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Abstract
Public access to existing high‐resolution databases was discontinued. Besides, a hybrid
database that contains fingerprints of different sensors with high and medium resolutions
does not exist. A novel hybrid approach to synthesise realistic, multiresolution, and mul-
tisensor fingerprints to address these issues is presented. The first step was to improve
Anguli, a handcrafted fingerprint generator, to create pores, scratches, and dynamic ridge
maps. Using CycleGAN, then the maps are converted into realistic fingerprints, adding
textures to images. Unlike other neural network‐based methods, the authors’ method
generates multiple images with different resolutions and styles for the same identity. With
the authors’ approach, a synthetic database with 14,800 fingerprints is built. Besides that,
fingerprint recognition experiments with pore‐ and minutiae‐based matching techniques
and different fingerprint quality analyses are conducted to confirm the similarity between
real and synthetic databases. Finally, a human classification analysis is performed, where
volunteers could not distinguish between authentic and synthetic fingerprints. These ex-
periments demonstrate that the authors’ approach is suitable for supporting further
fingerprint recognition studies in the absence of real databases.

1 | INTRODUCTION

Fingerprint recognition is widely studied thanks to its
compliance with the core premises of biometrics: permanence
and distinctiveness [1, 2]. It is possible to analyse the ridge
patterns on fingerprints at different scales and resolutions.
These patterns can be classified as Level 1 (L1—global pat-
terns, such as ridge orientation maps and fingerprint classes),
Level 2 (L2—local patterns, such as minutiae) and Level 3 (L3
—fine details, such as sweat pores, incipient ridges and dots).

With the development of high‐resolution sensors that are
able to capture L3 fingerprint images, researchers saw an op-
portunity to devise more accurate recognition approaches by
using extra information, such as sweat pores [3–5]. Besides,
L3‐based approaches improve security by hindering spoof at-
tempts [6–8].

Despite the recent improvements brought to the finger-
print recognition research area, L3 fingerprint databases are
being discontinued. For instance, databases such as the NIST
Special Database 30 [9] and the Hong Kong Polytechnic

University High Resolution Fingerprint database (PolyU) [10]
are no longer publicly available. More recently, Anand and
Kanhangad [11, 12] created L3 databases for their recognition
experiments. However, until the present moment, these data-
bases were not released. The main reason for that is the ex-
istence of legal restrictions protecting the privacy of biometric
data.

There are several procedures and limits imposed that must
be followed to acquire and distribute fingerprint images. This is
a legal trend all over the world, as observed in the Illinois
Biometric Information Privacy Act (BIPA) in the United
States, the General Data Protection Regulation (RGPD) 2016/
679 in the European Union, and the General Data Protection
(LGPD)—article 5, clause II of the Law n° 13.709/2018 in
Brazil. Although they are important laws and regulations, they
hinder the evolution of fingerprint biometric recognition al-
gorithms in a time context of popularisation of fingerprint
sensors in various devices.

Another evident problem is the lack of a fingerprint
database containing high and medium resolution fingerprints
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from different sensors. This is a severe obstacle for new
research to improve the interoperability of fingerprint recog-
nition across different sensors and resolutions. This topic has
been discussed in the state of the art [13]. The performance is
not optimal in current algorithms and some methods were
proposed to tackle this issue [14, 15]. However, they do not
perform cross‐sensor matching between a high‐resolution L3
sensor and a regular L2 sensor.

Creating a multiresolution and multisensor synthetic data-
base is a valid alternative to address these problems, still
avoiding costly data collection campaigns. Synthetic generation
techniques are widely exploited in several areas, such as optical
flow computation [16], indoor robot navigation [17], and
autonomous driving [18]. The same is true for the fingerprint
recognition field.

Earlier studies, such as SFinGe [19] and Anguli [20],
developed handcrafted frameworks for fingerprint generation
based on the knowledge of an expert. Their design allows
reasonable control over the identity of the output images but
lack realism, especially when considering L3 features. Besides,
the non‐commercial SFinGe version restricts the generation of
large datasets, difficulting the generation of multiple instances of
a single identity. Finger‐GAN [21] and Cao and Jain's approach
[22] employed Generative Adversarial Networks (GAN) [23] to
learn how to generate realistic fingerprints from a real training
set. However, both of these studies present many unnatural
artefacts and cannot generate multiple images for the same
identity. The Clarkson Fingerprint Generator (CFG) method
[24] uses the StyleGAN [25] to synthesise fingerprints. However,
the database of real fingerprints captured by the authors is not
publicly available. This fact makes it impossible to replicate and
compare this work under identical conditions. Furthermore, the
method also does not generate multiple fingerprints for a single
identity, suffering from the lack of identity variability (see
Figure 1).

We propose a novel approach to create realistic, multi-
resolution and multisensor synthetic fingerprints while main-
taining control over the identity of the output images. Our goal
is to foster further studies in this field without raising legal issues
that come with real biometric data. Our contributions are:

1. A novel hybrid fingerprint generation approach that com-
bines a handcrafted identity generator and a learnt texturiser
across different sensors and resolutions. A visual compari-
son to existing approaches shows that our results are the
new state of the art. Also, a perception experiment shows

that humans can hardly differ between real and our syn-
thetic images.

2. A new approach that can generate multiple instances of
high and medium resolution fingerprints of a single identity.
This ability is a game‐changer in fingerprint synthesis
because current neural network‐based methods cannot
perform this task, limiting performance recognition studies.

3. A public database1 of L3 and L2 synthetic fingerprint im-
ages, each one containing five subsets of 148 identities, with
10 samples per identity, totalling 14,800 high‐resolution
fingerprint images. These images enable cross‐matching
researches for different purposes. Also, we include sweat
pore annotations for 740 images to assist in pore detection
research [26]. This is the largest publicly available database
with L3 fingerprints nowadays.

This article is an extension of our previous conference
paper [27].1 The main extension between the two versions is
the addition of the generation of L2 fingerprints, where we
performed a new experiment comparing fingerprint matching
at different resolutions and sensors. The generation of multi-
resolution and multisensor fingerprints for a pre‐defined set of
identities is unique in the state of the art.

