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Abstract

Reliable estimation of predictive uncertainty is cru-
cial for machine learning applications, particularly
in high-stakes scenarios where hedging against
risks is essential. Despite its significance, there is
no universal agreement on how to best quantify
predictive uncertainty. In this work, we revisit core
concepts to propose a framework for information-
theoretic measures of predictive uncertainty. Our
proposed framework categorizes predictive uncer-
tainty measures according to two factors: (I) The
predicting model (II) The approximation of the
true predictive distribution. Examining all possible
combinations of these two factors, we derive a set
of predictive uncertainty measures that includes
both known and newly introduced ones. We exten-
sively evaluate these measures across a broad set of
tasks, identifying conditions under which certain
measures excel. Our findings show the importance
of aligning the choice of uncertainty measure with
the predicting model on in-distribution (ID) data,
the limitations of epistemic uncertainty measures
for out-of-distribution (OOD) data, and that the
disentanglement between measures varies substan-
tially between ID and OOD data. Together, these
insights provide a more comprehensive understand-
ing of predictive uncertainty measures, revealing
their implicit assumptions and relationships.

1 INTRODUCTION

Integrating machine learning models into high-stakes sce-
narios, such as autonomous driving or managing critical
healthcare systems, introduces substantial risks. To hedge
against these risks, we need to quantify the uncertainty as-
sociated with each prediction to prevent models from mak-
ing decisions that carry significant risk and uncertainty. In

such cases, it is better to defer uncertain decisions to human
experts or opt for a safer, though potentially less advanta-
geous, alternative decision. Consequently, it is vital to em-
ploy reliable measures of predictive uncertainty and provide
estimates for them when implementing machine learning
models for decision making in high-stakes applications.

The entropy of the posterior predictive distribution has be-
come the standard information-theoretic measure to assess
predictive uncertainty [Houlsby et al., 2011, Gal, 2016, De-
peweg et al., 2018, Smith and Gal, 2018, Mukhoti et al.,
2023]. Despite its widespread use, this measure has drawn
criticism [Malinin and Gales, 2021, Wimmer et al., 2023],
prompting the proposal of alternative information-theoretic
measures [Malinin and Gales, 2021, Schweighofer et al.,
2023b,a] and frameworks of uncertainty measures based on
proper scoring rules that encompass information-theoretic
measures [Kotelevskii et al., 2025, Hofman et al., 2024b].
However, it remains hard to gauge in which practical set-
tings one measure should be favored over another.

We show that all these measures can be interpreted as ap-
proximations of the same measure, the cross-entropy be-
tween the predictive distributions of the predicting model
and the true model. The predicting model is used to pre-
dict on new data, while the true model generated the dataset.
However, since we do not know the true model, this fun-
damental measure is intractable to compute. Therefore, we
consider different assumptions about the predicting model
and how the true predictive distribution is approximated.
This gives rise to our proposed framework to categorize
information-theoretic measures of predictive uncertainty.
Our framework includes existing measures, introduces new
ones, and clarifies their relationships by eliciting implicit
assumptions. In sum, our contributions are as follows:

• We present a unifying framework to categorize predictive
uncertainty measures according to assumptions about the
predicting model and how the true predictive distribution
is approximated. This framework encompasses existing
measures, but also suggests new ones, clarifies their rela-
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tionship, and guides the selection of appropriate measures.
• We evaluate the measures suggested by our framework

across a broad set of tasks, identifying specific conditions
under which certain measures outperform others in prac-
tice. Notably, for tasks depending on which model pre-
dicts, it is best to align the uncertainty measure with the
predicting model. Furthermore, we assess the level of dis-
entanglement between measures, finding a pronounced de-
pendency on the distribution the new data is coming from.

2 QUANTIFYING PREDICTIVE
UNCERTAINTY

We consider the canonical classification setting with inputs
x ∈ RD and targets y ∈ Y , where Y is the set of all
K possible targets. The dataset D is given, sampled i.i.d.
according to the data generating distribution. We consider
deep neural networks as a class of probabilistic models
that map an input x to the K − 1 dimensional probability
simplex ∆K−1 = {θ ∈ RK | θk ≥ 0 ∀k,

∑K
k=1 θk = 1}.

This mapping is defined as fw : RD → ∆K−1 for a model
with parameters w. The output of this mapping defines the
distribution parameters of a categorical distribution, in the
following referred to as the model’s predictive distribution
p(y | x,w) = Cat(y; fw(x)) = Cat(y;θ).

The predictive distribution of a probabilistic model repre-
sents the uncertainty inherent in its predictions. When the
probability mass is uniformly distributed across all possible
outcomes, it denotes complete uncertainty about the predic-
tion, whereas concentration on a single class indicates com-
plete certainty. If we have access to the true data-generating
model, denoted by parameters w∗, the predictive distribu-
tion p(y | x,w∗) captures the inherent and irreducible un-
certainty in the prediction, often referred to as aleatoric un-
certainty (AU) [Gal, 2016, Kendall and Gal, 2017]. This
assumes that the chosen model class can accurately repre-
sent the true predictive distribution, thus p(y | x) = p(y |
x,w∗), which is a common and often necessary assumption
[Hüllermeier and Waegeman, 2021]. We will discuss how
to interpret AU if we do not have access to w∗ in Sec. 2.2.
The information-theoretic entropy H(·) [Shannon, 1948] of
the true predictive distribution is a natural and universally
accepted measure of AU, defined as

H(p(y | x,w∗)) := Ep(y|x,w∗) [− log p(y | x,w∗)] (1)

However, we generally don’t know the true model and have
to choose parameters w out of all possible ones. Conse-
quently, uncertainty arises due to the lack of knowledge
about the true parameters of the model. This is called epis-
temic uncertainty (EU) [Apostolakis, 1990, Helton, 1993,
1997, Gal, 2016, Smith and Gal, 2018]. An effective mea-
sure of predictive uncertainty should be consistent with
Eq. (1) and capture both AU and EU, typically assumed to
sum up to a total uncertainty (TU).

2.1 CURRENT STANDARD MEASURE: ENTROPY
OF POSTERIOR PREDICTIVE DISTRIBUTION

Given a dataset D and prior p(w) on the model parameters,
Bayes’ theorem yields the posterior distribution p(w | D).
The posterior distribution denotes the probability that the pa-
rameters w match the true parameters w∗ of the model that
generated the dataset D. Instead of committing to a single
model, the posterior distribution allows marginalizing over
all possible models, which is known as Bayesian model aver-
aging. This gives rise to the posterior predictive distribution

p(y | x,D) = Ep(w|D) [p(y | x,w)] . (2)

The entropy of the posterior predictive distribution is the cur-
rently most widely accepted approach to measure predictive
uncertainty [Houlsby et al., 2011, Gal, 2016, Depeweg et al.,
2018, Smith and Gal, 2018, Hüllermeier and Waegeman,
2021, Mukhoti et al., 2023]. According to a well-known re-
sult from information theory [Cover and Thomas, 2006], this
entropy can be additively decomposed into the conditional
entropy and the mutual information I(·) between y and w:

H(p(y | x,D))︸ ︷︷ ︸
TU

(3)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
AU

+ I(p(y,w | x,D))︸ ︷︷ ︸
EU

.

Eq. (3) is equivalent to a decomposition of expected cross-
entropy CE(· ; ·) into conditional entropy and expected
KL-divergence KL(· ∥ ·) [Schweighofer et al., 2023b,a]:

Ep(w|D) [CE(p(y | x,w) ; p(y | x,D))]︸ ︷︷ ︸
TU

(4)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
AU

+ Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))]︸ ︷︷ ︸
EU

.

If the parameters of the true model are known, EU van-
ishes and Eq. (3) as well as Eq. (4) simplify to Eq. (1), thus
are consistent with it. However, the entropy of the poste-
rior predictive distribution has been found to be inadequate
for specific scenarios, such as autoregressive predictions
[Malinin and Gales, 2021] or for a given predicting model
[Schweighofer et al., 2023b] and was criticised on grounds
of not fulfulling certain expected theoretical properties
[Wimmer et al., 2023]. In response, alternative information-
theoretic measures [Malinin and Gales, 2021, Schweighofer
et al., 2023b,a] and frameworks of uncertainty measures
based on proper scoring rules [Kotelevskii et al., 2025, Hof-
man et al., 2024b] have been introduced. We seek to give a
unified framework for these measures that is interpretable
and can guide the selection of uncertainty measures in prac-
tice. Therefore, we next propose a fundamental, yet gener-
ally intractable, predictive uncertainty measure, where all of
these measures are special cases under specific assumptions.



2.2 OUR PROPOSED MEASURE:
CROSS-ENTROPY BETWEEN SELECTED
AND TRUE PREDICTIVE DISTRIBUTION

An effective measure of TU should be consistent with Eq. (1)
and should incorporate EU. Given this, we propose to mea-
sure predictive uncertainty with the cross-entropy between
the predictive distributions of a selected predicting model
and the true model. Let p(y | x, ·) be the predictive distri-
bution of any selected model for some new input x, which
we will refer to as the predicting model. We will examine
different cases for the predicting model later; for now, it suf-
fices to consider it to be a specific model with parameters
w. The cross-entropy between the predictive distributions
of the predicting model and the true model is given by

CE(p(y | x, ·) ; p(y | x,w∗))︸ ︷︷ ︸
TU

(5)

:= Ep(y|x,·) [− log p(y | x,w∗)]

= H(p(y | x, ·))︸ ︷︷ ︸
AU

+ KL(p(y | x, ·) ∥ p(y | x,w∗))︸ ︷︷ ︸
EU

.

If the predictive distribution of the predicting model is equal
to the predictive distribution of the true model, the EU is
zero by definition of the KL-divergence and Eq. (5) simpli-
fies to Eq. (1). Thus, as expected, if the parameters of the
true model are known, the EU vanishes. Eq. (5) is a funda-
mental, though generally intractable, measure of predictive
uncertainty. To obtain tractable measures, assumptions about
the predicting model and about how to approximate the true
predictive distribution are necessary. This gives rise to our
framework, which we introduce in detail in Sec. 3. Notably,
the opposite order of the arguments in Eq. (5) leads to the
same framework but differs in the interpretation of AU and
EU. However, we find that Eq. (5) is more useful in practice,
allowing to align the uncertainty measure to the predicting
model. For details on the alternative measure see Apx. A.5.

Interpretation of AU and EU. An important distinction
compared to previous work is in our interpretation of AU
and EU, which aligns with the understanding of Apostolakis
[1990], Helton [1993, 1997], Schweighofer et al. [2023b] as
follows. The AU is not generally understood as a property of
the true predictive distribution, but of the selected predicting
model used to make a prediction. Thus, it is the uncertainty
that arises due to predicting with the selected probabilistic
model. The EU is defined as the additional uncertainty due
to predicting with the selected predicting model instead of
the true model. Thus, it is the additional uncertainty that
arises due to selecting a model from the given model class.

