
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM CONVERSATION TO QUERY EXECUTION:
BENCHMARKING USER AND TOOL INTERACTIONS
FOR EHR DATABASE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the impressive performance of LLM-powered agents, their adoption for
Electronic Health Record (EHR) data access remains limited by the absence of
benchmarks that adequately capture real-world clinical data access flows. In prac-
tice, two core challenges hinder deployment: query ambiguity from vague user
questions and value mismatch between user terminology and database entries. To
address this, we introduce EHR-ChatQA, an interactive database question answer-
ing benchmark that evaluates the end-to-end workflow of database agents: clarify-
ing user questions, using tools to resolve value mismatches, and generating correct
SQL to deliver accurate answers. To cover diverse patterns of query ambiguity and
value mismatch, EHR-ChatQA assesses agents in a simulated environment with an
LLM-based user across two interaction flows: Incremental Query Refinement (In-
creQA), where users add constraints to existing queries, and Adaptive Query Re-
finement (AdaptQA), where users adjust their search goals mid-conversation. Ex-
periments with state-of-the-art LLMs (e.g., o4-mini and Gemini-2.5-Flash) over
five i.i.d. trials show that while agents achieve high Pass@5 of 90–95% (at least
one of five trials) on IncreQA and 60–80% on AdaptQA, their Passˆ5 (consis-
tent success across all five trials) is substantially lower by 35–60%. These results
underscore the need to build agents that are not only performant but also robust
for the safety-critical EHR domain. Finally, we provide diagnostic insights into
common failure modes to guide future agent development.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly operating as autonomous agents, interacting with
external environments to solve complex tasks. One key application is interfacing with structured
databases, which can substantially enhance data accessibility for non-technical users. This capa-
bility is particularly impactful in high-stakes domains such as Electronic Health Records (EHRs),
where enabling natural language queries over vast patient data repositories has the potential to fun-
damentally transform both clinical research and patient care (Ohno-Machado, 2011; Yang et al.,
2022). To assess such capabilities, the prevailing evaluation paradigm has relied on text-to-SQL
benchmarks (Yu et al., 2018; Wang et al., 2020; Lee et al., 2022; Li et al., 2023), which measure
a model’s ability to translate natural language questions into SQL queries. However, these bench-
marks primarily emphasize the isolated task of mapping a single, well-formed question to SQL, a
setting that fails to capture the complexities of how clinicians interact with EHRs.

To further investigate the gap between this evaluation paradigm and real-world clinical needs, we
collaborated with a major academic medical center and reviewed internal text-to-SQL query logs.
This analysis revealed that existing benchmarks are not suitable for capturing two core real-world
challenges, which significantly hinders the adoption of these models: (1) Query Ambiguity1: Users
often pose vague questions that do not fully capture their true intent (e.g., a request such as “Show me
recent labs” lacks specifics such as test types or time ranges) (Wang et al., 2023; Saparina & Lapata,
2024; Dong et al., 2025). (2) Value Mismatch: Clinical terms in EHRs vary due to specialized

1While linguistics distinguishes it from vagueness (a lack of specificity), we adopt the common NLP con-
vention of using “ambiguity” to refer to any query requiring clarification.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of EHR-ChatQA. Our benchmark places an agent in a simulated environment
with an LLM-powered user and tools. The agent must manage the entire workflow autonomously:
clarifying vague user questions, resolving terminology mismatches, generating and executing ac-
curate SQL, and returning the final answer. Each interaction trace is verified by the simulation
validator, and only then are the final answers assessed via rule-based evaluation.

database naming conventions and often differ from everyday language (e.g., “Lopressor” may not
match the database entry “metoprolol tartrate”), creating a terminological gap (Holmes et al., 2021;
De Mello et al., 2022) that must be bridged for accurate SQL generation.

Addressing these challenges requires moving beyond static, single-turn SQL generation to an en-
vironment where an agent can clarify a user’s intent, invoke necessary tools to navigate complex
EHR schemas and clinical values, and synthesize all relevant information to generate an accurate
SQL query. To bridge this gap, we introduce EHR-ChatQA, an interactive database question an-
swering (QA) benchmark designed to assess this end-to-end agentic workflow, from conversation
to query execution, in the EHR domain. By placing agents in a simulated environment with both
an LLM-based user and a suite of tools, EHR-ChatQA provides a holistic evaluation of agent capa-
bilities in interactive clinical data access flows, with each interaction trace verified by a dedicated
validator. Grounded in real-world clinical QA scenarios and two publicly available EHR databases
(MIMIC-IV (Johnson et al., 2023) and eICU (Pollard et al., 2018)), our benchmark consists of tasks
categorized into two different interaction flows designed for various query ambiguities and value
mismatches: Incremental Query Refinement (IncreQA), which evaluates scenarios where users add
new constraints to a query, and Adaptive Query Refinement (AdaptQA), which assesses an agent’s
ability to reformulate its plan when users’ goals are modified mid-conversation.

Our evaluation of various state-of-the-art LLMs on EHR-ChatQA reveals a critical lack of robust-
ness under diverse conversation paths. While agents often succeed in at least one of five attempts
on a task (Pass@5), their ability to succeed consistently in all five attempts (Passˆ5) is substantially
lower. This performance gap exceeds 30% for IncreQA and 50% for AdaptQA. This inconsistency
highlights a crucial lack of reliability in current agents, raising significant concerns for their deploy-
ment in safety-critical domains such as EHRs and pointing to key areas for future research.

The main contributions of our work are summarized as follows:

• We propose EHR-ChatQA, the first interactive benchmark for EHR QA that holistically
evaluates agents’ interactive, end-to-end workflows using simulated users and a set of cus-
tomizable tools for schema exploration, value exploration, and web search.

• Grounded in real-world clinical QA scenarios and two publicly available EHR databases,
the benchmark contains two interaction flows to reflect various query ambiguity and value
mismatch patterns.

• Our evaluation of various LLMs reveals a critical performance gap between an agent’s op-
timistic success (Pass@5) and its consistent success (Passˆ5), providing diagnostic insights
for developing more performant and reliable agents in interactive EHR QA.

2 RELATED WORK

Text-to-SQL Benchmarks Text-to-SQL research has largely focused on translating a single, well-
defined question into an SQL query. Benchmarks such as Spider (Yu et al., 2018) and BIRD (Li

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of recent benchmarks categorized by core agent capabilities. EHR-ChatQA is
the first benchmark to comprehensively evaluate database agents in the aspects ranging from con-
versational ability to effective tool use in the EHR domain. “Value Explor.” indicates the mapping
of user terminology to database entries (e.g., “WBC” → “white blood cell count”). △ denotes reso-
lution of ambiguity through SQL suggestions instead of user clarification.

Benchmark Conversational Ability Tool-Using Ability Domain
User Multi-turn Query Ambiguity Tool Use Value Explor. EHR

Spider (Yu et al., 2018) × × × × ×
SParC (Yu et al., 2019b) ✓ × × × ×
CoSQL (Yu et al., 2019a) ✓ ✓ × × ×
EHRSQL (Lee et al., 2022) × × × × ✓
BIRD (Li et al., 2023) × × × × ×
AgentBench (Liu et al.) × × ✓ × ×
EHR-SeqSQL (Ryu et al., 2024) ✓ × × × ✓
PRACTIQ (Dong et al., 2025) ✓ △ × × ×
Tau-Bench (Yao et al., 2025) ✓ ✓ ✓ × ×
ToolDial (Shim et al., 2025) ✓ ✓ ✓ × ×
MedAgentBench (Jiang et al., 2025) × × ✓ × ✓
MedAgentGym (Xu et al., 2025) × × ✓ × ✓
EHR-ChatQA (Ours) ✓ ✓ ✓ ✓ ✓

et al., 2023) are prominent examples that have shaped this paradigm. While other benchmarks
such as SParC (Yu et al., 2019b), CoSQL (Yu et al., 2019a), and PRACTIQ (Dong et al., 2025)
introduced conversational context, their evaluation scope is often limited by predefined interaction
patterns, such as requiring the model to generate an SQL query each turn or to expect a type of
responses based on the script. This evaluation setting prevents them from capturing the open-ended
and exploratory nature of realistic user interactions, thereby falling short of testing agents’ ability to
resolve query ambiguity and value mismatch. EHR-ChatQA is a benchmark dedicated to bridging
this gap by explicitly evaluating agents’ exploratory and interactive capabilities through simulations.

EHR Question Answering The unique challenges of the medical domain have inspired several
QA benchmarks for structured EHR data. Text-to-SQL benchmarks, from single-turn settings such
as MIMICSQL (Wang et al., 2020) and EHRSQL (Lee et al., 2022) to the multi-turn EHR-SeqSQL
(Ryu et al., 2024), have advanced querying on complex EHR schemas but lack support for resolving
query ambiguity and value mismatch. More recently, agent-based benchmarks for EHRs such as
MedAgentBench (Jiang et al., 2025) and MedAgentGym (Xu et al., 2025) tackle a broad range of
clinical and biomedical tasks. However, their reliance on initial non-ambiguous task instructions
still bypasses the need for dynamic, interactive resolution of query ambiguity and value mismatch,
which are essential for real-world, interactive clinical QA. EHR-ChatQA aims to bridge this gap
by explicitly requiring the simulated user to start from a vague question and allowing the agent to
autonomously resolve the task.

Conversational and Tool-Using Agent Evaluation Evaluating LLM agents in dynamic environ-
ments has spurred progress in two key areas: tool-using agent benchmarks (Yao et al., 2022; Liu
et al.), which assess instrumental competence, and frameworks for evaluating conversational skills
in task-oriented dialogues, from large-scale curated datasets (Budzianowski et al., 2018; Rastogi
et al., 2020) to dynamic user simulations (Sekulić et al., 2024). Recent works such as Tau-Bench
(Yao et al., 2025) and ToolDial (Shim et al., 2025) combine these paradigms to evaluate the crit-
ical dual interaction loop between agents, users, and tools. EHR-ChatQA extends this framework
to question answering over EHR databases. As shown in Table 1, although prior works focus on
resolving query ambiguity and leveraging general tools for complex tasks, they do not specifically
capture the challenges of interactive clinical data access, particularly value mismatch (Holmes et al.,
2021; De Mello et al., 2022). EHR-ChatQA is designed to holistically address these challenges,
grounded in real-world QA scenarios and EHR databases.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Example interaction trace in EHR-ChatQA (AdaptQA). Given a vague initial user ques-
tion, the agent clarifies the request (1) by refining “some statistics” into the specific goal of “the
percentage.” When the initial query yields no matching records due to a value mismatch, the user
guides the agent to search for its generic name instead (2). The agent then incorporates clinical
knowledge retrieved via web search() to reformulate the query (3), and finally executes the re-
vised query to produce the correct answer (4).

3 THE EHR-CHATQA BENCHMARK

3.1 TASK FORMULATION

The task instances in EHR-ChatQA can be formulated in the POMDP framework as
(S,A, T ,R,Ω). This formulation captures the inherent uncertainty and the sequential nature of
translating an ambiguous user request into an executable query. The state s ∈ S is latent and in-
cludes all information relevant to solving the task: the user’s true but unobserved intent (i.e., user
instruction), the full conversation history, the contents of the EHR database, and any accessible ex-
ternal knowledge. The agent’s action space A models the dual interaction loop: (1) user interaction,
including asking clarifying questions or providing answers, and (2) tool interaction, including invok-
ing calls to explore the database schema, search relevant values, or access external web knowledge
when necessary. After taking an action a ∈ A, the agent receives an observation o ∈ Ω, which
is either a natural language response from the user or the output from a tool. The transition dy-
namics T are a hybrid of deterministic and stochastic processes: tool interactions with the database
are deterministic, while the LLM-based user’s responses and web search results are stochastic. The
reward function R is binary, defined as r = 1 if the agent’s answer matches the ground-truth (GT)
and r = 0 otherwise. In our evaluation, the reward assignment is performed in a rule-based manner
against deterministic GT SQL queries and answers (see Appendix A.6 for details).

3.2 BENCHMARK COMPONENTS

Task Instances and EHR Databases Each task instance defines a unique interactive QA sce-
nario, containing a user instruction that specifies the LLM-based user’s query goal and outlines the
intended conversation flow (e.g., “You want to know the number of patients prescribed Lopressor...
If no patients are found, you want to count the patients for its generic equivalent...”). Each instance
also includes the answer to the interaction goal and the GT SQL queries for evaluation purposes.
All user instructions and answers are grounded in patient data stored in two EHR database schemas
(MIMIC-IV and eICU), and clinical knowledge is essential for locating, filtering, and reasoning over
the retrieved information. The benchmark consists of 366 task instances, distributed across the two
databases and the two interaction flows, as shown in Table 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Tools Default tools provided in this benchmark include functionalities for schema explo-
ration (table search, column search), value exploration (value substring search,
value similarity search2), external knowledge retrieval (web search), and final query
execution (sql execute). The schema and value exploration tools, supplemented with SQL and
physician-level knowledge, provide sufficient resources for constructing correct SQL queries, since
SQL query annotation was performed using an interface restricted to these tools (see Section 4.2).
The web search() tool is optionally provided to the agent to supplement or confirm clinical
knowledge, as accurate handling of such knowledge is critical in the EHR domain. More details on
tool specifications are provided in Appendix A.2.

Simulated User To evaluate user interaction at scale and measure agent performance across di-
verse conversation paths, we use an LLM-based user simulator that leverages a certain level of
stochasticity in user utterances. We use the self-reflection framework (Shinn et al., 2023) with
Gemini-2.0-Flash at a temperature of 1.0. The simulated user is initialized with a system prompt
(see Appendix A.3.2) containing a user instruction and a set of behavioral rules. These rules include
intentionally starting with a vague initial query, which forces the agent to engage in dialogue for
clarification. The rules also define the conditions for ending the conversation: either the agent suc-
cessfully retrieves and provides the information requested by the user, or the agent repeatedly fails
to retrieve relevant information and shows no sign of progress (see more details in Appendix A.3.1).
Crucially, the user is isolated from the database content and the ground truth SQL and answers,
preventing it from “tipping off” the agent with information they should not possess.

Simulation Validator There are occasions where LLM-based simulations deviate from the in-
tended behavior, not because of the agent’s failure but because the user simulator itself deviates
from its instructions. To mitigate this and ensure reliable evaluation of agents, we implement an
LLM-as-a-judge classifier (Zheng et al., 2023) as a validator3. After each completed simulation,
the validator reviews the entire dialogue trajectory. If it determines that the simulated user has vio-
lated its given instruction or rules, the simulation trace is considered invalid and subsequently rerun,
regardless of the task’s outcome. The prompt used in the validator is provided in Appendix A.4.

4 BENCHMARK CONSTRUCTION

4.1 INTERACTION FLOWS

To capture a wide range of query ambiguity and value mismatch patterns grounded in various clinical
QA scenarios, we include two different interaction flows for the simulated user to follow:

• Incremental Query Refinement (IncreQA): This flow tests an agent’s ability to maintain
conversational context as the user incrementally constructs a query by adding new con-
straints. The agent must integrate new details into the existing context without losing prior
information. Examples of such constraints include adding a patient ID to a cohort of pa-
tients, specifying event timing (e.g., “diagnosed after a year of [Year]”), or adding related
medical events to existing queries (e.g., “a heart attack following a diabetes diagnosis”)
(see Appendix A.1.1 for a sample task instance).

