and last nodes are masked before the softmax
calculation, i.e.,

ui =

{
h̃
(L)
i WO, i ̸= 1 or 2
−∞, otherwise

, (10)

where WO ∈ Rd×2 is a learnable matrix. Each ui ∈ R2 corresponds to two actions: access customer
node i via the depot or another customer node. It corresponds to the notation in Eq.(7). Finally, a
softmax function is applied to all the ui to produce the selected probability of each action.

Complexity Analysis. According to Eq.(3), the dimensions of input to cross-attention modules are
R2×d for Z(l−1) and Rñ×d for H̃(l−1), where ñ ≤ (n+ 2) is the number of node embeddings input
to the decoder. Except for the constant d (d = 128 for most Transformers of NCO methods), the
cross-attention between node embeddings Z(l−1) and H̃(l−1) yields a complexity O(2ñ). Therefore,
Eq.(4) exhibits the same linear complexity in solving CVRP.

B.3 IMPLEMENTATION DETAILS OF PRC FOR SOLVING CVRP

During the PRC process, we need to ensure that the sampled partial solutions have no overlap, and that
no illegal solutions are generated after merging the partial solutions. These details can be described
below.

Guarantee Non-overlapping. We always sample a contiguous subset of the complete solution as
a partial solution. All partial solutions have the same number of customer nodes. We sample these
partial solutions sequentially from the beginning of the solution to the end, following its order. Each
sampled partial solution is unique.

For example, consider a CVRP instance with ten customer nodes, represented by the solution
(0, 1, 2, 3, 4, 5, 0, 6, 7, 0, 8, 9, 10, 0), where 0 represents the depot. If each partial solution contains
four customer nodes, then the partial solutions can be (0, 1, 2, 3, 4) and (5, 0, 6, 7, 0, 8). The remain-
ing segment, (9, 10, 0), with only two customer nodes, will not participate in the reconstruction
process.

Avoid Violating the Capacity Constraint. For CVRP, the sum of customer demands in each
sub-tour must not exceed the vehicle’s capacity. This constraint may make the solution infeasible
after merging reconstructed partial solutions. To ensure the solutions remain feasible, we take two
measures during the reconstruction:

(a) Exclude Tail Subtour. If the subtour at the end of a partial solution does not conclude at the
depot, it will not participate in the reconstruction process.

For example, consider a CVRP solution (0, 1, 2, 3, 4, 5, 0, 6, 7, 0, 8, 9, 10, 0), for its partial solution
(5, 0, 6, 7, 0, 8), the subtour (0, 8) does not conclude at the depot, and it will not participate in the
reconstruction.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

If the tail subtour (0, 8) participates in the reconstruction process, the result might be (5, 0, 6, 7, 8),
which is then merged with (9, 10, 0) to form the partial solution (5, 0, 6, 7, 8, 9, 10, 0). However,
within it, (0, 6, 7, 8, 9, 10, 0) might violate the capacity constraint. This occurs when the sum of the
demands of node {8, 9, 10} is very close to or equal to the capacity. Therefore, we need to exclude
the reconstruction of the tail subtour.

(b) Initial Capacity Calculation. When the head node of the partial solution is not the depot, the
vehicle’s initial capacity is determined by the full capacity minus the total demand of nodes between
this head node and its preceding depot in the original complete solution.

For example, consider the CVRP solution (0, 1, 2, 3, 4, 5, 0, 6, 7, 0, 8, 9, 10, 0) again, for the partial
solution (5, 0, 6, 7, 0, 8), its head node is not the depot. The nodes between this head node and the
preceding depot are {1, 2, 3, 4}. Therefore, the initial capacity for reconstructing the partial solution
(5, 0, 6, 7, 0, 8) is the full capacity minus the total demand of nodes {1, 2, 3, 4}.
If this constraint restriction is removed (i.e., using full capacity), the reconstructed partial solu-
tion (5, 0, 6, 7, 0, 8) may become (5, 6, 7, 8). When it merges with (0, 1, 2, 3, 4), forming the route
(0, 1, 2, 3, 4, 5, 6, 7, 8), it has a high probability of exceeding the vehicle’s capacity limit. To avoid
this, we need to implement this initial capacity calculation.

