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ABSTRACT

Photonic crystals enable fine control over light propagation at the nanoscale, and
thus play a central role in the development of photonic and quantum technolo-
gies. Photonic band diagrams (BDs) are a key tool to investigate light propagation
into such inhomogeneous structured materials. However, computing BDs requires
solving Maxwell’s equations across many configurations, making it numerically
expensive, especially when embedded in optimization loops for inverse design
techniques, for example. To address this challenge, we introduce the first ap-
proach for BD generation based on diffusion models, with the capacity to later
generalize and scale to arbitrary three-dimensional structures. Our method cou-
ples a transformer encoder, which extracts contextual embeddings from the input
structure, with a latent diffusion model to generate the corresponding BD. In ad-
dition, we provide insights into why transformers and diffusion models are well
suited to capture the complex interference and scattering phenomena inherent to
photonics, paving the way for new surrogate modeling strategies in this domain.

1 INTRODUCTION

Photonic crystals (PhCs) are periodic structures made of a repeated unit cell that can allow, al-
ter or forbid light propagation. Designing new PhCs plays an important role in the development
of technologies (Dhanabalan et al., 2023), notably in telecommunication (Russell, 2003; Katti &
Prince, 2019) and optical computing (Yanik et al., 2003; Xu & Jin, 2023), with applications like low
threshold lasers, low-loss resonators and cavities, efficient microwave antennas, and optical fibres
(Soukoulis, 2001; Knight et al., 1999). For certain (ω, k) pairs, where ω is the frequency of light and
k its wavevector, light can become guided or even trapped within the designed PhC. This behavior
is typically analyzed using band diagrams (BDs), like the ones illustrated in Figure 1. Indeed, BDs
reveal the resonant modes, i.e., the specific frequency–wavevector combinations that are allowed
within the inhomogeneous structured material. They are thus essential descriptors and play a key
role in the development of novel applications with PhCs (Ozbay et al., 2004).
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Figure 1: Examples of BDs obtained from rigorous coupled-wave analysis (RCWA) simulations.
The x-axis represents the in-plane component kx of the wavevector of light, and the y-axis is the
corresponding frequency ω. A dark pixel indicates the existence of a mode for this pair of (ω, kx).

While BDs can be seen as the identity card of PhCs, they usually require a significant amount of
computation to be obtained. Indeed, each pair (ω, k) requires solving Maxwell’s equations. This,
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in turns, leads to several thousands of simulations to compute a single BD. To fix ideas, computing
a single BD with a 256× 128 resolution roughly takes one minute using four CPU cores (4.7GHz),
and can even take more than 10 minutes if using finer-grained settings1. When coupling this with an
optimization process for inverse design, many problems can quickly become intractable.

Several recent works leverage the use of deep learning (DL) based surrogate models to solve this
issue and support the work of physicists in photonics. However, none of them propose a method
for photonic BD generation that is scalable to arbitrary three-dimensional (3D) structures. Further-
more, most of them focus on exploiting more standard architectures like dense networks, VAEs or
U-Nets, without considering recent advancements in the DL community. This point is even more
striking given that bypassing simulations in photonics is still considered a difficult task. While some
analytical relations exist for one-dimensional PhCs, the complexity increases drastically in two di-
mensions, and becomes even more prohibitive in 3D (Yablonovitch, 1987; John, 1987; Ho et al.,
1990; Joannopoulos et al., 2011). Wave propagation is affected by numerous constructive and de-
structive interferences caused by multiple scattering at layer interfaces and within local structures.
Accurately capturing these potential high-order phenomena and their complex couplings across lay-
ers likely requires more advanced DL techniques.

In this work, we propose the first method to generate BDs directly from the input structures, which
could later be used as a surrogate model to support photonics research. We combine (i) a latent
diffusion model (Ho et al., 2020; Rombach et al., 2022) to generate the BD like images, with (ii) a
transformer encoder (Vaswani et al., 2017) that generates meaningful conditioning embeddings from
the geometric 3D structures to guide the diffusion process, and (iii) a VAE with a visual transformer
encoder to map the BD to a latent space for the diffusion process. We found that transformer en-
coders naturally capture complex couplings via self-attention, and that their sequential formulation
provides an elegant way to model 3D structures as sequences of 2D slices, avoiding the need for
costly 3D convolutions. This slicing strategy makes our method easily extensible and scalable to
arbitrary 3D photonic structures.