• Adaptive Query Refinement (AdaptQA): This flow tests an agent’s ability to adapt its
query plan when a user modifies the original goal mid-conversation (e.g., searching for a
medication within the same or different drug classes if the initially requested one is not
found, rolling back when partial information is missing, or adopting fallback strategies
when no relevant data is available). By design, these tasks require more advanced value
mismatch resolution than IncreQA, often going beyond synonym matching (see Appendix
A.1.2).

4.2 ANNOTATION PROCESS

A core team of three annotators (two graduate-level computer science students and one physician)
led the initial development, from drafting through internal quality checks. This phase was followed
by beta testing with 38 graduate-level contributors, whose feedback informed the final revisions.

2Text columns are pre-indexed. We use OpenAI’s text-embedding-3-large.
3We use Gemini-2.5-Flash at a temperature of 0.0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: EHR-ChatQA task statistics. ⋆ indicates preprocessed databases with renamed schemas.

IncreQA AdaptQA Total
MIMIC-IV⋆ 145 40 185
eICU⋆ 141 40 181
Total 286 80 366

4.2.1 EHR DATABASES

To evaluate agents’ generalizability to different EHR structures, we use two publicly available EHR
databases with distinct schemas and data recording practices: MIMIC-IV (Johnson et al., 2023),
which contains detailed ICU data from Beth Israel Deaconess Medical Center, and eICU (Pollard
et al., 2018), which includes ICU data from multiple U.S. hospitals. For instance, eICU stores
prescription records as a single string such as “clopidogrel 75 mg,” whereas MIMIC-IV splits it
across three separate columns (drug name, dosage, unit of measurement) as “clopidogrel,” “75,” and
“mg.” For the basis of our task instances, we use a subset of records from the privacy-safe demo
versions of these databases. Although they contain fewer patients, these demos retain the same
schema complexity as the originals.

A key challenge we identified is that SOTA LLMs often memorize the original schemas of these
popular databases, allowing them to generate SQL without genuine schema exploration. To ensure
that our evaluation truly tests an agent’s ability to navigate arbitrary databases, we rename all table
and column names (e.g., “patients” to “demographics”). The resulting databases, MIMIC-IV⋆ and
eICU⋆, compel agents to rely on schema exploration tools rather than their prior knowledge. Further
details on this process are provided in Appendix B.4.

4.2.2 INCREQA ANNOTATION

To create IncreQA tasks, we first curate and adapt clinically relevant queries from two primary
sources. These include the EHRSQL dataset (Lee et al., 2022) and internal logs from our col-
laborating medical center. We then annotate the corresponding ground truth SQL and answers.
Next, we convert these SQL queries into narrative user instructions using a SQL-to-text approach.
This method minimizes ambiguity inherent in natural language. For instance, a vague question like
“How many emergency patients are there?” could refer to either admission type=’urgent’
or admit source=’emergency room’. By deriving instructions directly from specific SQL
constraints (e.g., WHERE admit source = ’emergency room’), we ensure that the user
instruction precisely reflects the intended database query. The core team manually reviews these
instructions to detect any missing SQL details and ambiguities. Finally, we rephrase database values
into everyday language to introduce value mismatch challenges (e.g., mapping “malignant neo-
plasm” to “cancer”). Detailed IncreQA annotation process is provided in Appendix B.1.1.

4.2.3 ADAPTQA ANNOTATION

AdaptQA tasks focus on scenarios requiring goal adjustments during interaction. Unlike IncreQA,
we begin by defining eight query modification categories (Table 10) representing adjustments due to
data absence or schema structures4. We then annotate instructions to enforce conditional workflows
(e.g., pivoting due to missing data) based on specific patient data stored in the database. For instance,
to create a task sample in the “Medication nomenclature traversal” category, we select a patient
lacking records for a brand name (e.g., Lipitor) but having records for its generic equivalent. The
instruction guides the user to request the agent to search for the brand name first and, upon failure,
to check for the generic name. Crucially, the instruction omits the generic name (e.g., atorvastatin),
preventing the user from revealing information that the agent must discover independently. This
enforces a deterministic, decision-tree-like workflow where the evaluation target is determined by
the final intent reached based on the agent’s intermediate responses (e.g., the user pivots only if the
agent correctly reports the brand name’s absence). Following physician verification of these logical
flows, we annotate the corresponding SQL and answers. Detailed AdaptQA annotation process is
provided in Appendix B.1.2.

4We do not consider goal adjustments due to the user’s arbitrary preference changes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model
IncreQA AdaptQA

SR-5 (↑) Pass@5 (↑) Passˆ5 (↑) Gap-5 (↓) SR-5 (↑) Pass@5 (↑) Passˆ5 (↑) Gap-5 (↓)
Closed-source Models

Gemini-2.5-Flash 73.1 91.3 47.9 43.4 34.7 64.1 6.2 57.9
Gemini-2.0-Flash 66.2 86.4 37.8 48.6 26.6 54.7 1.6 53.1
o4-mini 81.0 95.1 58.4 36.7 43.8 78.1 15.6 62.5
GPT-4o 64.0 86.7 34.6 52.1 26.6 46.9 10.9 36.0
GPT-4o-mini 49.0 75.2 22.4 52.8 18.1 40.6 4.7 35.9

Open-source Models

Llama 3.3-70B 38.6 66.8 11.2 55.6 12.2 37.5 0.0 37.5
Qwen3-32B 50.4 79.4 18.2 61.2 20.3 45.3 0.0 45.3

Table 3: Overall results on EHR-ChatQA across two different interaction flows: Incremental
Query Refinement (IncreQA) and Adaptive Query Refinement (AdaptQA), averaged over combined
MIMIC-IV⋆ and eICU⋆ samples. Metrics include: SR-5 (average success rate over 5 trials), Pass@5
(success in at least one of 5 trials), Passˆ5 (success in all 5 trials), and Gap-5 (Pass@5 - Passˆ5).

4.3 QUALITY ASSURANCE

To create a high-quality evaluation benchmark, our quality assurance procedure consists of an inter-
nal validation process followed by an external beta-testing phase. The internal validation has two
components, targeting both the task instances and the simulation environment. First, to assess the
quality of each task instance, we employ an iterative refinement loop, using preliminary simulations
to flag tasks that repeatedly cause agent failures for manual review. The review focuses on checking
the alignment between the annotated SQL and the user instructions and on resolving any ambigui-
ties in the instructions. Second, we validate the quality of the simulation environment by manually
reviewing failed dialogue trajectories, especially the agent’s value-linking logic (e.g., when a user
instruction specifies hemoglobin, we check whether the instruction is clear enough to guide only to
“Hb,” not to other similar terms such as “Hb C”). Following this internal validation, the benchmark
underwent beta testing over two months with 38 graduate-level contributors. During this phase, the
benchmark was progressively improved based on their feedback regarding instruction clarity and
user behavior. The contributor demographics and testing details are provided in Section A.7.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models We evaluate leading closed-source and open-source LLMs with strong function-calling
capabilities5. For closed-source models, we use OpenAI’s o4-mini and GPT-4o, as well as Google’s
Gemini-2.5-Flash and Gemini-2.0-Flash. For open-source models, we evaluate Llama 3.3-70B and
Qwen3-32B, served on four NVIDIA A6000 GPUs using the vLLM library (Kwon et al., 2023).
All implemented agents are provided with a set of behavioral rules (see Appendix C.2)), database-
specific SQL generation rules (see Appendix A.5), and evaluation rules (see Appendix A.6). The
temperature for all agent LLMs is set to 0.0, and each simulation is limited to a maximum of 30
agent actions. The agent implementation details are provided in Appendix C.

Evaluation Metrics We evaluate agent performance using four metrics: SR-k, Pass@k, Passˆk,
and Gap-k. SR-k measures the average success rate across k i.i.d. trials for each task. Pass@k (Chen
et al., 2021), representing an agent’s optimistic performance, is the proportion of tasks solved in at
least one of these k trials. Conversely, Passˆk (Yao et al., 2025) assesses consistent and reliable
performance by measuring the proportion of tasks solved in all k trials. The final metric, Gap-k,
is the difference between Pass@k and Passˆk. While SR-k serves as a stable measure of overall
performance due to its lower sensitivity to the number of trials, k, the other three metrics vary
with k. In particular, Gap-k indicates an agent’s robustness across diverse conversation paths and is
an important indicator of potential degradation in performance over multiple runs, which must be
avoided in the safety-critical EHR domain. We set k=5 throughout the experiments.

5We employ a standard function-calling setup to measure the intrinsic performance “floor”, rather than the
“ceiling” of highly optimized agentic architectures.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Performances vs. the number of trials (k).

(b) Performances vs. user interaction length across tasks.

(c) Success rate vs. Average user interaction length
within tasks.

Figure 3: Detailed performance of the o4-mini-powered agent.

5.2 MAIN RESULTS

Overall Result Table 3 summarizes the performance of various state-of-the-art LLMs on EHR-
ChatQA. Closed-source models consistently outperform their open-source counterparts. o4-mini
achieves the highest overall performance, with SR-5 scores of 81.0% on IncreQA and 43.8% on
AdaptQA, followed by Gemini-2.5-Flash. Open-source models such as Qwen3-32B and Llama 3.3-
70B show clear limitations, particularly struggling with AdaptQA (12.2% and 20.3% SR-5, respec-
tively). While closed-source models perform strongly on IncreQA, with scores ranging from 60%
to 80%, their performance drops to the 30-40% range on AdaptQA. This indicates that AdaptQA
requires more advanced adaptive query refinement and sophisticated value exploration. The most
salient finding is the substantial discrepancy between the optimistic performance (Pass@5) and the
consistent performance (Passˆ5).

Interaction and Cost Analysis On average, agents engage in 4.9 user interactions and 7.0 tool
interactions per IncreQA task, and 5.5 and 10.2 per AdaptQA task, respectively, indicating greater
complexity for AdaptQA. The environment setup, which employs a simulated user and validator,
costs approximately $0.0043 per IncreQA task and $0.0065 per AdaptQA task. The total cost of
running the full benchmark over five runs, using o4-mini as the database agent, is approximately
$100 across all task instances, whereas the cost using Gemini-2.5-Flash is about $61.

Further Performance Analysis A deeper analysis of the top model, o4-mini, reveals key factors
behind its performance inconsistency. As expected, Gap-k widens with more trials (k), since the
condition for consistent success becomes stricter (Figure 3a). Furthermore, trials involving more
user interactions tend to have lower overall success rates as well as higher inconsistency (Figure 3b).
This trend holds even for individual trials, where a trial’s success is negatively correlated with its
relative number of user-agent interactions even within the same task (Figure 3c).

5.3 COMMON ERROR CASES IN INTERACTIVE DATABASE AGENTS

We conduct a detailed error analysis of agents using o4-mini and Gemini-2.5-Flash to understand
the root causes of failures and the factors driving the performance gap. We categorize failures into
two distinct groups: (1) Consistent Failures, where the agent fails across all five trials, indicating
fundamental limitations; and (2) Inconsistent Failures, where the agent succeeds in at least one trial
but not all, highlighting brittleness to variations in conversation paths.

Consistent Failures Consistent failures are dominated by difficulties in handling value mismatch
and in generating complex SQL. The largest category, Value Linking Errors (46.9%), arises when

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

an agent fails to retrieve all relevant database terms. This includes overlooking drug brand names
(e.g., “Coumadin” for warfarin), failing to match textual variations (e.g., finding “essential (primary)
hypertension”), and being unable to resolve synonyms or abbreviations (e.g., “wbc” for “white blood
cells” and “leukocytes”). The second major category, SQL Generation Errors (25.0%), involves
subtle yet critical flaws in query logic. For instance, agents often misinterpret the timing of events,
querying a patient’s overall first hospital visit instead of their first visit for a specific diagnosis. The
remaining failures fall into Rule Violations (15.6%), where agents disregard explicit instructions,
and Limited Clinical Knowledge (12.5%), which leads to improper data filtering, such as failing to
select only the “direct” procedures required for aneurysm resection conducted to a patient.

Inconsistent Failures Inconsistent failures reveal the fragility of current agents. Small variations
in the dialogue trajectory, stemming from stochastic user responses, can lead to drastically different
outcomes. SQL Generation Issues (71.8%): SQL errors are the primary driver of this inconsistency.
Slight variations in user phrasing can disrupt the agent’s context tracking, leading to SQL that omits
crucial context from previous turns, which is the same context handled correctly in successful trials.
For instance, in an IncreQA task, a user might first ask for “patients with diabetes”. In a successful
trial, the follow-up “How many of those are over 65?” correctly maintains both constraints. How-
ever, in a failed trial, a subtle rephrasing such as “And what about their age, specifically over 65?”
can cause the agent to drop the initial “diabetes” constraint, erroneously querying the age of the
entire patient population. The remaining errors are similar to those observed in consistent failure
cases, including incomplete value retrieval (15.4%) and occasional rule violations (5.1%).

Diagnostic Insights To address consistent failures, which are largely driven by value mismatch,
future work should improve the agent’s exploration strategies. Agents must comprehensively find
relevant database entries. To mitigate the performance gap across multiple runs reflected in incon-
sistent failures, the priority should be to improve context management. This requires developing
techniques that enforce state-tracking consistency across linguistic variations, such as explicit query
state representation or specialized fine-tuning focused on context-dependent query refinement.

6 CHALLENGES IN SIMULATION-BASED EVALUATION

Simulation-based benchmarks present unique challenges due to the stochastic nature of LLM-
generated dialogues. In our experiments, the common error types that cause simulation re-runs
include: no final check (39.3%), where users end conversations without verifying that the agent’s
answer fully addresses the goal6; missing conditions (20.7%), where users omit minor details (e.g.,
specific time constraints) before concluding; performing agent-like tasks (17.0%), where users act
as database agents, such as by writing SQL queries; accepting unverified information (8.9%), where
users accept incorrect details provided by the agent; and various rule violations (14.1%), which in-
clude miscellaneous stylistic errors, such as using overly polite, AI-like phrases. While we make
tremendous efforts to remove ambiguities in user instructions, many cost-effective LLMs, includ-
ing open-source models and Gemini-2.0-Flash, are still not fully reliable at following unfamiliar
or detailed instructions, even when equipped with self-reflection mechanisms. However, if cost is
the primary concern, pairing a cost-effective user with a powerful but costly validator is an effec-
tive compromise. We believe this concern will diminish as more powerful and cost-effective LLMs
demonstrate stronger instruction-following capabilities.

7 CONCLUSION

We introduce EHR-ChatQA, the first conversational benchmark for end-to-end evaluation of
database agents in the safety-critical EHR domain. Moving beyond static text-to-SQL, EHR-
ChatQA assesses an agent’s ability to resolve query ambiguity and value mismatch through user
conversation and active tool use. Our evaluation of state-of-the-art LLMs on two interaction flows,
Incremental (IncreQA) and Adaptive (AdaptQA), reveals a critical robustness gap: the difference
between succeeding in one of five independent trials (Pass@5) and all five (Passˆ5) for some models
exceed 35% in IncreQA and 60% in AdaptQA. This gap is mainly rooted in the agent’s failures in ac-
curate context management and SQL generation. We believe EHR-ChatQA can serve as a valuable
resource for advancing database agents in interactive question answering over EHRs.

