
Integrating Constraints via Probabilistic Circuits

Abstract

One of the recent advances in the domain of
Probabilistic Circuits (PCs) is the introduction of
methodologies for incorporating constraints into
the represented distributions, thereby enabling the
integration of external sources of information. In
this paper, we investigate the extension of such
paradigms to other classes of probabilistic models.
In particular, we consider four representative mod-
els: continuous mixtures of tractable probabilistic
models, Bayesian networks, Chow-Liu trees, and
decision trees. We show that principled extensions
of the techniques developed for PCs can be effec-
tively applied to these models, thereby facilitating
constrained optimization within a broader class of
probabilistic frameworks.

1 INTRODUCTION

Probabilistic circuits (PCs) [Vergari et al., 2020] are a family
of generative probabilistic models that learn the underlying
distribution of data as a complex mix of simple, tractable
distributions, thus allowing for tractable computation of a
wide range of exact inference routines. In this paper, our aim
is to investigate whether the ideas for integrating constraints
into PCs [Ghandi et al., 2024, 2025] can benefit any other
type of probabilistic model. More specifically, we want to
know if PCs are a suitable intermediary domain for the
purpose of applying constraints. For the sake of space and to
dive quickly into the connections among models, we assume
the reader knows about previous work [Ghandi et al., 2025].

We propose a natural and easy-to-implement generalization
to other domains of probabilistic models by performing a
3-step process: i) convert the probabilistic model to a PC;
ii) apply constraints to the equivalent PC using the methods
proposed in [Ghandi et al., 2024, 2025]; and iii) convert
the resulting PC back to the original probabilistic model.

This way, we can enable other domains to benefit from con-
straints as well, by adapting the existing methods, and not
by devising a specific method catered towards each domain.
Hence, in this framework, we refer to the PC domain as the
intermediary domain as well. Each one of the approaches
explored in this paper can be considered as an instantiation
of the above-mentioned process, and hence, we present this
process as the core concept behind our discussions in this
paper. Our main focus will be on 4 different types of mod-
els, namely continuous mixtures of tractable probabilistic
models (CM-TPMs) [Correia et al., 2023], Bayesian net-
works (BNs), Chow-Liu trees (CLTs), and decision trees
(DTs). For the rest of this section, we will provide a brief
introduction to each one of the model types we intend to
investigate.

A Bayesian network (BN) represents a set of variables and
their conditional dependencies via a directed acyclic graph
(DAG). The joint probability distribution of a Bayesian
network is computed as the product of its conditional proba-
bility distributions:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Xπ(i)) (1)

Where Xi are the variables of the BN, and Xπ(i) are the par-
ents of Xi in the DAG. Chow-Liu trees (CLTs) [Chow and
Liu, 1968] can be considered as a specific type of Bayesian
networks that represent a joint probability distribution struc-
tured as a tree, that is, all variables have one parent (except
for the one called root which has no parents).

Continuous mixtures of tractable probabilistic models utilize
a hybrid of tractable models and continuous models, in
order to get the best of both worlds. More specifically, a
continuous mixture of tractable models is written as:

p(x) = Ep(z)[p(x|ϕ(z))] ≈
∫

p(x|ϕ(z))p(z)dz , (2)

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.

where p(z) is a continuous prior, usually an isotropic Gaus-
sian (e.g. z ∼ N (0, I)), ϕ(z) is a decoder (e.g. a neural
network) that maps the latent space to the parameters of a
tractable probabilistic model (e.g. a PC in form of a factor-
ized distribution), and p(x|ϕ(z)) is a tractable model with
parameters determined by z.

Decision Trees (DTs) are one of the most widely known
non-linear machine learning tools. A DT has a hierarchical
tree structure, which consists of a root node, branches, in-
ternal nodes and leaf nodes. The root node of the structure
represents the entire dataset that the DT is trained on, each
internal node represents a split/partition on the data based
on the values of one or more features, and the branches rep-
resent each distinct outcome of the partitioning. Finally, leaf
nodes are the terminal nodes of the structure that represent
the final outcomes or predictions of the DT.