The contributions of this work can be summarized as follows:

(i) The first approach for BD generation based on diffusion models, with the potential to be
extensible and scalable to arbitrary 3D photonic structures.

(ii) Demonstrating the use of transformer encoders in photonics to generate meaningful condi-
tioning from the input structures, which could be transposed to other downstream tasks.

(iii) Providing insights on the reason why transformer encoders and diffusion models are good
candidates for developing a new set of state-of-the-art surrogate models in photonics.

We believe that our work will shed light on the use of transformer encoders and diffusion models in
the field of photonics, and will inspire other works in that direction. In Section 2, we briefly describe
some of the previous works using DL for photonics, to better position our work. Section 3 presents
the photonic task that we are solving, as well as the dataset setup. Next, Section 4 details our strategy
and the specific architectures we used, while giving motivations and insights about those choices.
Section 5 presents the experimental setup and the results, which are after discussed in Section 6.
Finally, Section 7 concludes this work.

2 RELATED WORK

The use of DL for photonics is currently an hot topic in this community, and has already been
explored in several works (Peurifoy et al., 2018; Ma et al., 2021; Liu et al., 2021; Wiecha et al.,
2021; Chen et al., 2022). Among those works, Roy et al. (2024) use a U-Net surrogate model with
particle swarm optimization for the design of vortex phase masks, bypassing the use of expensive
Finite-Difference Time-Domain (FDTD) simulations, Colomina-Martı́nez et al. (2024) propose DL
models for bending phenomena on holographic volume gratings, and Adibnia et al. (2024) show
how DL could help for the inverse design of plasmonic ring resonator switches.

Closer to the task that we are considering, Christensen et al. (2020) use CNNs and GANs for inverse
design and band structure prediction with 2D PhCs. It is then followed by the work of Nikulin

1Considered settings are described later, and a more rigorous timing comparison is presented in Table 3.
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et al. (2022) that can be considered as its extension to the use of VAEs. More recently, Wang et al.
(2024) developed a U-Net to predict dispersion relations for 2D PhCs. However, these works always
exhibit at least one of the following drawbacks: (i) they only consider the use of basic DL techniques
that are maybe not adapted to faithfully model complex photonic tasks, (ii) they only focus on 2D
slices without straightforward ways to extend to 3D, or simply, (iii) they are not designed to directly
provide a solution for a full BD generation.

Furthermore, previous works in other fields already implemented generative strategies using diffu-
sion models. One can for example cite the work of Shmakov et al. (2023) in high energy physics, Shu
et al. (2023) for fluid dynamics or also Alakhdar et al. (2024) for drug design. Regarding photonics,
the only previous work investigating the use of diffusion model is the one of Sun et al. (2024). In
their work, they use a diffusion model with contrastive language-image pre-training (CLIP) to map
simple textual structure information to optical field distribution maps. However, this work focuses
on field distributions while photonic BDs are more global descriptors. Moreover, the use of CLIP
embeddings from simple textual descriptors limits seriously the possibility to extend this work to
arbitrary 3D structures.

Thus, we introduce the first approach for BD generation of 3D PhCs based on diffusion models and
transformer encoders. Attention is paid to keep the method as general as possible, enabling future
generalizations and extensions.

3 TASK CONSIDERED AND DATASET GENERATION

Task considered The task considered in this work is the generation of BDs of 3D PhCs structures.
These crystals are usually defined by a unit cell with infinite periodicity in the x-y directions, while
variations are allowed along the z-axis. By not enforcing full 3D periodicity, our approach is more
general and closer to actual designs that can be fabricated (Joannopoulos et al., 2011).

To train our models, we first need to generate a dataset. We restricted structures to be a particular
stacking of holey and uniform layers, as illustrated in Figure 2. Holey layers are defined by a single
air hole inclusion with electric permittivity ϵ = 1 in the unit cell which may either be cell-centered,
border-centered, or corner-aligned to allow different types of stacking configurations. The dielectric
in each layer is restricted to ϵ values in [4.0, 6.0]. The hole radius is in [0.1, 0.45] and the layer
thickness can be in [0.1, 0.3]2. Those values have been chosen for the proof-of-concept and because
they were considered as relevant for experts in photonics. Also, the restriction to those particular
intervals should not be seen as assumptions for our method to work.