6This rule is intentionally included in user instructions to prevent open-ended questions from excessively
deviating and leading to non-terminating conversations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and prioritize ethical considerations in this research. To pro-
tect patient privacy, EHR-ChatQA utilizes publicly available, de-identified EHR datasets (MIMIC-
IV-demo and eICU-demo), which are free of Protected Health Information (PHI), allowing for the
safe evaluation of LLMs. Our findings highlight a significant performance gap in current state-
of-the-art models between optimistic and consistent agent performances across QA tasks, raising
concerns about the premature deployment of these agents in safety-critical clinical environments.
We also acknowledge that the source EHR databases may contain inherent biases reflecting the
demographics and clinical practices of the originating U.S. hospitals.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide comprehensive resources, including
the complete EHR-ChatQA benchmark with all 366 task instances and the EHR databases, an eval-
uation framework, a tool suite, and a simulation environment, which will be available in our GitHub
repository. Detailed methodologies are provided in the appendices, covering database preprocessing
and schema renaming (Appendix B.4), implementation details for the simulated user and validator
(Appendix A.3), and the implementation of the database agents (Appendix C). Due to the stochas-
ticity of the simulated users, the exact numbers reported in the experiments may not be perfectly
reproduced, and occasional user-side errors may persist as these LLMs are not perfectly instruction-
following. However, we have introduced a simulation validator to mitigate such issues, and we
expect that their occurrence will decrease as LLM steerability continues to improve.

REFERENCES

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman
Ramadan, and Milica Gasic. Multiwoz-a large-scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 5016–5026, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Blanda Helena De Mello, Sandro José Rigo, Cristiano André Da Costa, Rodrigo da Rosa Righi,
Bruna Donida, Marta Rosecler Bez, and Luana Carina Schunke. Semantic interoperability in
health records standards: a systematic literature review. Health and technology, 12(2):255–272,
2022.

Mingwen Dong, Nischal Ashok Kumar, Yiqun Hu, Anuj Chauhan, Chung-Wei Hang, Shuaichen
Chang, Lin Pan, Wuwei Lan, Henghui Zhu, Jiarong Jiang, Patrick Ng, and Zhiguo Wang. PRAC-
TIQ: A practical conversational text-to-SQL dataset with ambiguous and unanswerable queries.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), pp. 255–273, Albuquerque, New Mex-
ico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL
https://aclanthology.org/2025.naacl-long.13/.

John H Holmes, James Beinlich, Mary R Boland, Kathryn H Bowles, Yong Chen, Tessa S Cook,
George Demiris, Michael Draugelis, Laura Fluharty, Peter E Gabriel, et al. Why is the electronic
health record so challenging for research and clinical care? Methods of information in medicine,
60(01/02):032–048, 2021.

Yixing Jiang, Kameron C Black, Gloria Geng, Danny Park, Andrew Y Ng, and Jonathan H Chen.
Medagentbench: Dataset for benchmarking llms as agents in medical applications. arXiv preprint
arXiv:2501.14654, 2025.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

10

https://aclanthology.org/2025.naacl-long.13/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Min-
joon Seo, Jong-Yeup Kim, and Edward Choi. Ehrsql: A practical text-to-sql benchmark for
electronic health records. Advances in Neural Information Processing Systems, 35:15589–15601,
2022.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls. In Advances in Neural
Information Processing Systems, volume 36, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In The Twelfth Inter-
national Conference on Learning Representations.

Lucila Ohno-Machado. Realizing the full potential of electronic health records: the role of natural
language processing. Journal of the American Medical Informatics Association, 18(5):539–539,
2011.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
The eicu collaborative research database, a freely available multi-center database for critical care
research. Scientific data, 5(1):1–13, 2018.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pp. 8689–8696, 2020.

Jaehee Ryu, Seonhee Cho, Gyubok Lee, and Edward Choi. Ehr-seqsql : A sequential text-to-
sql dataset for interactively exploring electronic health records. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 16388–16407, Bangkok, Thailand, 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.971. URL
https://aclanthology.org/2024.findings-acl.971/.

Irina Saparina and Mirella Lapata. Ambrosia: A benchmark for parsing ambiguous questions into
database queries. Advances in Neural Information Processing Systems, 37:90600–90628, 2024.

Ivan Sekulić, Silvia Terragni, Victor Guimarães, Nghia Khau, Bruna Guedes, Modestas Filipavicius,
André Ferreira Manso, and Roland Mathis. Reliable llm-based user simulator for task-oriented
dialogue systems. arXiv preprint arXiv:2402.13374, 2024.

Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, and Yohan Jo. Tooldial: Multi-turn dialogue
generation method for tool-augmented language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
J1J5eGJsKZ.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou. Know what I don’t know: Handling
ambiguous and unknown questions for text-to-SQL. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 5701–5714, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.352. URL https://aclanthology.org/2023.
findings-acl.352.

Ping Wang, Tian Shi, and Chandan K Reddy. Text-to-sql generation for question answering on
electronic medical records. In Proceedings of The Web Conference 2020, pp. 350–361, 2020.

11

https://aclanthology.org/2024.findings-acl.971/
https://openreview.net/forum?id=J1J5eGJsKZ
https://openreview.net/forum?id=J1J5eGJsKZ
https://aclanthology.org/2023.findings-acl.352
https://aclanthology.org/2023.findings-acl.352

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

xAI. Grok 3 beta — the age of reasoning agents. https://x.ai/news/grok-3, February
2025. Accessed: 2025-09-20.

Ran Xu, Yuchen Zhuang, Yishan Zhong, Yue Yu, Xiangru Tang, Hang Wu, May D Wang, Peifeng
Ruan, Donghan Yang, Tao Wang, et al. Medagentgym: Training llm agents for code-based medi-
cal reasoning at scale. arXiv preprint arXiv:2506.04405, 2025.

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang Shin, Kaleb E Smith, Christopher Parisien,
Colin Compas, Cheryl Martin, Anthony B Costa, Mona G Flores, et al. A large language model
for electronic health records. NPJ digital medicine, 5(1):194, 2022.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. In The Twelfth International Conference on
Learning Representations, 2025.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
3911–3921, Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1425. URL https://aclanthology.org/D18-1425/.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan,
Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexan-
der Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong,
Richard Socher, Walter Lasecki, and Dragomir Radev. CoSQL: A conversational text-to-SQL
challenge towards cross-domain natural language interfaces to databases. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1962–1979, Hong Kong, China, Novem-
ber 2019a. Association for Computational Linguistics. doi: 10.18653/v1/D19-1204. URL
https://aclanthology.org/D19-1204/.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er,
Irene Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan
Kraft, Vincent Zhang, Caiming Xiong, Richard Socher, and Dragomir Radev. SParC: Cross-
domain semantic parsing in context. In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pp. 4511–4523, Florence, Italy, July 2019b. Association for Computational Linguistics. doi:
10.18653/v1/P19-1443. URL https://aclanthology.org/P19-1443/.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

12

https://x.ai/news/grok-3
https://aclanthology.org/D18-1425/
https://aclanthology.org/D19-1204/
https://aclanthology.org/P19-1443/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY CONTENTS

A Benchmark Details 15

A.1 Sample Task Instances . 15

A.1.1 IncreQA Sample . 15

A.1.2 AdaptQA Sample . 15

A.2 Tool Specifications . 17

A.3 User Implementation . 18

A.3.1 Simulated User . 18

A.3.2 User System Prompt . 18

A.3.3 Example Variability in Simulated User Turns 19

A.4 Simulation Validator Implementation . 20

A.5 Database-Specific Rules . 21

A.5.1 MIMIC-IV⋆ Rules . 21

A.5.2 eICU⋆ Rules . 22

A.6 Evaluation Details . 23

A.6.1 IncreQA . 23

A.6.2 AdaptQA . 23

A.7 Contributor Demographics and Beta Testing Process 23

B Annotation Details 24

B.1 IncreQA and AdaptQA Annotation . 24

B.1.1 IncreQA Annotation . 24

B.1.2 AdaptQA Annotation . 24

B.2 AdaptQA Categories . 25

B.3 SQL Annotation Style . 26

B.4 EHR Database Preprocessing . 27

B.4.1 MIMIC-IV Renaming . 27

B.4.2 eICU Renaming . 28

C Agent Implementation 29

C.1 Agent System Prompt . 29

C.2 Agent Rules . 29

C.3 Agent Rules for Evaluation . 30

D Sample Trajectories 31

D.1 Incremental Query Refinement . 31

D.1.1 Successful Case (IncreQA) . 31

D.1.2 Failed Case (IncreQA) . 35

D.2 Adaptive Query Refinement . 41

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D.2.1 Successful Case (AdaptQA) . 41

D.2.2 Failed Case (AdaptQA) . 46

D.3 Invalidated Trajectories by the Validator . 56

D.3.1 Violation of No Final Check Rule . 56

D.3.2 Violation of Missing conditions Rule . 56

D.3.3 Violation of Performing Agent-like Tasks Rule 57

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A BENCHMARK DETAILS

A.1 SAMPLE TASK INSTANCES

In this section, we present sample task instances for IncreQA and AdaptQA.

A.1.1 INCREQA SAMPLE

{
”task id”: ”6”,
”task type”: ”incre”,
”db id”: ”mimic iv star”,
”instruction”:

”Your goal is to find the number of patients admitted to the hospital who meet
specific criteria. Specifically, you want to know how many patients admitted in the
past 90 days have a family history of breast cancer.”,

”gold sql”:
”SELECT COUNT(DISTINCT ha.patientid) AS patient count FROM hospitaladmissions
ha JOIN admissiondiagnoses ad ON ha.admissionid = ad.admissionid JOIN
diagnosiscodes dc ON ad.icdcode = dc.icdcode AND ad.codeversion = dc.
codeversion WHERE dc.description = ’family history of malignant neoplasm of
breast’ AND datetime(ha.admitdatetime) >= datetime(’2100−12−31 23:59:00’, ’−90
days’)”,

”gold answer”: [[1]]
}

A.1.2 ADAPTQA SAMPLE

{
”task id”: ”10”,
”task type”: ”adapt”,
”db id”: ”mimic iv star”,
”instruction”:

”Your goal is to explore patient data related to medication prescriptions.
Specifically, you are interested in patient ID 10008287 and want to know when they
were prescribed carbamazepine for epilepsy treatment. If the patient was
prescribed carbamazepine, you want to know the most recent prescription time
after the first epilepsy diagnosis. If the patient was not prescribed carbamazepine,
you want to identify whether any other class of medication used for epilepsy
treatment was prescribed. If such medications are found, you want to know the
most recent prescription time after the first epilepsy diagnosis. If no such
medications are found, end the conversation. You want the answer in the exact
time format recorded in the database.”,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

”gold sql”:
”WITH valid epilepsy codes AS (SELECT DISTINCT d.icdcode, d.codeversion, di.
description FROM admissiondiagnoses d JOIN diagnosiscodes di ON d.icdcode = di.
icdcode AND d.codeversion = di.codeversion WHERE di.description LIKE ’%epilepsy
%’), epilepsy diagnoses AS (SELECT d.patientid, d.admissionid, MIN(d.
recordeddatetime) AS first epilepsy time FROM admissiondiagnoses d JOIN
valid epilepsy codes c ON d.icdcode = c.icdcode AND d.codeversion = c.codeversion
WHERE d.patientid = 10008287 GROUP BY d.patientid, d.admissionid),
carbamazepine prescriptions AS (SELECT p.patientid, p.admissionid, p.
startdatetime FROM medicationorders p JOIN epilepsy diagnoses ed ON p.patientid
= ed.patientid AND p.admissionid = ed.admissionid WHERE p.medicationname = ’
carbamazepine’ AND p.startdatetime > ed.first epilepsy time),
alternative epilepsy prescriptions AS (SELECT p.patientid, p.admissionid, p.
startdatetime FROM medicationorders p JOIN epilepsy diagnoses ed ON p.patientid
= ed.patientid AND p.admissionid = ed.admissionid WHERE p.medicationname IN (’
levetiracetam’, ’phenytoin’, ’valproate’, ’lamotrigine’, ’topiramate’) AND p.
startdatetime > ed.first epilepsy time), combined prescriptions AS (SELECT
patientid, admissionid, startdatetime FROM carbamazepine prescriptions WHERE
EXISTS (SELECT 1 FROM carbamazepine prescriptions) UNION ALL SELECT patientid,
admissionid, startdatetime FROM alternative epilepsy prescriptions WHERE NOT
EXISTS (SELECT 1 FROM carbamazepine prescriptions)) SELECT startdatetime FROM
combined prescriptions ORDER BY startdatetime DESC LIMIT 1;”,

”gold answer”: [[’2100−10−12 20:00:00’]]
}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 TOOL SPECIFICATIONS

Table 4 presents the six default tools, categorized by their purposes. These tools serve as channels
for access to database content and external clinical knowledge to solve question-answering tasks in
EHR-ChatQA. For each tool, the equals sign (=) denotes its default arguments.

Table 4: Definition of six default tools provided in EHR-ChatQA.

Tool name Input Output Description

Schema exploration

table search None List of tables Lists all available tables in the database.

column search Table name Column names with 3
sample rows

Shows the columns of a specified table along
with sample data.

Value exploration

value substring search Table name, column
name, value, k=10

k values containing the
substring

Finds values that contain the specified substring
in the given column.

value similarity search Table name, column
name, value, k=10

k similar values Finds values similar to the input value based on
semantic similarity∗.

External knowledge retrieval

web search Keyword Web search results Retrieves relevant external clinical knowledge
from the web.

SQL execution

sql execute SQL query, k=100 SQL result Executes the provided SQL query and returns
up to k results.

∗For value similarity search, we use FAISS wrapped in the LangChain library (with a
default threshold of 0.8). Text columns frequently used in QA tasks are pre-indexed, as listed below
(table names with their corresponding column names in brackets).

For MIMIC-IV⋆, the pre-indexed columns include:

• hospitaladmissions: [admissiontype, admitsource, dischargedestination]
• diagnosiscodes: [description]
• procedurecodes: [description]
• medicationorders: [medicationname]
• clinicalitemtypes: [itemname]
• labtesttypes: [itemname]
• microbiologyresults: [specimentype, testname, organismname]

For eICU⋆, the pre-indexed columns include:

• allergy reaction: [drug name, allergy name]
• condition: [condition name]
• fluid balance: [fluid label]
• lab: [lab name]
• prescription: [drug name]
• icupatient: [ethnicity, hospital admission source]
• treatment: [treatment name]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 USER IMPLEMENTATION

A.3.1 SIMULATED USER

For the implementation of simulated users, we use Gemini-2.0-Flash due to its low cost and effective
instruction-following capabilities. To simulate user stochasticity in natural language utterances,
the temperature of the user simulator is set to 1.0. Table 5 shows the system prompt for the user
simulator.

A.3.2 USER SYSTEM PROMPT

Table 5: User system prompt to teach behavioral rules.

Your task is to simulate a user with no knowledge of SQL or database
management systems, who needs specific information from an EHR

database and relies on the DB agent for help.

Instruction: {user_instruction}

Rules:
- The current time is 2100-12-31 23:59:00.
- Start with a short, broad question that reflects the overall goals
from the instruction.

- Use your own words to describe your goals for the DB agent.
- Do not reveal all your goals at once. Instead, share them
gradually, one or two sentences at a time.
- Speak casually and directly, without functionally unnecessary
phrases (like "please" or "thank you") that make the tone sound like
an AI assistant.