2 APPLYING CONSTRAINTS TO OTHER
PROBABILISTIC MODELS

2.1 CONTINUOUS MIXTURES OF TRACTABLE
PROBABILISTIC MODELS

Using numerical methods to approximate the joint probabil-
ity distribution of a CM-TPM will result in a finite mixture
of tractable models:

p(x) =

N∑
i=1

w(zi)p(x|ϕ(zi)) . (3)

This means that if the tractable model of choice p(x|ϕ(z)) is
a PC, each approximation would be a finite mixture of PCs,
which is a PC itself. This essentially means that the proposed
methods in Ghandi et al. [2024, 2025] to apply constraints
to PCs can be applied to any numerical approximation of
CM-TPMs without any necessary modifications.

Contrary to the convex approach [Ghandi et al., 2024],
sample-based methods [Ghandi et al., 2024] allow for prop-
agating the gradient information through the decoder, which
means that we can train the decoder to respect fairness. In
this scenario, instead of learning a constrained approxima-
tion, we will end up with a constrained continuous model,
which can generalize the constraints to any arbitrary numer-
ical approximation during the test time. As a result, we will
use the sample-based approach in our experiments.

The general scheme of our approach for training constrained
CM-TPMs is shown in Figure 1. We consider tractable prob-
abilistic models of the CM-TPM to be in the form of PCs,
and as a result, we will refer to such models as CM-PCs. At
each iteration of training, a numerical approximation of the
CM-PC is calculated (i.e. a discrete mixture of PCs which
is also a PC), which is trained using a regularized objective

function, and its gradient information is then propagated
back through the decoder of the structure, which leads to a
constrained CM-PC.

We consider tractable probabilistic models of the CM-TPM
to be fully factorized distributions. As for the constraints,
we consider applying fairness in the form of distribution sta-
tistical parity (DSP), sample-based statistical parity (SBSP),
and sample-based equalized odds (SBEO), in two scenarios
where classification is performed by sampling and argmax.
For a brief introduction and formulation of DSP, SBSP, and
SBEO, please refer to [Ghandi et al., 2024, 2025], and Ap-
pendix A respectively. We use the Adult dataset [Le Quy
et al., 2022] for this experiment. The results are averaged
over 5 random initializations, and are shown in Table 1.
The bold number in each row indicates the targeted fairness
measure in each of the experiments.

Table 1: Performance of constrained CM-TPMs.

Train Target Test LL DSP Sampling Argmax
Acc. SBSP SBEO Acc. SBSP SBEO

No Target -13.425 0.177 0.760 0.190 0.237 0.824 0.167 0.215
DSP -13.440 0.007 0.749 0.090 0.115 0.819 0.066 0.154
SBSP - Sampling -13.447 0.019 0.723 0.019 0.098 0.816 0.078 0.105
SBEO - Sampling -13.455 0.047 0.696 0.051 0.057 0.817 0.108 0.109
SBSP - Argmax -13.429 0.11 0.752 0.118 0.121 0.810 0.013 0.264
SBEO - Argmax -13.398 0.160 0.755 0.165 0.182 0.823 0.107 0.089

Each row corresponds to optimizing a particular constraint;
for instance, "SBSP - Sampling" refers to the case where
we aim to enforce sample-based statistical parity assuming
the classification is done via sampling. The correspondence
in columns follows a similar sense. As the results clearly
suggest, applying various forms of constraints turns out to
be impactful in CM-TPMs; in all cases, applying constraints
effectively mitigates the targeted bias in models, without
significantly harming the performance. However, based on
the reported results, we can see that applying DSP to models
is more effective than applying sample-based constraints.
DSP directly targets the distribution, and does not rely on
the samples to integrate fairness; as a result, its optimization
does not have the challenges that come with sample-based
(regularized) integration of constraints.