3 PROPOSED FRAMEWORK

Our proposed measure of predictive uncertainty (Eq. (5))
allows for different assumptions about (I) the selected pre-

dicting model and (II) how to approximate the true predic-
tive distribution. We consider three different assumptions
for each, denoted as (A,B,C) for the predicting model and
(1,2,3) for the approximation of the true predictive dis-
tribution. This results in nine distinct predictive uncertainty
measures within our proposed framework. An overview of
all measures is given in Tab. 1, summarizing possible mea-
sures of total uncertainty (TU), as well as their respective
aleatoric uncertainty (AU) and epistemic uncertainty (EU).

(A,B,C): PREDICTING MODEL

One can make different choices about the model used during
inference for predicting the class of a new input. The most
obvious choice of a predicting model is (A) a pre-selected
given model with parameters w. This is the standard case
in machine learning, where model parameters are selected,
e.g. by maximizing the likelihood on the training dataset or
downloaded from a model hub.

Another widely used approach is (B) the Bayesian model
average (see Eq. (2)). Here, instead of predicting with a
single model, the predictive distribution is marginalized over
all possible models according to their posterior probability.
In practice, exact marginalization is generally intractable
and therefore approximated by posterior sampling.

Finally, it is possible to (C) consider every possible model
as the predicting model, weighted by their posterior proba-
bilities. This might seem counterintuitive, as it means that
the predicting model is not fixed but is sampled anew for
each prediction. Nevertheless, the AU of the resulting uncer-
tainty measures, Ep(w|D) [H(p(y | x,w))], is the best ap-
proximation of the AU under the true model for a given pos-
terior distribution [Schweighofer et al., 2023a]. However, as
pointed out by Wimmer et al. [2023], it is neither a lower
nor an upper bound on the AU under the true model and is
highly dependent on the posterior distribution.

(1,2,3): APPROXIMATION OF THE TRUE
PREDICTIVE DISTRIBUTION

One can also make different choices about how to approxi-
mate the true predictive distribution. The simplest but prob-
ably biased choice to approximate the true predictive dis-
tribution is (1) the predictive distribution under a single
given model with parameters w̃. Although this might be a
poor approximation, it might be the only feasible choice in
specific settings. For example, it is used in speculative de-
coding [Stern et al., 2018, Leviathan et al., 2023], where a
small model is used to predict and whose predictive distribu-
tion is compared against a large model that serves as ground
truth. Furthermore, w̃ does not necessarily approximate the
true model, but instead serves as a reference model of inter-
est, such as a previously used or competitor model, whose
discrepancy from the predicting model should be captured.



Table 1: Our proposed framework of information-theoretic measures of predictive uncertainty. Each measure denotes
a different approximation of the fundamental measure given by Eq. (5) for different assumptions about the predicting model
and how the true model is approximated. For brevity, we define pw := p(y | x,w), pD := p(y | x,D), and Ew := Ep(w|D)

(the same for w̃). Expressions with the same cell coloring are equivalent to each other. For each measure, TU additively
decomposes into AU and EU by CE(p ; q) = H(p) + KL(p ∥ q).

Predicting model
Approximation of the true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w CE(pw ; pw̃) CE(pw ; pD) Ew̃ [CE(pw ; pw̃)]

(B) Ew CE(pD ; pw̃) CE(pD ; pD) Ew̃ [CE(pD ; pw̃)]

(C) w ∼ p(w | D) Ew [CE(pw ; pw̃)] Ew [CE(pw ; pD)] Ew [ Ew̃ [CE(pw ; pw̃)]]

A
U

(A) w H(pw) H(pw) H(pw)

(B) Ew H(pD) H(pD) H(pD)

(C) w ∼ p(w | D) Ew [H(pw)] Ew [H(pw)] Ew [H(pw)]

E
U

(A) w KL(pw ∥ pw̃) KL(pw ∥ pD) Ew̃ [KL(pw ∥ pw̃)]

(B) Ew KL(pD ∥ pw̃) �������: 0

KL(pD ∥ pD) Ew̃ [KL(pD ∥ pw̃)]

(C) w ∼ p(w | D) Ew [KL(pw ∥ pw̃)] Ew [KL(pw ∥ pD)] Ew [ Ew̃ [KL(pw ∥ pw̃)]]

Another possibility is to use (2) the posterior predictive
distribution. Although intuitively appealing, Schweighofer
et al. [2023a] criticized this as there is no guarantee that the
posterior predictive distribution approaches the true predic-
tive distribution, even for a perfect estimate of the poste-
rior predictive distribution. Furthermore, there are degener-
ate cases where the posterior predictive distribution can’t
be represented by any model with non-vanishing posterior
probability. However, it is often a well-performing approx-
imation empirically for expressive models such as neural
networks. Moreover, (2) is the only option that guarantees
finite EU and TU (for cases (B2) and (C2)).

Finally, perhaps the most intuitive approach is to consider
(3) all possible models according to their posterior proba-
bility. Since any model could be the true model under the
posterior, we should consider the mismatch between the pre-
dictive distribution of the predicting model and that of all
possible models, weighted by their posterior probability.

3.1 RELATIONSHIPS BETWEEN MEASURES

Importantly, the AU of all uncertainty measures depend only
on the predicting model and does not depend on the approx-
imation of the true predictive distribution. Thus, they are
the same for cases (1), (2) and (3). Furthermore, the
AU of case (B) is an upper bound of the AU of case (C),
i.e. H(p(y | x,D)) ≥ Ep(w|D) [H(p(y | x,w))], which fol-
lows from Eq. (3) as the mutual information is non-negative.
Notably, Kotelevskii et al. [2025] showed that this inequality
more generally holds for any proper scoring rule. Due to the

linearity in the first argument of the cross-entropy, the TU
for cases (B) and (C) are equal. Furthermore, as already
discussed, the AU for cases (B) and (C) differ by the mu-
tual information Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))].
Therefore, the EU for cases (B) and (C) also differ by
this factor. This is trivial to see for cases (B2) and (C2),
where the EU of case (B2) cancels to zero and the EU of
case (C2) is the mutual information. For cases (B3) and
(C3), this was already mentioned by [Malinin and Gales,
2021] and a proof was given by [Schweighofer et al., 2023a],
which we include for completeness in Apx. A.1, together
with a version for cases (B1) and (C1).

4 RELATED WORK

Information-theoretic measures. The standard measure
(Eq. (4)) introduced by Houlsby et al. [2011] and popular-
ized, for instance, by Gal [2016], Depeweg et al. [2018],
Smith and Gal [2018] is the measure (C2). In the context
of autoregressive predictions, Malinin and Gales [2021] in-
troduced measure (B3), due to the feasibility of a Monte
Carlo (MC) approximation compared to the standard mea-
sure (C2). Schweighofer et al. [2023b] introduced mea-
sure (A3) together with a posterior sampling algorithm
that is explicitly taylored to this measure. Schweighofer
et al. [2023a] introduced measure (C3) as an improvement
over the standard measure (C2) for certain settings and dis-
cussed (B3) in the appendix. Hofmann et al. [2024] and
Kotelevskii et al. [2025] consider a broad set of proper scor-
ing rules, including log, Brier, zero-one, and spherical score,



to derive uncertainty measures. Kotelevskii et al. [2025] base
their framework on pointwise risk and subsequent Bayesian
estimation, which, for the particular case of the log score,
yields measures (B2), (B3), (C2) and (C3). Hofman
et al. [2024b] discuss measure (C3) for the particular case
of the log score. See Apx. A.5 for more details on how their
framework relates to our framework. Information-theoretic
measures have also been considered for uncertainty estima-
tion for large language models, i.e. autoregressive prediction.
Due to the large model sizes, recent work has focussed on
AU for case (A) [Kuhn et al., 2023, Aichberger et al., 2025].

Alternative measures. There are also other measures of
predictive uncertainty, not based on information-theoretic
quantities. Kotelevskii et al. [2022] discusses the connec-
tion between pointwise risk and uncertainty and provides
a nonparametric estimator thereof based on the Nadaraya-
Watson kernel. Depeweg et al. [2018] introduced variance-
based measures, based on the law of total variance. This
perspective was recently developed further for specific set-
tings [Duan et al., 2024, Sale et al., 2023b]. Furthermore,
Sale et al. [2024b] introduced label-wise measures of predic-
tive uncertainty, formulating both information-theoretic and
variance-based measures. Another idea recently proposed
by Sale et al. [2024a] is quantifying uncertainty through
distances to reference (second-order) distributions (for TU,
AU, and EU) denoting complete certainty. Thus, the higher
the distance from the reference distribution, the more uncer-
tain the prediction. All measures discussed so far operate on
a distributional representation of uncertainty. Orthogonal to
that, there are also set-based approaches [Hüllermeier et al.,
2022, Sale et al., 2023a, Hofman et al., 2024a].

5 EXPERIMENTS

Next, we empirically evaluate the performance and charac-
teristics of the uncertainty measures in our proposed frame-
work. Specifically, we are interested in three different as-
pects. First, we investigate if there is merit in aligning the
uncertainty measures with the predicting model. Second, we
investigate the performance of the different measures for de-
tecting distributional mismatch. Finally, we investigate the
disentanglement between measures assessing their rank cor-
relation and active learning performance.

Datasets. Our experiments are performed on the CI-
FAR10/100 [Krizhevsky and Hinton, 2009], SVHN [Net-
zer et al., 2011], Tiny-ImageNet (TIN) [Le and Yang, 2015]
and LSUN [Yu et al., 2015] datasets. For TIN, we resize the
inputs to 32x32 to match the other datasets. We train mod-
els on all datasets except LSUN, which is used solely as an
OOD dataset.

Models and training. We used Deep Ensembles [Lakshmi-
narayanan et al., 2017] to approximate posterior expecta-
tions through samples (10), as they are the de facto gold stan-

dard [Ovadia et al., 2019, Izmailov et al., 2021, Kotelevskii
et al., 2025]. For example, the posterior predictive distribu-
tion given by Eq. (2) is approximated with N samples:

p(y | x,D) ≈ 1

N

N∑
n=1

p(y | x,wn) , (6)

where wn ∼ p(w | D). We used three different model
architectures for our experiments: ResNet-18 [He et al.,
2016], DenseNet-169 [Huang et al., 2017] and RegNet-Y
800MF [Radosavovic et al., 2020]. Individual models were
trained for 100 epochs using SGD with momentum of 0.9
with a batch size of 256 and an initial learning rate of 1e-2.
Furthermore, a standard combination of linear (from factor 1
to 0.1) and cosine annealing schedulers was used. The main
paper’s results are for ResNet-18. Results for the two other
architectures, found in Apx. B.3, are consistent to those.