2 | MULTIRESOLUTION SYNTHETIC
FINGERPRINT GENERATION

Fingerprints are used in many contexts. Whether in forensics,
government control systems, or banking systems, fingerprints
play an essential role in asserting a person's identity. However,
there are many sensors developed by various manufacturers
(see examples in Figure 2), and each sensor design will cause
variations in the styles of the images created. These variations
create differences in image resolutions, textures, image tonality,
thus generating a significant challenge in biometric recognition.
Optical and capacitive sensors are commonly used in many
devices we use daily. However, a new diversity of sensors has
been proposed and adopted in products in the industry. For
example, ultrasonic sensors [28, 29] are started to be integrated
into smartphones and tablets successfully. Nevertheless, there
are a variety of transducer technologies that can be applied to
the acquisition, which will also generate changes in the bio-
metric signal [30]. More recently, new studies [31, 32] have
further expanded the topic of fingerprint imaging using con-
tactless acquisition techniques. However, challenges such as
segmentation and distortion correction are essential factors for
performing an appropriate matching, problems that re-
searchers are still tackling these challenges [33].

Ideally, all these biometric recognition methods must work
in an interoperable and ubiquitous way in a highly connected
world. Over the years, several studies have tackled the problem
of interoperability in fingerprint sensors [13, 34, 35], evidencing
several challenges. Another challenge encountered occurs when

F I GURE 1 The Clarkson Fingerprint Generator (CFG) method [24]
samples. Note the lack of variation between the different identities (a) and
(b), and (c) and (d) 1

https://andrewyzy.github.io/MR‐SF/.
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matching databases from different countries or regions that use
different standards. This problem received much attention from
the members of the European Union, where they use Interpol
and Europol standards and still require interoperability with the
FBI database.2

Another problem in fingerprint interoperability is the evi-
dence of the lack of research involving medium and high‐

resolution sensors. Having a database containing images of
the same identities in different styles and resolutions would
help in biometric recognition in tasks where a high degree of
accuracy is required. However, there is no public database with
this feature to date, which results in a significant obstacle to
research in this area.

To generate multiresolution synthetic fingerprints, we split
our approach into two stages. The first stage concerns pro-
cedures required to create multiple instances of fingerprints,
which we call seed images. The second stage consists of using
CycleGAN [36] to translate seed images into realistic finger-
prints. Figure 3 summarises the workflow of the proposed
method.

The first stage consists of the following processes:

1. Master fingerprint generation: we extended Anguli [20],
an open‐source implementation of SFinGe [19], to create
fingerprint ridge maps with random ridge‐flow frequency.
Also, we segment ridges and dynamically change their
thicknesses. We call the resulting images master fingerprints
(Section 2.1).

2. Pore and scratch generation:we add pores and scratches to
each master fingerprint following a distribution learnt from
real images to obtain L3 master fingerprints (Section 2.2).

3. Fingerprint acquisition simulation: to simulate acquisi-
tion, we randomly cut the L3 master fingerprints following
a distribution of the displacement among images of the
same person in a real database, thus creating different in-
stances for each identity. These instances are called seed
images (Section 2.3).

The second stage consists of performing CycleGAN
translation to transform any seed image into a realistic multi‐
level fingerprint. The model employed in this step is ob-
tained through the following processes:

1. Training set generation: to train CycleGAN, we create
several seed images following the steps of the first stage of

our approach. Data augmentation is then applied to real and
seed images to compose the training set (Section 3.1.1).

2. CycleGAN training: uses the training set to create a CNN
model that translates seed images to high or medium res-
olution fingerprints (Section 2.4).

2.1 | Master fingerprint generation

We use Anguli [20] to create the ridge map that composes a
master fingerprint within one of the following classes: Whorl,
Right Loop, Left Loop, Plain Arch, and Tented Arch. Figure 4
illustrates these classes. When creating a new identity, it is
necessary to follow the proportion of these classes in a real
population. Martijn van Mensvoort [37] gathered fingerprint
distributions from 32 countries through a compilation of 28
published articles. Each country has its peculiarities and pro-
portions, so we decided to use the global mean distribution.
The mean distribution for 32 countries is as follows: Whorl:
41%, Right Loop: 50%, Left Loop: 3%, and Arch: 6%. Since
Anguli can create two arch fingerprint types, we used the ratio
provided by Wang [38]: Plain Arch: 72.22% and Tented Arch:
27.77%.

The Gabor filter plays an important role when generating
ridges using Anguli. By changing its scale, we introduce vari-
ations to the ridge frequency in synthetic fingerprints. We
changed Anguli to randomly modify the scale of the Gabor
filter by up to 20%. To exemplify this effect, we show images
in Figure 4 with different frequencies. As can be observed, the
first image frequency is much higher than the second one.

To segment ridges, we upscale the modified Anguli images,
which have 275 � 400 pixels, by a factor of 3 with FSRCNN
[39] and smooth the result by applying a 3 � 3 mean filter.
Then, we skeletonise those images using Zhang and Suen's
thinning algorithm [40] and split continuous segments of pixels
as individual ridges. To prevent spurious minutiae, we eliminate
ridges smaller than 5 pixels.

To create a higher variability in the ridges' thicknesses, we
dynamically change ridge thickness based on the sine function,
generating a smooth transition among neighbouring ridges. We
iteratively calculate wi = |3 � sin t|, where wi is the width of
the ith ridge and t is a counter starting at a random value for
each image (see Figure 5). After processing a ridge, t is
incremented by 0.1. Ridges are processed from left to right and
top to bottom. This approach avoids abrupt changes in
thickness among neighbouring ridges and also adds a sto-
chastic factor to the thickness generation. The outcome is a
master fingerprint with 825 � 1200 pixels, as illustrated in
Figure 6.

2.2 | Pore and scratch generation

This step consists in marking where the pores will be placed on
the ridges and applying the scratches on the images. Sweat
pores are essential information in high‐resolution fingerprints.
In medium‐resolution fingerprints, they appear less frequently

(a) (b) (c)

F I GURE 2 Fingerprint sensor examples. Each sensor will produce
different fingerprint image styles

2
https://www.aware.com/blog‐biometric‐data‐interoperability‐challenges/.