C CHOICE OF REPRESENTATIVE NODES

In this paper, we use the first and last visited nodes as the representative node. We also try other
options for the representative nodes, such as the pooling nodes (i.e., summing up the embeddings of
all nodes and then averaging them) and learnable nodes (i.e., learning two embeddings). However,
we experimentally find that models with these types of representative nodes suffer from numerical
instability during training, where the loss becomes NaN in the early stage of training.

In solving VRPs, the last node is dynamically updated to the one selected in the previous step, and
the number of unvisited nodes decreases. This adjustment continuously alters the relationship among
the first, last, and unvisited nodes. The representative nodes must accurately reflect these changes
at every step. However, pooling nodes or learnable nodes cannot achieve it. Instead, the first and
last nodes inherently represent dynamically changing information and, thus, are more suitable as
representative nodes.

Inspired by Deudon et al. (2018), we explore strategies to enhance the model’s perception of the
last node’s information to improve the model’s learning capabilities. We repeat the last node several
times in the representative nodes, and conduct the model training on TSP1K instances with two SIT
iterations. The optimality gap of corresponding models versus the number of repeated last nodes is
plotted in Figure 3. We can find that there is a positive correlation between the number of repetitions
and performance gains. Moreover, as the number of repetitions increases, the incremental benefits
become smaller and smaller, especially when the number is larger than 15. In addition, increasing the
number of representative nodes results in extra computational overhead. Considering these factors,
we use 15 in the experiments to balance between performance improvement and resource efficiency.

0 5 10 15 20 25 30
Number of Repetitions

3.4

3.6

3.8

4.0

G
ap

 (%
)

Figure 3: Comparion results with different numbers of repetitions on the last node.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PSEUDOCODE

This section provides the pseudocode-based explanation of Algorithm 1 in Section 4.3 to enhance
clarity and understanding. Algorithm 2 is for generating the initial pseudo-labels. Algorithm 3 is for
the parallel local reconstruction for a single instance. Algorithm 4 is for the model training process.

Algorithm 2 GenerateInitialSolution
1: Input: Instance S. ▷ The procedure is essentially conducting random insertion.
2: Output: Complete solution π.
3: Calculate the distance matrix [dij];
4: Pick a random node to form the initial partial solution π;
5: while there are unvisited nodes do
6: Select a random unvisited node i
7: Find the best position (j, k) to insert i that minimizes dji + dik − djk
8: π← Insert i between nodes j and k in π
9: end while

Algorithm 3 LocalReconstruction
1: Input: Model parameter θ, solution π, instance S, problem size N , maximum length of the

partial solution lmax.
2: Output: The improved solution π.
3: for each iteration do
4: ω ∼ Uniform[4, lmax];
5: {πp

i , S
p
i } ← SamplePartialSolutions(π, S, ω) ∀i ∈ {1, . . . , ⌊N/ω⌋};

6: {πp′
i } ← ReconstructByModel(θ, {πp

i , S
p
i }) ∀i ∈ {1, . . . , ⌊N/ω⌋};

7: πp
i ← SaveBetterOne(πp

i , πp′
i) ∀i ∈ {1, . . . , ⌊N/ω⌋};

8: π← Combine({πp
i });

9: end for

Algorithm 4 ModelTraining
1: Input: Model parameter θ, pseudo-labels {πi}, instances {Si}, dataset size D, training batch

size B, maximum length of the partial solution lmax.
2: Output: The trained model parameter θ.
3: for each epoch do
4: for step = 1, . . . , ⌊D/B⌋ do
5: ω ∼ Uniform[4, lmax];
6: π̂p

i , S
p
i ← SamplePartialSolution(πi, Si, ω) ∀i ∈ {1, . . . , B};