Predictive uncertainty measures. We consider all mea-
sures proposed by our framework, see Tab. 1. For example,
the (total) measure (A1) is referred to as TU (A1) with
its aleatoric component as AU (A) and its epistemic com-
ponent as EU (A1). Here, AU (A) is used instead of AU
(A1) to emphasize the independence from the approxima-
tion of the true predictive distribution. Also, we group equiv-
alent TU measures. For example TU (B1) and TU (C1)
are merged to TU (B/C1).

5.1 ALIGNING THE UNCERTAINTY MEASURE
WITH THE PREDICTING MODEL

The widely regarded selective prediction and misclassifica-
tion tasks essentially evaluate the correlation of an uncer-
tainty measure with the correctness of the prediction. How-
ever, it is not a priori clear which model is used to predict
and if the uncertainty measure needs to be aligned to this
choice, which we investigate in the following experiments.

Selective prediction. In this task, the model’s predictions
are limited to a specific subset, and its performance is evalu-
ated on that subset. Therefore, we sampled models on the
CIFAR10/100, SVHN and TIN datasets obtain uncertainty
estimates and, importantly, predictions on their respective
test datasets. We evaluated the accuracy for a subset of pre-
dictions of (i) the single model, (ii) the average model and
(iii) some model according to the posterior distribution to
investigate the impact of aligning the measure of uncertainty
with the predicting model - (A) for setting (i), (B) for set-
ting (ii) and (C) for setting (iii). The single model for (i)
is the first of the sampled models. The average model for
(ii) is defined by Eq. (6), averaging over all sampled models.
For (iii), one model from the sampled models was randomly
selected for each prediction. Note that (iii), also called the
fully Bayesian setting, is rather unrealistic in practice. Se-
lecting a new model according to the posterior for every pre-
diction does not improve over a single fixed model (i) in ex-
pectation, if the performance of individual sampled models



Table 2: Selective prediction under different predicting models. AUARC for different predicting models, i.e., the single
model, the average model and a model according to the posterior, using different predictive uncertainty measures as score.
We highlight the two best measures for each setting; TU (B/C2) and AU (B) are equivalent, thus both get highlighted. For
the single predicting model, TU (A3) and EU (A3) perform best, in the other two settings, TU (B/C3) and TU (B/C2)
(AU (B)). Results are averaged over all datasets with statistics over five runs.

Measures: TU AU EU Random
Prediction A1 A2 A3 B/C1 B/C2 B/C3 A B C A1 A2 A3 B1 B3 C1 C2 C3 Baseline
Single 87.96 88.10 88.24 88.07 88.12 88.22 87.50 88.12 87.95 87.30 88.11 88.23 86.58 87.60 87.31 88.12 87.85 79.67

Model ±0.10 ±0.10 ±0.11 ±0.09 ±0.09 ±0.09 ±0.11 ±0.09 ±0.08 ±0.08 ±0.07 ±0.11 ±0.10 ±0.11 ±0.10 ±0.11 ±0.11 ±0.10

Average 89.28 89.52 89.46 90.17 90.23 90.30 89.20 90.23 90.11 88.63 89.15 89.17 88.73 89.52 89.36 90.07 89.78 83.02

Model ±0.06 ±0.08 ±0.08 ±0.05 ±0.05 ±0.05 ±0.08 ±0.05 ±0.06 ±0.04 ±0.05 ±0.09 ±0.03 ±0.05 ±0.04 ±0.06 ±0.06 ±0.08

Acc. to 87.74 88.00 87.96 88.74 88.79 88.90 87.61 88.79 88.63 87.06 87.67 87.73 87.20 88.22 87.94 88.75 88.48 80.53

Posterior ±0.08 ±0.06 ±0.07 ±0.09 ±0.08 ±0.07 ±0.06 ±0.08 ±0.08 ±0.07 ±0.07 ±0.06 ±0.12 ±0.08 ±0.11 ±0.06 ±0.07 ±0.06
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Figure 1: Misclassification detection under different pre-
dicting models. AUROC for distinguishing correct from in-
correct predictions under different predicting models, using
the different proposed measures of uncertainty as score. EU
(A3) performs best when predicting with the single model.
For the other cases, TU (B/C3) performs best. AUROCs
are averages over all datasets. Statistics over five runs.

is comparable. Generally, it is also more convenient to stick
to a single model.

We evaluated subsets ranging from the most certain 50% of
datapoints to the entire dataset. To compare how well un-
certainty measures rank data for selecting those subsets, we
used the area under the accuracy rejection curve (AUARC)
as the performance metric. Results are provided in Tab. 2,
showing that the optimal measure depends on the model
used for prediction. For (i), TU (A3) performs best, fol-

lowed by EU (A3), while for (ii) and (iii), TU (B/C3)
performs best. Notably, uncertainty measures perform essen-
tially the same for settings (ii) and (iii). As we will show in
Sec. 5.3, uncertainty measures for (B) and (C) are highly
correlated on ID data, which explains their similar perfor-
mance in settings (ii) and (iii). Additional details and plots
of accuracy rejection curves are provided in Apx. B.2.

Misclassification detection. This task evaluates the abil-
ity of an uncertainty measure to distinguish between the
set of correct and incorrectly predicted samples. The setup
in this experiment is identical to the selective prediction
setup. We consider the AUROC for distinguishing between
correctly and incorrectly predicted datapoints for the differ-
ent proposed measures of predictive uncertainty as scoring
functions. Alternative metrics commonly used to evaluate
misclassification detection, such as AUPR or FPR@TPR95,
were also considered in our experiments. Those induced the
same ordering of uncertainty measures, thus we report the
AUROC for experiments of this type.

The results are provided in Fig. 1. We average over the four
considered datasets and report means and standard devia-
tions over five independent runs. The results for individual
datasets are reported in Fig. 10 - Fig. 12 in the appendix.
For detecting the misclassification of (i) the single model,
EU (A3) performs best. However, when predicting with (ii)
the average or (iii) a model according to the posterior, TU
(B/C3) performs best. This mirrors the results of the selec-
tive prediction task, confirming the importance of aligning
the uncertainty measure to the predicting model.

Adversarial example detection. Additionally, we explored
the efficacy of uncertainty measures for detecting adversar-
ial examples on a specific model under FGSM [Goodfellow
et al., 2015] and PGD [Madry et al., 2018] attacks. Impor-
tantly, we do not intend to claim any level of adversarial
robustness to these attacks, but use them as a tool to un-
derstand the behavior of the uncertainty measures resulting
from our framework. Results and detailed discussion are
provided in Apx. B.4 due to space limitations.
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Figure 2: Distribution shift detection on CIFAR10-C. AUROC for distinguishing between clean and corrupted test
datapoints, using the different proposed measures of uncertainty as score. Black dashed line shows the maximum AUROC
over all measures per severity. Insets shows detailed results for the highest severity. Statistics over five runs.

5.2 DETECTING DISTRIBUTIONAL MISMATCH

The first set of experiments aimed to assess the correlation
between an uncertainty measure and prediction correctness.
This is typically evaluated on i.i.d. test data drawn from the
same distribution as the training dataset D. However, there
is no guarantee that the model will perform reliably on test
data from a different distribution. Therefore, an effective
uncertainty measure should ideally assign high uncertainty
to such out-of-distribution (OOD) samples.

Out-of-distribution detection. We considered standard
OOD detection dataset pairings from the literature [Mukhoti
et al., 2023, Hofmann et al., 2024] for our experiments.
Again, we sampled models on CIFAR10/100, SVHN and
TIN. Then, we use the respective test datasets as ID dataset
and the test datasets of the remaining datasets, as well as
LSUN, as OOD datasets. Thus, we consider ID/OOD dataset
pairings CIFAR10/CIFAR100, CIFAR10/SVHN, and so on;
a total of 16 pairings. We compare the AUROC for distin-
guishing between ID and OOD datapoints for each mea-
sure within our framework as a scoring function. Alterna-
tive commonly used metrics such as the AUPR and the
FPR@TPR95 were also considered. However, since they in-
duced the same ranking of uncertainty measures, we report
the AUROC for the OOD detection experiments.

Results are provided in Fig. 3, showing that TU (B/C2)
and TU (B/C3) perform best in this task. We observe, that
across all measures, TU and AU perform better than EU,
which is contrary to assumptions commonly formulated in
the literature [e.g., Mukhoti et al., 2023, Mucsányi et al.,
2024]. We find, that only on a single ID / OOD dataset
combination (TIN/SVHN, see Fig. 16 in the appendix) out
of the 16 pairings we considered, an EU measure performs
best. One possible explanation for the strong performance
of AU (B) and (C) could be low noise for these datasets.

Distribution shift detection. The considered dataset pair-
ings represent comparatively strong OOD-ness. Therefore,
we additionally investigated the performance of the uncer-
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Figure 3: OOD detection. AUROC for distinguishing be-
tween ID and OOD datapoints using the different proposed
measures of uncertainty as score. TU (B/C2) and TU
(B/C3) perform best. AUROCs are averaged over all ID /
OOD combinations. Statistics over five runs.

tainty measures for detecting distribution shifts on CIFAR10
using the CIFAR10-C [Hendrycks and Dietterich, 2019]
dataset. The different levels of corruption provided by this
dataset can be considered as increasing levels of OOD-ness.
We utilized the 15 main corruptions and excluded the four
additional corruptions designated for hyperparameter tuning.
We report averages over all 15 corruptions in Fig. 2 for the
five severity levels of corruption provided, showing the AU-
ROC of distinguishing between clean and corrupted versions
of the CIFAR10 test dataset using the different uncertainty
measures. The results show that EU measures are more ef-
fective than AU or TU measures at intermediate severities
but become equally effective for the highest severity.

5.3 DISENTANGLEMENT OF MEASURES

There has been a recent surge of interest in the disentan-
glement of AU and EU [Valdenegro-Toro and Mori, 2022,
Mukhoti et al., 2023, Mucsányi et al., 2024]. Furthermore,
concerns about the additive decomposition TU = AU + EU
has been raised [Wimmer et al., 2023]. Therefore, we inves-
tigate the correlation of our measures on both ID and OOD
data and conclude with active learning experiments, one of
the main tasks requiring disentangled EU measures.
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Figure 4: Correlation of uncertainty measures on ID
dataset (CIFAR10). High rank correlation blocks exist.

Rank correlation of measures. Following Mucsányi et al.
[2024], we investigate the rank correlation of the uncertainty
measures in our proposed framework. We consider the rank
correlation (Kendall’s τb to account for ties) of measures on
both ID and OOD data. Models are sampled on CIFAR10,
thus the ID dataset is the CIFAR10 test dataset, and we
consider LSUN as the OOD dataset.