316 - WYZYKOWSKI ET AL.

https://www.aware.com/blog-biometric-data-interoperability-challenges/


compared to a high‐resolution image, and when it appears, they
are in a lower definition. So regardless of the fact that reso-
lution being required to generate the fingerprint, it is important
to generate synthetic pores.

To measure the distance distribution from one pore to
another, we use a pore‐based ridge reconstruction approach
[3]. Given a training set of real fingerprint images, we compute
the average distance and the standard deviation among
neighbouring pores as our reference distribution.

To add pores, we utilise the segmented ridges generated in
Section 2.1. Starting from the beginning of a ridge, we itera-
tively sample distances di from the reference distribution. We
follow the ridge pixels to add the ith pore di away from the
previous pore until the end of the ridge is reached. This pro-
cess of creating pores is illustrated in Figure 7.

To create scratches, we count the number of scratches in
each fingerprint on a real database. With these values, we used
the normalised cumulative density function, and we choose the
number of scratches based on a uniform random number.
Starting on a random point, for each scratch, we draw n
consecutive line segments, where n is a random value between 1
and 4. The line segments have a random length with a maximum
value of 150 pixels and a random angle (−15° ≤ θ ≤ 15°) be-
tween them. This process of creating scratches is illustrated in
Figure 8.

Figure 9 shows an L3 master fingerprint, the outcome of
this step.

2.3 | Fingerprint acquisition simulation

Different finger positions on the imaging sensor produce
distinct rotations and shifts on fingerprint images. Our approach
aims to simulate these acquisition variations.

To measure rotation and shift variations between finger-
prints of the same person from a training set, we extract SIFT
[41, 42] and ORB [43] keypoints, perform an affine alignment
[44] for each keypoint set separately, and select the one with
the highest number of inliers. After, we use the RANSAC al-
gorithm [45] to obtain a rigid transformation.

We assume that the centre of a L3 master fingerprint is the
average of the centre of its samples aligned to each other in the
same coordinate system. With this assumption, the average
shift of the samples in relation to the L3 master fingerprint
centre is zero in each axis, with standard deviations σx and σy
independent from each other.

However, we cannot measure these displacements in a real
dataset, as we have samples but do not have master fingerprints.
What we can observe is the difference between two samples.

F I GURE 3 Flowchart with the steps to create a multiresolution synthetic fingerprint using the proposed approach

F I GURE 4 Five fingerprint class patterns created by our modified
version of Anguli. Note that the first image (green) frequency is higher than
the second one (yellow)

F I GURE 5 Variability in the ridges' thicknesses. Note that the
sinusoidal function is used to generate changes in the thickness of the
ridges
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With xi being the x‐coordinate of the centre of the ith image,
the expected difference between the centre of two samples i and
j, aligned to the same coordinate system is given by:

E xi − xj
� �2
h i

¼ E N 0; σx
2� �

þN 0; σx
2� �� �

¼ E N 0; 2σx
2� �� �

Therefore, if we measure the average square difference dx
between pairs of samples from the same person, σx can be
estimated as follows:

σx ¼

ffiffiffiffiffi

dx
2

s

The same can be done independently for σy and σθ

(rotation). To create a seed image, we sample a random
transformation from the normal distribution using σx, σy, and
σθ. After that, we rotate and translate the L3 master fingerprint
before cropping the centre region of size 512 � 512 from the
resulting image. Examples of seed images from the same L3
master fingerprint are shown in Figure 10.

Before cropping, we also perform a random affine trans-
formation on L3 master fingerprints. Assuming that (X, V, k)
and (Z, W, k) are two affine spaces, where X and Z are point
sets, we generate a random γ value between −10 and 10, sum-
ming γ toV andW (vector spaces over the field k). This is a way
to simulate non‐rigid deformations on fingerprints, which occur
in real images due to distinct finger pressures during acquisition

F I GURE 7 Illustration of the pore generation process. Red squares
represent a sequence of pixels in a ridge, and the green circles are the
generated pores. Given a start point, pore distances are sampled from the
reference distribution. In this example, new pores are created with distances
d1 = 5, d2 = 8 and d3 = 10

F I GURE 8 Illustration of the scratch generation process. Given a
random start point, we draw n line segments with random length and
random angle between them. In this example, there are three lines segments
with lengths l1 = 10, l2 = 6 and l3 = 8

F I GURE 9 An L3 master fingerprint. Note the generated pores and
scratch

F I GURE 6 Example of (a) an output of our modified version of
Anguli and (b) its respective master fingerprint after ridge thickness
sinusoidal perturbation. Note the ridge thickness variability in the master
fingerprint, where the ridges are thicker on the borders compared to the
centre. Also, note our aliased result in comparison to Anguli's pixelated
ridges
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or optical distortions caused by the acquisition sensor. Figure 11
illustrates this process.

Finally, we included a method to randomly drop some
pores in different seed images from a single identity. This is a
way of simulating the process of perspiration. In this work, we
used a pore dropout rate of 3%. In Section 4.3 we show
experimental results that clarify the dropout rate number.

2.4 | CycleGAN‐based domain translation

To generate realistic fingerprint images, we learn to map the
seed image domain into the real image domain of the chosen
training database using CycleGAN [36].

CycleGAN is a viable solution for the task of translating
two different domains as it does not require direct pairing
between the training instances. Thus, our seed images do not
need to be perfectly aligned to a real image in the training set.

When creating seed images for training, we seek to balance
the number of real and synthetic samples. To increase the
number of real training samples, besides performing horizontal
flips, we take full real fingerprint images and apply the same
acquisition simulation described in Section 2.3 (except pore
dropout). Section 3.1.1 describes how we create the training set
for this work.

We use the original CycleGAN architecture with 13 re-
sidual blocks [46] and input size 256 � 256 (seed images are
resized to these dimensions). Besides CycleGAN's cycle con-
sistency loss, we use the identity mapping loss [47] as it con-
tains a regularising component that encourages the generator
to map samples from the real fingerprint domain to them-
selves. We train our model using the Adam optimiser [48] with
a learning rate of 0.0002 for 3 epochs.