- Do not generate SQL, code snippets, empty messages, or AI-
assistant-like outputs. Stay in the role of a user, not a DB agent.
- If the DB agent requests specific tables or column names, instruct
it to locate them independently (unless the instruction says

otherwise).
- If the DB agent requests writing or reviewing SQL queries, or
summarizing the overall goal, instruct it to complete the task
independently.
- If the DB agent gives an intermediate answer, don’t complete it
yourself. Instead, instruct it to finalize it (e.g., performing
calculations like time differences or rephrasing answers).
- If the DB agent’s answer seems satisfactory (even though you do
not know whether it is correct or whether the requested data
actually exists), ask the DB agent to double check that their final
answer covers all goals raised. If not, request any missing parts.
- If the DB agent’s answer covers all goals raised, generate only
"###END###" to end the conversation. Do not add it after every reply
. Use it only once in the final message.
- Do not deviate from what is specified in the instruction, such as
failing to mention the top N ranked tied results to retrieve,
requesting medication order records or prescription records instead
of administered records, requesting 6 months of data instead of 180
days, asking follow-up questions when they are not specified in the
instruction, or revealing disallowed information before the DB agent
mentions it.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3.3 EXAMPLE VARIABILITY IN SIMULATED USER TURNS

Using the annotated user instructions and the user system prompt in Table 5, the LLM-powered
user generates diverse dialogue trajectories with the agent even under the same instruction. Figure 4
shows sample variability in user turns for both IncreQA and AdaptQA.

(a) IncreQA (b) AdaptQA

Figure 4: Distribution of the difference between the maximum and minimum number of user turns
for each unique task in IncreQA and AdaptQA. A unique task is defined by db id, task type,
and task id. Most tasks have a difference of 1 to 3 turns, which indicates that the user simulator
generates stochastic conversations rather than fixed scripts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.4 SIMULATION VALIDATOR IMPLEMENTATION

Tables 6 and 7 show the system and input prompts used by the simulation validator. If the validator
outputs “user error” instead of “no error,” the conversation is flagged and the simulation is re-run.

Table 6: System prompt for the simulation validator.

Your task is to determine whether [USER] accurately followed the
provided rules and user instruction during their conversation with [
DB AGENT]. Errors are defined as any deviations from the rules or
user instruction. You must carefully review the rules, user
instruction, conversation between [USER] and [DB AGENT], and the
gold SQL query to identify any errors made by [USER].

Table 7: Input prompt for the simulation validator.

{user_system_prompt}

Conversation:
{conversation}

Gold SQL:
{gold_sql}

Types of common user errors:
- The user gives away their goals all at once in the same turn.
- The user acts like a DB agent or AI assistant instead of the user
(e.g., writing, reviewing, or executing SQL queries, calling
external APIs, or responding to the DB agent in a machine assistant
way).
- The user asks for information that is slightly different from what
is specified in the instruction (e.g., requesting medication order

records or prescription records instead of administered records, or
requesting 6 months of data instead of 180 days).
- The user confirms values that differ from those in the gold SQL,
unless specified otherwise in the instruction (e.g., requesting data
for just "diabetes" when the gold SQL uses LIKE "%diabetes%").

- The user mentions information beyond the instruction, including
related or unrelated details not specified (e.g., asking follow-up
questions not in the instruction).
- The user does not provide all the detailed conditions specified in
the instruction before ending the conversation. These conditions

may include, for example, retrieving all tied ranked results,
specifying the top "N" results to retrieve, handling duplicate
patient records, or indicating keywords to include or exclude when
searching for data. However, if the DB agent retrieves no relevant
data, these conditions are not required.
- The user does not provide all the detailed conditions specified in
the predicates of the gold SQL, either explicitly or implicitly,

before ending the conversation.
- The user does not double-check with the DB agent to see if the
agent’s final answer satisfies all the information the user provided
before ending the conversation.

- The user violates any other rules specified in the rules or the
user instruction.

You must respond in JSON format with the following fields:
- explanation: Provide a clear and concise explanation of why you
made the decision.
- broken_rule: If a user error is found, provide the exact rule or
instruction that the user violated. If no error is found, provide an
empty string.

- evidence: If a user error is found, provide the exact user
response that caused the error. If no error is found, provide an
empty string.
- result: Answer "user_error" if a user error is found. Answer "
no_error" if no user error is found.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.5 DATABASE-SPECIFIC RULES

Database-specific rules guide the agent in referencing database contents and generating SQL queries.
These rules complement the general agent rules (Section C.1), covering time-related operations,
database-specific schema structures (e.g., the hierarchy linking patient records to admission records,
and admission records to ICU records), and hints for complex numerical operations, such as survival
rate calculations. The complete database-specific rules are detailed in Sections A.5.1 and A.5.2.

A.5.1 MIMIC-IV⋆ RULES

Table 8: SQL assumptions for MIMIC-IV⋆.

Below are the SQL generation rules:
- Use SQLite for SQL query generation.
- The current time is ’2100-12-31 23:59:00’. When referring to time,
do not use SQLite’s native functions like now. Instead, use

’2100-12-31 23:59:00’ for ’now’, ’2100-12-31’ for ’today’, ’2100-12’
for ’this month’, and ’2100’ for ’this year’.

- Use DENSE_RANK() for questions involving ranked results (e.g., the
most or the top N most common/frequent events) to retrieve values

from the specified column (e.g., diagnosis names). Exclude counts or
ranks unless the user explicitly requests them. Do not use

DENSE_RANK() for questions without ranked result requests.
- For cost-related questions, use costrecords.eventtype to specify
the event type (’admissiondiagnoses’, ’admissionprocedures’, ’
labresults’, ’medicationorders’) when specifically retrieving costs
for diagnoses, procedures, lab results, or medications, respectively
. When retrieving costs for diagnoses, join costrecords.costid with
admissiondiagnoses.recordid. For procedures, join with
admissionprocedures.recordid. For lab results, join with labresults.
recordid. For medications, join with medicationorders.recordid.
- The medicationorders table stores ordered or prescribed
medications, while the intakerecords table records administered
drugs or fluids
- When asked to retrieve procedures, diagnoses, or lab tests, return
their names instead of their codes.

- All values stored in the database are in lowercase.
- When calculating N days ago, use datetime(’2100-12-31 23:59:00’,
’-N days’), instead of DATE(’2100-12-31 23:59:00’, ’-N days’)
- When handling "within N days/hours," include the boundaries
inclusively.
- For questions involving the timing of diagnoses or conditions
relative to other events, you must use the first diagnosis time for
each patient unless directed otherwise.
- When searching for specific medication names in the database, use
a pattern like %morphine% instead of exact matches like morphine
unless directed otherwise.
- As clinical and lab events often share identical names but have
different codes (e.g., codes 50902 and 52535 both represent chloride
), use the names if grouping them in SQL.
- If the results contain numerical values (e.g., time differences in
days or hours, or survival rates), round them to four decimal

places.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.5.2 EICU⋆ RULES

Table 9: SQL assumptions for eICU⋆.

Below are the SQL generation rules:
- Use SQLite for SQL query generation.
- The current time is ’2100-12-31 23:59:00’. When referring to time,
do not use SQLite’s native functions like now. Instead, use

’2100-12-31 23:59:00’ for ’now’, ’2100-12-31’ for ’today’, ’2100-12’
for ’this month’, and ’2100’ for ’this year’.

- Use DENSE_RANK() for questions involving ranked results (e.g., the
most or the top N most common/frequent events) to retrieve values

from the specified column (e.g., diagnosis names). Exclude counts or
ranks unless the user explicitly requests them. Do not use

DENSE_RANK() for questions without ranked result requests.
- The patient identifiers patient_id, hosp_id, and unit_id represent
the unique patient ID, hospital admission ID, and ICU admission ID,
respectively. The hierarchy of them is patient -> hospital -> icu.

- When retrieving specific hospital or ICU admission records, use
their admission IDs rather than admission or discharge times.
- For cost-related questions, use cost.event_type to specify the
event type (’condition’, ’treatment’, ’lab’, ’prescription’) when
specifically retrieving costs for conditions, treatments, lab
results, or prescriptions, respectively. For example, when
retrieving costs for conditions, join cost.event_id with condition.
condition_id with event_type = ’condition’.
- Use fluid_balance for both input and output events. Specify input
events using fluid_balance.fluid_path LIKE ’%intake%’ and output
events using fluid_balance.fluid_path LIKE ’%output%’.
- The prescription table stores ordered or prescribed medications,
while the fluid_balance table records administered drugs or fluids
when fluid_balance.fluid_path LIKE ’%intake%’.
- All values stored in the database are in lowercase.
- Patients with no records of death are considered to have survived
when dealing with death-related questions.
- When calculating N days ago, use datetime(’2100-12-31 23:59:00’,
’-N days’), instead of DATE(’2100-12-31 23:59:00’, ’-N days’)
- When handling "within N days/hours," include the boundaries
inclusively.
- For questions involving the timing of diagnoses or conditions
relative to other events, you must use the first diagnosis time for
each patient unless directed otherwise.
- When searching for specific medication names in the database, use
a pattern like %morphine% instead of exact matches like morphine
unless directed otherwise.
- If the results contain numerical values (e.g., time differences in
days or hours, or survival rates), round them to four decimal

places.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.6 EVALUATION DETAILS

The evaluation methods for IncreQA and AdaptQA differ, and the appropriate method is applied
based on the interaction flow type.

A.6.1 INCREQA

For IncreQA tasks, we evaluate the agent by executing the SQL query it generates (parsed from the
input to the sql execute tool). We compare the resulting output to the ground truth (GT) SQL
output to ensure accuracy even for queries that return many rows. Up to 100 results are checked.
Evaluation logic: The GT SQL is constructed to satisfy all constraints introduced throughout the
interaction. Example: If a user first asks for “patients with diabetes” and then refines it to “among
them, who are over 65?”, the GT SQL filters for both conditions. If the agent executes a query
checking only for “age > 65” (ignoring the diabetes context), the result will not match the GT,
leading to failure.

A.6.2 ADAPTQA

For AdaptQA tasks, correctness is evaluated based on the content within the
<answer></answer> tags of the agent’s response to the user. This method is better suited for
tasks that require clinical reasoning beyond simple SQL retrieval. For instance, after retrieving
medication data, the agent might need to identify drugs within the same class or those with similar
purposes but different mechanisms. For tasks requiring numerical answers (e.g., patient counts),
the instructions explicitly ask the agent to respond in words rather than numerals (e.g., “ten”
instead of “10”). This avoids false positives from numeral-word mismatches during evaluation.
Evaluation logic: Since the simulator follows a fixed procedure, the correct answer is deterministic.
We evaluate success by checking if the content within the <answer> tags strictly matches the
annotated GT answer, which reflects the user’s final intent after all refinements. Example: Consider
a user asking for “Aspirin” (Count: 0) and then refining to “acetylsalicylic acid” (Count: 10). The
GT answer is explicitly set to “ten”. If the agent answers <answer>ten</answer>, it succeeds.
If it fails to update the search term and answers “zero”, it fails.

A.7 CONTRIBUTOR DEMOGRAPHICS AND BETA TESTING PROCESS

To ensure the robustness and usability of the EHR-ChatQA benchmark, we conducted a beta-testing
phase involving 38 graduate-level contributors.

Demographics and Background The cohort consisted of Master’s and Ph.D. students specializ-
ing in Computer Science and Artificial Intelligence. All contributors were participants in a graduate-
level course focused on Healthcare AI. Their strong technical background ensured that they ef-
fectively represented the target audience of this benchmark, namely researchers and developers of
database agents.

Training and Setup Contributors were not trained to act as simulated users but were instead
onboarded as “agent developers.” To facilitate this, we provided them with a standardized devel-
opment environment, which included: (1) the complete benchmark codebase and the simulation
environment, (2) detailed documentation defining the task objectives and evaluation metrics, and (3)
a baseline agent implementation to serve as a reference point for tool usage and API interaction.

Task and Feedback Mechanism Over a duration of two months, contributors were tasked with
developing and optimizing their own database agents to solve the benchmark tasks. During this
process, they were instructed to report qualitative failures in the simulation environment via Google
Form. Specifically, they identified edge cases where the LLM-based user simulator deviated from
intended behaviors, such as revealing constraints too early or terminating conversations prematurely.

Outcome This human-in-the-loop testing phase was critical for quality assurance. Based on the
reported issues, we iteratively refined the user instructions and the simulation validator to better
detect and filter out invalid dialogue traces.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B ANNOTATION DETAILS

B.1 INCREQA AND ADAPTQA ANNOTATION

Each task instance (examples in Appendix A.1) consists of a “instruction,” “gold sql,”
“gold answer,” and metadata (e.g., sample id, db id). Below, we detail the construction pipeline
for both interaction flows.

B.1.1 INCREQA ANNOTATION

Source Selection IncreQA tasks are designed to mimic a user who incrementally adds constraints
through multi-turn interactions. We curate and adapt clinically relevant queries from two primary
sources: the EHRSQL dataset (Lee et al., 2022), originally collected from over 200 hospital profes-
sionals, and a set of question-SQL pairs internally stored at our collaborating medical center.

SQL/Answer Annotation After collecting a set of candidate queries, we perform value sampling
to ensure the queries return non-empty results in our specific EHR databases (MIMIC-IV and eICU
Demo). For a query like “patients diagnosed with [Diagnosis] during [Time Range],” selecting ran-
dom values often yields zero results due to data sparsity. We manually explore the database to sample
valid value pairs (e.g., specific diagnosis codes and overlapping admission dates). We then use xAI’s
Grok 3 (xAI, 2025) to generate initial SQL drafts, explicitly prioritizing Common Table Expressions
(CTEs) for readability and maintainability (see Appendix B.3). Finally, we manually verify that the
SQL execution produces the intended result based on the corresponding natural language question.
The final SQL and its execution result become “gold sql” and “gold answer.”

Instruction Creation Once the SQL queries are finalized, we create user instructions through a
SQL-to-text approach. This method is crucial for preserving fine-grained SQL conditions within
the narrative instructions. By decomposing complex SQL logic into discrete semantic components,
we ensure that every constraint corresponds to a specific part of the user’s goal. For example, a
SQL query containing ORDER BY charttime DESC LIMIT 1 encodes a strict operational
constraint: fetching only the latest record. A natural language question often glosses over this detail
(e.g., “What is the patient’s creatinine level?”), which could be interpreted as requesting an average,
a full history, or the peak value. However, our approach captures this SQL operation explicitly in the
narrative: “You want to check the creatinine level. Specifically, you are interested only in the most
recent value,” reducing errors in omitting details required for the agent to generate correct SQL. We
also introduce value mismatches by manually replacing exact database values with lay terms (e.g.,
mapping “malignant neoplasm of breast” to “breast cancer”).

B.1.2 ADAPTQA ANNOTATION

Source Selection AdaptQA tasks are designed around conversational flows that mimic clinical
interactions requiring query goal adjustments. To facilitate this, we define eight categories of query
modification, including interaction flows such as traversing medication nomenclature (e.g., brand ↔
generic) and switching a primary lab test to its clinical alternative for a condition (e.g., hemoglobin
→ hematocrit). (see Appendix B.2 for the full list of categories).