; ; ;; …
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Figure 2: 3D structures are represented as ordered pair sequences {(ϵ1, d1) , . . . , (ϵk, dk)}, where
ϵi (x, y) are 2D dielectric maps for each layer and di their corresponding thicknesses.

Dataset generation Each holey layer is always followed by a uniform layer with the same material
and thickness. Material dielectric, hole radius, thickness and hole alignment are randomly sampled
from the previous intervals. Based on those settings, we derived two different datasets. The first one

2Note that all dimensions are given in reduced units, because we assume a unit cell of dimensions a× a in
the xy plane. For convenience, and because light-matter interactions of interest only occur when observed at
the same scale, frequencies are also expressed in reduced units (ω̃ = ωa

2πc
).
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(later referred to as the small one) is the easiest one and is made of 30,000 PhCs with one or two of
the holey-uniform stack (leading to crystals with either 2 or 4 layers). The second one (later referred
to as the large one) is made of 60,000 PhCs that can go up to 4 stacks (leading to crystals made
of up to 8 layers). BDs are computed using rigorous coupled-wave analysis (RCWA) (Moharam
& Gaylord, 1981; Li & Lin, 2003), for 256 frequencies between 0.7 and 0.8 (0.75 for the second
dataset), and 128 values for kx, leading to 32,768 RCWA simulations for a single BD. Each layer is
represented on a 256 × 256 grid for the RCWA simulations, but resized and saved to only 64 × 64
pixels for the dataset. Indeed, while it is important to maintain enough spatial resolution for RCWA
simulations, 64 × 64 pixels is enough to faithfully render the layers for a surrogate model. To ease
the training process, BDs are also binarized and smoothed using an adaptive thresholding.

Despite the drastic choices made to restrict the design and simulations, we want to highlight that
photonic BDs generation is already highly challenging. Even with apparently “simple” stacks of
holey and uniform layers, the resulting BDs can exhibit strong variations and discontinuities along
ω. Small modifications in layer thickness, hole radius, or alignment may drastically impact the
global BD, which underlines the difficulty of learning a reliable surrogate model. Furthermore, a
photonic BD is by definition fine-detailed, i.e., composed of fast and sometimes sparse variations
along the ω axis. These points altogether are the reasons why more standard architectures may
struggle to solve this task. At the same time, the restrictions should not be seen as a limitation of our
approach. The method that we introduce in Section 4 is general and only requires to represent 3D
PhCs as sequences of 2D slices. Nothing prevents its direct application to more complex geometries
(e.g., arbitrary inclusions). The present dataset serves primarily as a controlled and computationally
feasible benchmark to validate our framework as a proof-of-concept.

4 METHOD

In this section, the method used to generate BDs from the 3D PhCs is presented. The method can
be decomposed into three main components that are described in this section: a material-to-context
encoder, a BD encoder/decoder and a latent diffusion model.

It is worth mentioning that prior to the following method, we explored a GAN-based pipeline. While
this approach showed some potential, it did not yield convincing results. This motivated our use of
diffusion models and transformer encoders. Diffusion models are known to be able to generate fine-
detailed outputs (Rombach et al., 2022). When combined with transformers and suitable contrastive
training, those models showed themselves to be much more adapted to the task.

4.1 MATERIAL-TO-CONTEXT (M2C) ENCODER

At the core of our method lies the idea that transformer encoders are particularly well suited to deal
with photonics. In photonics, the global optical response of a material often results from complex
couplings between distant layers, due to multiple reflections such as Fabry–Pérot or Fano effects
(Saleh & Teich, 1991; Limonov et al., 2017), or higher-order scattering phenomena. Self-attention
naturally models such interactions by allowing each layer representation to attend to all others, while
multi-head attention can disentangle distinct coupling mechanisms. These abilities motivate our use
of a transformer encoder as the backbone of the material-to-context (M2C) component.