At the beginning of the training, the weight for the identity
mapping loss is 0 for high‐resolution fingerprints and 0.1 for
medium‐resolution fingerprints. We iteratively increase the
weight up to 0.7 � λ, where λ is the weight for the cycle
consistency (λ = 10 in this work). We did this because Cycle-
GAN tends to lose the master fingerprint identity, changing the
ridge flow and the location of the minutiae.

After training, the outcome is a model that can translate
any seed image into a realistic fingerprint, even if it was not
seen during training. Examples of the inference using Cycle-
GAN are presented in Figure 12.

3 | MULTIRESOLUTION SYNTHETIC
FINGERPRINT DATABASE

In this session, we detail the creation of the Multiresolution
Synthetic Fingerprint Generation database (MR‐SF). Our
database consists of L3 synthetic fingerprints (see Section 3.1)
and L2 synthetic fingerprints (see Section 3.2). In addition to
different resolutions, the two subsets also depict different
acquisition sensors. The process of generating synthetic fin-
gerprints using our approach can be applied with little effort
for other resolutions and sensors.

3.1 | Level three synthetic fingerprint
generation

We decided to replicate the structure of an existing high‐

resolution database to be able to perform a comparison in
terms of image realism and fingerprint recognition perfor-
mance. To this end, we used the PolyU database [10], which is
divided in two subsets: DBI and DBII. DBI contains 320� 240
images of cropped fingerprints, while DBII contains 640� 480
images of full fingerprints. Both have 148 different identities,
and each identity has 10 images acquired in two sessions (five
per session). We use DBII for training purposes, as we need full
fingerprints to perform the augmentation mentioned in

(a) (b) (c)

F I GURE 1 0 Seed images generated from a single L3 master
fingerprint, presenting distinct shifts and rotations

F I GURE 1 1 Illustration of an affine transformation over an L3
master fingerprint

F I GURE 1 2 CycleGAN inference: seed images (top) and their
respective high‐resolution results (bottom)
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Section 2.4. More details on how we create the training set for
CycleGAN to generate synthetic L3 fingerprints are given in
Section 3.1.1. We then use the obtained model to create syn-
thetic datasets with the same structure as DBI, as described in
Section 3.1.2.

3.1.1 | CycleGAN training set for L3 fingerprint
generation

We created 296 L3 master fingerprints for training, which
proved to be sufficient to map synthetic images to the real
domain with CycleGAN.

We then flip these master fingerprints horizontally and
perform the acquisition simulation described in Section 2.3 to
create 5920 seed images. We create additional 5920 seed
images by repeating the acquisition simulation with a larger
cropping larger area (825 � 825 pixels) to cope with finger-
prints with higher ridge frequency. Finally, we apply random
elastic deformations [49] to the set of seed images to create
11,840 distorted images, totalling 23,680 training seeds.

For real images, we use the DBII subset of the PolyU
database, which contains 1480 full fingerprint images. First, we
flipped these images horizontally. After, we performed the
acquisition simulation to create 10 samples per image, totalling
29,600 real training samples. Table 1 summarises the training
images and the augmentation operations.

3.1.2 | L3‐SF subset generation

We created five replicas of the PolyU DBI subset to establish a
confidence interval in our recognition experiments. To do so,
we generated 5 sets of 148 master fingerprints. After simulating
fingerprint acquisition, we end up with 1480 seed images per
set, totalling 7400 images for inference.

We then transform these seed images into real images using
our CycleGAN model. To replicate the resolution and aspect
ratio of PolyU DBI, we upscale the inferred images (256 �

256) by a factor of 2 using FSRCNN [39], crop the centre
region of size 512 � 384 from the resized images (512 � 512),
and resize the crops to the PolyU DBI resolution (320 � 240).
These images, split into five subsets, compose our L3 synthetic
fingerprint (L3‐SF) database subset.

3.2 | Level two synthetic fingerprint
generation

To generate synthetic L2 fingerprints, we use our approach
described in Section 2.4. We chose the NIST Special Database
300a (NIST SD300a) [50] with 500 pixels per inch (PPI)
images as a training set. We also decided to replicate the
structure of PolyU database, which allows direct comparisons
between L3 and L2 subsets. We use all NIST SD300a images
for training purposes. More details on how we create the
training set for CycleGAN to generate synthetic L2 finger-
prints are given in Section 3.2.1. We use the obtained model to
create L2 synthetic fingerprints (L2‐SF), as described in
Section 3.2.2.

3.2.1 | CycleGAN training set for L2 fingerprint
generation

The NIST SD300a is composed of rolled fingerprints, which
capture a larger area than the L3‐SF subset. Thus, we must cut
subareas from NIST SD300a images so that the CycleGAN
training is equivalent for L3‐SF and L2‐SF subsets. To do this,
we upscale the 8842 NIST SD300a images by a factor of 3
using FSRCNN [39]. Then, we flip NIST SD300a images
horizontally to create 17,684 augmented images. We crop the
centre of these images to create 512 � 512 images. We create
additional 17,684 images by cropping a larger area (700 � 700
pixels) to cope with fingerprints with higher ridge frequency,
totalling 35,368 real training images. As the number of images
on the NIST SD300a is larger than the PolyU DBII database,
the acquisition simulation step was not necessary. For seed
images, we use the same 23,680 augmented images described in
Section 3.1.1. Table 2 summarises the training images and the
augmentation operations.

3.2.2 | L2‐SF subset generation

For the CycleGAN training, we use the same procedures
described in Section 2.4, only modifying the weight for the
identity mapping loss to 0.1 and iteratively increasing the
weight up to 0.7 � λ, where λ is the weight for the cycle
consistency (λ = 10 in this work). A higher identity mapping

TABLE 1 Training set images for L3 fingerprint generation

Synthetic Real

Initial images 256 (master fingerprint) 1480

Flip horizontally 592 (master fingerprint) 2960

Shift, crop and rotation (10 variations) 5920 (seed image) 29,600

Higher ridge frequency cut 11,840 (seed image) ‐

Elastic deformation [49] 23,680 (seed image) ‐

Total images 23,680 29,600

TABLE 2 Training set images for L2 fingerprint generation

Synthetic Real

Initial images 256 (master fingerprint) 8842

Flip horizontally 592 (master fingerprint) 17,684

Shift, crop and rotation (10 variations) 5920 (seed image) ‐

Higher ridge frequency cut 11,840 (seed image) 35,368

Elastic deformation [49] 23,680 (seed image) ‐

Total images 23,680 35,368
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loss was necessary because the ridge colours were becoming
inverted in the inference.

