
Under review as a conference paper at ICLR 2021

MOBILE CONSTRUCTION BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

We need intelligent robots to perform mobile construction, the process of moving
in an environment and modifying its geometry according to a design plan. Without
GPS or similar techniques, carefully engineered and learning-based methods face
challenges to exactly achieve the plan due to the difficulty of accurately localiz-
ing the robot while strategically evolving the environment, because common tasks
(manipulation/navigation) address at most one of the two coupled aspects. To
seek a generic solution, we simplify mobile construction in 1/2/3D grid worlds to
benchmark the performance of existing deep RL methods on this partially observ-
able MDP. Our results show that the coupling makes this problem very challenging
for model-free RL, and emphasize the need for novel task-specific solutions.

1 INTRODUCTION

Figure 1: Examples of mobile con-
struction in nature (left), a termite
mound section (Wikimedia Com-
mons, 2018), and in our bench-
mark (right), 1D brick-laying.

Robotic construction is reborn along with AI because of both
its growing benefits in time, quality, and labor cost, and the
even more exciting role in extraterrestrial exploration. Effi-
ciently achieving this in large scale with flexibility requires
robots to have an ability like animal architects (e.g., mound-
building termites and burrowing rodents): mobile construc-
tion, i.e., the process of an agent moving around and simulta-
neously modifying its surroundings according to a design plan.

Engineering mobile construction with existing techniques is
difficult. Needless to mention the unaddressed materials and
physics related problems, a fundamental challenge for AI and
robotics is the tight bi-directional coupling of robot localization and long-term planning for environ-
ment evolution. If GPS and techniques alike are not available (often due to occlusions), robots have
to rely on SLAM for accurate pose estimation. But in our case the robot needs to take advantage of
the bi-directional coupling to strategically change the environment to improve localization, violating
the basic static environment assumption in matured visual SLAM methods (Saputra et al., 2018).

Deep reinforcement learning (RL) offers another possibility to tackle this challenge, especially given
the recent success of deep model-free RL in game playing and robot control. What if we train deep
networks to learn a generic, efficient, but complex policy that controls the robot to strategically build
localization landmarks as temporary structures which eventually evolve to the design plan? Based
on this, without the loss of generality, we omit the less relevant complexities in the real-world mobile
construction such as the physical dynamics between robots and environments, and design a series of
simplified tasks in 1/2/3D grid worlds that focus only on the aforementioned challenge.

In this paper, we focus on using those tasks to benchmark some selected deep RL algorithms with
state-of-the-art performance in other tasks such as game playing, robot manipulation or navigation.
Surprisingly, although these partially observable MDP (POMDP) tasks may seem similar to, if not
simpler than, Atari games (Mnih et al., 2013), the results show great difficulties in those algorithms.

In summary, our contributions include: 1) a suite of novel and easily extensible RL tasks as open-
source fast Gym environments, which directly connect to important real-world robotic problems; 2)
a comprehensive benchmark of baseline models, which demonstrates the unexpected difficulties in
these tasks for previously successful deep RL algorithms; and 3) a detailed ablation study revealing
insights about the causes of those difficulties as the coupling explained above, which calls for novel
task-specific algorithms from this community to solve the problem more effectively.
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2 RELATED WORK

Mobile construction robots. Recently we see a rising trend of 3D printing using mobile robots all
around the globe for construction and manufacturing (Werfel et al., 2014; Jokic et al., 2014; Ardiny
et al., 2015; Nan, 2015; Marques et al., 2017; Buchli et al., 2018; Zhang et al., 2018; Melenbrink
et al., 2020). All of those are carefully engineered systems that either assume some global local-
ization ability or only work for specific scenarios, which restricts their feasibility in large scale.
Moreover, none of them address the aforementioned challenge from a theoretical perspective.