The goal of the M2C encoder is to replace the classical CLIP model for textual conditioning. The
M2C encoder will map an input structure into a contextual embedding that can later guide the diffu-
sion model. Its architecture is presented in Figure 3. As previously explained, each 3D structure is
represented by a stacking of 2D dielectric slices and their corresponding thicknesses. Each slice is
first concatenated with the squared modulus of its 2D Fourier transform along the channel dimension
to provide spectral information and inform of periodicity. After that, a shared convolutional encoder
is used to extract structural features from the slices. The resulting embeddings are then flattened into
a vector representation. To preserve the ordering of layers and their physical thicknesses, we intro-
duce a cumulative depth positional encoding that is added to each layer embedding. This ensures
that the model distinguishes not only the content of each slice but also its position and thickness. To
the sequence of layer embeddings, we prepend a learnable context token (CTX), which is designed
to aggregate global information about the full structure and later devoted to contrastive alignment.
The extended sequence is processed by a stack of transformer encoder blocks, following the standard
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Figure 3: M2C encoder architecture — A sequence of k dielectric layers {ϵ1 (x, y) , . . . , ϵk (x, y)}
is encoded by a shared convolutional encoder, and concatenated with a context token. This yields
a sequence of latent vectors {z0, z1, . . . , zk}, each in IRn. Cumulative depth positional encodings
(PE) are added to preserve both the ordering and the thicknesses of each layer. The sequence is
then processed by N stacked transformer encoder blocks. Finally, a MLP head projects the hidden
dimension n to the output dimension m, producing the contextual representations {z̃0, z̃1, . . . , z̃k},
where z̃0 serves as the global contextual embedding.

encoding path of transformer networks, as proposed by Vaswani et al. (2017). A final MLP head
is then used to project the embeddings from the transformer encoder to the desired final dimension.
The context token is considered as a compact, global representation of the entire structure, while the
other outputs are devoted to retain more slice-specific information.

4.2 BAND DIAGRAM (BD) ENCODER/DECODER

The objective of the BD encoder/decoder is twofold: firstly, it enables the use of a latent diffusion
process by mapping BDs into and reconstructing them from a lower-dimensional latent space. Sec-
ondly, it provides a global representation of each BD, which is used for contrastive training with the
M2C encoder. The global architecture of the BD encoder/decoder is presented in Figure 4.

For this model, we design a variational autoencoder (VAE) in which the encoder path is imple-
mented as a vision transformer (ViT). A BD image is divided into non-overlapping patches, each of
which is linearly projected into a patch embedding. A learnable context token is also prepended to
the sequence, and positional encodings are added to preserve the spatial arrangement of the patches.
The sequence is then processed by a stack of transformer encoder blocks. This architecture provides
two key benefits. Firstly, the global embedding obtained from the context token is used as a compact
BD representation for contrastive alignment. Secondly, the patch embeddings are reshaped into a
structured latent tensor that is decoded back into pixel space by a convolutional decoder, follow-
ing the standard decoding path of a VAE. Using a ViT instead of a CNN for the encoding path is
particularly well motivated in this context: each patch corresponds to a localized region in the fre-
quency–wavevector domain, making it natural to treat BDs as sequences of spectral compartments.
While convolutions tend to mix information across neighboring regions, a transformer will first con-
sider them independently and learn correlations between spectral windows. An additional advantage
of the ViT-based encoder is the possibility to mask some patches during training. By randomly drop-
ping a fraction of input patches, the model is encouraged to reconstruct missing regions of the BD,
leading to improved robustness and generalization.

4.3 BAND DIAGRAM (BD) DIFFUSION PROCESS

The final stage of our pipeline is a latent diffusion model that generates BD images conditioned
on the material embedding, following the image generation strategy from Rombach et al. (2022),
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Figure 4: BD encoder/decoder architecture — A BD of size H × W is divided into p = phpw
patches (optionally with random masking during training), each flattened and linearly projected. A
context token is concatenated to the sequence, and positional encodings (PE) are added to preserve
spatial relationships between patches. The resulting sequence {z0, z1, . . . , zp} with zi ∈ IRn, is
processed by N stacked transformer encoder blocks (similarly to the M2C encoder architecture).
The context token is then mapped by an MLP head to a global representation z̃0 ∈ IRm, while the
patch embeddings are projected to local representations {z̃1, . . . , z̃k} with z̃i ∈ IRl. These local
embeddings can then be reshaped into a single latent representation with shape (l, ph, pw), to later
be forwarded to a convolutional decoder trained to reconstruct the BD in pixel space.

and presented in Figure 5. During training, the BD encoder first maps the target BD into a latent
representation, which is iteratively perturbed with Gaussian noise following the forward diffusion
process. At each diffusion step t, a denoising U-Net is trained to predict the added noise, conditioned
on the global structural embedding from the M2C encoder. Once trained, the model can sample
BDs by starting from pure noise and iteratively reversing the diffusion process. The recovered latent
representation is then decoded by the BD decoder to reconstruct the BD in pixel space.