After training, the outcome is a model that can translate
any seed image into a realistic L2 fingerprint. We replicate the
resolution and aspect ratio of the L3‐SF subset by upscaling
the inferred images (256 � 256) by a factor of 2 using
FSRCNN [39], cropping the centre region of size 512 � 384
from the resized images (512 � 512), and resizing the crops to
the L3‐SF subset (320 � 240). These images, split into five
subsets, compose our L2 synthetic fingerprint (L2‐SF) data-
base subset. A comparison between the inferences of medium
and high‐resolution fingerprints is presented in Figure 13.

4 | EXPERIMENTAL RESULTS

Section 4.1 presents a visual analysis of our high and medium
resolution synthetic fingerprint images, including a visual
comparison with other methods. A human perception exper-
iment involving 60 volunteers is reported in Section 4.2. Sec-
tion 4.3 presents a fingerprint recognition analysis using both
PolyU DBI database and high‐resolution images present in the
L3‐SF database subset. An experiment to validate multi‐
resolution cross‐matching performance using our L2 and L3
synthetic fingerprints is reported in Section 4.4. Section 4.5
presents a quality analysis of our generated synthetic databases.
In Section 4.6 we perform a minutiae experiment. Finally,
Section 4.7 presents a sharpness experiment that we performed
in real and synthetic fingerprints.

4.1 | Visual analysis

We visually inspected our results to evaluate our method's
ability to create realistic high‐resolution fingerprint images. We
observed that our method creates pores at the indicated po-
sition in the seed image, thus preserving the fingerprint identity
(see Figure 12). Open and closed pores were also observed. We
noticed other L3 traits, such as distinct ridge contours and
incipient ridges, and features that increase the reliability of
fingerprint recognition [51, 52]. Figure 14 shows examples of
L3 traits present in high‐resolution images of L3‐SF database
subset.

Figure 15 shows a visual comparison between fingerprints
generated by the proposed approach, by a publicly available
SFinge demo [19], by a public model of Cao and Jain's method
[22], by the Clarkson Fingerprint Generator (CFG) method
[24], and by our implementation of Finger‐GAN [21].

A visual comparison between real and our high‐resolution
synthetic fingerprints is shown in Figure 16. A visual com-
parison between our L2 synthetic fingerprints and cropped
NIST SD300a fingerprints is presented in Figure 17. We
selected these images randomly to provide an unbiased
judgement. Note that high and medium synthetic images have
different styles that are similar to the respective real datasets
they were trained on. Finally, note that some Level 3 charac-
teristics, such as the presence of pores, are visible in the images
of the NIST SD300a and our L2 synthetic fingerprints.
However, these characteristics are not visible in all images due
to the variability in conditions present at the acquisition of
rolled images on paper. Our CycleGAN model replicated this
visual style distribution on L2 synthetic fingerprints.

Our high‐resolution synthetic fingerprints contain different
realistic aspects, such as pores with different sizes and shapes,
and ridges with acute details and texturisation. Meanwhile,
SFinGe [19] generates rectangular, single‐sized pores and
Finger‐GAN [21] does not generate pores at all. Besides,
Finger‐GAN and Cao and Jain's method [22] produce unnat-
ural ridge shapes. Cao and Jain's method also produces irreg-
ular minutiae patterns and irregular occlusions. Our medium‐

resolution synthetic fingerprints also contain different real-
istic aspects, such as different ridge contrasts similarly to a real
fingerprint. As our L2 subset was created with a texture of an
ink‐and‐paper database of rolled fingerprints, some ridge re-
gions are joined together. This happens in a real acquisition
due to a large ink quantity or a finger movement on the paper.
Our new L2‐SF and L3‐SF subsets can be used in future
research to improve fingerprint recognition algorithms using
L3 and L2 sensors.

The PolyU database [10] is divided into two subsets: DBI
and DBII, where both have 148 different identities, and each
identity has 10 images acquired in two sessions (five per ses-
sion). We noticed visual differences between PolyU sessions,
such as contrast, variations in focus, and background colour.
Although we replicate in our synthetic dataset the same
structure as DBI, differences between sessions are not noticed.
Figure 18 shows examples of PolyU and L3‐SF distinct
sessions.

F I GURE 1 3 Synthetic medium‐resolution fingerprints (top) and their
respective high‐resolution fingerprints (bottom)

(a)

(b)

(c)

(d)

F I GURE 1 4 (a) and (b) show open and closed pores in an image of
the L3‐SF database subset. (c) shows an incipient ridge. (d) highlights an
unique ridge shape
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We include sweat pore annotations for 740 images to assist
in pore detection research. Several studies are focussing on the
detection of pores in L3 fingerprint images [53–55]. These

require pore annotations to perform training with neural net-
works. However, they only focus on the PolyU image domain.
Including other visual characteristics, a new dataset will help in
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F I GURE 1 5 Visual comparison between (a) the proposed approach with the PolyU texture, (b) the proposed approach with the Nist SD300a texture,
(c) Cao and Jain [22], (d) Finger‐GAN [21], (e) SFinGe [19] and (f) Clarkson Fingerprint Generator (CFG) [24]
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the pore detection task in different image domains, improving
the biometric recognition process in multiple sensors. Figure 19
shows examples of L3‐SF database annotations.

4.2 | Human perception experiment

Humans generate conscious and unconscious inferences from
stimulus on the visual cortex [56]. These inferences provide a

judgement mechanism about different characteristics in im-
ages, where each person perceives and interprets stimuli in
different ways and strategies. Based on this fact, to evaluate
people's visual perception of real and high‐resolution synthetic
images, we performed an experiment similar to the ‘real versus
fake’ approach popularly used on Amazon Mechanical Turk
(AMT). In this experiment, we randomly show five PolyU
images and five L3‐SF high‐resolution fingerprints to the
participants, which annotate the five images they consider false.