Instruction Creation Unlike IncreQA, the annotation process for AdaptQA begins with instruc-
tion creation, followed by SQL/Answer annotation. This reverse order is necessary because Adap-
tQA scenarios are highly dependent on the patient data stored in the database and the database
schema. Using each of the defined categories, we prompt Grok 3 to generate various scenarios that
fit under the corresponding category. For example, for “medication nomenclature traversal,” the
prompt generates instructions such as: “First search for Lasix. If not found, pivot to search for its
generic name (Furosemide).” We then manually verify these scenarios against the actual database
to find patient records where the condition holds true (e.g., a patient who has no record for “Lasix”
but does have a record for “Furosemide”). A physician verifies the clinical validity of these goal ad-
justments. By design, these tasks require more advanced value-mismatch resolution strategies than
IncreQA, often requiring domain knowledge beyond simple synonym matching.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

SQL/Answer Annotation Since AdaptQA instructions imply a conditional step-by-step flow, the
order of operations is critical. We annotate the SQL queries to reflect how a user proceeds through
the logical pivot. For logic based on data existence, we utilize conditional expressions in the GT
SQL such as EXISTS (SELECT 1 FROM lasix patients) assuming that specific CTEs
are defined. However, fully capturing the pivot logic in a single SQL statement is not always feasible.
For patterns involving schema unavailability (for example, asking for a table that does not exist) or
complex clinical reasoning that can only be inferred from the retrieved tool output, we bypass the
intermediate logical pivoting and annotate the SQL straightforwardly so that it corresponds to the
ground truth answer.

B.2 ADAPTQA CATEGORIES

Table 10: Eight categories of query goal modification in AdaptQA.

Category Description

Medication nomenclature traversal This category involves queries that navigate the medication nomenclature, such as from a brand name
to a generic name or vice versa. The tasks begin by requesting information about a specific medication
name (e.g., “Lipitor”) and then, if that name is not found, adapt the query to search for its generic
name.

Within drug class adaptation This category encompasses queries that require a user to adapt their search within a single drug class.
The query goals might be to expand from a specific drug to the entire class, narrow the search from
a broad class to a specific subclass, or exclude a particular medication from a class. This flexibility
demonstrates a deeper understanding of therapeutic classifications beyond simple name-to-name con-
version.

Across drug class traversal This category is defined by queries that involve navigating between different drug classes. The tasks
may require the identification of medications from one class while excluding another (e.g., finding
PUD medications other than PPIs) or the combination of multiple distinct drug classes in a single
query (e.g., patients prescribed both ACE inhibitors and Beta-blockers).

Primary condition to related condition This category includes tasks where the initial query focuses on a primary diagnosis or procedure, and
the subsequent goal is to identify clinically related conditions. This often involves looking for common
comorbidities, complications from a surgery, or side effects of a medication.

Alternative lab test for condition This category is designed for scenarios where the initial query for a specific lab test is unsuccessful.
The system must then identify and pivot to a clinically relevant alternative lab test used to assess the
same condition (e.g., from “troponin I” to “troponin T” for myocardial damage). This mimics clinical
reasoning when a preferred test is unavailable.

Alternative procedure for treatment This category handles tasks that require finding alternative procedures when a primary treatment
method is not found or is not applicable. The queries start by searching for a specific procedure for a
condition and then, if necessary, adjust to look for other clinically appropriate procedures or surgeries
for the same condition.

Multi-criteria resolution This category involves complex queries that require resolving multiple, often compound, criteria si-
multaneously. The tasks integrate various clinical events, such as diagnoses, lab results, and vital
signs, using logical operators (AND/OR) to identify a specific patient cohort. The complexity lies in
accurately interpreting and executing these complex queries while considering what to include and
exclude in a patient cohort.

Schema fallback handling This category addresses situations where the primary data source (a specific database table or schema)
is unavailable. The query system must then ”fall back” to an alternative data source or a modified
search strategy to fulfill the user’s goal. This demonstrates robustness in handling missing data schema
by adapting the query to existing information (e.g., a “cancer registry table” vs. the general “diagnosis
table”).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.3 SQL ANNOTATION STYLE

SQL annotations in EHR-ChatQA use Common Table Expressions (CTEs) to enhance readability
and maintainability. A sample user instruction and its corresponding gold SQL query are shown in
Table 11.

Table 11: Sample user instruction and its GT SQL query.

User Instruction Gold SQL

Your goal is to find information related to a specific
patient’s lab tests. Specifically, you are interested in
patient ID 10018845 and want to know all timestamps
when the Hb value was 8 or lower during the patient’s
last hospital visit. You want to search for Hb specif-
ically, not other similar lab tests like “Hb C” or “Hb
A2.” When querying the DB agent, since you do not
know how Hb is stored, use common terms like “Hb”
or “Hgb” when referring to it, and let the DB agent find
it for you.

WITH LastAdmission AS (
SELECT admissionid
FROM hospitaladmissions
WHERE patientid = 10018845
ORDER BY admitdatetime DESC
LIMIT 1

),
HbTest AS (
SELECT itemcode
FROM labtesttypes
WHERE itemname = ’hemoglobin’

)
SELECT lr.resultdatetime
FROM labresults lr
JOIN LastAdmission la
ON lr.admissionid = la.admissionid

JOIN HbTest ht
ON lr.itemcode = ht.itemcode

WHERE lr.patientid = 10018845
AND lr.resultvalue <= 8
AND lr.resultvalue IS NOT NULL

ORDER BY lr.resultdatetime;

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

B.4 EHR DATABASE PREPROCESSING

Our preliminary analysis revealed that many LLMs memorize the original MIMIC-IV and eICU
schemas, which leads to SQL generation without actual schema exploration. To prevent this, we
rename the schema so that generating SQL without using the provided schema tools inevitably
results in errors. The detailed schema mappings are provided in Table 12 and Table 13.

B.4.1 MIMIC-IV RENAMING

Table 12: Table and column renaming mappings for MIMIC-IV.

Original Table Mapped Table Column Mappings (MIMIC-IV to MIMIC-IV⋆)

patients demographics row id → recordid, subject id → patientid, gender → gender, dob → dateof-
birth, dod → dateofdeath

admissions hospitaladmissions row id → recordid, subject id → patientid, hadm id → admissionid, admit-
time → admitdatetime, dischtime → dischargedatetime, admission type →
admissiontype, admission location → admitsource, discharge location → dis-
chargedestination, insurance → insurancetype, language → language, mari-
tal status → maritalstatus, age → age

d icd diagnoses diagnosiscodes row id → recordid, icd code → icdcode, icd version → codeversion, long title
→ description

d icd procedures procedurecodes row id → recordid, icd code → icdcode, icd version → codeversion, long title
→ description

d labitems labtesttypes row id → recordid, itemid → itemcode, label → itemname

d items clinicalitemtypes row id → recordid, itemid → itemcode, label → itemname, abbreviation →
abbreviation, linksto → itemtype

diagnoses icd admissiondiagnoses row id → recordid, subject id → patientid, hadm id → admissionid, icd code
→ icdcode, icd version → codeversion, charttime → recordeddatetime

procedures icd admissionprocedures row id → recordid, subject id → patientid, hadm id → admissionid, icd code
→ icdcode, icd version → codeversion, charttime → recordeddatetime

labevents labresults row id → recordid, subject id → patientid, hadm id → admissionid, itemid →
itemcode, charttime → resultdatetime, valuenum → resultvalue, valueuom →
resultunit

prescriptions medicationorders row id → recordid, subject id → patientid, hadm id → admissionid, start-
time → startdatetime, stoptime → enddatetime, drug → medicationname,
dose val rx → dosevalue, dose unit rx → doseunit, route → administra-
tionroute

cost costrecords row id → recordid, subject id → patientid, hadm id → admissionid, event type
→ eventtype, event id → costid, chargetime → costdatetime, cost → costa-
mount

chartevents clinicalevents row id → recordid, subject id → patientid, hadm id → admissionid, stay id →
icuadmissionid, itemid → itemcode, charttime → recordeddatetime, valuenum
→ value, valueuom → unit

inputevents intakerecords row id → recordid, subject id → patientid, hadm id → admissionid, stay id →
icuadmissionid, starttime → startdatetime, itemid → itemcode, totalamount →
totalvolume, totalamountuom → volumeunit

outputevents outputrecords row id → recordid, subject id → patientid, hadm id → admissionid, stay id →
icuadmissionid, charttime → recordeddatetime, itemid → itemcode, value →
volume, valueuom → volumeunit

microbiologyevents microbiologyresults row id → recordid, subject id → patientid, hadm id → admissionid, charttime
→ collecteddatetime, spec type desc → specimentype, test name → testname,
org name → organismname

icustays icuepisodes row id → recordid, subject id → patientid, hadm id → admissionid, stay id →
icuadmissionid, first careunit → initialcareunit, last careunit → finalcareunit,
intime → admitdatetime, outtime → dischargedatetime

transfers patienttransfers row id → recordid, subject id → patientid, hadm id → admissionid, transfer id
→ transferid, eventtype → transfertype, careunit → careunit, intime → trans-
ferindatetime, outtime → transferoutdatetime

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.4.2 EICU RENAMING

Table 13: Table and column renaming mappings for eICU.

Original Table Mapped Table Column Mappings (eICU to eICU⋆)

patient person uniquepid → person id, patienthealthsystemstayid → hosp id, patientunitstayid
→ unit id, gender → gender, age → age, ethnicity → ethnicity, hospitalid
→ hospital id, wardid → ward id, admissionheight → height admission, ad-
missionweight → weight admission, dischargeweight → weight discharge,
hospitaladmittime → hospital admit time, hospitaladmitsource → hospi-
tal admission source, unitadmittime → unit admit time, unitdischargetime →
unit discharge time, hospitaldischargetime → hospital discharge time, hospi-
taldischargestatus → hospital discharge status

diagnosis condition diagnosisid → condition id, patientunitstayid → unit id, diagnosisname →
condition name, diagnosistime → condition time, icd9code → icd9 code

treatment treatment treatmentid → treatment id, patientunitstayid → unit id, treatmentname →
treatment name, treatmenttime → treatment time

lab lab labid → lab id, patientunitstayid → unit id, labname → lab name, labresult →
lab result, labresulttime → lab result time

medication prescription medicationid → prescription id, patientunitstayid → unit id, drugname →
drug name, dosage → dosage, routeadmin → administration route, drugstart-
time → medication start time, drugstoptime → medication stop time

cost cost costid → cost id, patienthealthsystemstayid → hosp id, patientunitstayid →
unit id, eventtype → event type, eventid → event id, chargetime → cost time,
cost → cost amount

allergy allergy reaction allergyid → allergy id, patientunitstayid → unit id, drugname → drug name,
allergyname → allergy name, allergytime → allergy time

intakeoutput fluid balance intakeoutputid → fluid balance id, patientunitstayid → unit id, cellpath →
fluid path, celllabel → fluid label, cellvaluenumeric → fluid value numeric, in-
takeoutputtime → fluid balance time

microlab microbiology microlabid → microbiology id, patientunitstayid → unit id, culturesite → cul-
ture site, organism → organism, culturetakentime → culture taken time

vitalperiodic vital signs vitalperiodicid → vital sign id, patientunitstayid → unit id, temperature →
temperature, sao2 → sao2, heartrate → heart rate, respiration → respira-
tion rate, systemicsystolic → systolic bp, systemicdiastolic → diastolic bp,
systemicmean → mean bp, observationtime → vital time

hospital hospital hospitalid → hospital id, numbedscategory → bed capacity category, teach-
ingstatus → teaching status, region → region

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C AGENT IMPLEMENTATION

For selecting the backbone LLMs for the agents, small models (e.g., 7B or 13B), DeepSeek-R1,
and the Gemma 3 series are excluded due to their limited performance in tool invocation tasks.
Owing to budget constraints, we also exclude Anthropic models (e.g., Opus 4 and Sonnet) as well
as Gemini-2.5-Pro.

Table 14 presents the system prompt used for our agent baselines. In addition to the system prompt,
the agent’s input includes three other components: (1) agent behavioral rules detailing interaction
behavior (Section C.2); (2) evaluation rules for IncreQA and AdaptQA to ensure accurate evaluation
(Section A.6); and (3) database-specific rules outlining the SQL annotation assumptions for MIMIC-
IV⋆ and eICU⋆ (Section A.5).

C.1 AGENT SYSTEM PROMPT

Table 14: Agent system prompt.

Instruction:
- You are a DB agent that helps users by answering their questions
in natural language using information from a database.
- You are currently engaged in a conversation with a user who wants
to retrieve some data or statistics from an EHR database.
- If the user’s request is ambiguous or lacks important details (e.g
., filtering criteria), ask clarifying questions to better
understand the request.
- You have access to a set of tools to assist the user:
- table_search: search tables in the database
- column_search: search columns in a table
- value_substring_search: search values in a column by substring
match
- value_similarity_search: search values in a column by semantic
similarity (embedding-based)
- sql_execute: execute an SQL query on the database
- web_search: search the web for external clinical knowledge

- Use table_search and column_search to explore the database schema.
- Use value_substring_search and value_similarity_search to explore
stored values.
- Clinical concepts (e.g., diagnoses, procedures, medications, lab
tests) in the database may not exactly match the user’s words. Use
the value search tools to find relevant entries.
- If you need clinical knowledge beyond what is in the database (e.g
., a drug’s mechanism of action), use web_search.
- Never invent or assume information that is not provided by the
user or retrieved using the tools.
- Make only one tool call at a time. Do not send a user-facing
response in the same turn as a tool call.
- After gathering all necessary information, use sql_execute to
write and run a single valid SQL query that fully answers the user’s
latest request.

- When you write an SQL query, always execute it with sql_execute
and return the results to the user along with your explanation.

{agent_rule}

{database_rule}

C.2 AGENT RULES

Table 15: Agent rules.

Below are the general rules for the DB agent:
- The DB agent must assume the user has no knowledge of SQL,
databases, or stored values, and cannot execute queries.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

- The DB agent must interact with the user only in natural language
and must not show raw SQL queries.
- The DB agent must not modify the database schema or contents. The
following commands are forbidden: INSERT, UPDATE, DELETE, DROP,
ALTER.
- The DB agent must write queries that finish within 60 seconds;
otherwise, the query results will be invalid.
- The DB agent must limit each conversation to 30 interactions (
including user exchanges and tool calls) and 600 seconds total.
- The DB agent must always explain answers in natural language,
including the reasoning or conditions used to arrive at those
answers. If SQL references are necessary, the DB agent must explain
them in terms understandable to someone with no SQL knowledge.
- The DB agent must clearly explain when a question cannot be
answered (e.g., due to limitations of SQL or empty results) and ask
the user to rephrase or modify the request.
- The DB agent must generate a non-empty response, which must
include either a message or a tool call.

C.3 AGENT RULES FOR EVALUATION

Table 16 and Table 17 present the prompts used for IncreQA and AdaptQA tasks, respectively. These
prompts are appended to the agent rules to guide the agent toward behavior that aligns with accurate
evaluation criteria. Note that for both task types, the agent’s responses are evaluated each time they
are generated, as correct answers may emerge during the conversation due to iterative nature of open
QA dialogues.

Table 16: Scoring rules for IncreQA.

Below are the grading rules:
- The DB agent’s performance is evaluated based on the generated SQL
queries, requiring at least one SQL query (via sql_execute) to

retrieve answers during the interaction with the database.
- For accurate assessment, when the user revises their question, the
DB agent must write a new SQL query from scratch to fully address

the latest request, without relying on previous query results.
- For questions that involve calculations (such as time differences
or survival rates) or data manipulation/aggregation, the DB agent
must use SQL language to compute the results rather than relying on
its LLM capabilities.

Table 17: Scoring rules for AdaptQA.