5 EXPERIMENTS AND RESULTS

This section is divided in two main parts. The first focuses on the training of the M2C and BD
encoders/decoder, as well as the evaluation of their standalone performances. The M2C encoder, in
particular, is designed to capture as much information from the structure as possible and could also
support other downstream tasks beyond BD generation in the future. The second part focuses on BD
generation using the latent diffusion model, providing both qualitative and quantitative results.

The M2C and BD encoders/decoder are jointly trained using a contrastive method for the align-
ment of the context tokens following the idea of momentum contrast (MoCo) (He et al., 2020). This
first training stage allows aligning the structural information with its corresponding BD by enforcing
a shared latent space between the two models. To do so, for each pair of input structure and BD in
a batch, the M2C and BD encoders are optimized such that the similarity (dot product) between the
global contextual embeddings is maximal when the structure is compared to its corresponding BD,
and minimal otherwise. Still following the initial paper of MoCo, a strategy of online and offline
weights is setup with exponential moving average (EMA) to feed a First-In First-Out memory bank
to artificially increase the number of negative pairs per batch. Simultaneously, the BD decoder is
trained to minimize a binary cross entropy reconstruction loss combined with KL regularization on
the latent distribution, ensuring that the latent space preserves sufficient information to reconstruct
the BD. This dual training strategy provides strong alignment between the M2C encoder and the BD
encoder such that the M2C contextual representation becomes a meaningful conditioning for the
diffusion model. The final output dimension for the conditioning embeddings (MLP heads) is fixed
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Figure 5: The local latent representations are first extracted from the target BDs thanks to the BD
encoder, and reshaped to a latent representation z̃ of shape (l, ph, pw). A forward diffusion process
iteratively perturbs these latents with Gaussian noise, progressively reducing the signal-to-noise
ratio (snr). A denoising U-Net, conditioned via cross-attention on the material representation from
the M2C encoder, is trained to iteratively predict the noise at each time step t. After reversing the
diffusion process, the recovered latent ζ̃0 is forwarded to the BD decoder to reconstruct the BD. The
steps highlighted with the black dotted box are only performed for training. During inference, the
process directly starts from pure random noise. Figure inspired from Rombach et al. (2022).

Table 1: Architectures for the M2C and BD encoders/decoder and their contrastive performances.
N is the number of transformer blocks, dmodel their dimensionality, dff the size of the dense layers
and h the number of attention heads. Top-1 and 5 accuracy are reported for the testing sets of both
datasets, resp. with the smaller (i) and larger (ii) stacks.

M2C encoder BD encoder / decoder Small dataset Large dataset

N dmodel dff h N dmodel dff h Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

16 256 1024 16 12 128 1024 16 79.79 96.70 57.63 84.46

to 768, to match the usual dimension of conditional vectors in diffusion models. Cumulative depth
positional encodings are implemented using a trainable MLP, as this solution led to better results.

During training, a global and patch dropout of 0.2 are used along with two data augmentation strate-
gies. The first one randomly adds one or several layers of air (ϵ = 1) at the beginning and/or the end
of a structure. Indeed, adding such layers should not have any impact on the final BD. The second
one performs a random roll for all the layers across the structure. Again, because of the periodicity
of the unit cells in the xy plan, this modification should not have any impact on the final BD.

To evaluate the performance of the M2C and BD encoders/decoder, the architectures are trained on
both the small and large datasets while keeping 20% of the data for testing. For each one of them,
the top-1 and top-5 testing accuracy are reported. Concretely, for each batch, for each structure, all
BDs are ranked by similarity. The top-1 accuracy is the fraction of structures for which the true
BD ranks first, while the top-5 counts the matching correct if it is at least in the five most similar
candidates. Note that those metrics are computed in both directions (BD → M2C and M2C → BD)
and averaged. The configuration and associated results are presented in Table 1. A description of
the training settings, as well as more details about the architectures is presented in Appendix A.