POMDP solvers. We model mobile construction tasks by POMDP. An intuitive thought is to assume
a perfect knowledge of the transition and observation models (although we do not), and then try them
on existing offline or online solvers such as SARSOP (Kurniawati et al., 2008) or POMCP (Silver &
Veness, 2010). But due to environment modification, both our state and observation spaces are huge,
comparing to existing large POMDP tasks such as in Wandzel et al. (2019) with 1027 states. Even
our simplest 1D task can easily have a much larger state space than the Go game (3361 � 100100 for
100 grids with max height 100). So it is non-trivial to tackle our tasks using model-based methods
and model-based RL would also face challenges. We will mainly focus on model-free RL algorithms
in this paper and leave the investigation of model-based methods for our future work.

Existing RL tasks. A major contribution of this paper is to stimulate deep RL research with novel
tasks that exhibit fundamentally different features than typically benchmarked RL tasks and that are
relevant for a real application: mobile construction. Locomotion tasks (Duan et al., 2016) have no
need for localization and do not modify the surroundings. Manipulation tasks (Fan et al., 2018; Yang
et al., 2019; Labbé et al., 2020; Li et al., 2020) require agents to move objects but usually assume
the pose of the robot base is fixed or known, which is challenging in a dynamic environment (Sa-
putra et al., 2018). Visual navigation (Zhu et al., 2017; Gupta et al., 2017; Mo et al., 2018; Zeng
et al., 2020) requires localizing the agent but without changing the environment on purpose. Game
playing for Atari (Mnih et al., 2013), first-person-shooting (Lample & Chaplot, 2017), and real-time
strategy games (Synnaeve et al., 2016; Jaderberg et al., 2019) either have trivial localization or are
not evaluated based on the accuracy of environment modifications.

Baseline selection. We create baseline methods from a set of state-of-the-art model-free Deep
RL algorithms. Since our tasks live in grid worlds similar to many Atari games, our first choice
is DQN (Mnih et al., 2013) which has achieved great success on many Atari tasks with high-
dimensional states, benefiting from better Q-learning on representations extracted via deep networks.
Another baseline is Rainbow (Hessel et al., 2017), combining six extensions on top of the base
DQN, achieving superior performance to any of the individual extensions alone. These include dou-
ble Q-learning (Hasselt, 2010), prioritized experience replay (Schaul et al., 2016), dueling network
architectures (Wang et al., 2016), multi-step TD learning (Sutton, 1988), noisy networks (Fortunato
et al., 2017), and distributional reinforcement learning (Bellemare et al., 2017).

Of course, DQN is sub-optimal for POMDP due to its limited ability to represent latent states
from long-term history, which could be critical for mobile construction. To address this issue,
we add a baseline using DRQN (Hausknecht & Stone, 2015) with a recurrent Q-network. Be-
sides, a sparse reward function may bring additional challenges to our tasks. Hindsight Experience
Replay (Andrychowicz et al., 2017) helps off-policy RL algorithms learn efficiently from sparse
rewards without complex reward engineering, which is combined with DRQN as another baseline.

In addition, we add two more actor-critic based baselines. One is Soft Actor-Critic (SAC) for dis-
crete action settings (Christodoulou, 2019). Compared with the original SAC (Haarnoja et al., 2018),
SAC-Discrete inherits the sample efficiency and tailors the effectiveness for discrete action space
which suits our tasks. The other is Proximal Policy Optimization (PPO) (Schulman et al., 2017).
Whereas the standard policy gradient method performs one gradient update per data sample, PPO
enables multiple epochs of minibatch updates by a novel objective with clipped probability ratios.

3 MOBILE CONSTRUCTION IN GRID WORLD

We formulate a mobile construction task as a 6-tuple POMDP 〈S,A, T ,O,R, P 〉, in which a robot
is required to accurately build geometric shapes according to a design plan P in a grid world. The
state space S is represented as S = G × L, where G is a space of all possible grid world state G
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storing the number of bricks at each grid, and L is a space of all possible robot locations l in the
grid world. At each time step, the robot takes an action a ∈ A which is either moving around or
dropping a brick at or near its location. Moving a robot will change its location according to the
unknown probabilistic transition model T (l′|l, a). Meanwhile, dropping a brick will change the grid
world state G at or near l without any uncertainty. The robot can make a local observation o ∈ O
of G centering around its current location, with a sensing region defined by a half window size Ws.
R(s, a;P ) is the reward function depending on the design plan P ∈ G, which is just a goal state of
the grid world that the robot needs to achieve.