Below are the grading rules:
- The DB agent’s performance is evaluated based on the results in
its natural language response to the user.
- When providing answers to the user, the DB agent must enclose the
final answer in <answer></answer> tags (e.g., <answer>42</answer>).
All other content, including intermediate results, explanations,
units, and any additional details, must be placed outside these tags
.
- When answers are textual data (e.g., timestamps or diagnosis names
), use them exactly as stored in the database. For numerical answers
, round them to four decimal places.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

D SAMPLE TRAJECTORIES

In this section, we present sample task instances along with one successful and one failed conversa-
tion trajectory for IncreQA and AdaptQA.

D.1 INCREMENTAL QUERY REFINEMENT

D.1.1 SUCCESSFUL CASE (INCREQA)

The agent successfully retrieves the number of patients diagnosed with breast cancer by querying
values in the description column of the diagnosiscodes table.

Instruction: Your goal is to find the number of patients admitted to the hospital who meet
specific criteria. Specifically, you want to know how many patients admitted in the past 90
days have a family history of breast cancer.

===

User: I’m trying to figure out how many patients admitted to the hospital have certain
conditions.

Agent: table search(arguements={”tool input”:””})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

Agent: column search(arguements={”table names”:”admissiondiagnoses,diagnosiscodes”})

Tool: CREATE TABLE admissiondiagnoses (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (codeversion) REFERENCES diagnosiscodes (codeversion),
FOREIGN KEY (icdcode) REFERENCES diagnosiscodes (icdcode),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

)
/*
3 rows from admissiondiagnoses table:
recordid patientid admissionid icdcode codeversion recordeddatetime
0 10035185 22580999 4139 9 2100−05−17 12:53:00

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1 10035185 22580999 v707 9 2100−05−17 12:53:00
2 10035185 22580999 41401 9 2100−05−17 12:53:00
*/

CREATE TABLE diagnosiscodes (
recordid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
description TEXT NOT NULL,
PRIMARY KEY (recordid)

)
/*
3 rows from diagnosiscodes table:
recordid icdcode codeversion description
0 0090 9 infectious colitis, enteritis, and gastroenteritis
1 01160 9 tuberculous pneumonia [any form], unspecified
2 01186 9 other specified pulmonary tuberculosis, tubercle bacilli not found by
bacteriological or histological examination, but tuberculosis confirmed by other methods [
inoculation of animals]
*/

Agent: Could you clarify which specific conditions you’d like to count? For example, are you
interested in diabetes, heart failure, COPD, etc.? Also, should these diagnoses be those
recorded at the time of hospital admission?

User: I want to know how many patients admitted in the last 90 days have a family history
of breast cancer.

Agent: value substring search(arguements={”table”:”diagnosiscodes”,”column”:”
description”,”value”:”family”})

Tool: Values in diagnosiscodes.description containing ’family’: [’family history of polycystic
kidney’, ’non−family member, perpetrator of maltreatment and neglect’, ’family history of
unspecified malignant neoplasm’, ..., ’family history of eye disorders’, ’family disruption due
to death of family member’].

Agent: column search(arguments={”table names”:”hospitaladmissions”})

Tool: CREATE TABLE hospitaladmissions (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

admitdatetime TEXT NOT NULL,
dischargedatetime TEXT,
admissiontype TEXT NOT NULL,
admitsource TEXT NOT NULL,
dischargedestination TEXT,
insurancetype TEXT NOT NULL,
language TEXT,
maritalstatus TEXT,
age INTEGER NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (patientid) REFERENCES demographics (patientid)

)
/*
3 rows from hospitaladmissions table:
recordid patientid admissionid admitdatetime dischargedatetime admissiontype
admitsource dischargedestination insurancetype language maritalstatus age
0 10004235 24181354 2100−03−19 14:38:00 2100−03−28 14:02:00 urgent transfer from hospital
skilled nursing facility medicaid english single 47
1 10009628 25926192 2100−09−30 17:08:00 2100−10−08 13:20:00 urgent transfer from
hospital home health care medicaid ? married 58
2 10006053 22942076 2100−11−15 23:39:00 2100−11−17 17:20:00 urgent transfer from hospital
died medicaid english None 52
*/

Agent: value substring search(arguements={”table”:”diagnosiscodes”,”column”:”
description”,”value”:”breast”})

Tool: Values in diagnosiscodes.description containing ’breast’: [’other and unspecified
disorder of breast associated with childbirth, postpartum condition or complication’, ’
malignant neoplasm of axillary tail of female breast’, ’full−thickness skin loss [third degree,
not otherwise specified] of chest wall, excluding breast and nipple’, ...’, ’personal history of
malignant neoplasm of breast’, ’open wound of breast, without mention of complication’].

Agent: sql execute(arguements={”query”: ”SELECT COUNT(DISTINCT ha.patientid) AS
num patients FROM hospitaladmissions AS ha JOIN admissiondiagnoses AS ad ON ha.
admissionid = ad.admissionid JOIN diagnosiscodes AS dc ON ad.icdcode = dc.icdcode AND
ad.codeversion = dc.codeversion WHERE dc.description = ’family history of malignant
neoplasm of breast’ AND ha.admitdatetime >= datetime(’2100−12−31 23:59:00’, ’−90 days’)
;”})

Tool: [(1,)]

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Agent: There have been 1 unique patient admitted in the last 90 days with a diagnosis of
family history of malignant neoplasm of breast.

User: Can you double check that the answer covers my goals?

Agent: Yes−here’s how the query addresses each part of your goal:
− Last 90 days: We filtered admissions with
ha.admitdatetime >= datetime(’2100−12−31 23:59:00’,’−90 days’)
− Family history of breast cancer: We joined admissions −> diagnoses −> codes and used
dc.description = ’family history of malignant neoplasm of breast’
− Unique patients: We counted DISTINCT ha.patientid so repeat admissions aren’t double−
counted.
The result was 1 patient. Let me know if you’d like any further breakdown or checks!

User: ###END###

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

D.1.2 FAILED CASE (INCREQA)

The agent fails to retrieve information on breast cancer, as it queries unrelated tables and columns
(e.g., clinicalevents and clinicalitemtypes) instead of the diagnosiscodes table. Due to the use of
FAISS, wrapped in the LangChain library, values with semantic similarity below the default thresh-
old (0.8) are not retrieved. Consequently, values below this threshold are not retrieved. In the
example below, the agent applies the value similarity tool to the itemname column of the clini-
calitemtypes table for “cancer,” but the tool returns no result. Note that itemname corresponds to the
label in the d item table in MIMIC-IV, which covers a wide range of clinical practices, vital signs,
and measurements.

Instruction: Your goal is to find the number of patients admitted to the hospital who meet
specific criteria. Specifically, you want to know how many patients admitted in the past 90
days have a family history of breast cancer.

===

User: I want to find out how many patients have been admitted to the hospital recently and
also have a family history of breast cancer.

Agent: To assist you with your request, I need to clarify a couple of things:
1. What do you mean by ”recently”? Are you looking for admissions within a specific time
frame (e.g., the last month, last year)?
2. How is the family history of breast cancer recorded in the database? Is there a specific
table or column that indicates this information?
Once I have this information, I can proceed to gather the necessary data from the database
.

User: I’m interested in patients admitted in the last 90 days. As for the family history, could
you check the database to find where that info is stored?

Agent: table search(arguements={”tool input”:””})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

Agent: table names(arguements={”table names”:”demographics”})

Tool: CREATE TABLE demographics (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
gender TEXT NOT NULL,
dateofbirth TEXT NOT NULL,
dateofdeath TEXT,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

PRIMARY KEY (recordid)
)
/*
3 rows from demographics table:
recordid patientid gender dateofbirth dateofdeath
0 10014729 f 2079−07−22 00:00:00 None
1 10003400 f 2028−07−25 00:00:00 None
2 10002428 f 2020−07−30 00:00:00 None
*/

Agent: column search(arguements={”table names”:”clinicalevents”})

Tool: CREATE TABLE clinicalevents (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icuadmissionid INTEGER NOT NULL,
itemcode INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
value DOUBLE PRECISION,
unit TEXT,
PRIMARY KEY (recordid),
FOREIGN KEY (itemcode) REFERENCES clinicalitemtypes (itemcode),
FOREIGN KEY (icuadmissionid) REFERENCES icuepisodes (icuadmissionid),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

)
/*
3 rows from clinicalevents table:
recordid patientid admissionid icuadmissionid itemcode recordeddatetime value unit
0 10005817 20626031 32604416 220210 2100−12−24 00:00:00 19.0 insp/min
1 10005817 20626031 32604416 220051 2100−12−24 00:00:00 37.0 mmhg
2 10005817 20626031 32604416 223762 2100−12−24 00:00:00 37.0 c
*/

Agent: column search(arguements={”table names”:”clinicalitemtypes”})

Tool: CREATE TABLE clinicalitemtypes (
recordid INTEGER NOT NULL,
itemcode INTEGER NOT NULL,
itemname TEXT NOT NULL,
abbreviation TEXT NOT NULL,
itemtype TEXT NOT NULL,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

PRIMARY KEY (recordid)
)
/*
3 rows from clinicalitemtypes table:
recordid itemcode itemname abbreviation itemtype
0 226228 gender gender clinicalevents
1 226545 race race clinicalevents
2 229877 suction events (ch) suction events (ch) clinicalevents
*/

Agent: value substring search(arguements={”table”:”clinicalitemtypes”,”column”:”
itemname”,”value”:”family history”})

Tool: No values in clinicalitemtypes.itemname contain ’family history’.

Agent: value similarity search(arguements={”table”:”clinicalitemtypes”,”column”:”
itemname”,”value”:”family history”})

Tool: No matches found in clinicalitemtypes.itemname for ’family history’.

Agent: column search(arguements={”table names”:”hospitaladmissions”})

Tool: CREATE TABLE hospitaladmissions (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
admitdatetime TEXT NOT NULL,
dischargedatetime TEXT,
admissiontype TEXT NOT NULL,
admitsource TEXT NOT NULL,
dischargedestination TEXT,
insurancetype TEXT NOT NULL,
language TEXT,
maritalstatus TEXT,
age INTEGER NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (patientid) REFERENCES demographics (patientid)

)
/*
3 rows from hospitaladmissions table:
recordid patientid admissionid admitdatetime dischargedatetime admissiontype
admitsource dischargedestination insurancetype language maritalstatus age

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0 10004235 24181354 2100−03−19 14:38:00 2100−03−28 14:02:00 urgent transfer from hospital
skilled nursing facility medicaid english single 47
1 10009628 25926192 2100−09−30 17:08:00 2100−10−08 13:20:00 urgent transfer from
hospital home health care medicaid ? married 58
2 10006053 22942076 2100−11−15 23:39:00 2100−11−17 17:20:00 urgent transfer from hospital
died medicaid english None 52
*/

Agent: column search(arguements={”table names”:”demographics”})

Tool: CREATE TABLE demographics (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
gender TEXT NOT NULL,
dateofbirth TEXT NOT NULL,
dateofdeath TEXT,
PRIMARY KEY (recordid)

)
/*
3 rows from demographics table:
recordid patientid gender dateofbirth dateofdeath
0 10014729 f 2079−07−22 00:00:00 None
1 10003400 f 2028−07−25 00:00:00 None
2 10002428 f 2020−07−30 00:00:00 None
*/

Agent: column search(arguements={”table names”:”clinicalevents”})

Tool: CREATE TABLE clinicalevents (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icuadmissionid INTEGER NOT NULL,
itemcode INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
value DOUBLE PRECISION,
unit TEXT,
PRIMARY KEY (recordid),
FOREIGN KEY (itemcode) REFERENCES clinicalitemtypes (itemcode),
FOREIGN KEY (icuadmissionid) REFERENCES icuepisodes (icuadmissionid),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

)
/*
3 rows from clinicalevents table:
recordid patientid admissionid icuadmissionid itemcode recordeddatetime value unit
0 10005817 20626031 32604416 220210 2100−12−24 00:00:00 19.0 insp/min
1 10005817 20626031 32604416 220051 2100−12−24 00:00:00 37.0 mmhg
2 10005817 20626031 32604416 223762 2100−12−24 00:00:00 37.0 c
*/

Agent: value substring search(arguements={”table”:”clinicalitemtypes”,”column”:”
itemname”,”value”:”cancer”})

Tool: No values in clinicalitemtypes.itemname contain ’cancer’.

Agent: value similarity search({”table”:”clinicalitemtypes”,”column”:”itemname”,”value”:”
cancer”})

Tool: No matches found in clinicalitemtypes.itemname for ’cancer’.

Agent: It seems that I couldn’t find any specific entries related to ”family history of breast
cancer” in the database. This could mean that the information is either stored in a different
format or not recorded in the tables I checked.

To proceed, I can look for any general family history or cancer−related entries in the
clinical events or demographics tables. Would you like me to do that?

User: Yes, please check for any general family history or cancer−related info.

Agent: value substring search(arguements={”table”: ”clinicalitemtypes”, ”column”: ”
itemname”, ”value”: ”family history”})

Tool: No values in clinicalitemtypes.itemname contain ’family history’.

Agent: value substring search(arguements={”table”:”clinicalitemtypes”,”column”:”
itemname”,”value”:”cancer”})

Tool: No values in clinicalitemtypes.itemname contain ’cancer’.

Agent: I have searched for general family history and cancer−related information in the
database, but unfortunately, I couldn’t find any relevant entries in the clinical item types. It
appears that the information regarding family history of breast cancer may not be
explicitly recorded in the database, or it might be stored in a different format or table that I

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

haven’t checked. If you have any other specific criteria or different information you would
like to explore, please let me know!

User: Okay, can you at least tell me how many patients have been admitted in the last 90
days?

Agent: sql execute(arguemetns={”query”: ”SELECT COUNT(DISTINCT patientid) AS
patient count FROM hospitaladmissions WHERE admitdatetime >= ’2100−09−30’”})

Tool: [(38,)]

Agent: There have been 38 patients admitted to the hospital in the last 90 days. If you have
any other questions or need further assistance, feel free to ask!

User: Okay, so you couldn’t find the family history info. Just to confirm, you were able to
find the number of patients admitted in the last 90 days?

Agent: Yes, that’s correct! I was able to find that there have been 38 patients admitted to
the hospital in the last 90 days. However, I couldn’t find any specific information regarding
family history of breast cancer in the database. If you have any other questions or need
further assistance, please let me know!

User: Double check that you’ve covered my goals: the number of patients admitted in the
last 90 days with a family history of breast cancer.

Agent: I understand your request clearly now. You want to know the number of patients
who were admitted in the last 90 days and also have a family history of breast cancer.
Unfortunately, I was unable to find any specific entries related to family history of breast
cancer in the database. This means I cannot confirm how many patients meet both criteria.
If you have any other specific information or different criteria you would like to explore,
please let me know!

User: ###END###

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

D.2 ADAPTIVE QUERY REFINEMENT

D.2.1 SUCCESSFUL CASE (ADAPTQA)

The user initially asks whether a specific patient was prescribed carbamazepine for epilepsy treat-
ment, but the agent finds that no such records exist for the patient. The user then requests information
about other medications for epilepsy. The agent searches the database using clinical knowledge with
keywords such as levetiracetam, phenytoin, and phenobarbital. The agent checks whether the patient
was prescribed any of these medications and successfully retrieves the most recent prescription date
for levetiracetam, as requested.