The latent diffusion model is a standard U-Net with residual and attention blocks. Conditioning
comes from two sources: the M2C encoder output, injected through cross-attention, and the denois-
ing time step, provided as 1280-dimensional embeddings and added within the residual blocks.

The diffusion process is defined with a cosine noise scheduler over 1, 000 steps. Training relies on a
signal-to-noise ratio weighted MSE loss between the true and predicted noise. To reflect the one-to-
one mapping between structures and BDs, we also considered a binary cross-entropy loss between
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Figure 6: Qualitative comparison of BD generation for the small dataset. The first row shows BDs
generated with the diffusion model, and the second one, their corresponding ground truth from
RCWA simulations. Samples are randomly selected from the testing set.

Table 2: Quantitative results with different training strategies. The effect of fine-tuning the M2C en-
coder and adding a reconstruction loss is evaluated. Performances are reported with dice coefficient
and mean average precision (mAP) over the testing set, for both datasets.

Finetuned M2C Reconstruction loss Small dataset Large dataset

Dice mAP Dice mAP

× × 0.374 0.437 0.228 0.238
✓ × 0.231 0.230 0.208 0.199
× ✓ 0.370 0.435 0.232 0.236
✓ ✓ 0.229 0.229 0.208 0.199

the generated and ground-truth BDs. In addition, we experimented with freezing or fine-tuning the
M2C encoder, allowing it to adapt if needed. For sampling, we use the denoising diffusion implicit
models (DDIM) method introduced by Song et al. (2021) that reduces the number of required steps
to generate an image. Instead of reversing the full 1,000 diffusion steps, we generate BDs in 50
steps. More details about the architecture and the training parameters can be found in Appendix A.

Figure 6 shows qualitative examples from our best-performing model for the small dataset. More
qualitative examples, including those for the large dataset, can be found in the Appendix B. Quanti-
tative results, including dice coefficient and mean average precision (mAP), are reported in Table 2.
Finally, Table 3 compares computation times across different methods.

6 DISCUSSION AND LIMITATIONS

Firstly, regarding the M2C and BD encoders/decoder, we observe very strong overall performance.
With the batch size of 128, random ranking would yield only 0.78%/3.90% top-1/5 accuracy. In
contrast, our models achieve 79.79%/96.70% on the small dataset and 57.63%/84.46% on the large
one, clearly demonstrating the capacity of the encoders to extract meaningful features.

Secondly, results for the photonic BD generation task are highly encouraging. Qualitatively, the
generated structures are generally in good agreement with the simulations, as it can be observed in
Figure 6. Quantitatively, from Table 2, we find that finetuning the M2C encoder during training
actually degrade the performance compared to fully freezing it after the contrastive pretraining.
In addition, the reconstruction loss previously motivated does not seem to provide complementary
information to the standard noise prediction loss.

Nevertheless, BD generation becomes more challenging as the number of modes (bands) increases.
This may be physically explained by the fact that wave propagation inside the corresponding struc-
tures is more complex. Consequently, results on the large dataset, where more bands are typically
visible, are less accurate both qualitatively and quantitatively. We hypothesize that further improv-

8
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Table 3: Comparison between computation times (in seconds) for the diffusion model and RCWA
simulations. For each fixed number of layers, mean and standard deviation values are reported
through 10 different structures. RCWA simulations are performed using 4 CPU cores (4.7GHz)
while considering 3 × 3, 5 × 5, and 7 × 7 plane waves, covering various simulation precision.
Diffusion inference is tested both on CPU and GPU (NVIDIA RTX 3070 8GB).

# Layers Diffusion RCWA

CPU GPU 3×3 5×5 7×7

4 2.65± 0.06 1.19± 0.02 67.46± 2.63 161.69± 5.06 617.40± 6.01
8 2.64± 0.07 1.18± 0.02 97.07± 12.66 260.74± 7.91 1063.14± 5.67

ing the M2C encoder could help mitigate this limitation. In preliminary experiments, we observed
a strong correlation between the performance from the contrastive pretraining, and the fidelity of
generated BDs. Possible directions include increasing the size of the network to capture more com-
plex layer couplings, or incorporating physics-informed strategies like proposed by Medvedev et al.
(2025). Another idea worth exploring is performing multiple diffusion samplings from different
random noise initializations. Aggregating these outputs could allow to refine the final BD, or at least
to derive useful confidence maps.