The aforementioned coupling difficulties in localization and planning are realized via two factors
in this setting. First, the partial observability makes robot localization necessary. Second, the envi-
ronment uncertainty in T (l′|l, a) simulates real world scenarios where motion control of the mobile
robot is imperfect and the odometry is error-prone. We implement this by sampling the robot’s
moving distance d in each simulation time step from a uniform distribution.

3.1 1D ENVIRONMENT

Move-Left Move-Right

Observation 𝒐

Plan 𝑷

𝟐𝒘𝒔+1

X-Axis

Figure 2: 1D environment: a
robot moves along the x-axis
and lays bricks (red). The two
vertical blue dash lines indi-
cate its sensing region for vec-
tor o. The o = (5, 1, 1, 0, 1)
in this case. The blue curve is
the ground-truth plan P .

In 1D environments (Figure 2), the robot will move within a 1D
grid world and the ground-truth plan P is a 1D curve. The grid
world state G ∈ RW is a vector, where W is the width of the en-
vironment. In order to provide more information to the agent, we
augment the partial observation o with Ns, and Nb as the observa-
tion oenv = 〈o,Ns, Nb〉 of the environment. Here o ∈ R2Ws+1 is a
vector that indicates the current region of the environment observed
by the robot in a width-limited window with size 2Ws+1, and each
element of o represents the number of the bricks. Ns is the number
of moves the robot has already taken. Nb is the number of bricks
already used by the robot. A discrete action a ∈ A = {0, 1, 2}
represents move-left, move-right, or drop-brick respectively. The
reward functionR is defined as

R =


10 drops brick on P,
1 drops brick below P,

−1 drops brick over P,
0 moves.

(1)

Each episode will finish when Ns = Nsmax or Nb = Nbmax, where the former is the maximum
number of steps and the latter the maximum number of bricks (the integrated area of the plan P
within each episode). We set Nsmax reasonably large to ensure the plan completion.
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𝟐𝒘𝒔+1
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Y
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Figure 3: 2D environment:
a robot moves in a 2d plane
and lays bricks (red/yellow:
in/correct laying). The blue
box is its sensing region for o,
which is a 2d array with size
(2Ws+1)2. The green ring is
the ground-truth plan P .

For the 1D environment, we define two types of tasks: static and
dynamic plan tasks. The static plan task requests the agent to
build a static shape P which remains the same for each episode.
The ground-truth plan P will vary for each episode for a dynamic
plan task. For the static plan task, we consider three types of
shape plans P ∈ RW : sin function curve, Gaussian curve and
Step function curve (see Figure 5a to Figure 5c). For the dynamic
plan task, we generate P (Figure 5d) based on the following equa-
tion: P = a sin(bx + c), where a ∼ U(3, 12), b ∈ {1, 2, 3}, and
c ∼ U(−π, π). The coefficients a, b and c are chosen randomly
for each episode. For simulating real world condition where robots
should have access to the design plan, we append the plan P to the
environment observation oenv for a dynamic plan task as a 4-tuple
oenv = 〈o,Ns, Nb, P 〉.

3.2 2D ENVIRONMENT

In 2D environment (Figure 3), the robot will move and print binary
plans in a 2D grid world. A grid world state G ∈ [0, 1]

W×H is
2D binary matrix, where W and H are the width and height of the environment. Each element
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Example plans. The 3D red patches are the top-most surfaces of ground-truth plans.

of G represents if there is a brick or not. The robot observes a 2D region of the environment
o ∈ [0, 1]

(2Ws+1)×(2Ws+1). A discrete action a ∈ A = {0, 1, 2, 3, 4} could represent move-left/-
right/-up/-down, or drop-brick respectively. The reward functionR is defined as

R =


5 drops brick at the correct position,
0 drops brick at the wrong position,
0 moves.