Instruction: Your goal is to explore patient data related to medication prescriptions.
Specifically, you are interested in patient ID 10008287 and want to know when they were
prescribed carbamazepine for epilepsy treatment. If the patient was prescribed
carbamazepine, you want to know the most recent prescription time after the first epilepsy
diagnosis. If the patient was not prescribed carbamazepine, you want to identify whether
any other class of medication used for epilepsy treatment was prescribed. If such
medications are found, you want to know the most recent prescription time after the first
epilepsy diagnosis. If no such medications are found, end the conversation. You want the
answer in the exact time format recorded in the database.

===

User: I’m looking into patient prescriptions. Can you help me find some info about the
medications prescribed to patient ID 10008287?

Agent: table search(arguements={”tool input”:””})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

Agent: column search(arguements={”table names”:”medicationorders”})

Tool: CREATE TABLE medicationorders (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
startdatetime TEXT NOT NULL,
enddatetime TEXT,
medicationname TEXT NOT NULL,
dosevalue TEXT NOT NULL,
doseunit TEXT NOT NULL,
administrationroute TEXT NOT NULL,
PRIMARY KEY (recordid),

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)
)
/*
3 rows from medicationorders table:
recordid patientid admissionid startdatetime enddatetime medicationname dosevalue
doseunit administrationroute
0 10020740 23831430 2100−04−19 11:00:00 2100−04−20 22:00:00 insulin 0.0 unit sc
1 10005817 20626031 2100−12−20 02:00:00 2100−12−21 12:00:00 insulin 0.0 unit sc
2 10005817 20626031 2100−12−27 10:00:00 2100−12−28 19:00:00 insulin 0.0 unit sc
*/

Agent: Could you clarify which details you’d like to see for patient 10008287’s prescriptions
? For example, are you interested in the medication names only, the start/end dates,
dosages, administration routes, or all of those?

User: I’m particularly interested in whether patient 10008287 was prescribed
carbamazepine for epilepsy. If so, I want to know the most recent time it was prescribed,
but only after their first epilepsy diagnosis.

Agent: value substring search(arguements={”table”:”medicationorders”,”column”:”
medicationname”,”value”:”carbamazepine”,”k”:10})

Tool: Values in medicationorders.medicationname containing ’carbamazepine’: [’
carbamazepine’].

Agent: column search(arguements={”table names”:”admissiondiagnoses”})

Tool: CREATE TABLE admissiondiagnoses (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (codeversion) REFERENCES diagnosiscodes (codeversion),
FOREIGN KEY (icdcode) REFERENCES diagnosiscodes (icdcode),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

)
/*
3 rows from admissiondiagnoses table:
recordid patientid admissionid icdcode codeversion recordeddatetime

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

0 10035185 22580999 4139 9 2100−05−17 12:53:00
1 10035185 22580999 v707 9 2100−05−17 12:53:00
2 10035185 22580999 41401 9 2100−05−17 12:53:00
*/

Agent: column search(arguements={”table names”:”diagnosiscodes”})

Tool: CREATE TABLE diagnosiscodes (
recordid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
description TEXT NOT NULL,
PRIMARY KEY (recordid)

)
/*
3 rows from diagnosiscodes table:
recordid icdcode codeversion description
0 0090 9 infectious colitis, enteritis, and gastroenteritis
1 01160 9 tuberculous pneumonia [any form], unspecified
2 01186 9 other specified pulmonary tuberculosis, tubercle bacilli not found by
bacteriological or histological examination, but tuberculosis confirmed by other methods [
inoculation of animals]
*/

Agent: value substring search(arguements={”table”:”diagnosiscodes”,”column”:”
description”,”value”:”epilepsy”,”k”:10})

Tool: Values in diagnosiscodes.description containing ’epilepsy’: [’epilepsy complicating
pregnancy, childbirth, or the puerperium, delivered, with mention of postpartum
complication’, ’epilepsy, unspecified, without mention of intractable epilepsy’, ’epilepsia
partialis continua, with intractable epilepsy’, ’epilepsy complicating pregnancy, childbirth,
or the puerperium, unspecified as to episode of care or not applicable’, ’localization−
related (focal) (partial) epilepsy and epileptic syndromes with complex partial seizures,
with intractable epilepsy’, ’generalized convulsive epilepsy, with intractable epilepsy’, ’
localization−related (focal) (partial) epilepsy and epileptic syndromes with complex partial
seizures, without mention of intractable epilepsy’, ’localization−related (focal) (partial)
epilepsy and epileptic syndromes with simple partial seizures, without mention of
intractable epilepsy’, ’epilepsia partialis continua, without mention of intractable epilepsy’,
’epilepsy complicating pregnancy, childbirth, or the puerperium, postpartum condition or
complication’].

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Tool: sql execute(arguements={”query”: ”SELECT MAX(mo.startdatetime) AS
most recent prescription FROM medicationorders mo WHERE mo.patientid = 10008287 AND
mo.medicationname = ’carbamazepine’ AND mo.startdatetime > (SELECT MIN(ad.
recordeddatetime) FROM admissiondiagnoses ad JOIN diagnosiscodes dc ON ad.icdcode =
dc.icdcode AND ad.codeversion = dc.codeversion WHERE ad.patientid = 10008287 AND dc.
description LIKE ’%epilepsy%’);”})

Tool: [(None,)]

Agent: sql execute(arguements={”query”: ”SELECT ad.recordeddatetime AS diagnosis time
FROM admissiondiagnoses ad JOIN diagnosiscodes dc ON ad.icdcode = dc.icdcode AND ad.
codeversion = dc.codeversion WHERE ad.patientid = 10008287 AND dc.description LIKE ’%
epilepsy%’ ORDER BY ad.recordeddatetime ASC LIMIT 1;”})

Tool: [(’2100−10−09 01:17:00’,)]

Agent: sql execute(arguements={”query”: ”SELECT * FROM medicationorders WHERE
patientid = 10008287;”})

Tool: [(354, 10008287, 22168393, ’2100−10−10 09:00:00’, ’2100−10−10 10:00:00’, ’bag’, ’1.0’, ’
bag’, ’iv’), (356, 10008287, 22168393, ’2100−10−10 07:00:00’, ’2100−10−10 08:00:00’, ’bag’, ’1.0’,
’bag’, ’iv’), (655, 10008287, 22168393, ’2100−10−09 22:00:00’, ’2100−10−11 01:00:00’, ’cefazolin
’, ’1.0’, ’g’, ’iv’), ..., (6797, 10008287, 22168393, ’2100−10−09 22:00:00’, ’2100−10−10 10:00:00’,
’0.9% sodium chloride’, ’1000.0’, ’ml’, ’iv’), (6804, 10008287, 22168393, ’2100−10−09 22:00:00’,
’2100−10−10 10:00:00’, ’0.9% sodium chloride’, ’1000.0’, ’ml’, ’iv’)]

Agent: sql execute(arguements={”query”: ”SELECT COUNT(*) AS count prescriptions FROM
medicationorders WHERE patientid = 10008287 AND medicationname = ’carbamazepine’;”})

Tool: [(0,)]

Agent: The answer is <answer>No, patient 10008287 was not prescribed carbamazepine
after their first epilepsy diagnosis.</answer>

User: Ok, if carbamazepine wasn’t prescribed, can you check if they were prescribed any
other medications for epilepsy after their first epilepsy diagnosis? If so, give me the most
recent prescription time.

Agent: sql execute(arguements={”query”: ”WITH first epi AS (SELECT MIN(ad.
recordeddatetime) AS dt FROM admissiondiagnoses ad JOIN diagnosiscodes dc ON ad.
icdcode = dc.icdcode AND ad.codeversion = dc.codeversion WHERE ad.patientid = 10008287
AND dc.description LIKE ’%epilepsy%’) SELECT MAX(m.startdatetime) AS

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

most recent prescription FROM medicationorders m JOIN first epi f ON m.startdatetime > f.
dt WHERE m.patientid = 10008287 AND (m.medicationname LIKE ’%levetiracetam%’ OR m.
medicationname LIKE ’%phenytoin%’ OR m.medicationname LIKE ’%phenobarbital%’ OR m.
medicationname LIKE ’%valpro%’ OR m.medicationname LIKE ’%lamotr%’ OR m.
medicationname LIKE ’%gabapentin%’ OR m.medicationname LIKE ’%topir%’ OR m.
medicationname LIKE ’%pregabat%’ OR m.medicationname LIKE ’%ethosux%’ OR m.
medicationname LIKE ’%lacosamide%’);”})

Tool: [(’2100−10−12 20:00:00’,)]

Agent: The answer is <answer>2100−10−12 20:00:00</answer>

User: Great! Just to be sure, this time represents the most recent time patient 10008287 was
prescribed any medication for epilepsy after their first diagnosis? I need the answer in the
exact time format recorded in the database.

Agent: Yes, that is correct. The most recent epilepsy medication prescription time after
their first epilepsy diagnosis is <answer>2100−10−12 20:00:00</answer>.

User: Perfect, thanks!

###END###

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

D.2.2 FAILED CASE (ADAPTQA)

After the user initially asks about carbamazepine for epilepsy treatment for a specific patient, the
agent finds no relevant data. The user then asks about other medications for epilepsy. The agent
uses a web search tool to retrieve a list of medications, including levetiracetam. The agent writes
an SQL query using the diagnosis “epilepsy, unspecified” and the medication list for the patient.
However, since the patient was diagnosed with “epilepsy, unspecified, not intractable, without status
epilepticus,” the agent fails to retrieve the specific data needed, despite having the list of epilepsy
medications.

Instruction: Your goal is to explore patient data related to medication prescriptions.
Specifically, you are interested in patient ID 10008287 and want to know when they were
prescribed carbamazepine for epilepsy treatment. If the patient was prescribed
carbamazepine, you want to know the most recent prescription time after the first epilepsy
diagnosis. If the patient was not prescribed carbamazepine, you want to identify whether
any other class of medication used for epilepsy treatment was prescribed. If such
medications are found, you want to know the most recent prescription time after the first
epilepsy diagnosis. If no such medications are found, end the conversation. You want the
answer in the exact time format recorded in the database.

===

User: I want to know about the prescriptions for patient ID 10008287.

Agent: Could you please specify what information about the prescriptions you are
interested in? For example, are you looking for the medication names, dosages, dates, or
something else?

User: I’m interested in finding out if patient 10008287 was prescribed carbamazepine for
epilepsy. If they were, I need the most recent prescription time after their first epilepsy
diagnosis.

Agent: Okay, I need to find out if patient 10008287 has been diagnosed with epilepsy and
prescribed carbamazepine. Then, if both conditions are met, I need to find the most recent
prescription time for carbamazepine after the first epilepsy diagnosis. First, I need to find
the relevant tables containing diagnoses and medication orders.

Agent: table search(arguements={”tool input”: ””})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Agent: Okay, the tables admissiondiagnoses and medicationorders seem relevant. I need to
explore these tables to see how diagnoses and medication orders are recorded.

Agent: column search(arguements={”table names”: ”admissiondiagnoses,
medicationorders”})

Tool: CREATE TABLE admissiondiagnoses (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (codeversion) REFERENCES diagnosiscodes (codeversion),
FOREIGN KEY (icdcode) REFERENCES diagnosiscodes (icdcode),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

)
/*
3 rows from admissiondiagnoses table:
recordid patientid admissionid icdcode codeversion recordeddatetime
0 10035185 22580999 4139 9 2100−05−17 12:53:00
1 10035185 22580999 v707 9 2100−05−17 12:53:00
2 10035185 22580999 41401 9 2100−05−17 12:53:00
*/

CREATE TABLE medicationorders (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
startdatetime TEXT NOT NULL,
enddatetime TEXT,
medicationname TEXT NOT NULL,
dosevalue TEXT NOT NULL,
doseunit TEXT NOT NULL,
administrationroute TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

)
/*
3 rows from medicationorders table:

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

recordid patientid admissionid startdatetime enddatetime medicationname dosevalue
doseunit administrationroute
0 10020740 23831430 2100−04−19 11:00:00 2100−04−20 22:00:00 insulin 0.0 unit sc
1 10005817 20626031 2100−12−20 02:00:00 2100−12−21 12:00:00 insulin 0.0 unit sc
2 10005817 20626031 2100−12−27 10:00:00 2100−12−28 19:00:00 insulin 0.0 unit sc
*/

Agent: Now I need to find the icdcode for epilepsy in the diagnosiscodes table. I will use
value similarity search to find similar values to ”epilepsy” in the description column of the
diagnosiscodes table.

Agent: value similarity search(arguements={”column”: ”description”, ”table”: ”
diagnosiscodes”, ”value”: ”epilepsy”})

Tool: I found close matches in diagnosiscodes.description: [’epilepsy and recurrent seizures
’, ’epilepsy, unspecified’, ’other epilepsy’, ’epileptic spasms’, ’epilepsy, unspecified, not
intractable’, ’epilepsy, unspecified, without mention of intractable epilepsy’, ’epilepsy,
unspecified, with intractable epilepsy’, ’epilepsy, unspecified, intractable’, ’other epilepsy
and recurrent seizures’, ’epilepsy, unspecified, intractable, without status epilepticus’, ’
epilepsy, unspecified, not intractable, without status epilepticus’, ’other epilepsy,
intractable, without status epilepticus’, ’epilepsy, unspecified, intractable, with status
epilepticus’, ’other epilepsy, intractable, with status epilepticus’, ’epilepsy, unspecified, not
intractable, with status epilepticus’, ’generalized idiopathic epilepsy and epileptic
syndromes’, ’other epilepsy, not intractable, without status epilepticus’, ’generalized
idiopathic epilepsy and epileptic syndromes, intractable’].

Agent: The value similarity search returned several matches. To proceed, I will use ’epilepsy
, unspecified’ as the diagnosis for epilepsy. Now I need to check if patient 10008287 was
diagnosed with ’epilepsy, unspecified’ and prescribed ’carbamazepine’. If so, I need to find
the most recent prescription time after the first epilepsy diagnosis.

Agent: value substring search(arguements={”column”: ”medicationname”, ”table”: ”
medicationorders”, ”value”: ”carbamazepine”})

Tool: Values in medicationorders.medicationname containing ’carbamazepine’: [’
carbamazepine’].

Agent: Okay, the medication name is ’carbamazepine’. Now I have all the information I
need to construct the SQL query.

Agent: sql execute(arguements={”query”: ”SELECT MAX(m.startdatetime) FROM
medicationorders m JOIN admissiondiagnoses a ON m.patientid = a.patientid WHERE m.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

patientid = 10008287 AND m.medicationname = ’carbamazepine’ AND a.icdcode IN (SELECT
icdcode FROM diagnosiscodes WHERE description = ’epilepsy, unspecified’) AND m.
startdatetime > (SELECT MIN(recordeddatetime) FROM admissiondiagnoses a2 WHERE a2.
patientid = 10008287 AND a2.icdcode IN (SELECT icdcode FROM diagnosiscodes WHERE
description = ’epilepsy, unspecified’))”})

Tool: [(None,)]

Agent: The query returned None, which means either the patient was not diagnosed with
epilepsy, was not prescribed carbamazepine, or the prescription occurred before the
diagnosis.

Agent: sql execute(arguements={”query”: ”SELECT MIN(recordeddatetime) FROM
admissiondiagnoses a WHERE a.patientid = 10008287 AND a.icdcode IN (SELECT icdcode
FROM diagnosiscodes WHERE description = ’epilepsy, unspecified’)”)

Tool: [(None,)]

Agent: Since the query to find the first epilepsy diagnosis returned None, it means the
patient was never diagnosed with epilepsy. Therefore, I cannot find the most recent
carbamazepine prescription time after the first epilepsy diagnosis.