2.2 BAYESIAN NETWORKS

Similar to the discussion in Section 1, we apply constraints
to BNs in a 3-step process, where we first take the initial
BN and convert it to a PC, then apply the constraints to
the resulting PC, and finally, we convert the constrained PC
back to the BN.

We consider applying distribution statistical parity (DSP) to
a given BN learned from the binarized version of the Adult
dataset [Ghandi et al., 2024]. We consider CM-TPMs as the
intermediary PC structures in our 3-step pipeline.

As our method for converting a BN to a PC, we use the

2

Continuous Mixture of PCs
(CM-PC)

Discrete Mixture of PCs
(DM-PC)

Constrained DM-PC
(CDM-PC)

Constrained CM-PC
(CCM-PC)

Numerical Approximation Integrating Constraints Propagating Through Decoder

Figure 1: General Scheme for integrating constraints into CM-PCs.

learned BN to generate synthetic samples, and then the
produced samples will be further used to train the CM-
TPM/intermediary PC. Then, we apply DSP to the intermedi-
ary CM-TPM, based on the sample-based method proposed
in [Ghandi et al., 2025]. In order to convert the resulting
PC back to the BN domain, we simply query the parame-
ters of each CPD P (Xi|Xπ(i)) in the initial BN from the
constrained PC. The same process is also used for integrat-
ing constraints into CLTs as well. A general scheme of this
approach is shown in Figure 2.

We expect that the process of converting a BN to a PC and
back to a BN, even without applying any particular con-
straints to the intermediary PC, to lead to a performance
loss in the BN domain. To differentiate between the perfor-
mance loss of conversion and that of applying constraints,
we perform two different experiments, one with and one
without applying constraints, which we denote by "DSP"
and "No Target" respectively. The results of these experi-
ments, averaged over 5 random initializations, are outlined
in Table 2.

Table 2: Distribution Statistical Parity in BNs.

Test Log-Likelihood
Train Target BN PC PC2BN
No Target -7.515 -7.761 -7.732
DSP -7.515 -7.780 -7.747

Statistical Parity
Train Target BN PC PC2BN
No Target 0.178 0.203 0.180
DSP 0.178 0.009 0.114

Test Accuracy
Train Target BN PC PC2BN
No Target 0.8388 0.8297 0.8325
DSP 0.8388 0.8210 0.8349

The column denoted by "BN" refers to the results of the
initial/given Bayesian network; the column denoted by "PC"
refers to the results of the (constrained) conversion to PC
domain; and the column denoted by "PC2BN" refers to
the Bayesian network resulting from the conversion of the
(constrained) PC back to the BN domain.

We can see that the proposed 3-step process successfully
improves the behavior of BNs towards respecting the con-
straints. First, we would like to note that while the accuracy
of the models remains comparable to one another, the pro-
cess of converting a BN to a PC (even without integrating
any constraints) results in a notable loss of performance (in
terms of test log-likelihood) when compared to the original
BN. Although this performance loss can be mitigated in
various ways, it comes at the cost of higher computation and
training time, and it will still be a trade-off between having

better likelihood and applying constraints. As a result, we
consider our method to be better suited when the accuracy
of predictions takes precedence over the likelihood of the
models.

On another note, we see that although our model mitigates
the bias towards the sensitive variable in the final BN, it
fails to completely nullify it. This is mainly because of the
fact that after applying the constraints, the resulting PC may
not be fully explained with a structure similar to the original
BN. In other words, after applying the constraints to the
converted PC, the interactions and dependencies between
the variables may change, and in the case that some depen-
dency between variables does not exist in the structure of
the initial BN in the form of one or more edges of the graph,
then its information will be lost during the conversion of
the PC back to the BN. As a result, while our method can
guarantee improvement, it cannot guarantee that the model
completely respects the constraints. Theoretically, this can
be addressed by adding extra constraints that correspond
to maintaining the original structure of the BN; however,
in practical scenarios, this translates to applying numerous
structural constraints, which makes the cost/loss function
very hard to properly optimize.