The results for the ID dataset are shown in Fig. 4. We ob-
serve, that for TU and AU measures, there are two highly
correlated blocks. Those measures that depend on a single
predicting model and the rest. While there is a stark contrast
between considering the single predicting model and the rest,
there are no real differences between considering the aver-
age model as predicting model and each model according to
the posterior distribution. Furthermore, the approximation of
the true predictive distribution (1,2,3) does not seem to
play a major role for TU and AU on the ID dataset. For EU,
there is a block of highly correlated measures, (B3), (C2)
and (C3). This can be explained due to their additive rela-
tionship (see Apx. A.1). The same holds for the strong corre-
lation between EU (B1) and (C1), which share a similar
relationship (again, see Apx. A.1). Finally, EU (A2) and
(A3) have a high correlation. Although they do not share a
similar relationship as the other blocks of high correlation
for EU measures, EU (A3) is an upper bound of (A2).

The results for the OOD dataset are shown in Fig. 5. Here,
we do not observe similarly high rank correlations as for
the ID dataset. The strongest rank correlation exhibited
is those for EU (B3), (C2) and (C3), as well as EU
(B1) and (C1). Note that TU (B/C3) and AU (B) are
equivalent, thus perfectly correlated. In general, we observe
a very distinct disentanglement of uncertainty measures
in our proposed framework. Although there are blocks of
high correlation for ID data, we mostly do not observe such
strong correlations for OOD data.
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Figure 5: Correlation of uncertainty measures on OOD
dataset (LSUN). Rank correlations are very low overall.

Active Learning. Finally, we investigated the proposed
framework of uncertainty measures on active learning tasks.
Given the computational complexity of the active learning
setting, we utilized different datasets and models as for the
rest of our experiments. Specifically, we used the MNIST
[Lecun et al., 1998] and FMNIST [Xiao et al., 2017] datasets
and a small CNN. Details on the network architecture and
training procedure are provided in Apx. B.5. We obtained
five posterior samples (ensemble members) in each acqui-
sition round. The average over the predictive distributions
of those sampled models, the approximated posterior pre-
dictive, was used to calculate the accuracies for each ac-
quisition step. The same sampled models were used to ap-
proximate the respective uncertainty measures as acquisi-
tion functions to select the next datapoints from the pool
dataset to transfer to the training dataset.

For MNIST, we started with 20 datapoints in the training
dataset and the remaining 49,980 datapoints in the pool
dataset. Those 20 datapoints were balanced so that two data-
points from each class were contained. In each iteration, the
five samples with the highest uncertainty were selected from
the pool dataset and added to the training dataset. We con-
sidered TU, AU and EU for measures (B2), (B3), (C2)
and (C3) as acquisition functions, as well as random selec-
tion as a baseline. We did not investigate measures (A1),
(A2), (A3), (B1) and (C1) due to the long runtimes of
the experiments, but would expect them to perform worse
than those considered in light of the other experiments we
conducted. However, an interesting situation could be EU
(A1) when training a single model on the dataset in the cur-
rent iteration and comparing the model from the previous
iteration. Future work should investigate this setting, e.g. in
transfer learning scenarios.

The results are given in Fig. 6. We observe that EU (C2),
the mutual information, leads to the best performance for
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Figure 6: Active learning on MNIST. EU (C3) and EU
(B3) perform worst overall. The random baseline performs
strong for small dataset sizes. The accuracy is those of the
posterior predictive. Statistics over five runs.

any of the EU measures. Interestingly, we find TU (B/C2)
which is identical to AU (B) to be equally well performing.
The same is found for TU (B/C3). EU (B3) and EU
(C3) are found to be the worst performing measures as
acquisition functions, contrary to the sentiment that EU
estimators should perform best in this task [e.g. Gal et al.,
2017, Mukhoti et al., 2023]. In contrast, AU (C), performs
very well as an acquisition function. The random sampling
baseline is also very effective as an acquisition function until
the training dataset size reaches around 100 samples, more
effective than any of the considered uncertainty measures.
We hypothesize that until a certain dataset size, models
sampled from the posterior are not specified enough and
provide no good signal of what datapoints to add next, in
fact even the contrary as they are performing worse than
random. This behavior would be interesting to investigate
in more details in future experiments.

For FMNIST, we started with 1000 datapoints in the train-
ing dataset and the remaining 49,000 datapoints in the pool
dataset. The initial training dataset was balanced such that
100 datapoints from each class were included. In each itera-
tion, the 15 samples with the highest uncertainty are selected
from the pool dataset and added to the training dataset. As
for the MNIST experiment, we considered TU, AU and EU
for measures (B2), (B3), (C2) and (C3) as acquisition
functions, as well as random selection as baseline.

The results are provided in Fig. 7. We find that all EU mea-
sures including the mutual information EU (C2), are out-
performed by TU (B/C2) which is identical to AU (B),
and AU (C). Until around 1500 samples, the random base-
line performs roughly on par with the EU measures, af-
terwards it even performs slightly better. Although both
datasets are relatively simple, FMNIST proved notably more
challenging for the active learning pipeline and has higher
variance between runs. This is likely due to its increased
complexity and less clear-cut class boundaries.
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Figure 7: Active learning on FMNIST. All three EU mea-
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(C). The accuracy is those of the posterior predictive. Statis-
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6 CONCLUSION

In this work, we introduced a unifying framework to cate-
gorize information-theoretic measures of predictive uncer-
tainty. By systematically considering the choice of the pre-
dicting model and the approximation of the true predictive
distribution, we derived a family of uncertainty measures
that encompasses existing measures and introduces new
ones. This framework clarifies the relationships between dif-
ferent uncertainty measures and their implicit assumptions,
offering a more structured way of understanding them and
applying them in practice.

Our empirical evaluations demonstrated the importance of
aligning the uncertainty measure with the predicting model.
We found that different measures perform optimally, de-
pending on the predicting model, emphasizing the need for
careful selection based on the intended application. Further-
more, our results challenge prevailing assumptions in the lit-
erature, such as the effectiveness of EU measures for OOD
detection, showing that AU often plays a dominant role. We
also investigated the degree of disentanglement between the
measures of our proposed framework. Our findings indicate
that, while there are strong correlations between specific un-
certainty measures for ID data, correlations weaken signifi-
cantly in OOD scenarios. This suggests that the disentangle-
ment of measures may be highly context-dependent, which
should be investigated in depth in the future. Future work
should also explore extensions of our framework to autore-
gressive models. Here, uncertainty estimation plays a cru-
cial role in addressing hallucinations, particularly a subset
known as confabulations, and in ensuring reliable text gen-
eration [Xiao and Wang, 2021, Abbasi-Yadkori et al., 2024,
Aichberger et al., 2025, Farquhar et al., 2024].

Overall, our work provides a clear conceptual foundation for
understanding predictive uncertainty measures and offers
actionable insights for their selection for a given task.
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A TECHNICAL DETAILS

In this section, we provide additional details on the relationship between epistemic components as well as the MC
approximations for all measures. Furthermore, we discuss potential generalizations of our framework to the Rényi cross-
entropy and other proper scoring rules. Finally, we discuss the alternative order of arguments for Eq. (5) and its implications
for interpreting the resulting uncertainty measures as well as the regression setting.

A.1 RELATIONSHIPS BETWEEN EPISTEMIC COMPONENTS

Schweighofer et al. [2023a] proved the relationship that the sum of the EU of C2 and B3 is equivalent to the EU of C3. For
completeness, we provide a version of the proof as follows:

EU (C2) - Mutual Information︷ ︸︸ ︷
Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))] +

EU (B3)︷ ︸︸ ︷
Ep(w̃|D) [KL(p(y | x,D) ∥ p(y | x, w̃))] (7)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x,D)

]]
+ Ep(w̃|D)

[
Ep(y|x,D)

[
log

p(y | x,D)

p(y | x, w̃)

]]
(8)

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)] − Ep(y|x,w) [log p(y | x,D)]

]
+ (9)

Ep(w̃|D)

[
Ep(y|x,D) [log p(y | x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

]
= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
−

(((((((((((
Ep(y|x,D) [log p(y | x,D)] + (10)

(((((((((((
Ep(y|x,D) [log p(y | x,D)] − Ep(w̃|D)

[
Ep(y|x,D) [log p(y | x, w̃)]

]
= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
− (11)

Ep(w̃|D)

[
Ep(w|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]]
= Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w) [log p(y | x,w)]

]]
− (12)

Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]]
= Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x, w̃)

]]]
(13)

= Ep(w|D)

[
Ep(w̃|D) [KL(p(y | x,w) ∥ p(y | x, w̃))]

]︸ ︷︷ ︸
EU (C3)

, (14)

which is what we wanted to show. The step from (9) to (10) is due to additivity and linearity of expectations. The step from
(11) to (12) is due to the fact that we can insert the expectation Ep(w̃|D) in the first term as it does not depend on w̃ and due
to the fact that p(w̃ | D) = p(w | D).
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Furthermore, a similar proof can be constructed for EU (C1) = EU (C2) + EU (B1) as follows:

EU (C2) - Mutual Information︷ ︸︸ ︷
Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))] +

EU (B1)︷ ︸︸ ︷
KL(p(y | x,D) ∥ p(y | x, w̃)) (15)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x,D)

]]
+ Ep(y|x,D)

[
log

p(y | x,D)

p(y | x, w̃)

]
(16)

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)] − Ep(y|x,w) [log p(y | x,D)]

]
+ (17)

Ep(y|x,D) [log p(y | x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
−

(((((((((((
Ep(y|x,D) [log p(y | x,D)] + (18)

(((((((((((
Ep(y|x,D) [log p(y | x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
− Ep(w|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]
(19)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x, w̃)

]]
(20)

= Ep(w|D) [KL(p(y | x,w) ∥ p(y | x, w̃))]︸ ︷︷ ︸
EU (C1)

, (21)

which is what we wanted to show. Again, the step from (17) to (18) is due to additivity and linearity of expectations. The
linearity property is used to get to (19), after which elementary algebra leads to the result.

In the same fashion, it is possible to construct a proof for EU (C2) = EU (C2) + EU (B2). However, as we know that EU
(B2) = 0, this is trivial.

A.2 MONTE CARLO APPROXIMATIONS

The measures we proposed through our framework, except for measure (A1), incorporate posterior expectations Ep(w|D) [·].
These are generally intractable to calculate exactly and are thus approximated through samples drawn from the distribution -
a Monte Carlo approximation of the expectation. In this section we provide those approximations explicitly and discuss
efficient ways to implement them, utilizing relationships between individual measures.