Despite the fact that BD generation does not yet reach the physical fidelity of real simulations,
Table 3 highlights how fast it can be. Compared to basic 3 × 3 RCWA simulations, our surrogate
models achieve speedups of 56× to 82×. In addition, inference time does almost not depend to the
number of layers, unlike physical simulations. Diffusion models thus provide a practical tool for
fast exploration of large design space. Finally, it is worth noting that the simulations used to build
our datasets were performed with a lightweight setting for proof-of-concept (RCWA with 3 × 3
plane waves), meaning that those previous speedups are largely underestimated. As also presented
in Table 3, finer-grained simulations (e.g., 7×7 plane waves) can be one order of magnitude slower.

7 CONCLUSION

We introduce a new method that leverages latent diffusion models and transformer encoders to
generate band diagrams (BDs) for 3D PhCs. While our dataset covers only a limited set of structures,
the method is designed to be generalizable and scalable to more arbitrary 3D configurations.

The transformer encoders prove to be a powerful and expressive approach for tackling photonic
problems. After contrastive training, we achieved a top-5 accuracy of approximately 97% in sim-
ilarity ranking, indicating that the M2C encoder successfully learned a meaningful embedding for
the structures. This strong performance may be explained by the self-attention mechanism, where
each layer iteratively attends to all others, making the modeling of scattering, interference, and other
physical phenomena more explicit. As a perspective, the idea behind the M2C encoder and the
whole pipeline could be transposed to other tasks in physics, even beyond the particular context of
photonics (like the similar problem of electronic band structures in solid-state physics, for example).

Also, we successfully trained latent diffusion models to generate BDs, achieving promising results
that highlight their potential as surrogate models for inverse design. Notably, the models provide a
speedup of up to 56× for small structures and up to 82× for the larger ones when compared with
RCWA simulations using only 3×3 plane waves. When considering more detailed 7×7 simulations,
the speedup factors can reach 518× and 900×, respectively.

Despite these encouraging results, some limitations currently remain and pave the way to further
works in this direction. In particular, the fidelity of the generated BDs compared to real simulation
is inevitably reduced, especially when increasing the number of layers. Nevertheless, this limitation
should also be balanced by the fact that surrogate models should not fully replace rigorous simu-
lations, but rather support numerically expensive tasks. In this role, the substantial speedups make
them highly valuable for fast exploration during inverse design, for example.
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Vladimir Ceperic, John D. Joannopoulos, and Marin Soljačić. Predictive and generative machine
learning models for photonic crystals. Nanophotonics, 9(13):4183–4192, June 2020.

Jaume Colomina-Martı́nez, Juan Carlos Bravo, Joan Josep Sirvent-Verdú, Adrián Moya-Aliaga,
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A TRAINING AND ARCHITECTURAL DETAILS

This appendix presents the training settings used for the M2C and BD encoders/decoder contrastive
alignment, as well as the training of the latent diffusion models. In addition, more architectural
details that are not directly presented in the core of the paper are presented, for reproducibility.

All the trainings are performed on NVIDIA A100 (40GB), with PyTorch 2.7.1 and CUDA 12.6.

A.1 M2C AND BD ENCODERS/DECODER CONTRASTIVE ALIGNMENT

For the joint training of those models, the batch size is fixed to 128. The AdamW optimizer is used
with a learning rate of 10−4 and a weight decay of 2 × 10−4 through 500 epochs. Note that this
weight decay is not applied for the trainable positional encoding, as it can lead to instabilities during
training. A cosine annealing learning rate scheduler is used with a linear warm-up of 50 epochs. The
KL regularization is weighted by a factor 10−3 when added to the contrastive and reconstruction
losses. Regarding the contrastive loss, we set the size of the memory bank to 131,072, and the
exponential moving average (EMA) weight is set to 0.999.