7: for t = 2, . . . , ω − 1 do
8: ∇L(θ)← 1

B

∑B
i=1

[
−∇θ log pθ

(
π̂p
it
| Sp

i , π̂
p
i1:t−1

, π̂p
iω

)]
;

9: θ ← ADAM(θ,∇L(θ));
10: end for
11: end for
12: end for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E TRAINING SETTING

Our Transformer networks are trained on instances with different scales separately. We summarize
the training settings in Table 6:

• Dataset Size. It refers to the number of instances in the dataset, which varies depending on
the problem scale. When training on a larger scale (e.g. 100K), fewer instances are required
because a complete solution of this scale can generate enough partial solutions to facilitate
efficient training.

• Self-Improved Iteration. Each self-improved training iteration involves a number of
training epochs and a number of reconstruction iterations.

• Training Epoch. When all training instances have been used for training the model once,
one epoch is completed.

• Training Batch Size. It refers to the number of training data used each time the model
parameters are updated. In one training epoch, the dataset is divided into multiple smaller
batches, each containing a certain number of instances. During training, larger-scale datasets
like TSP100K and CVRP100K use a smaller batch size (i.e., 16) due to device memory
constraints, while smaller-scale datasets like TSP1K and CVRP1K use a larger batch size
(i.e., 256).

• Reconstruction Iteration. One iteration refers to the process in which all training instances
are reconstructed once.

• Reconstruction Batch Size. In one local reconstruction iteration, the entire dataset is
reconstructed in batches. Larger-scale datasets like TSP100K and CVRP100K use a smaller
batch size due to device memory constraints, while smaller-scale datasets like TSP1K and
CVRP1K use a larger batch size.

• Learning Rate. The initial learning rate for training the model.
• Decay per Training Epoch. The rate at which the learning rate decays with each epoch.
• Maximum Length of Partial Solution. This represents the maximum length for partial

solutions during training and reconstruction.

In each self-improved iteration, we save the model that with the best greedy performance on the
validation dataset to use in the next training iteration.

Table 6: Training settings.

TSP1K TSP5K TSP10K TSP50K TSP100K

Dataset Size 20,000 200 200 100 100
Self-improved Iteration 8 8 3 3 7
Training Epoch 20 20 20 20 20
Training Batch Size 256 32 32 32 16

Reconstruction Iteration 100 100 100 100 100
Reconstruction Batch Size 512 32 32 16 8

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4
Decay per Training Epoch 0.97 0.97 0.97 0.97 0.97

Partial Solution’s Maximum Length 1,000 1,000 1,000 1,000 1,000

CVRP1K CVRP5K CVRP10K CVRP50K CVRP100K

Dataset size 20,000 200 200 100 100
Self-improved Iteration 8 8 4 4 7
Training Epoch 20 20 20 20 20
Training Batch Size 256 32 32 32 16

Reconstruction Iteration 100 100 100 100 100
Reconstruction Batch Size 512 32 32 16 8

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4
Decay per Training Epoch 0.97 0.97 0.97 0.97 0.97

Partial Solution’s Maximum Length 1,000 1,000 1,000 1,000 1,000

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F IMPACT OF SOLUTION INITIALIZATION METHODS ON PRC PERFORMANCE

We empirically study the impact of different initialization methods on the PRC performance. We
test three simplest initialization methods, including greedy search performed by the model, heuristic
nearest neighbor, and heuristic random insertion. We refer to (Kool et al., 2019) for their details. We
use PRC100 to improve the solutions generated by these initialization methods and obtain the results,
which are shown in table 7. These results demonstrate that random insertion+PRC produces solutions
with lower objective values than the other methods on 6 (out of 10) groups of instances. At the same
time, random insertion is generally faster than the model’s greedy search in initializing the solution
(see Table 1). Considering these factors, we choose the random insertion method to generate the
initial solution for PRC.