F I GURE 1 6 Visual comparison between real fingerprints from PolyU DBI (top) and high‐resolution synthetic ones from L3‐SF (bottom)

F I GURE 1 7 Visual comparison between real fingerprints from cropped NIST SD300a (top) and L2 synthetic fingerprints from L2‐SF subset (bottom)

WYZYKOWSKI ET AL. - 323



Each participant repeats this task 10 times. This methodology
forces the participants to identify visual characteristics and
develop strategies to classify the two image types.

Sixty volunteers participated in this experiment, which
allowed us to analyse the overall human behaviour in this
classification task. When participants fail to notice any visual
characteristics that help discriminating real and high‐resolution
synthetic images, their classification accuracy is close to
random (50%). Figure 20 shows the histogram of human
classification error. As can be seen, the average misclassifica-
tion rate for all participants was 45.65%. This result shows that
the participants had difficulties distinguishing the two classes
and highlights the realism of our synthetic fingerprints.

4.3 | Fingerprint recognition analysis

The goal of this experiment is to compare real and high‐

resolution synthetic images in terms of recognition perfor-
mance. Ideally, both should have close results. To carry out this
comparison, first we utilise Bozorth3 [57], which is a minutiae‐
based fingerprint matching approach. Our focus was not to get
the best matching accuracy but to compare similarities between
the databases. Bozorth3 proved to be useful in this task. To
perform pore‐based fingerprint matching, we utilise Segundo
and Lemes' approach [3]. For these analyses, we use the same
protocol proposed by Liu et al. [58] for PolyU DBI and all L3‐

SF replicas, as all of them have the same configuration (148
subjects, 2 sessions, 5 images per subject per session, 320� 240
images).

We computed the False Non‐Match Rate (FNMR) and the
False Match Rate (FMR) using different threshold values for
both matching approaches in all test databases. With the ob-
tained FNMR and FMR values, we plot a Receiver Operating

F I GURE 1 8 Visual comparison between two sessions of real
fingerprints from PolyU DBI (top) and synthetic ones from L3‐SF
(bottom)

F I GURE 1 9 Pore annotation examples. On the left, images of the L3‐

SF dataset. On the right, the correspondent fingerprint with the annotation
in green circles
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Characteristic (ROC) curve for PolyU DBI. For our synthetic
databases, we plot the average ROC with a 95% confidence
interval. These plots are shown in Figures 21 and 22.

The Equal Error Rate (EER) values for minutiae‐based
matching are 23.84% for real images and 18.79% for synthetic
ones. The EER values for pore‐based matching are 3.37% for
real images and 3.80% for synthetic ones. These results validate
the L3‐SF subset as a realistic database, since existing recogni-
tion methods were successful without any adjustments. Besides,
the accuracy in both real and synthetic datasets was very close.
The larger gap in minutiae‐based matching can be caused by a
difference in minutiae distribution in real and high‐resolution
synthetic images. At the moment, the minutiae distribution is
only controlled by Anguli.

To study the variability of our synthetic fingerprint genera-
tion method and to check the matching results when pores close
and open during perspiration, we repeated the experiment in our
five distinct sets three times, randomly drooping 0%, 3%, and
5% pores on each experiment. The EER values for pore‐based
matching are 3.37% for real images and 3.28%, 3.80%, and
3.88% for synthetic ones (randomly drooping 0%, 3%, and 5%
pores on each experiment). We plot a Receiver Operating
Characteristic (ROC) curve for PolyU DBI and all L3‐SF vari-
ations. This plot is shown in Figure 23.

The results confirm that the 3% dropout is a suitable
factor to apply in our method. However, the results also
show that this parameter can be used to increase or decrease
the level of challenge when performing biometric recognition

F I GURE 2 0 Histogram of the human perception experiment. Several
participants had a classification accuracy close to random (50%)

F I GURE 2 1 ROC curves from a minutiae‐based matcher for PolyU
DBI and L3‐SF. For the latter, we show the average ROC and a 95%
confidence for its five subsets

F I GURE 2 2 ROC curves from a pore‐based matcher for PolyU DBI
and L3‐SF database. For the latter, we show the average ROC and a 95%
confidence for its five subsets

F I GURE 2 3 ROC curves from a pore‐based matcher for PolyU DBI
and L3‐SF database. For L3‐SF, we randomly remove 0%, 3%, and 5%
pores on each experiment. For the latter, we show the average ROC and a
95% confidence for its five subsets
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with pores, which can be helpful in other research studies
with different objectives.

4.4 | Cross‐matching multiresolution
experiment

This experiment's objective is to perform the fingerprint
recognition analysis, verifying the matching performance when
using different sensors (cross‐sensor) compared to matching
with the same sensors (intra‐sensor). When matching coarsely
aligned images, it is possible to observe the performance dif-
ferences caused by texture, optical distortions, skin elasticity
and rotations. For this reason, we use images without trans-
lation variations (see Section 4.4.1 and 4.4.2).

4.4.1 | Real data preparation

For the matching analysis, we used the NIST Special Database
301a (NIST SD301a) [59]. This database contains subsets of
several sensors. We use the subsets dryrun‐A, dryrun‐B, dryrun‐

F and dryrun‐G. Dryrun‐A and dryrun‐B are L2 rolled finger-
prints captured with the Crossmatch Guardian 300 sensor.
Dryrun‐F and dryrun‐G are L2 plain fingerprints captured with
the Jenetric LIVETOUCH QUATTRO sensor. We selected 93
fingerprints that are present in all of these subsets to perform
the matching analysis. Table 3 shows the intra‐ and cross‐sensor
matchings that we performed in real data images.

Before matching any pair of images, we eliminate trans-
lation variations by finding keypoint correspondences using the
ASIFT [60] algorithm and aligning them by the centre of mass
of these keypoints. We also crop the centre of the aligned
images so that the finger area is equivalent to the area in our
MR‐SF fingerprints. To do this, we scale the MR‐SF image size
(320 � 240) by the ratio of the mean ridge frequencies from
NIST SD301a and PolyU DBI. The NIST SD301a images'
cropping area was defined as 166 � 124.