We assume that the posterior p(w | D) models to predict are drawn from and the posterior p(w̃ | D) approximations of
the true model are drawn from are the same. However, in practice it is generally the case that models for averaging are
selected based on their accuracy on a validation set, or more generally that they are selected in a way optimal for predicting
well. When sampling potential true models that are likely under the data, the functional diversity of samples is often of
concern, e.g. as done with the sampling algorithm in Schweighofer et al. [2023b]. This can be seen as either having different
posteriors due to different priors or having different algorithms to obtain samples from the same posterior. However, if the
samples are not the same, many of the relationships in Sec. 3.1 are no longer valid, thus also the coloring in Tab. 1. The
provided implementation is able to handle both the case where different samples are used for the MC approximation as well
as the case where the same samples are used and thus more efficient computation of TU (C3) and EU (C3) is possible.
The MC approximations for a single set of samples {wn}Nn=1 from p(w | D) = p(w̃ | D) are given by

TU (A2):

CE(p(y | x,w) ; p(y | x,D)) = CE(p(y | x,w) ; Ew̃ [p(y | x, w̃)]) (22)

≈ CE(p(y | x,w) ;
1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

TU (A3):

Ew̃ [CE(p(y | x,w) ; p(y | x, w̃))] (23)

≈ 1

N

N∑
n=1

CE(p(y | x,w) ; p(y | x,wn)), wn ∼ p(w | D)



TU (B/C1):

CE(p(y | x,D) ; p(y | x, w̃)) = Ew [CE(p(y | x,w) ; p(y | x, w̃))] (24)

≈ 1

N

N∑
n=1

CE(p(y | x,wn) ; p(y | x, w̃)), wn ∼ p(w | D)

TU (B/C2):

CE(p(y | x,D) ; p(y | x,D)) = Ew [CE(p(y | x,w) ; Ew̃ [p(y | x, w̃)])] (25)

≈ 1

N

N∑
n=1

CE(p(y | x,wn) ;
1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

TU (B/C3):

Ew̃ [CE((p(y | x,D) ; p(y | x, w̃))] = Ew [Ew̃ [CE(p(y | x,w) ; p(y | x, w̃))]] (26)

≈ 1

N(N − 1)

N∑
n=1

N∑
n′=1

CE(p(y | x,wn) ; p(y | x,wn′)), wn ∼ p(w | D)

AU (B):

H(p(y | x,D)) = H(Ew [p(y | x,w)]) (27)

≈ H(
1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

AU (C):

Ew [H(p(y | x,w))] ≈ 1

N

N∑
n=1

H(p(y | x,wn)), wn ∼ p(w | D) (28)

EU (A2):

KL(p(y | x,w) ∥ p(y | x,D)) = KL(p(y | x,w) ∥ Ew̃ [p(y | x, w̃)]) (29)

≈ KL(p(y | x,w) ∥ 1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

EU (A3):

Ew̃ [KL(p(y | x,w) ∥ p(y | x, w̃))] (30)

≈ 1

N

N∑
n=1

KL(p(y | x,w) ∥ p(y | x,wn)), wn ∼ p(w | D)

EU (B1):

KL(p(y | x,D) ∥ p(y | x, w̃)) = KL(Ew [p(y | x,w)] ∥ p(y | x, w̃)) (31)

≈ KL(
1

N

N∑
n=1

p(y | x,wn) ∥ p(y | x, w̃)), wn ∼ p(w | D)

EU (B3):

Ew̃ [KL(p(y | x,D) ∥ p(y | x, w̃))] = Ew̃ [KL(Ew [p(y | x,w)] ∥ p(y | x, w̃))] (32)

≈ 1

N

N∑
n=1

KL(
1

N

N∑
n=1

p(y | x,wn) ∥ p(y | x,wn)), wn ∼ p(w | D)



EU (C1):

Ew [KL(p(y | x,w) ∥ p(y | x, w̃))] (33)

≈ 1

N

N∑
n=1

KL(p(y | x,wn) ∥ p(y | x,w)), wn ∼ p(w | D)

EU (C2):

Ew [KL(p(y | x,w) ∥ p(y | x,D))] = Ew [KL(p(y | x,w) ∥ Ew̃ [p(y | x, w̃)])] (34)

≈ 1

N

N∑
n=1

KL(p(y | x,wn) ∥
1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

EU (C3):

Ew [Ew̃ [KL(p(y | x,w) ∥ p(y | x, w̃))]] (35)

≈ 1

N(N − 1)

N∑
n=1

N∑
n′=1

KL(p(y | x,wn) ∥ p(y | x,wn′)), wn ∼ p(w | D)

A.3 GENERALIZATION TO RENYI CROSS-ENTROPY

In this section we review the Rényi cross-entropy which is a generalization of the cross-entropy discussed in the main paper.
This allows to directly transfer our proposed measure of predictive uncertainty in Eq. (5) and the framework we introduced
based on it (overview in Tab. 1) to other instances of Rényi cross-entropies.

Let us start with the Rényi entropy, which was proposed as a generalization of the Shannon entropy, in that for the limit of
the Rényi parameter α → 1 the Rényi entropy becomes the Shannon entropy. For two discrete distributions p and q on the
same support Y it is defined as

Hα(p) =
1

1− α
log
∑
i

pαi (36)

Similarly, the Rényi divergence is a generalization of the Kullback-Leibler (KL) divergence, in that for the limit of the Rényi
parameter α → 1 the Rényi divergence becomes the KL divergence. It is defined as

Dα(p || q) =
1

α− 1
log
∑
i

pαi q1−α
i (37)

Note that there are also versions of both for continuous distributions, basically exchanging the sum with an integral. However,
the resulting Rényi differential entropy shares the same deficiencies as the Shannon differential entropy.

What is left is defining the Rényi cross-entropy. Motivated by the additive decomposition of Shannon cross-entropy into the
entropy and KL divergence, Sarraf and Nie [2021] proposed to define the Rényi cross-entropy as

CEα(p ; q) := Hα(p) + Dα(p || q) (38)

Multiple closed form solutions for different values of α are already known for the Rényi entropy and divergence, making
this a very simple solution. Furthermore, Valverde-Albacete and Peláez-Moreno [2019] introduced a closed form solution,
which has been simplified to the following form by Thierrin et al. [2022]:

CEα(p ; q) :=
1

1− α
log
∑
i

pi q
α−1
i (39)

Furthermore, Thierrin et al. [2022] proposes closed form solutions for this form of the Rényi differential cross-entropy for
various continuous distributions.



In the following we stick to the definition of the Rényi cross-entropy by Sarraf and Nie [2021] (Eq. (38)) and state the
respective entropy and divergence for special cases of α. By defining the arbitrary discrete distributions as p := p(y | x, ·)
and q := p(y | x,w∗) each value of α yields a variant our proposed measure of predictive uncertainty (Eq. (5)), giving rise
to variants of our proposed framework.

α = 0: The measure of entropy is called the Hartley or max-entropy, which is the cardinality of possible events Y . It is
given by

H0(p) := log |Y| . (40)

The divergence is called max-divergence and is given by

D0(p || q) := − logQ({i : pi > 0}) . (41)

α = 1
2 : The measure of entropy is referred to as Bhattacharyya-entropy. It is given by

H 1
2
(p) := 2 log

∑
i

√
pi . (42)

The divergence is called Bhattacharyya-divergence (minus twice the logarithm of the Bhattacharyya coefficient) and is given
by

D 1
2
(p || q) := −2 log

∑
i

√
piqi . (43)

α = 1: This case is the well known Shannon-entropy, given by

H1(p) = H(p) := −
∑
i

pi log pi . (44)

The divergence is known as Kullback-Leibler divergence, given by

D1(p || q) = KL(p ∥ q) :=
∑
i

pi log
pi
qi

. (45)

α = 2: This case is called the collision entropy, which is closely related to the index of coincidence. It is given by

H2(p) := − log
∑
i

p2i . (46)

The corresponding divergence is based upon the chi-square divergence

D2(p || q) := log

(
N∑
i=1

p2i
qi

)
= log

(
1 +

N∑
i=1

(pi − qi)
2

qi

)
. (47)

α = ∞: The entropy is known as the min-entropy. It is given by

H∞(p) := − logmax
i

pi . (48)

The divergence

D∞(p || q) := log sup
i

pi
qi

. (49)

Notes. Realizations of Renyi entropy satisfy the inequalities

H0(p) ≥ H1(p) ≥ H2(p) ≥ H∞(p) (50)

Also Theorem 7 in van Erven and Harremos [2014] states that Renyi divergences are continuous in the order of α.



Table 3: Our proposed framework applied under the zero-one score. Each measure denotes a different instantiation of
our proposed measure given by Eq. (5), but using the zero-one score instead of the cross-entropy (log score) for different
assumptions about the predicting model and how the true model is approximated. For brevity, we define pw := p(y | x,w),
pD := p(y | x,D), Ew := Ep(w|D) (the same for w̃) and p•(p̂◦) := p(y = argmax p(y | x, ◦) | x, •). Expressions with
the same cell coloring are equivalent to each other. Each measure of TU additively decomposes into AU and EU.

Predicting model
Approximation of true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w 1− pw(p̂w̃) 1− pw(p̂D) Ew̃ [1− pw(p̂w̃)]

(B) Ew 1− pD(p̂w̃) 1− pD(p̂D) Ew̃ [1− pD(p̂w̃)]

(C) w ∼ p(w | D) Ew [1− pw(p̂w̃)] Ew [1− pw(p̂D)] Ew [ Ew̃ [1− pw(p̂w̃)]]

A
U

(A) w 1−max pw 1−max pw 1−max pw

(B) Ew 1−max pD 1−max pD 1−max pD

(C) w ∼ p(w | D) 1− Ew [max pw] 1− Ew [max pw] 1− Ew [max pw]

E
U

(A) w max pw − pw(p̂w̃) max pw − pw(p̂D) Ew̃ [max pw − pw(p̂w̃)]

(B) Ew max pD − pD(p̂w̃)
���������: 0

max pD − pD(p̂D) Ew̃ [max pD − pD(p̂w̃)]

(C) w ∼ p(w | D) Ew [max pw − pw(p̂w̃)] Ew [max pw − pw(p̂D)] Ew [ Ew̃ [max pw − pw(p̂w̃)]]

A.4 GENERALIZATION TO OTHER PROPER SCORING RULES

Another perspective on our measure of uncertainty (Eq. (5)) is the interpretation of Kotelevskii et al. [2025] and Hofman
et al. [2024b], which consider Bayesian approximations of multiple proper scoring rules as measures of uncertainty. They
consider the zero-one, Brier, and Spherical score in addition to the log-score, which is the cross-entropy upon which the
information-theoretic measures we discussed in the main paper are based (see Eq. (5)). Note however, that they consider
the opposite order of arguments (see Apx. A.5), which leads to similar measures due to symmetry, yet has a different
interpretation. For the zero-one score, the resulting framework of measures according to our interpretation is given in Tab. 3,
for the Brier score in Tab. 4 and for the spherical score it is given in Tab. 5.