Table 7: Performance of PRC100 (in terms of Obj.) with different solution initialization methods.

TSP1K TSP5K TSP10K TSP50K TSP100K

Model’s greedy 23.251 51.698 73.368 165.407 234.651

Nearest neighbor 23.254 54.954 79.159 179.886 255.367

Random insertion 23.254 51.824 73.293 164.591 232.550

CVRP1K CVRP5K CVRP10K CVRP50K CVRP100K

Model’s greedy 37.460 91.857 108.229 268.416 464.325
Nearest neighbor 37.493 91.725 111.832 316.338 529.006

Random insertion 37.491 91.580 108.038 268.024 471.348

G COMPARISON WITH TAM

We compare the proposed method with the decomposition-based method TAM Hou et al. (2023).
Since TAM does not release source code, we test our method on the test dataset introduced in their
paper. TAM’s results are from the original paper. For our method, the model is trained on CVRP1K
instances and subsequently tested across larger-scale instances. The results are shown in Table 8.
We can observe that even with the simple greedy search, our method can achieve better objective
values than these methods, indicating excellent performance and efficiency of our method in solving
large-scale CVRP instances.

Table 8: Experimental results compared with the decomposition-based methods.

CVRP1K CVRP2K CVRP5K CVRP7K
Method Obj. (Time) Obj. (Time) Obj. (Time) Obj. (Time)

HGS 41.2 (5m) 57.2 (5m) 126.2 (5m) 172.1 (5m)
LKH3 46.4 (6.2s) 64.9 (20s) 175.7 (2.5m) 245.0 (8.4m)
Random Insertion 66.3 (<1s) 95.3 (<1s) 225.4 (<1s) 309.2 (<1s)

TAM-LKH3 46.3 (1.8s) 64.8 (5.6s) 144.6 (17s) 196.9 (33s)
TAM-HGS − − 142.8 (30s) 193.6 (52s)

Ours greedy 44.1 (0.2s) 59.6 (0.8s) 131.0 (4.7s) 176.4 (8.9s)

H RESULTS ON SMALL SCALE INSTANCES

We empirically evaluate our method on small-scale TSP and CVRP (C=100 for all scales) instances
and present the results in Table 9. From the results, we can observe that our method consistently
demonstrates outstanding performance. For both TSP and CVRP, our method with PRC outperforms
the other learning-based methods in terms of solution quality, while maintaining a shorter or equal
inference time in the majority of instances except for TSP300. Although slightly more time is required
for the TSP300 instance, this is accompanied by a notable improvement in solution quality. These
findings highlight the effectiveness and efficiency of our method.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Comparative results on small-scale TSP and CVRP instances.

TSP300 TSP500 TSP700
Method Obj. Gap Total Time Obj. Gap Total Time Obj. Gap Total Time

Concorde 12.973 0.000% 5.9m 16.522 0.000% 32m 19.442 0.000% 1.8h

H-TSP 13.537 4.346% 15.8s 17.549 6.219% 23s 20.694 6.444% 29.1s
GLOP 13.137 1.263% 1.4m 16.883 2.186% 1.6m 19.963 2.683% 3.0m

POMO aug×8 13.834 6.636% 16.8s 20.187 22.189% 1.1m 25.576 31.555% 3.7m
INViT-3V greedy 13.725 5.797% 4.8m 17.327 4.877% 11.7m 20.712 6.536% 12.2m
LEHD greedy 13.117 1.104% 4.8s 16.780 1.560% 16s 19.848 2.088% 37s
BQ greedy 13.071 0.752% 19.3s 16.717 1.180% 46s 19.752 1.597% 1.2m
SI GD greedy 13.080 0.822% 11s 16.714 1.166% 29s 19.692 1.290% 59s

Ours 13.063 0.695% 13.9s 16.700 1.083% 16s 19.678 1.216% 36s

CVRP300 CVRP500 CVRP700
Method Obj. Gap Total Time Obj. Gap Total Time Obj. Gap Total Time