4.4.2 | Synthetic data preparation

To compare medium and high‐resolution synthetic finger-
prints, we used the same master fingerprints created to
generate the five replicas containing 148 identities described in
Section 3.1.2. We use the models generated by CycleGAN to
infer the same identities in the textures of the PolyU and NIST

SD300a databases. The inference generated by the two texture
styles was passed through the same procedures described in
Section 2.3. However, during acquisition simulation, we set σx
and σy to 0 to eliminate translation variations.

4.4.3 | Multi‐resolution cross‐matching matching
analysis

The goal of this experiment is to compare the intra‐sensor and
cross‐sensor in terms of recognition performance. In this sce-
nario, the cross‐sensor is expected to haveworse performance in
fingerprint matching. We use Bozorth3 [57] to perform
the matching, where Bozorth3 proved to be consistent in
comparing the databases. We modified the protocol proposed
by Liu et al. [58]. For genuine comparisons, the first fingerprint
of the first session of the first sensor is compared with the first
fingerprint of the same individual from the second session of the
second sensor for all identities. For impostor comparisons, the
first fingerprint of the first session of the first sensor is
compared with all images of all other individuals in the second
session of the second sensor. This protocol change was neces-
sary because the NIST 301a contains only one image pair per
sensor of the same identity. This protocol was used in the intra‐
sensor and cross‐sensor matching on the MR‐SF and NIST
301a images. Table 4 summarises the matching comparisons
performed.

We computed ROC curve for each matching comparison.
For our high and medium resolution synthetic fingerprints, we
plot the average ROC with a 95% confidence interval. For the
real NIST 301a images, we plot the average ROC with a 95%
confidence interval for the cross‐matching comparisons. These
plots are shown in Figures 24 and 25. It is important to
mention that the L2‐SF subset was not made to be equivalent
to NIST 301a images in matching performance. Our main goal
is to illustrate the complexity of a cross‐dataset experiment
using our synthetic dataset.

In the synthetic images, the EER values are 12.69% for the
L3‐SF PolyU texturised images and 13.70% for L2‐SF NIST
SD300a texturised images. The EER on the cross‐matching is
33.03%. The difference between cross‐ and intra‐matching is
close to 20%.

In the real NIST 301a images, the EER values are 27.46%
for (dryrun‐A and dryrun‐B) matching and 28.04% for (dry-
run‐F and dryrun‐G). The EER on the cross‐matching is
31.53%. The difference between cross‐ and intra‐matching was
about 4%.

These results show that our synthetic database behaved as
expected. The performance was worse on cross‐matching for
both synthetic and real images. Since all NIST 301a images are
L2, the difference between cross‐ and intra‐matching EER was
much smaller than this difference in our synthetic database.
This was also expected since the synthetic dataset consists of
L2 and L3 subsets, making the cross‐matching even more
challenging. Still, this result indicates that our approach can be
used to create challenging cross‐sensor scenarios, which in turn
can support fingerprint recognition research.

TABLE 3 Intra‐ and cross‐sensor matching and alignment

Intra‐sensor Cross‐sensor

Dryrun‐A–dryrun‐B Dryrun‐A–dryrun‐F

Dryrun‐F–dryrun‐G Dryrun‐A–dryrun‐G

‐ Dryrun‐B–dryrun‐F

‐ Dryrun‐B–dryrun‐G
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4.5 | Quality analysis

The Frechet Inception Distance (FID) metric [61] is a widely
used technique used to evaluate the quality of generative models
in machine learning. However, many FID implementations have
problems performing resizing operations. The work of Parmar
et al. [62] solves this problem by defining the best kernel inter-
polation to use. We used this implementation to directly
compare the PolyU DBI base with the five variations of the L3‐

SF and the NIST 300a base with the five variations of the L2‐SF.
As the area of NIST 300a is larger than the area of L2‐SF, even
though both are 500 dpi, we performed crops in the centre of
the NIST 300a images containing the same area as the L2‐SF
images. It was unnecessary to perform crops on the PolyU
DBI images as it already contains the same area of interest as the
L3‐SF.With this, the FID value for L3‐SFwas 47.00, and for L2‐

SF, it was 97.28. The smaller this value, the more realistic these
images are to images of real databases. We noticed that the FID
for L2‐SF was higher than L3‐SF, indicating that the texturing
task in low‐resolution images is also challenging. It is important
to mention that the FID level is not a directly impacting factor
for recognising fingerprints. Comparing the face synthesis

results of the current state‐of‐the‐art GANmethod StyleGAN3
in a similar size dataset METFACES‐U [63], the FID value was
18.75. This result shows that still exists a gap in fingerprint
synthesis compared to face synthesis.

In addition to FID analysis, we used NFIQ [64] and NFIQ
2 [65] software to verify the quality of the generated synthetic
images compared to the real images. These tools are specific to
fingerprints. The original NFIQ generates outputs from 1 to 5,
where 1 is the best possible fingerprint quality and 5 is the
worst quality. We convert all images from all databases to 500
dpi, as required by NFIQ and NFIQ 2. NFIQ 2 generates a
value from 0 to 100, where the higher this value, the higher the
fingerprint quality.

For the analysis with the NFIQ, we generated five‐folds
without repetition containing 1480 images from the NIST
300a dataset, this number being the same as present in the
PolyU DBI and L2‐SF databases. We obtain the NFIQ metric
information for the five NIST 300a folds, the five variations of
L3‐SF and L2‐SF, and the PolyU DBI. We repeated the same
operations for the NFIQ 2 analysis. We report average values

TABLE 4 Matching comparisons Matching comparisons Genuine Impostor Intra‐sensor Cross‐sensor

Dryrun‐A and dryrun‐B 93 8556 x

Dryrun‐F and dryrun‐G 93 8556 x

Dryrun‐A and dryrun‐F 93 8556 x

Dryrun‐A and dryrun‐G 93 8556 x

Dryrun‐B and dryrun‐F 93 8556 x

Dryrun‐B and dryrun‐G 93 8556 x

L3‐SF: PolyU texture session 1 and 2 148 21,756 x

L2‐SF: NIST 300a texture session 1 and 2 148 21,756 x

L3‐SF and L2‐SF: PolyU and NIST 300a textures 148 21,756 x

F I GURE 2 4 ROC curves from a minutiae‐based matcher for L3‐SF
(PolyU), L2‐SF (NIST 300a) and the cross‐matching. We show the average
ROC and a 95% confidence for its five subsets

F I GURE 2 5 ROC curves from a minutiae‐based matcher for
Crossmatch Guardian 300 (dryrun‐A and dryrun‐B), Jenetric LIVETOUCH
QUATTRO (dryrun‐F and dryrun‐G) and the cross‐matching dryrun (A,F),
(A,G), (B,F), and (B,G). For the latter, we show the average ROC and a 95%
confidence for its four cross‐matching comparisons
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for datasets with multiple subsets. The quantitative results are
presented in Table 5 and in Figures 26–28.