A.5 ALTERNATIVE MEASURE

The reverse order of the arguments for the cross-entropy in Eq. (5), that is, CE(p(y | x,w∗) ; p(y | x, ·)), gives rise to
an alternative measure that is consistent with Eq. (1). This measure, also known as “pointwise risk” under the log score at
an input (point) x, has been considered as a measure of predictive uncertainty [Gruber and Buettner, 2023, Lahlou et al.,
2023, Kotelevskii et al., 2025, Hofman et al., 2024b]. Kotelevskii et al. [2025] introduced a framework based on similar
ideas for Bayesian approximation as we consider in our framework (i.e. settings (B), (C), (2) and (3)) and is the work
closest to our work. They introduce a framework based on decompositions of proper scoring rules (pointwise risk measures),
where the logarithmic proper scoring rule is a special case, and subsequent Bayesian approximation. However, they do not
cover settings (A) and (1) in our framework, introduce their framework based on the notion of pointwise risk and focus
on different empirical aspects of their resulting measures.

We argue that our proposed measure (Eq. (5)) has a more meaningful interpretation than CE(p(y | x,w∗) ; p(y | x, ·)). Our
measure considers the uncertainty inherent to predicting with the selected model, plus the uncertainty due to any potential
mismatch with the true model. The alternative measure considers the uncertainty inherent to predicting with the true model,
plus the uncertainty due to any potential mismatch with the selected model. However, we generally don’t know the true
model, thus can’t actually use it to predict and have to resort to an approximation of the true model anyways.



Table 4: Our proposed framework applied under the Brier score. Each measure denotes a different instantiation of our
proposed measure given by Eq. (5), but using the Brier score instead of the cross-entropy (log score) for different assumptions
about the predicting model and how the true model is approximated. For brevity, we define pw := p(y | x,w), pD :=

p(y | x,D), and Ew := Ep(w|D) (the same for w̃). The 2-norm is defined as ∥p(y | x, •)∥2 :=
√∑K

k=1 p(y = k | x, •)2.
Expressions with the same cell coloring are equivalent to each other. Each measure of TU additively decomposes into AU
and EU.

Predicting model
Approximation of true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w 1− ∥pw∥22 + ∥pw − pw̃∥22 1− ∥pw∥22 + ∥pw − pD∥22 Ew̃ [1− ∥pw∥22 + ∥pw − pw̃∥22]

(B) Ew 1− ∥pD∥22 + ∥pD − pw̃∥22 1− ∥pD∥22 +������: 0

∥pD − pD∥22 Ew̃ [1− ∥pD∥22 + ∥pD − pw̃∥22]

(C) w ∼ p(w | D) Ew [1− ∥pw∥22 + ∥pw − pw̃∥22] Ew [1− ∥pw∥22 + ∥pw − pD∥22] Ew [ Ew̃ [1− ∥pw∥22 + ∥pw − pw̃∥22]]

A
U

(A) w 1− ∥pw∥22 1− ∥pw∥22 1− ∥pw∥22

(B) Ew 1− ∥pD∥22 1− ∥pD∥22 1− ∥pD∥22

(C) w ∼ p(w | D) Ew [1− ∥pw∥22] Ew [1− ∥pw∥22] Ew [1− ∥pw∥22]

E
U

(A) w ∥pw − pw̃∥22 ∥pw − pD∥22 Ew̃ [∥pw − pw̃∥22]

(B) Ew ∥pD − pw̃∥22 ������: 0

∥pD − pD∥22 Ew̃ [∥pD − pw̃∥22]

(C) w ∼ p(w | D) Ew [∥pw − pw̃∥22] Ew [∥pw − pD∥22] Ew [ Ew̃ [∥pw − pw̃∥22]]

A.6 REGRESSION

For a probabilistic regression model, e.g. under a Gaussian assumption, the distribution parameters are estimated, i.e. mean
and variance for the Gaussian predictive distribution. The model is then trained by minimizing the negative log-likelihood
under the training dataset.

Many works follow Depeweg et al. [2018] and utilize a variance decomposition for uncertainty quantification, where the AU
is the expected variance and the EU is the variance of means, where expectation and variance are over the model posterior.
However, Depeweg et al. [2018] also consider the uncertainty measure given by Eq. (3), using differential entropies for
the continuous predictive distributions. The same can be done in order to adapt our framework in Tab. 1 for continuous
predictive distributions.

Nevertheless, there are two important drawbacks one need to consider when doing this. First, differential entropy can be
unbounded, depending on the nature of the predictive distribution. For the example of a Gaussian, it can be between −∞
and ∞. In addition, it is not invariant to a change of variables, making it a relative rather than an absolute measure. Second,
the posterior predictive distribution as defined in Eq. (2) is generally a mixture of individual distributions, unlike in the
discrete case. This makes MC approximations of the resulting measures more involved.



Table 5: Our proposed framework applied under the spherical score. Each measure denotes a different instantiation of
our proposed measure given by Eq. (5), but using the spherical score instead of the cross-entropy (log score) for different
assumptions about the predicting model and how the true model is approximated. For brevity, we define pw := p(y | x,w),

pD := p(y | x,D), and Ew := Ep(w|D) (the same for w̃). The 2-norm is defined as ∥p•∥2 :=
√∑K

k=1 p(y = k | x, •)2.

Furthermore, the scalar product is defined as ⟨p•, p◦⟩ :=
∑K

k=1 p(y = k | x, •) · p(y = k | x, ◦). Expressions with the
same cell coloring are equivalent to each other. Each measure of TU additively decomposes into AU and EU.

Predicting model
Approximation of true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w 1− ⟨pw,pw̃⟩
∥pw̃∥2

1− ⟨pw,pD⟩
∥pD∥2

Ew̃

[
1− ⟨pw,pw̃⟩

∥pw̃∥2

]
(B) Ew 1− ⟨pD,pw̃⟩

∥pw̃∥2
1− ⟨pD,pD⟩

∥pD∥2
Ew̃

[
1− ⟨pD,pw̃⟩

∥pw̃∥2

]
(C) w ∼ p(w | D) Ew

[
1− ⟨pw,pw̃⟩

∥pw̃∥2

]
Ew

[
1− ⟨pw,pD⟩

∥pD∥2

]
Ew

[
Ew̃

[
1− ⟨pw,pw̃⟩

∥pw̃∥2

]]

A
U

(A) w 1− ∥pw∥2 1− ∥pw∥2 1− ∥pw∥2

(B) Ew 1− ∥pD∥2 1− ∥pD∥2 1− ∥pD∥2

(C) w ∼ p(w | D) Ew [1− ∥pw∥2] Ew [1− ∥pw∥2] Ew [1− ∥pw∥2]

E
U

(A) w ∥pw∥2 − ⟨pw,pw̃⟩
∥pw̃∥2

∥pw∥2 − ⟨pw,pD⟩
∥pD∥2

Ew̃

[
∥pw∥2 − ⟨pw,pw̃⟩

∥pw̃∥2

]
(B) Ew ∥pD∥2 − ⟨pD,pw̃⟩

∥pw̃∥2 ��������: 0

∥pD∥2 − ⟨pD,pD⟩
∥pD∥2

Ew̃

[
∥pD∥2 − ⟨pD,pw̃⟩

∥pw̃∥2

]
(C) w ∼ p(w | D) Ew

[
∥pw∥2 − ⟨pw,pw̃⟩

∥pw̃∥2

]
Ew

[
∥pw∥2 − ⟨pw,pD⟩

∥pD∥2

]
Ew

[
Ew̃

[
∥pw∥2 − ⟨pw,pw̃⟩

∥pw̃∥2

]]



B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we provide additional empirical results of our evaluation of the proposed framework of uncertainty measures.
The code to reproduce our experiments is available at https:\github.com/ml-jku/uncertainty-measures.

B.1 ILLUSTRATIVE EXAMPLE

Here, we provide an illustrative synthetic example often discussed in the literature [Wimmer et al., 2023, Schweighofer et al.,
2023a, Sale et al., 2023b]. We consider a predictor defined as a Bernoulli distribution leading to the predictive distribution
p(y | θ). Thus, there is no model involved for mapping from the input space to the Bernoulli parameter. The only free
parameter is the Bernoulli parameter. Therefore, the posterior distribution is defined as p(θ | D) = p(D | θ)p(θ)/p(D). To
examplify our framework, we consider a Beta posterior distribution Beta(θ; 2, 3). The true Bernoulli parameter θ∗ is not
known.

Results are shown in Fig. 8, depicting what is considered as predicting model (green) and what is compared to as
approximation of the true model. The green line for measures (A1/2/3) and the violet line for measures (A/B/C1) were
chosen arbitrarily, but different to the expected Bernoulli parameter to exemplify the differences between measures.
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Figure 8: Uncertainty measures given by the predicting model and the approximation of the true model. We consider the
posterior distribution Beta(θ; 2, 3), shaded in gray.

B.2 DETAILED RESULTS ON MAIN EXPERIMENTS

The results for selective prediction in the main paper only provide the AUARC, but not individual accuracy-rejection curves,
which we provide in this section. Furthermore, results for misclassification detection and OOD detection in the main paper
show aggregate performances over multiple datasets to provide more robust conclusions about the performance of individual
measures of uncertainty. In this section, we provide individual results for completeness.

Selective prediction. We provide detailed additional results for selective prediction as discussed in the main paper. The
accuracy rejection curves and their AUARCs are shown in Fig. 9. For predicting using a single model, the best measure is
TU (A3). Overall, measures that consider the single model as predicting model perform well overall for measures of TU,
AU and EU. For predicting using the average model, TU (B/C3) performs best. Finally, the results for predicting under a
model according to the posterior are very similar to the results under the average model.

Misclassification detection. The detailed results for misclassification detection are given in Fig. 10 for a single predicting
model, in Fig. 11 for the average predicting model as well as in Fig. 12 for predicting with a model according to the posterior.
Although there are nuanced differences between datasets, conclusions translate very well between them.

https:\github.com/ml-jku/uncertainty-measures
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Figure 9: Selective prediction results. Accuracies per fraction of datapoints the respecitive predictive model model predicts
on, as well as AUARC (tabulated in legend) using different proposed measures of uncertainty as score. Accuracies are
averaged over all datasets. Means and standard deviations are calculated using five runs.