2.3 CHOW-LIU TREES

Since Chow-Liu trees (CLTs) can be considered as a special
case of Bayesian networks, the experiment setup for the
CLTs is quite similar to that of generic BNs. Nevertheless,
applying fairness to a CLT is counter-intuitive; this process
aims to adjust the model in a way that the class and sensitive
variables become independent of one another. In a CLT,
however, the only way to adjust the model to respect fairness
is by removing one of the edges along the path between the
class and sensitive variables, which breaks the structure of
the CLT and turns it into a forest, which is not the intended
result.

Therefore, throughout our experiments on CLTs, instead of
fairness, we assume matching the marginals of the distribu-
tion as the task at hand [Ghandi et al., 2024, 2025]. We will
work with the binarized version of the Adult dataset.

We assume that we only have a subsample of 100 datapoints
from the dataset (to simulate a lack of information which
can be compensated for with the information encoded in
the marginals, just as if an expert would have given that
information to us). We also assume that we have access to
the information on the marginals of the test data (i.e. we have

3

Initial BN/CLT Synthetic Dataset Intermediary PC
Constrained

Intermediary PC
Constrained

BN/CLT

Sampling Instances Learning a PC from Data Integrating Constraints Querying the parameters of BN/CLT

Figure 2: General Scheme for integrating constraints into BNs/CLTs.

p(Xi) = αi for all the variables, empirically calculated on
test data, as a source of extra information to be incorporated
in the learning process), and we want to use this information
to improve the distribution represented by a CLT.

First, using the 100 training samples, we learn a CLT to
represent our initial/given model. Next, we generate syn-
thetic samples from the learned CLT and use them to train
the constrained intermediary PC; finally, we convert the
constrained PC back to the CLT by querying the parame-
ters of each CPD from the constrained PC. The results of
these experiments are summarized in Table 3. In order to
highlight the impact of applying marginal constraints in our
experimental setup, we also show the results of performing
our 3-step process without applying any constraints to the
intermediary PC, which are shown throughout the results la-
beled as "No Target". The column denoted by "CLT" refers
to the results of the initial/given Chow-Liu tree; the column
denoted by "PC" refers to the results of the (constrained)
conversion to the PC domain; and the column denoted by
"PC2CLT" refers to the CLT resulting from the conversion
of the (constrained) PC back to the CLT domain.

Table 3: Matching marginals in CLTs.

Test Log-Likelihood
Train Target CLT PC PC2CLT
No Target -8.816 -8.722 -8.730
Marginals -8.816 -8.570 -8.538

Based on the results, we see that our 3-step process manages
to improve the performance of the initial CLT in terms of
test log-likelihood, which highlights the effectiveness of our
approach in the domain of CLTs.

2.4 DECISION TREES

For the experiments on DTs, once again we assume in-
tegrating fairness in the form of statistical parity into
the models. Given a learned DT and the dataset D =
{(x1,y1), . . . , (xn,yn)}, Correia et al. [2020] propose a
method to obtain a corresponding generative model, which
we use as our method to convert a DT into a PC. Next,
we use convex optimization method proposed in [Ghandi
et al., 2024] to integrate fairness into the resulting PC, which
can be considered as an attempt to find the closest con-
strained/fair PC to the original DT. The general scheme of
this approach is outlined in Figure 3.

The experiments in this section are performed on Adult, Ger-
man Credit, Bank Marketing, Dutch Census, Credit Cards

Initial DT Converted PC
Constrained

Converted PC

GeDT [Correia et al., 2020] Integrating Constraints

Figure 3: Integrating constraints into DTs.

Clients, and Law School datasets, and the results are out-
lined in Table 4.

Table 4: Convex optimization [Ghandi et al., 2024] for inte-
grating fairness into decision trees.