(2)

The 2D environment uses the same stop criteria as in 1D. In addition to the static and dynamic tasks
as defined in 1D, the 2D tasks are further grouped in two categories: dense and sparse. Here, the
term dense means the ground-truth plan is a solid shape as showed in Figure 5e and Figure 5g and
sparse means a shape is unfilled as showed in Figure 5f and Figure 5h. For dynamic plan tasks,
three vertexes of a triangle are randomly picked within the grid world. Note that we tried to add
penalty for incorrect printing similar to equation 1, but we find this will cause the agent to always
choose moving instead of printing because the latter has higher chance of receiving negative rewards
(especially for sparse plans). So we removed the penalty and observed better performance.

3.3 3D ENVIRONMENT

𝟐𝒘𝒔+1
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Y
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x
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Figure 4: 3D environment: a robot moves
in a 2d x-y plane and lays bricks (dark blue
cubes). Left/right is the 3D/top view of the
environment. The blue box is similar to Fig-
ure 3. The red ring in the left image is the
top-most surface of ground-truth plan P .

In 3D environment (Figure 4), the robot will move
and build a 3D plan within a 3D grid world. The
grid world state G ∈ RW×H and observation o ∈
R(2Ws+1)×(2Ws+1) are all 2D matrices, and each el-
ement of o represents the number of bricks in that
grid. Different from the 1D and 2D environments
where the size of the robot is not considered, the di-
mension of the robot in the 3D environments is intro-
duced (occupying 1 grid) so the robot’s motion will
be obstructed by the built bricks. Therefore, the
robot can only build bricks around itself instead of
building at its position as in 1D and 2D. So the action
will be: a ∈ A = {0, 1, 2, .., 7}, which sequentially
represent move-left/-right/-forward/-backward, and
drop-brick on the left/right/front/rear side. The reward function R is defined the same as in the
1D case (see equation 1). In addition to the same stop criteria as in the 1D/2D cases, the game will
stop when the robot is obstructed by the built bricks and cannot move anymore. The setup of plans
P in 3D is similar to the ones in 2D as shown in Figures 5i-5l.

4 BASELINE SETUP

Six state-of-the-art (SOTA) baseline algorithms are considered in our paper. In this section, we
explain detail architecture design and hyperparameter setup for each algorithm. Here, we fix the
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environment constants as following: 1) half window size Ws is 2 and width of the environment W
is 30 for 1D environments; 2) Ws is 3 and W and H are 20 for 2D and 3D environments.

DQN For the static plan tasks, we use an MLP with three hidden layers containing [64,128,128]
nodes with ReLU activation function for each layer. Three convolutional layers with kernel size
of 3, and ReLU activation functions are used to convert the ground-truth P to feature vector for
dynamic plan tasks. We train DQN on each task for 3,000 episodes. Batch size is 2,000, and
replay buffer size 50,000. A random search is used to tune the hyperparameters, especially the
learning rate. Additionally, instead of only using the current frame, we tried to stack ten frames of
historical observations in the replay buffer. This is similar to how the original DQN handles history
information for Atari games (Mnih et al., 2013), but no significant difference was found.

DRQN As for the DRQN (Hausknecht & Stone, 2015), we simply add one recurrent LSTM layer
to the Q network used in the DQN. The hidden state dimension is 256 for all tasks. We train it for
10,000 episodes with batch size of 64 and replay memory size of 1,000.

DRQN+Hindsight We add hindsight experience replay (Andrychowicz et al., 2017) to the DRQN
baseline above. At the end of each training episode, the transitions 〈otenv, at,R(st, at;P ), ot+1

env〉 of
each time step t will be relabeled as 〈otenv, at,R(st, at;GT ), ot+1

env〉, where we change the P to the
grid world state G at terminate step T. Both of these two transitions will be stored into the replay
buffer for optimizing the Q-network. We train this DRQN+Hindsight for 10,000 episodes with batch
size of 64 and replay memory size of 1,000.