OOD detection. The detailed results for OOD detection for CIFAR10 as ID dataset are given in Fig. 13, for CIFAR100
as ID dataset in Fig. 14, for SVHN as ID dataset in Fig. 15 and for TIN as ID dataset in Fig. 16. We observe the highest
variability of experiments for TIN as ID dataset, where there is high variability depending on the OOD dataset. For the other
ID datasets, the different OOD datasets lead to very similar results.
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Figure 10: Misclassification detection results under (i) single predicting model. AUROC for distinguishing between
correctly and incorrectly predicted datapoints under a single predicting model, using the different proposed measures of
uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 11: Misclassification detection results under (ii) average predicting model. AUROC for distinguishing between
correctly and incorrectly predicted datapoints under the average predicting model, using the different proposed measures of
uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 12: Misclassification detection results under (iii) a model according to the posterior. AUROC for distinguishing
between correctly and incorrectly predicted datapoints under a model according to the posterior, using the different proposed
measures of uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 13: OOD detection results for CIFAR10. AUROC for distinguishing between ID and OOD datapoints using the
different proposed measures of uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 14: OOD detection results for CIFAR100. AUROC for distinguishing between ID and OOD datapoints using the
different proposed measures of uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 15: OOD detection results for SVHN. AUROC for distinguishing between ID and OOD datapoints using the
different proposed measures of uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 16: OOD detection results for TIN. AUROC for distinguishing between ID and OOD datapoints using the different
proposed measures of uncertainty as score. Means and standard deviations are calculated using five runs.



B.3 DIFFERENT NETWORK ARCHITECTURE

We want to assess the influence of the network architecture on the ranking of the results. To that end, we also trained DEs of
DenseNet169 and RegNet-Y 800MF, using the same training recipe as for ResNet-18 described in Sec. 5. A comparison of
the sampled models is given in Fig. 17. We observe that ResNet-18 performs a bit better than the two other models, with
RegNet-Y 800MF being the worst models in terms of negative log-likelihood (NLL) and accuracies. In terms of AU and EU,
we observe only minor differences in the upper tails of the distributions for CIFAR100 and TIN. For CIFAR10 and SVHN,
we do not observe differences. Next, we analyze the influence of the network architecture on the misclassification and OOD
detection tasks.

Misclassification detection. The results for misclassification detection using DEs with different model architectures are
given in Fig. 18. We observe no major differences for different models (per column) under a given predicting model (per row).

OOD detection. The results for OOD detection using DEs with different model architectures are given in Fig. 19. We
observe that the AU (C) is the best measure for DenseNet-169 and RegNet-Y 800MF, while it is AU (B) which is
equivalent to TU (B/C2) for ResNet-18. However, the general trends are the same across all architectures.
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Figure 17: Comparison of network architectures. Results are obtained on the test split of the respective dataset. We
compare the NLLs and accuracies for different models obtained through DEs on ResNet-18, DenseNet-169 and RegNet-
Y 800MF. The single model is randomly selected among all sampled models. We depict all models sampled in five runs.
Furthermore, the normalized AU (C) and the normalized EU (C2) are given per sampling method. All three network
architectures lead to similar results on all considered datasets.
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Figure 18: Misclassification detection results for DE with different model architectures and under different predicting
models. AUROC for distinguishing between correctly and incorrectly predicted samples under different predicting models,
using the different proposed measures of uncertainty as score. Means and standard deviations are calculated using five runs.
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Figure 19: OOD detection results for DE with different model architectures. AUROC for distinguishing between ID and
OOD datapoints using the different proposed measures of uncertainty as score. AUROCs are averaged over all ID / OOD
combinations. Means and standard deviations are calculated using five runs.
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Figure 20: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained through applying
FGSM. AUs are normalized with log(|Y|) to be more comparable across datasets with different number of classes.
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Figure 21: Adversarial example detection (FGSM). Means and standard deviations are calculated on five runs.

B.4 ADVERSARIAL EXAMPLE DETECTION

We want to investigate the effect of adversarially created inputs on the uncertainty estimates. Throughout this experiments,
we consider adversarial attacks on the single network. However, it would also be possible to attack the average model, albeit
more computationally expensive. As adversarial examples are known to transfer well between models of similar architecture
[Goodfellow et al., 2015], results for attacking the average model are expected to be relatively similar to those presented here.

We consider two different adversarial attacks, FGSM [Goodfellow et al., 2015] and PGD under infinity norm perturbation
[Madry et al., 2018]. For our experiments, we only consider the subset of the test datasets that are predicted correctly.
This we refer to as the original dataset. Then we apply the adversarial attacks the datapoints in the original dataset and
select those datapoints where the model was successfully fooled to predict incorrectly. This we refer to as the adversarial
dataset. We utilize the different uncertainty scores to calculate the AUROC of distinguishing between the original and the
adversarial dataset, akin to the OOD detection experiments reported in the main paper. We also investigated the AUPR and
FPR@TPR95 as alternative metrics, which lead to equivalent conclusions.

FGSM. We start with the results obtained through the FGSM attack with ϵ = 8/255. Histograms of the AU (A), the
entropy of the predictive distribution of the single attacked model and the AU (B), the entropy of the predictive distribution
under the average model, are shown in Fig. 20. We observe a shift towards higher AUs for the adversarial datapoints
compared to the original datapoints. This shift appears more pronounced for AU (B), which makes sense as the adversarial
examples have been obtained with the single model.

The main results are shown in Fig. 21, denoting the AUROC of distinguishing between the original and the adversarial
datapoints using the different measures of uncertainty as score. We observe qualitatively very similar results to the OOD
detection experiments, in that TU and AU measures for cases (B) and (C) are the most effective. Surprisingly, EU measures
underperform for adversarial example detection, compared to TU and AU measures.
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Figure 22: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained through applying
L∞-PGD. AUs are normalized with log(|Y|) to be more comparable across datasets with different number of classes.

A1 A2 A3 B/C1B/C2B/C3
TU

20

40

60

AU
RO

C

A B C
AU

Overall

A1 A2 A3 B1 B3 C1 C2 C3
EU

(a)

A1 A2 A3 B/C1B/C2B/C3
TU

65

70

75

80

AU
RO

C

A B C
AU

Overall

A1 A2 A3 B1 B3 C1 C2 C3
EU

(b)

Figure 23: Adversarial example detection (L∞-PGD). (a) Assuming higher uncertainty for adversarial examples. (b)
Assuming lower uncertainty for adversarial examples. Means and standard deviations are calculated on five runs.

PGD. Next, we conduct the same investigation using the L∞-PGD attack with ϵ = 8/255. Histograms of the AU (A), the
entropy of the predictive distribution of the single attacked model and the AU (B), the entropy of the predictive distribution
under the average model, are shown in Fig. 22. We observe a shift towards lower AU (A) for the adversarial datapoints
compared to the original datapoints. However for for AU (B), adversarial datapoints exhibit slightly higher values than the
original datapoints.

The results are given in Fig. 23(a), denoting the AUROC of distinguishing between the original and the adversarial datapoints
using the different measures of uncertainty as score. We observe that all measures except TU (A1) and AU (A) perform
better than random. The very bad performance of AU (A) stems from the fact that adversarial datapoints exhibit lower
uncertainties than the original datapoints (see Fig. 22). However, contrary to the experiments with FGSM, measures of EU
perform best for PGD.

The two experiments for adversarial example detection were conducted under the assumption that adversarial datapoints
should exhibit higher uncertainty than the original datapoints. Finally, we investigate a special variant of our experiments
with L∞-PGD adversarial examples, where we assume that adversarial datapoints exhibit lower uncertainty than the
original datapoints. The results are shown in Fig. 23(b). We observe that using AU (A) leads to the best results in this
setting. However, these results do not help to attain a mechanism for adversarial robustness, as we leverage additional side
information that the single model was fooled into being very confident about the adversarial examples. Attackers could add
constraints on the deviation between the AU (A) under the original and the adversarial datapoint in an improved version of
the L∞-PGD attack, rendering this detection mechanism useless.



B.5 ACTIVE LEARNING

In this section, we provide additional details on the active learning experiments described in the main paper.

The network architective of the utilized small CNN are: 5x5 conv [1 to 6 channels], 2x2 max-pool, 5x5 conv [6 to 12
channels], 2x2 max-pool, two linear layers with hidden size 32 and a final output linear layer; ReLU activations after each
max-pool and linear layer except the last as well as dropout with dropout rate 0.2 between linear layers. The training of the
models utilized the Adam optimizer [Kingma and Ba, 2015] for 50 epochs with a learning rate of 1e-3, a batch size of 32
and l2 weight decay of 1e-4. Early stopping was performed on the official validation split of the respective datasets, the
evaluation of the performance per step was conducted on the official test splits. Although the size of the training dataset
increases each step, the effective size, thus the number of gradient steps per epoch, was kept constant at 1000 for the MNIST
experiments and 1600 for the FMNIST experiments.

B.6 ALTERNATIVE POSTERIOR SAMPLING METHODS

Figure 24: Posterior sampling methods.

In addition to Deep Ensembles (DE) used as posterior sampling method
in the main paper, we investigate alternative posterior sampling methods.
Specifically, we consider the Laplace Approximation (LA) [MacKay, 1992]
on the last layer with Kronecker-factored approximate curvature [Ritter et al.,
2018] using the implementation of Daxberger et al. [2021]. Furthermore, we
consider MC Dropout (MCD) [Gal and Ghahramani, 2016]. As for DE, we
sample 10 models with the alternative posterior sampling methods for the MC
approximations of posterior expectations. Measures based on a single model
(combinations with (A)) use the maximum a posteriori (MAP) model for LA,
and the model without dropout activated for MCD as the predicting models.

There is a distinction between multi- and single-basin posterior sampling
techniques [Wilson and Izmailov, 2020], sometimes also referred to as multi-
and single-mode approaches [Hoffmann and Elster, 2021]. We refer to them as global and local posterior sampling techniques
for simplicity. In this categorization, DE is a global method, while LA and MCD are local methods [Fort et al., 2019], see
Fig. 24 for an illustration. We hypothesize that different methods for posterior sampling have a strong impact on which
uncertainty measure performs well empirically, especially given whether they are global or local methods.

In the following, we first analyze the characteristics of posterior samples drawn with those different sampling methods.
Then we investigate the importance of aligning the uncertainty measure with the predicting model, detecting distributional
mismatch and the disentanglement of measures on these additional posterior sampling methods.

B.6.1 Characteristics of Posterior Samples

To better understand the performance of different posterior sampling methods, we examine the characteristics of their
sampled models. The results in Fig. 25 show that these methods perform differently across datasets. For the global sampling
method DE, the average model consistently outperforms individual sampled models with a lower negative log-likelihood
(NLL) and higher accuracy across all datasets. In contrast, for local sampling methods LA and MCD, individual sampled
models exhibit higher NLL than both the single model and the average model. Additionally, the accuracy of individual
sampled models is lower than that of the single model. Specifically, for MCD, the single model’s accuracy is comparable to
the average model, while for LA, the single model’s accuracy exceeds that of the average model.