A.2 MORE DETAILS ABOUT THE M2C ENCODER

The M2C encoder is made of four main components: a convolutional encoder, a cumulative depth
positional encoding, a transformer encoder, and a final MLP head.

The convolutional encoder is a standard CNN, following the standard architecture of the encoder
path of a VAE. It is made of residual (each made of two convolutional layers) and attention blocks,
similar to the ones used in the U-Net for the latent diffusion model. A first convolution is used to
merge the spatial and spectral features (from the 2D-FFT). After that, three downsampling blocks
made of two residual blocks and a downsampling convolution with stride 2× 2 are defined, with 32,
64 and 128 output filters, respectively. A bottleneck is defined afterwards with several four residual
blocks and an attention blocks sandwiched in between. Attention pooling is performed at the end to
convert the input images to one-dimensional embeddings.

The cumulative depth encoding is defined by a simple MLP made of two dense layers with 512
and 256 output neurons, respectively, with GELU activation function and layer normalization in
between. This layer takes the sequence of cumulative thicknesses and output a sequence of 256-
dimensional embeddings, devoted to help the transformer encoder to better discriminate the position
and thickness of each layer.

Finally, the M2C encoder ends with a standard transformer encoder defined by the parameters pre-
sented in Table 1, and a final MLP head, made of one simple dense layer, projecting the embeddings
into a 768-dimensional space.

All of these leads to a M2C encoder with ∼ 17.3 millions parameters.

A.3 MORE DETAILS ABOUT THE BD ENCODER/DECODER

The BD encoder starts with a ViT. This ViT splits the input images into patches of dimensions
16 × 16. Those 256

16 × 128
16 = 16 × 8 = 128 patches are then flattened and forwarded to a dense

layer (with layer normalization) to be projected to a sequence of 128-dimensional embeddings. The
parameters for the transformer encoder that follows are presented in Table 1.

After the ViT, the sequence is split into two directions, with two different purposes. The first one
takes the context token (prepended previously, before the linear projections), and forward it to a
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MLP head to project the input to a final 768-dimensional embedding (for contrastive alignment with
the M2C encoder). The second one first project the embeddings into two distinct 4-dimensional
embeddings to later mimic a standard VAE (resp., the mean and standard deviation tensors). The
resulting 128× 4 embeddings are reshaped into latent images of shape 4× 16× 8.

Finally, the latent images are forwarded to a convolutional decoder, made again of residual and
attention blocks, followed by several upsampling operations. Even though the operations are linked
together, the convolutional decoder mainly follows a symmetric path to the M2C convolutional
encoder (replacing the down convolutions by upsampling convolutions).

The final BD encoder/decoder is made of ∼ 7.9 millions trainable parameters.

A.4 LATENT DIFFUSION MODEL TRAINING

For the training of the latent diffusion models, the batch size is fixed to 128. The AdamW optimizer
is used with a learning rate of 2 × 10−4 and a weight decay of 2 × 10−4 through 1,500 epochs.
Similarly to the M2C and BD encoders/decoder, a cosine annealing learning rate scheduler is used
with a linear warm-up of 100 epochs. An EMA with a weight of 0.999 is also used during testing.

A.5 MORE DETAILS ABOUT THE U-NET

The U-Net used in the latent diffusion model follows a standard architecture, designed to work on
latent representation of input images. It is made of several residual and attention blocks. Each
attention block consists of self-attention on the image features followed by cross-attention with the
conditioning embeddings. The encoder path is built from three stages, each containing two residual-
attention blocks and a down convolution, where the number of output channels doubles after each
stage. A bottleneck with one attention block sandwiched between two residual blocks connects to
a symmetric decoder, where down convolutions are replaced by up-convolutions. The U-Net we
considered in this work starts with 80 filters. The attention blocks use height attention heads, and
group normalization is used all along the network, with a number of 16 groups. SiLU functions are
used as non-linear activation functions.

At the end, the U-Net counts ∼ 64.4 millions parameters.

B MORE QUALITATIVE EXAMPLES

This appendix presents the qualitative results obtained for the large dataset, presented in Figure 7.
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Figure 7: Qualitative comparison of BD generation for the large dataset. The first row shows BDs
generated with the diffusion model, and the second one, their corresponding ground truth from
RCWA simulations. Samples are randomly selected from the testing set.
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