HGS 23.978 0.000% 4.2h 36.561 0.000% 4h 49.836 0.000% 4.2h
POMO aug×8 26.985 12.538% 18s 44.638 22.091% 1.2m 73.560 47.603% 3.4m
LEHD greedy 25.182 5.020% 5s 38.413 5.064% 17s 50.930 2.194% 37s
INViT-3V greedy 26.873 12.070% 6.1m 41.133 12.505% 10.4m 54.838 10.036% 15.4m
BQ greedy 25.155 4.906% 26.9s 38.438 5.134% 47s 51.020 2.375% 1.4m
SIGD greedy 25.148 4.878% 22s 38.671 5.770% 42s 51.656 3.651% 1.6m

Ours 24.961 4.099% 5s 37.903 3.671% 16s 50.221 0.771% 32s

I EXPANSIBILITY

We evaluate the expansibility of our method by applying it to another NCO method BQ (Drakulic
et al., 2023). Specifically, we replace the self-attention within BQ with the proposed cross-attention,
and then train it by SIT on CVRP1K and CVRP5K directly. We then use the greedy search with the
default setting to test the model performance. The results displayed in Table 10 demonstrate that the
proposed method can significantly boost the performance of BQ on large-scale problems in terms of
gap, inference time, and memory usage.

Table 10: Expansibility of our method to BQ (Drakulic et al., 2023). Gap (%), Time (s), and Memory
(MB) are averaged over instances.

CVRP1K CVRP5K

Gap Time Memory Gap Time Memory

BQ origin 8.23 1.0 20.6 20.48 8.1 479.1

BQ+Cross-Attention+SIT 7.46 0.3 3.1 8.19 3.2 5.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

J LICENSES

The licenses for the codes and the datasets used in this work are listed in Table 11.

Table 11: List of licenses for the codes and datasets we used in this work.

Resource Type Link License

LKH3 (Helsgaun, 2017) Code http://webhotel4.ruc.dk/ keld/research/LKH-3/ Available for academic research use
HGS (Vidal, 2022) Code https://github.com/chkwon/PyHygese MIT License
Concorde (Applegate et al., 2006) Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License
POMO (Kwon et al., 2020) Code https://github.com/yd-kwon/POMO MIT License
LEHD (Luo et al., 2023) Code https://github.com/CIAM-Group/NCO_code/tree/main/ MIT License

single_objective/LEHD
BQ (Drakulic et al., 2023) Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0
GLOP (Ye et al., 2024) Code https://github.com/henry-yeh/GLOP MIT License
HTSP (Pan et al., 2023) Code https://github.com/Learning4Optimization-HUST/H-TSP MIT License
DIFUSCO (Sun & Yang, 2023) Code https://github.com/Edward-Sun/DIFUSCO MIT License
INViT (Fang et al., 2024) Code https://github.com/Kasumigaoka-Utaha/INViT Available for academic research use
TSPLIB (Reinelt, 1991) Dataset http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Available for any non-commercial use
CVRPLib (Uchoa et al., 2017) Dataset http://vrp.galgos.inf.puc-rio.br/index.php/en/ Available for academic research use

21

	Introduction
	Related Work
	Generalization-based Method
	Simplification-based Method
	Heatmap-based Method

	Preliminaries
	Methodology
	Lightweight Cross-Attention for VRPs
	Transformer Network
	Self-Improved Training

	Experiments
	Comparative Results
	Ablation study
	Additional Analysis

	Conclusion
	Complexity Analysis for Iterative Reconstruction
	Implementation Details for CVRP
	Problem setup
	Transformer Network
	Implementation Details of PRC for Solving CVRP

	Choice of Representative Nodes
	Pseudocode
	Training Setting
	Impact of Solution Initialization Methods on PRC performance
	Comparison with TAM
	Results on Small Scale Instances
	Expansibility
	Licenses