We further analyze the predictive uncertainties estimated by different posterior sampling methods using measure (C2),
which incorporates posterior samples and is upper-bounded. To ensure comparability between datasets, we normalize the
uncertainties by the maximal predictive uncertainty TU (C2), equal to the entropy of the uniform distribution log(|Y|).
The results in the two right plots in Fig. 25 show that these methods yield similar distributions of uncertainties for CIFAR10
and SVHN. However, for CIFAR100 and TIN, DE exhibits many more datapoints with very low EU and AU.
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Figure 25: Comparison of posterior sampling methods. Results are obtained on the test split of the respective dataset. We
compare the NLLs and accuracies for different models obtained through DE, LA and MCD. Similarly, the normalized AU
(C) and the normalized EU (C2) are shown per sampling method. All three methods yield similar results for CIFAR10
and SVHN, but differ greatly on CIFAR100 and TIN. Models sampled using LA have higher NLL and lower accuracy.
Furthermore, they lead to higher EU and lack predictions with very low AU. Additionally, the average model does not improve
over the single model in terms of NLL and accuracy for those two datasets. The results in the two left plots show single
models, posterior samples and average models of five runs, those in the two right plots show uncertainties for a single run.

B.6.2 Aligning the Uncertainty Measure with the Predicting Model

Selective Prediction. The results for LA are provided in Tab. 6, for MCD in Tab. 7. In contrast to the global posterior
sampling method DE, we do not find that it is not directly important to align the uncertainty measure to the predicting model
for LA and MCD. We find that no matter the predicting model, it is best to use measures for a single predicting model (A).
This is likely due to the strong dependence of the sampling space on the original model, i.e. the MAP for LA and the model
without dropout for MCD. An indicator for this is, that AU (A) is better than AU (B) or (C) for all settings, which was
never the case for DE (see Tab. 2).

Misclassification Detection. For misclassification detection, we have similar findings as for selective prediction. The
results for LA are shown in Fig. 26, those for MCD in Fig. 27. Again, the measures for (A) perform best, regardless of
the predicting model. The reason for this behavior is likely again the same as for misclassification, that the original model,
i.e. the MAP for LA and the model without dropout for MCD, has a strong dependence on the sampling space for those
posterior sampling methods. In accordance with this perspective, we find that AU (A) is better than AU (B) or (C) for all
settings, which was never the case for DE (see Tab. 2).

B.6.3 Detecting Distributional Mismatch

OOD Detection. The results for LA are provided in Fig. 28, the results for MCD in Fig. 29. For MCD, the results are
largely comparable to the results for DE in the main paper (see Fig. 3), where TU (B/C2) which is equivalent to AU (B)
and TU (B/C3) perform best. The EU measures perform very poor in general, worse than most TU and AU measures. For



Table 6: Selective prediction under different predicting models for LA. AUARC for different predicting models, i.e., the
single model, the average model and a model according to the posterior, using different predictive uncertainty measures as
score. We highlight the two best measures for each setting. For the single predicting model, and the average model, TU
(A3) performs best and both TU (A1) and AU (A) second best. For models sampled according to the posterior, TU (A3)
performs best, followed by TU (A2). Results are averaged over all datasets with statistics over five runs.

Measures: TU AU EU Random
Prediction A1 A2 A3 B/C1 B/C2 B/C3 A B C A1 A2 A3 B1 B3 C1 C2 C3 Baseline
Single 87.53 87.51 87.59 86.87 87.15 87.18 87.53 87.15 87.03 79.81 83.65 86.72 80.67 85.47 84.22 86.54 85.94 79.72

Model ±0.14 ±0.14 ±0.15 ±0.15 ±0.15 ±0.16 ±0.14 ±0.15 ±0.14 ±0.16 ±0.20 ±0.18 ±0.22 ±0.20 ±0.21 ±0.17 ±0.18 ±0.13

Average 87.35 87.34 87.44 86.68 86.96 87.00 87.35 86.96 86.83 79.44 83.47 86.60 80.37 85.28 84.01 86.37 85.76 79.36

Model ±0.17 ±0.17 ±0.18 ±0.18 ±0.18 ±0.19 ±0.17 ±0.18 ±0.17 ±0.18 ±0.20 ±0.19 ±0.22 ±0.22 ±0.22 ±0.19 ±0.21 ±0.16

Acc. to 85.10 85.15 85.26 84.67 84.86 84.99 85.10 84.86 84.66 76.63 81.63 84.69 78.17 83.39 82.16 84.53 83.91 76.56

Posterior ±0.12 ±0.11 ±0.13 ±0.12 ±0.11 ±0.13 ±0.12 ±0.11 ±0.11 ±0.14 ±0.12 ±0.14 ±0.17 ±0.16 ±0.17 ±0.14 ±0.15 ±0.08

Table 7: Selective prediction under different predicting models for MCD. AUARC for different predicting models, i.e.,
the single model, the average model and a model according to the posterior, using different predictive uncertainty measures
as score. We highlight the two best measures for each setting. Regardless of the predicting model, TU (A2) performs best,
followed by TU (A3). Results are averaged over all datasets with statistics over five runs.

Measures: TU AU EU Random
Prediction A1 A2 A3 B/C1 B/C2 B/C3 A B C A1 A2 A3 B1 B3 C1 C2 C3 Baseline
Single 86.97 87.15 87.11 85.59 86.56 86.42 86.97 86.56 86.53 78.81 84.57 85.86 81.53 84.30 82.83 85.40 84.76 78.75

Model ±0.07 ±0.07 ±0.07 ±0.05 ±0.06 ±0.06 ±0.07 ±0.06 ±0.06 ±0.08 ±0.08 ±0.09 ±0.05 ±0.09 ±0.06 ±0.07 ±0.08 ±0.09

Average 87.24 87.42 87.35 86.04 86.97 86.81 87.24 86.97 86.94 79.38 84.90 86.11 82.04 84.68 83.30 85.77 85.13 79.30

Model ±0.06 ±0.05 ±0.05 ±0.06 ±0.04 ±0.04 ±0.06 ±0.04 ±0.05 ±0.07 ±0.06 ±0.05 ±0.08 ±0.04 ±0.07 ±0.05 ±0.04 ±0.07

Acc. to 84.93 85.22 85.21 84.06 84.88 84.81 84.93 84.88 84.78 76.47 83.03 84.29 80.01 82.94 81.42 84.00 83.39 76.36

Posterior ±0.07 ±0.07 ±0.08 ±0.08 ±0.05 ±0.05 ±0.07 ±0.05 ±0.05 ±0.14 ±0.11 ±0.09 ±0.09 ±0.06 ±0.09 ±0.07 ±0.07 ±0.12

LA, we observe that all measures for TU and AU perform nearly identical and much better than EU meaures. In sum, we
surprisingly find that EU measures never outperform the best TU and AU measures for all posterior sampling methods.

Distribution Shift Detection. The results for distribution shift detection for LA are given in Fig. 30, the results for MCD
in Fig. 31. For LA, all TU and AU measures perform nearly identically, outperforming all EU measures in all severities. For
MCD, we find that except for the highest severity, the best TU, AU, and EU measures perform roughly on par.

B.6.4 Disentanglement of Measures

The results for LA are provided in Fig. 32 and Fig. 33, the results for MCD in Fig. 34 and Fig. 35. For MCD, the results are
largely consistent with the findings for DE in the main paper for the OOD data. For ID data, we find even more correlation
between measures, not only within TU, AU, and EU measures, but also between those. For LA, we find that the TU and AU
measures are all highly correlated with the OOD data compared to other posterior sampling methods. This explains the very
similar performance of all TU and AU measures on OOD detection with LA as a posterior sampling method. For the ID
data, the results for LA are very similar to the results with DE in the main paper.

B.6.5 Conclusions

Overall, the behavior of the global posterior sampling method DE discussed in the main paper and the local posterior
sampling methods LA and MCD discussed here differ in quite some dimensions.

First, we find that for LA the sampled models often perform poorly, especially for SVHN and TIN with more classes. Here,
the average model does not actually improve over the single models, as is the case for DE and MCD. This might be a
limitation of the particular LA used in this work.

Second, there does not appear to be a benefit in aligning the uncertainty measure to the predicting model for neither LA nor
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Figure 26: Misclassification detection under different pre-
dicting models for LA. AUROC for distinguishing correct
from incorrect predictions under different predicting models,
using the different proposed measures of uncertainty as score.
For all settings, TU (A3) performs best. AUROCs are aver-
ages over all datasets. Statistics over five runs.
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Figure 27: Misclassification detection under different pre-
dicting models for MCD. AUROC for distinguishing correct
from incorrect predictions under different predicting models,
using the different proposed measures of uncertainty as score.
For all settings, TU (A2) performs best. AUROCs are aver-
ages over all datasets. Statistics over five runs.
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Figure 28: OOD detection for LA. AUROC for distinguish-
ing between ID and OOD datapoints using the different pro-
posed measures of uncertainty as score. TU (B/C2) and TU
(B/C3) perform best. AUROCs are averaged over all ID /
OOD combinations. Statistics over five runs.
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Figure 29: OOD detection for MCD. AUROC for distin-
guishing between ID and OOD datapoints using the different
proposed measures of uncertainty as score. TU (B/C2) and
TU (B/C3) perform best. AUROCs are averaged over all
ID / OOD combinations. Statistics over five runs.
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Figure 30: Distribution shift detection on CIFAR10-C for LA. AUROC for distinguishing between clean and corrupted
test datapoints, using the different proposed measures of uncertainty as score. Black dashed line shows the maximum
AUROC over all measures per severity. Insets shows detailed results for the highest severity. Statistics over five runs.
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Figure 31: Distribution shift detection on CIFAR10-C for MCD. AUROC for distinguishing between clean and corrupted
test datapoints, using the different proposed measures of uncertainty as score. Black dashed line shows the maximum
AUROC over all measures per severity. Insets shows detailed results for the highest severity. Statistics over five runs.

MCD. We hypothesize that this is due to the fact that local methods probe local sensitivity around the original model, i.e.
the MAP for LA and the model without dropout for MCD, leading to uncertainty measures based on this original model
performing very well. For the global method DE, there is no such original model that dominates the sampling space.

Third, for detecting distributional mismatch, MCD largely leads to the same results as DE. However, for LA we find that all
TU and AU measures perform on very similar levels. This is also evident when we look at the rank correlations of measures.
Here we find a strong correlation between all the TU and AU measures on the OOD data for LA. This is probably because
the models sampled with LA do not strongly disagree with the original model on the OOD data. Other than that, we find that
the results match those presented for DE in the main paper.
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Figure 32: Correlation of uncertainty measures on ID
dataset (CIFAR10) for LA. High rank correlation blocks
exist.
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Figure 33: Correlation of uncertainty measures on OOD
dataset (LSUN) for LA. All TU and AU measures are highly
correlated.
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Figure 34: Correlation of uncertainty measures on ID
dataset (CIFAR10) for MCD. High rank correlation blocks
exist.
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Figure 35: Correlation of uncertainty measures on OOD
dataset (LSUN) for MCD. Rank correlations are very low
overall.
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