PPO To benchmark PPO, we use the Stable Baselines implementation (Hill et al., 2018) and train
for 10 million time steps with a shared network of 3 layers of 512 neurons with tanh activations. For
the hyperparameters, we use the 1D static environment to tune the learning rate, the batch size, the
number of minibatches size, and the clipping threshold. We found that the most sensitive parameters
were the batch size and the minibatch size and chose the following values: 1e5 for the batch size,
1e2 for the number of minibatches, 2.5e−4 for the learning rate and 0.1 for the clipping threshold.

Rainbow For the Rainbow implementation, we used 3 noisy hidden layers (Fortunato et al., 2017)
with 128 nodes in each layer, and ReLU nonlinear activation functions. Rainbow has a large set of
hyperparameters, as each of the six components adds additional hyperparameters. We used those
suggested in (Hessel et al., 2017) as a starting point, but they led to poor results on our specific task
and environment designs. As a grid search over such a large hyperparameter space was impractical,
we used a random search approach. Based on empirical results, the algorithm was most sensitive
to learning rate, as well as Vmin, Vmax, and natoms, which define the value distribution support
predicted by the distributional Q-network. Generally, a Vmin value of−5, Vmax of 35, and natoms =
101 provided stable performance, and were chosen heuristically based on an approximate range of
discounted rewards possible in our environments. We used a prioritized experience replay buffer of
size 1e4, with priority exponent ω of 0.5, and a starting importance sampling exponent β of 0.4.
Additionally, we used multi-step returns with n = 3, and noisy network σ0 = 0.1. Finally, we used
a learning rate of 5e−5 for 1D and 2D environments, and 1e−4 for 3D environments.

SAC We used the implementation of (Christodoulou, 2019) for SAC in discrete setting which has
automatic tuning for entropy hyperparameters and used a learning rate 3e−4 for target networks for
most plans. We use ReLU activation functions for the hidden layers and Softmax for the final layer of
the policy network. We use interpolation factor τ=5e−3 for target networks and the start steps before
running the real policy is 400 with mini batch size 64. We search the main hyperparameters based
on 1D static case and we used different network architectures through a random search approach
for relatively complex 2D and 3D cases. For 1D plans, we use 2 hidden layers with 64 nodes each
for both actor and critic networks. For 2D plans, we use 3 hidden layers with 512 nodes each for
the dynamic plan and 3 hidden layers containing [64, 128, 64] nodes for the static plan. 4 layers
network architecture containing [64,128,256,128,64] nodes are applied in the 3D cases.

Human For assessing human performance, we made a simple GUI game (Figure 6) that allows
a human player to attempt our tasks in identical environments with the same limitations of partial-
observability and step size uncertainty. They act as the agent, using the ARROW keys to maneuver,
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and SPACE to drop a brick. In static environments, human players are required to complete the
task without access to the ground-truth plan, while in dynamic environments, they can reference the
current ground truth plan. Additionally, players can toggle between training or evaluation mode. In
training mode, they can view per-step reward as well as their cumulative reward over the episode,
whereas in evaluation mode, they can only see the number of bricks used and steps taken. For each
episode played, players reported their episode-IoU.

5 EXPERIMENTS

5.1 BENCHMARK RESULTS

(a) Training (1D). (b) Evaluation (2D).

Figure 6: Game GUI for measuring human performance. (a) 1D
Dynamic plan: user can see the ground truth plan in dynamic
environments. (b) 2D Static plan in evaluation mode: only step
and brick count are shown, while rewards are hidden.

In this section, we presents test-
ing results of all the baselines
on our mobile construction task.
We use the IoU score as our
evaluation criteria which is mea-
sured between the terminate grid
world state GT and the ground-
truth plan P . For the static plan
tasks in 1D/2D/3D, we test the trained agent for 500 times for each task and record the average
and min IoU score among 500 tests. For the dynamic plan tasks, the ground-truth plan is randomly
generated during the training phase. In order to make our test results comparable among all the
baselines, we define 10 groups of coefficients a, b, and c for 1D dynamic and 10 groups of triangles
for 2D/3D dynamic task. All algorithms are tested on each group of plans for 200 times and average
and min IoU score among 2,000 tests are recorded.