Dataset DT Acc. DTSP PC Acc. PCSP PCDSP
Adult 0.835 0.163 0.804 0.035 ≤ 10−6

German Credit 0.683 0.054 0.671 0.063 ≤ 10−6

Bank Marketing 0.878 0.028 0.8775 0.008 ≤ 10−6

Dutch Census 0.800 0.169 0.736 0.007 ≤ 10−6

Credit Cards Clients 0.720 0.027 0.560 0.034 ≤ 10−6

Law School 0.865 0.314 0.894 0.013 ≤ 10−6

In Table 4, DTSP refers to the statistical parity of the DT
computed on the test data (since a DT is not a generative
model, we cannot directly calculate distribution statistical
parity (DSP)), PCSP refers to the statistical parity of the
constrained/fair PC on test data, and PCDSP refers to the
distribution statistical parity of the PC. As the results in
Table 4 would suggest, the resulting PC manages to suc-
cessfully integrate fairness (defined here as statistical parity)
without significant performance loss in 5 out of 6 datasets,
which is in line with the results reported in [Ghandi et al.,
2024]. This essentially means that our method can be used
to apply constraints (in this case, fairness) to DTs, as long as
we can be lenient with the generative nature of the PCs. In a
practical sense, this is a very mild assumption, since deter-
ministic inference in PCs (e.g. classification with argmax)
is particularly similar to treating a PC as a DT and then
performing the classification.

3 CONCLUSION

In this paper, we discussed the possibility of integrating con-
straints into various probabilistic models, by extending the
ideas proposed in [Ghandi et al., 2024, 2025]. For each spe-
cific model of interest (CM-TPMs, BNs, CLTs, and DTs),
we explained a natural approach to adapt the PC-specific
methods, and show that these adaptations manage to inte-
grate constraints into these probabilistic models, albeit with
their own caveats. These experiments might open doors for
further research on PCs as intermediate models in other
applications.

4

References

C. Chow and C. Liu. Approximating discrete probability
distributions with dependence trees. IEEE transactions
on Information Theory, 14(3):462–467, 1968.

Alvaro Correia, Robert Peharz, and Cassio P de Campos.
Joints in random forests. In Advances in neural informa-
tion processing systems, volume 33, pages 11404–11415,
2020.

Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cas-
sio de Campos, and Robert Peharz. Continuous mixtures
of tractable probabilistic models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pages 7244–7252, 2023.

Soroush Ghandi, Benjamin Quost, and Cassio de Campos.
Probabilistic circuits with constraints via convex opti-
mization. In Machine Learning and Knowledge Discov-
ery in Databases: European Conference, ECML PKDD
2024, Vilnius, Lithuania, September 9-13, 2024, Proceed-
ings, Part II 10, pages 161–177. Springer, 2024.

Soroush Ghandi, Benjamin Quost, and Cassio de Campos.
Imposing constraints in probabilistic circuits via gradient
optimization. In International Symposium on Intelligent
Data Analysis, pages 209–220. Springer, 2025.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of
opportunity in supervised learning. Advances in Neural
Information Processing Systems, 29, 2016.

Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang,
and Eirini Ntoutsi. A survey on datasets for fairness-
aware machine learning. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 12(3):e1452,
2022.

A. Vergari, YJ. Choi, R. Peharz, and G Van den Broeck.
Probabilistic circuits: Representations, inference, learning
and applications. http://starai.cs.ucla.edu/
slides/AAAI20.pdf, 2020. Tutorial at AAAI 2020.

5

http://starai.cs.ucla.edu/slides/AAAI20.pdf
http://starai.cs.ucla.edu/slides/AAAI20.pdf

Integrating Constraints via Probabilistic Circuits

A SAMPLE-BASED EQUALIZED ODDS

In this section, we will define sample-based equalized odds (SBEO) as a constraint in the overall loss function of the gradient
descent, similar to the way sample-based statistical parity (SBSP) is defined in [Ghandi et al., 2024]. Nonetheless, we
reiterate the notations for the sake of completeness.