Ideally, we would like to have a similar distribution between
authentic and synthetic databases concerning the NFIQ and
NFIQ 2 scores. This evaluation also provides indications
regarding the style variation generated by the texturisation
process using the generated models described in Sections 3.1
and 3.2. Although the mean values of the NFIQ and NFIQ 2
scores of the synthetic databases are close to the real databases,
it is evident that there is still an opportunity for improvement
in the texturing models to replicate the quality distribution of
real databases.

4.6 | Minutiae experiment

To perform an analysis regarding the probability of minutiae
occurrences in our synthetic fingerprints, we run mindtct [57]
to extract the number of minutiae per image generated. For
comparative purposes, we also performed this analysis with the
PolyU DBI and NIST 300a real image databases (the last one,
we cut the images to the same area as the L2‐SF images).
Ideally, synthetic databases should follow the same occurrence
probability distribution as real databases. As is already known
from the literature [66], the number of minutiae generated by
SFinge, which Anguli is based on, is similar to the minutiae
distribution of the NIST Special Database 4 (SD04) real
fingerprint database [67]. In this way, this experiment aims to
verify if our neural texturing model does not modify the seed
images to alter the texturing distribution. The histogram of
Figure 29 contains the results of our experimentation. The
high‐resolution databases obtained very similar results. How-
ever, we noticed a slight difference in the minutiae distribution
in the medium‐resolution databases.

In this experiment, it is evident that PolyU DBI and L3‐SF
have a very similar minutiae profile. This factor also validates the
realism of the generated synthetic images. In medium‐resolution
images, the challenge of finding minutiae is more significant, as
noise or the union of ridges is a difficult task for the detector.
However, the medium resolution synthetic database still pre-
sented an adequate probability distribution than an authentic
one.

4.7 | Sharpness experiment

The L3‐SF and L2‐SF use a CycleGAN model, where the
inference generates 256� 256 images. We improved the quality
of the images by upscaling them with FSRCNN [39]. However,
authentic images tend to be sharper than those generated by
generative neural networks. Therefore, it is essential to assess the
difference in sharpness between real and synthetic images.
Figure 30 exemplifies this manner, where we compare our
synthetic databases with real databases. In addition to this visual
analysis, we used the cumulative probability of blur detection
(CPBD) metric [68] to determine the sharpness levels. The re-
sults of this analysis are found in Table 6. We noticed that both T
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F I GURE 2 7 Quality assessment of the original images, binarised
images and the reconstructed binarised images NFIQ

F I GURE 2 8 Probability histogram of L2‐SF and NIST 300a
databases

F I GURE 2 9 Probability distribution of occurrences of minutiae in the
synthetic databases L3‐SF, L2‐SF and the real PolyU DBI and NIST 300a
databases

F I GURE 2 6 Probability histogram of L3‐SF and PolyU DBI
databases

F I GURE 3 0 Cropped samples from PolyU DBI, L3‐SF, NIST 301a
(dryrun A, B, F, G), NIST 300a and L2‐SF
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synthetic databases are very different from PolyU DBI and
NIST 300a and 301a concerning sharpness.

The best analysis we can do on medium‐resolution images is
to compare L2‐SF with the NIST 300a images because we used
this real database to generate our inference models. However,
we noticed that the NIST 301a dryrun‐G variation obtained a
CPBD value similar to our synthetic database. These results also
show sharpness variations in medium‐resolution sensors, a
topic that can be further explored in future studies.

5 | CONCLUSIONS

We presented an approach to generate realistic, multiresolution
and multisensor synthetic fingerprints. We trained a CycleGAN
using real fingerprint images and handcrafted seed images to
create a model capable of translating between these two image
domains while preserving all identification cues (e.g. ridges,
minutiae, and pores). Using this approach, we created the MR‐

SF database containing two subsets. The first subset (L3‐SF)
consists of high‐resolution images containing the PolyU DBI
database's same characteristics. The second subset (L2‐SF)
consists of medium resolution images containing the same
texture characteristics of the NIST SD300a database. More
importantly, the MR‐SF database allows further studies in the
field of fingerprint biometrics without raising privacy‐related
legal issues. Our experimental results show that MR‐SF im-
ages can be used by existing fingerprint recognition methods
without any adjustments and achieve similar recognition per-
formance. We performed a human perception experiment with
60 volunteers, which evidenced our high‐resolution synthetic
images' realism thanks to nearly random human classification
performance. We visually compared our results with the litera-
ture's best performing studies to highlight the quality
enhancement over existing studies. Finally, we generate L2
fingerprints to evaluate cross‐sensor fingerprint recognition
performance. Our experiment showed that our synthetic L2 and
L3 databases could be used in recognition experiments using
multisensor and multiresolution fingerprints. These images
could be used to support the development of new cross‐sensor
matching algorithms capable of handling L2 and L3 finger-
prints. In addition, our database can help reduce overfitting,
especially in low training data scenarios. One example is the use
of synthetic fingerprint images for pore detection. The PolyU‐

HRF DBI subset has only 30 images with annotated pores, a
low quantity that can affect the performance in this task.
Methods capable of generating synthetic samples can diversify
the training.

Our main limitation is the lack of control over the distri-
bution of minutiae, which is currently managed by Anguli. This

limitation inhibited our ability to reduce the gap in recognition
performance between real and synthetic datasets for minutiae‐
based fingerprint matchers.
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