Figure 7 summarizes the quantitative results of all baselines on mobile construction tasks. In general,
we see that the performance of each methods drops as the dimension of the environment increases.
As mentioned previously, in the 3D environment, the volume of the agent and obstacle is considered,
which makes the tasks substantially more difficult. From the results, most of the baselines perform
rather poorly on the 3D tasks and do not seem to be able to learn any useful policies in the 3D dy-
namic plan tasks. This suggests that the 3D task is especially challenging for SOTA RL algorithms.
We did an ablation study in Section 5.2 to explore the influence of obstacles on performance. From
the results, we can also see that the robot have more difficulties to perform on dynamic plan tasks
than on static plans. We posit that the agent lacks the capacity to learn dynamic inputs. DRQN is
expected to work best in most of the tasks because it is able to learn more from a long period of
history. Interestingly, the HER does not appear to help noticeably for our tasks.

1D tasks: DRQN has the best performance on both static (IoU 0.868) and dynamic (IoU 0.834)
tasks (see Appendix Table 2). For the Gaussian function curve, only DRQN and DRQN+Hindsight
could learn a general shape. Other algorithms only managed to build a flatten shape. Meanwhile,
the DRQN outperforms other approaches and could build all the three peaks of the Sin curve. (See
first two columns of Figure 8).

2D tasks: DRQN also achieves the highest IoU (static 0.772 and dynamic 0.537) among all baselines
in the static plan tasks. Rainbow gets the best score for the dynamic plan tasks. However, the scores
drop dramatically, even close to 0, from static to dynamic plans, which indicates that 2D dynamic
plans become much harder for all methods.

3D tasks: we have similarly bad performance in both static and dynamic plan tasks. From the last
two columns of Figure 8, we can see that most of the methods can learn to only move in the plane
without building any bricks. We hypothesize that the agent learns to only move instead of build
bricks in order not to obstruct itself.

Human baseline: we collected 30 groups of human test data, totaling 490 episodes played, and
report the average and min IoU showed in the Figure 7. From the feedback, we found that human
could learn effective policies (building landmarks to help localization) very efficiently in at most a
few hours, which is much less than training an RL model. Interestingly, human performed much
better on 2D dynamic plan tasks.
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Figure 7: Benchmark results for all the deep RL and the human baselines.

Figure 8: Best testing results of all tasks (the same order as in Figure 7).

Shape IoU 2D 3D
DRQN +GPS(↑) -Uncertainty(↑) +Obstacle(↓) DRQN -Obstacle(↑)

Dense Avg 0.772 +0.079 +0.073 -0.288 0.072 +0.727
Min 0.701 +0.050 +0.144 -0.568 0 +0.714

Sparse Avg 0.537 +0.403 +0.239 -0.305 0.048 +0.145
Min 0.237 +0.149 +0.539 -0.200 0 0

Table 1: Quantitative ablation study results. ↑/↓: expecting better/worse performance.

5.2 ABLATION STUDY

Figure 9: Influences of obstacles. Top rows shows the baseline
results on 2D and 3D static tasks. The first two images of bottom
row show results of adding obstacle to 2D world. Compared with
baseline, the performance drops notably. The last two images of
bottom row show results of removing obstacle from 3D world.

We performed ablation studies
to comprehensively analyze the
reasons associated to the poor
baseline performances in 2D
and 3D tasks. We identify three
potential challenges: the obsta-
cles in the 3D environments, the
lack of localization information,
and the step size d uncertainty.
We use the DRQN results as
the basis of this ablation study
and all the ablation experiments
were conducted using the same
setup described in Section 4. We also use the same test criteria as before.

Obstacles. To explore the influence of the obstacles, we did two experiments: adding the obsta-
cle mechanism in a 2D task and removing it from the 3D (Figure 9). As showed in Table 1, the
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(a) Add GPS. (b) Fixed step size.

Figure 10: Influence of localization and environment uncertainty. Either adding GPS in (a) or
removing step size uncertainty in (b) significantly improves DRQN on sparse plan tasks compared
with the first two columns of the top row of Figure 9.

performance of the 3D task increases significantly from 0.072 to 0.727 for dense plans. Similarly,
when we add obstacles into 2D, the IoU score drops more than 40%. These results suggest that the
presence of obstacles is an important reason causing the poor performances on 3D tasks.