We assume that we have a dataset D = {xi,yi}Ni=1, where each xi is defined over the scope X with X ′ ∈ X representing a
binary protected attribute. Y represents the binary class/target variable. We also assume having an arbitrary probabilistic
model q(X,Y) that represents the joint distribution over X and Y . Additionally, we define two different approaches for
classification, which results in predicted label ŷ based on the learned probabilistic model q.

We consider two decision criteria for classification, namely class assignment via argmax:

ŷ = argmaxy q(Y = y|X = x), (4)

and classification via sampling:
ŷ ∼ q(Y |X = x) . (5)

For the most part, equalized odds [Hardt et al., 2016] is similar in definition to statistical parity, except that equalized odds is
conditioned on the true label y. In other words, equalized odds is preserved when statistical parity is preserved in groups
defined by the true label y:

Eq.Odds : Pr(ŷ = 1|X = 0, Y = y) = Pr(ŷ = 1|X = 1, Y = y) (6)

Based on this definition, we can measure the prevalent bias as:

eo =
∑

y∈{0,1}

|Pr(ŷ = 1|X = 0, Y = y)− Pr(ŷ = 1|X = 1, Y = y)| (7)

Because of its dependence on the true label y, equalized odds can only be considered in a sample-based scenario, where
we have access to the true labels of data. Taking a similar frequentist approach to [Ghandi et al., 2025], we can measure
equalized odds for an arbitrary model q. Assuming for each data xi ∈ D the model q predicts a corresponding label ŷi, we
have:

eoq = |sp0q|+ |sp1q| (8)

Where,

sp0q =

∑
i 1(ŷi = 1,x′

i = 0,y = 0)∑
i 1(x

′
i = 0,y = 0)

−
∑

i 1(ŷi = 1,x′
i = 1,y = 0)∑

i 1(x
′
i = 1,y = 0)

sp1q =

∑
i 1(ŷi = 1,x′

i = 0,y = 1)∑
i 1(x

′
i = 0,y = 1)

−
∑

i 1(ŷi = 1,x′
i = 1,y = 1)∑

i 1(x
′
i = 1,y = 1)

(9)

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.

We can rewrite the formulations in 9 as,

sp0q =

∑
i;x′

i=0;y=0 1(ŷi = 1)∑
i 1(x

′
i = 0,y = 0)

−
∑

i;x′
i=1;y=0 1(ŷi = 1)∑

i 1(x
′
i = 1,y = 0)

sp1q =

∑
i;x′

i=0;y=1 1(ŷi = 1)∑
i 1(x

′
i = 0,y = 1)

−
∑

i;x′
i=1;y=1 1(ŷi = 1)∑

i 1(x
′
i = 1,y = 1)

.

(10)

Now, we just need to define a differentiable estimator to 1(ŷi = 1). As discussed in [Ghandi et al., 2025], for the case
of classification with sampling, we use q(Y = 1|X = xi) as an unbiased estimator of 1(ŷi = 1); and for the case of
classification with argmax, we mimic the behavior of 1(ŷi = 1) by applying a sharp softmax to q(Y = 1|X = xi). This way,
both of the terms sp0q and sp1q become differentiable, and the equalized odds measure in 8 can be treated as a regularization
term, and be optimized through gradient descent. Note that throughout our experiments in Section 2.1, we do not directly
optimize the formulation in 8; in order to improve stability of the learning, we use a similar, albeit smoother curve:

êo = (sp0q)
2 + (sp1q)

2 (11)

7

	Introduction
	Applying Constraints to other Probabilistic Models
	Continuous Mixtures of Tractable Probabilistic Models
	Bayesian Networks
	Chow-Liu Trees
	Decision Trees

	Conclusion
	Sample-Based Equalized Odds