Localization. Our mobile construction tasks are intrinsically partially observable and good local-
ization of the robot in its environment becomes a key challenge. The agents are expected to learn
implicitly how to do localization with a limited sensing region (partial observation o) of the envi-
ronment. We hypothesize here that the observed low baseline performances in 2D and 3D worlds
can further be explained by the fact that the agents lack the capability of localizing precisely. To test
this, we added ground truth location state information l(x, y) into the feature vector as described in
Section 4 for DRQN on 2D static tasks. From Table 1, we can see that with the help of position
information, the performance increases, especially in 2D sparse task (see Figure 10a).

Environment uncertainty. Besides the limited sensing range, the random step size could be another
reason of poor performance of baselines. Therefore, we conduct an experiment where the step size
uncertainty is removed. From Table 1, we can see that the IoU increases more than 40%, compared
to the baseline on sparse plan (see Figure 10b).

Figure 11: Training history of IoU: the
full Rainbow algorithm does not always
outperform its pruned configurations.

Rainbow method ablation study. When we applied the
complete Rainbow algorithm on top of a base DQN al-
gorithm, we observed an overall decrease in the agent’s
performance. To better understand the effect of each indi-
vidual extension with respect to the whole, we conducted
six separate runs: in each, we removed one extension
from the complete Rainbow algorithm, similar to (Hessel
et al., 2017). Figure 11 displays the IoU running aver-
age over training in the 2D Static environment for each
of these pruned configurations. While the complete Rain-
bow algorithm initially trains faster than all but one of
the pruned configurations, over a longer horizon, the top
testing performance converges to nearly the same across all configurations. In the case of distribu-
tional learning, multi-step learning, and double DQN, removing each individually actually improved
top test performance, from 0.676 to 0.685, 0.701, and 0.714 respectively. While this study is not ex-
haustive, it suggests that the Rainbow algorithm does not easily generalize from the Arcade Learning
Environment (Bellemare et al., 2013) (which it was designed for) to our specific tasks.

6 CONCLUSION AND FUTURE WORK

We proposed a suite of mobile construction tasks on which we benchmarked the performance of
SOTA deep RL algorithms. Our results show that simultaneously localizing a robot while chang-
ing the environment is currently very difficult for model-free RL, and we believe solutions with
explicit localization and planning modules that are specific to these tasks could be more efficient.
Meanwhile, we also plan to further extend our mobile construction task suite with more interesting
features such as allowing plan changes within an episode, explicitly adding a landmark placement
action, physics-based simulation in continuous worlds, and multi-agent mobile construction.
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A APPENDIX

1D 2D 3D
IoU Static Dynamic Static Dynamic Static Dynamic

Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Human Avg 0.787 0.772 0.803 0.606 0.853 0.93 − − − −
Min 0.326 0.523 0.306 0.053 0.254 0.156 − − − −

DQN Avg 0.845 0.755 0.755 0.234 0.021 0.043 0.044 0.021
Min 0.575 0.172 0.115 0 0 0 0.001 0

DRQN Avg 0.868 0.834 0.772 0.537 0.034 0.046 0.072 0.048
Min 0.684 0.522 0.701 0.237 0 0 0 0

DRQN+Hindsight Avg 0.855 0.811 0.642 0.186 0.047 0.049 0.069 0.101
Min 0.697 0.375 0.697 0.071 0 0 0.011 0

SAC Avg 0.569 0.546 0.142 0.14 0.02 0.018 0.012 0.035
Min 0.328 0.016 0.06 0.023 0 0 0 0

PPO Avg 0.776 0.791 0.682 0.308 0.09 0.099 0.346 0.016
Min 0.479 0.305 0.511 0.204 0 0 0.064 0

Rainbow Avg 0.818 0.734 0.676 0.474 0.237 0.027 0.073
Min 0.338 0.336 0.154 0.1 0 0 0.007

Table 2: Benchmark quantitative results. Empty cells indicate the agents failed at the these task
without learning any control policy.
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