Agent: sql execute(arguements={”query”: ”SELECT DISTINCT patientid FROM
medicationorders WHERE medicationname = ’carbamazepine’ AND patientid = 10008287”)

Tool: []

Agent: The patient 10008287 was not prescribed carbamazepine. Therefore, I cannot find
the most recent carbamazepine prescription time after the first epilepsy diagnosis. <
answer>Patient 10008287 was not diagnosed with epilepsy and was not prescribed
carbamazepine.</answer>

User: Okay, if they weren’t prescribed carbamazepine, I’d like to know if they were
prescribed any other medications for epilepsy. If so, I want the most recent prescription
time after their first epilepsy diagnosis, just like I asked for carbamazepine.

Agent: Okay, I need to find out if patient 10008287 has been diagnosed with epilepsy. If
they have, I need to find any medications prescribed to them that are used to treat
epilepsy and then find the most recent prescription time for those medications after the
first epilepsy diagnosis. First, I need to identify medications used to treat epilepsy. I will
use a web search for this.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Agent: web search(arguements={”query”: ”medications used to treat epilepsy”})

Tool: [
”Below is a list of some of the most common brand−name drugs currently used to treat
epilepsy. Your doctor may prefer that you take the brand name of anticonvulsant and not
the generic substitution. Talk with your doctor about this important issue.\n\
nBrivaracetam (Briviact)\n\nCannabidiol (Epidiolex)\n\nCarbamazepine (Carbatrol or
Tegretol)\n\nCenobamate(Xcopri)\n\nDiazepam (Valium), lorazepam (Ativan) and similar
benzodiazepine tranquilizers such as clonazepam (Klonopin)\n\nEslicarbazepine (Aptiom
) [...] Ethosuximide (Zarontin)\n\nFelbamate (Felbatol)\n\nFenfluramine (Fintepla)\n\
nLacosamide (VIMPAT)\n\nLamotrigine (Lamictal)\n\nLevetiracetam (Keppra)\n\
nOxcarbazepine (Oxtellar XR, Trileptal)\n\nPerampanel (Fycompa)\n\nPhenobarbitol\n\
nPhenytoin (Dilantin)\n\nPregabalin (Lyrica)\n\nTiagabine (Gabitril)\n\nTopiramate (
Topamax)\n\nValproate, valproic acid (Depakene, Depakote)\n\nZonisamide (Zonegran)
[...] The most commonly used medications are benzodiazepines because they get into the
bloodstream quickly to start working on the brain to stop the seizure. They include:\n\n
Epilepsy Drug Guidelines\n\nIt may take several months before the best drug and
dosage are determined for you. During this adjustment period, you will be carefully
monitored through frequent blood tests to measure your response to the medication.”,
”Below is a list of some of the most common brand−name drugs currently used to treat
epilepsy. Your doctor may prefer that you take the brand name of anticonvulsant and not
the generic substitution. Talk with your doctor about this important issue.\n\
nBrivaracetam (Briviact)\n\nCannabidiol (Epidiolex)\n\nCarbamazepine (Carbatrol or
Tegretol)\n\nCenobamate(Xcopri)\n\nDiazepam (Valium), lorazepam (Ativan) and similar
benzodiazepine tranquilizers such as clonazepam (Klonopin)\n\nEslicarbazepine (Aptiom
) [...] Ethosuximide (Zarontin)\n\nFelbamate (Felbatol)\n\nFenfluramine (Fintepla)\n\
nLacosamide (VIMPAT)\n\nLamotrigine (Lamictal)\n\nLevetiracetam (Keppra)\n\
nOxcarbazepine (Oxtellar XR, Trileptal)\n\nPerampanel (Fycompa)\n\nPhenobarbitol\n\
nPhenytoin (Dilantin)\n\nPregabalin (Lyrica)\n\nTiagabine (Gabitril)\n\nTopiramate (
Topamax)\n\nValproate, valproic acid (Depakene, Depakote)\n\nZonisamide (Zonegran)
[...] The most commonly used medications are benzodiazepines because they get into the
bloodstream quickly to start working on the brain to stop the seizure. They include:\n\n
Epilepsy Drug Guidelines\n\nIt may take several months before the best drug and
dosage are determined for you. During this adjustment period, you will be carefully
monitored through frequent blood tests to measure your response to the medication.”,
”Medications used to treat epilepsy are called antiepileptic drugs (AEDs). There are more
than 30 prescription AEDs on the market, and they’re mostly available as oral tablets or
capsules.\n\nYour options depend on:\n\n## Types of antiepileptic drugs (AEDs)\n\
nThere are two types of medications for epilepsy:\n\nSome people may need to take
more than one medication to prevent seizures. [...] ### Levetiracetam (Elepsia XR, Keppra,
Keppra XR, Spritam)\n\nLevetiracetam (Elepsia XR, Keppra, Keppra XR, Spritam) may
treat a range of epileptic seizures, including:\n\nIt’s available as a pill, an IV solution, an

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

oral solution, and an injection.\n\nLevetiracetam may cause fewer side effects than
other medications used for epilepsy. It’s safe to take during pregnancy, according to
experts such as the United Kingdom’s Commission on Human Medicines.\n\n###
Lorazepam (Ativan) [...] Lorazepam (Ativan) is a benzodiazepine that’s used to treat all
types of seizures. It’s also used to treat status epilepticus. Status epilepcticus is a
prolonged, critical seizure that’s regarded as a medical emergency.\n\nIt’s available as a
pill, an oral concentrate, and an injection.\n\n### Methsuximide (Celontin)\n\
nMethsuximide (Celontin) is used for absence seizures. It’s prescribed when other
treatments don’t work in treating your seizures.”,
”Donate\n\nPopular searches: Diagnosing Epilepsy Treatments and Therapies what is
epilepsy\n\nMake an Impact\n\nEpilepsy and Seizure Medications\n
================================\n\n#### Learn about FDA−approved medications to
treat epilepsy and seizures.\n\nImage 7: Epilepsy and Seizure Medications\n\nSearch\n\
nFilter Alphabetically Select Clear\n\nLoading ...\n\n##### Acetazolamide\n\nMore info(
Brand names: Diamox, Diamox Sequels, generics) [...] Acetazolamide (a SEET a ZOLE a
mide) has been FDA−approved for the treatment of, along with other drugs,
centrencephalic epilepsies (absence, generalized seizures).\n\n##### Brivaracetam\n\
nMore info(Brand names: Briviact)\n\nBrivaracetam (briv a RA se tam) has been
approved by the FDA to treat focal (partial) onset seizures in patients 1 month of age and
older.\n\n##### Cannibadiol\n\nMore info(Brand names: Epidiolex) [...] More info(Brand
names: Aptiom)\n\nEslicarbazepine acetate (ES li Kar BAZ e peen) has been approved by
the FDA to treat focal onset seizures in patients 4 years of age and older.\n\n#####
Ethosuximide\n\nMore info(Brand names: Zarontin, generics)\n\nEthosuximide (ETH oh
SUX i mide) has been approved by the FDA to control absence (petit mal) epilepsy.\n\n
Ethotoin\n\nMore info(Brand names: Peganone, generics)”,
”Healthcare providers prescribe antiseizure medications to treat epilepsy and
symptomatic seizures. They also prescribe these medications to prevent and/or treat
seizures that happen during or following brain surgery. [...] Gray gradient\nGray gradient\
nSearch Icon Blue\nCleveland Clinic logo\n\n# Antiseizure Medications (Formerly Known
as Anticonvulsants)\n\nAntiseizure medications (anticonvulsants) help treat epilepsy
and other causes of seizures. They can treat other conditions as well, like anxiety and
neuropathic pain. There are several different types of antiseizure medications. You and
your healthcare provider will work together to find the best one for you.\n\
nAdvertisement [...] Cleveland Clinic is a non−profit academic medical center. Advertising
on our site helps support our mission. We do not endorse non−Cleveland Clinic products
or services. Policy\n\n## Overview\n\n### What are antiseizure medications (
anticonvulsants)?\n\nAntiseizure medications (previously known as antiepileptic or
anticonvulsant medications) are prescription medications that help treat and prevent
seizures. Healthcare providers may prescribe these medications to treat other conditions
as well.”,
”Epilepsy Website Logo\n\n# List of Anti−Seizure Medications (ASMs)\n\n####
Understanding Epilepsy\n\nAnti−epileptic drugs (ASMs) are the main form of treatment

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

for people living with epilepsy, with up to 70% (7 in 10 people) having their seizures
controlled through this medication.\n\nIn Australia there are over 20 ASMsare used to
treat seizures. The ASMsprescribed are often selected on the basis of the seizure type/s,
age, gender and side effects. ASMsmay be prescribed as tablets, syrups and liquids.”,
”One large randomized trial, the Standard and New Antiepileptic Drugs (SANAD) trial,
demonstrated some comparative advantages of certain AEDs when treating focal or
generalized epilepsy. In the end, when comparing valproate, lamotrigine, or topiramate
for generalized seizures, they recommended valproic acid as their first−line choice.
Additionally, when comparing carbamazepine, gabapentin, lamotrigine, oxcarbazepine,
and topiramate for focal seizures, lamotrigine was cited as the first−line [...] In summary,
it is now abundantly clear that anti−seizure medications wield disparate mechanistic
profiles, but they all effectively suppress epileptic seizures in one way or another.
Accordingly, grouping the drugs together by mechanism is a very helpful organizing
principle. From this viewpoint, it may become easier to appreciate that some drugs have
different efficacy profiles for different seizures types and epilepsy syndromes.
Ethosuximide is an exception with its specific limited use with [...] Phenytoin is one of the
oldest anti−seizure medications and is still widely used for focal and generalized
seizures. It is also administered for status epilepticus. In addition, practitioners may
invoke phenytoin as a second−line agent for patients with mixed seizure types (e.g., tonic
−clonic and myoclonic). As mentioned, phenytoin blocks voltage−gated sodium channels,
but other possible mechanisms revolve around decreased synaptic transmission, smaller
changes in ionic gradients involving the”,
”Medicines.\n Surgery.\n Therapies that stimulate the brain using a device.\n A
ketogenic diet.\n\n### Medication\n\nMost people with epilepsy can become seizure−
free by taking one anti−seizure medicine, which is also called an anti−epileptic medicine.
Others may be able to decrease the number and intensity of their seizures by taking
more than one medicine. [...] Tell your healthcare professional immediately if you notice
new or increased feelings of depression or suicidal thoughts. Also contact your
healthcare professional right away if you have changes in your mood or behaviors.\n Tell
your healthcare professional if you have migraines. You may need an anti−seizure
medicine that can prevent your migraines and treat epilepsy. [...] ### Potential future
treatments\n\nResearchers are studying many potential new treatments for epilepsy,
including:\n\n Continuous stimulation of the seizure onset zone, known as subthreshold
stimulation. Subthreshold stimulation is continuous stimulation to an area of the brain
below a level that’s physically noticeable. This type of therapy appears to improve
seizure outcomes and quality of life for some people with seizures. Subthreshold
stimulation helps stop a seizure before it happens.”,
”| stiripentol | Diacomite | Image 50: Medline unavailable | Image 51: Medline unavailable
|\n| sulthiame | Ospolot | Image 52: Medline available | Image 53: Medline unavailable |\n
| tiagabine | Gabitril | Image 54: Medline available | Image 55: Medline available |\n|
topiramate | Topamax | Image 56: Medline available | Image 57: Medline available |\n|
vigabatrin | Sabril | Image 58: Medline available | Image 59: Medline available | [...] |

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

ethosuximide | Zarontin | Image 20: Medline available | Image 21: Medline available |\n|
felbamate | Felbatol | Image 22: Mims unavailable | Image 23: Medline available |\n|
gabapentin | Neurontin | Image 24: Medline available | Image 25: Medline available |\n|
lacosamide | Vimpat | Image 26: Medline available | Image 27: Medline available |\n|
lamotrigine | Lamictal | Image 28: Medline available | Image 29: Medline available | [...] |
phenobarbitone | Phenobarbitone | Image 40: Medline available | Image 41: Medline
unavailable |\n| phenytoin | Dilantin | Image 42: Medline available | Image 43: Medline
available |\n| potassium bromide | Dibro−Be mono | Image 44: Medline unavailable |
Image 45: Medline unavailable |\n| primidone | Mysoline | Image 46: Medline available |
Image 47: Medline available |\n| sodium valproate | Epilim | Image 48: Medline available |
Image 49: Medline available |”,
”Sodium valproate is an epilepsy drug prescribed for all seizure types including absence,
myoclonus and tonic clonic seizures. New regulations have been introduced by the
Medicines and Healthcare products Regulatory Agency (MHRA) around the way in which
the drug, sodium valproate is prescribed to women and girls of childbearing age.\n\nLET’
S STAY IN TOUCH... [...] The decision whether to start taking anti−epileptic drugs (AEDs)
can be difficult, and there is a lot to think about. Here we look at the benefits and risks of
taking, or not taking, AEDs.\n\nSodium valproate [...] Epilepsy Society\n\nSite
Navigation\n\nUtility Nav\n\nSite Search\n\nbreadcrumb navigation:\n\nList of anti−
seizure medication\n\nPublished on 8 October 2024\n\nUpdated: 7 April 2025\n\
nAuthored by Anonymous\n\nAlso in this section\n\nList of anti−seizure medication\n\
nHere is a list of anti−seizure medication (ASM), previously called anti−epileptic drugs or
AEDs.”

]

Agent: Based on the web search results, here’s a list of medications commonly used to
treat epilepsy:
Brivaracetam
Cannabidiol
Carbamazepine
Cenobamate
Diazepam
Lorazepam
Clonazepam
Eslicarbazepine
Ethosuximide
Felbamate
Fenfluramine
Lacosamide
Lamotrigine
Levetiracetam
Oxcarbazepine

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Perampanel
Phenobarbitol
Phenytoin
Pregabalin
Tiagabine
Topiramate
Valproate, valproic acid
Zonisamide
Acetazolamide
Methsuximide
Stiripentol
Sulthiame
Gabapentin
Primidone
Sodium valproate
I will now construct a query to find the most recent prescription time for any of these
medications after the first epilepsy diagnosis.

Agent: sql execute(”query”: ”SELECT MAX(m.startdatetime) FROM medicationorders m JOIN
admissiondiagnoses a ON m.patientid = a.patientid WHERE m.patientid = 10008287 AND m.
medicationname IN (’brivaracetam’, ’cannabidiol’, ’carbamazepine’, ’cenobamate’, ’
diazepam’, ’lorazepam’, ’clonazepam’, ’eslicarbazepine’, ’ethosuximide’, ’felbamate’, ’
fenfluramine’, ’lacosamide’, ’lamotrigine’, ’levetiracetam’, ’oxcarbazepine’, ’perampanel’, ’
phenobarbitol’, ’phenytoin’, ’pregabalin’, ’tiagabine’, ’topiramate’, ’valproate’, ’valproic acid’,
’zonisamide’, ’acetazolamide’, ’methsuximide’, ’stiripentol’, ’sulthiame’, ’gabapentin’, ’
primidone’, ’sodium valproate’) AND a.icdcode IN (SELECT icdcode FROM diagnosiscodes
WHERE description = ’epilepsy, unspecified’) AND m.startdatetime > (SELECT MIN(
recordeddatetime) FROM admissiondiagnoses a2 WHERE a2.patientid = 10008287 AND a2.
icdcode IN (SELECT icdcode FROM diagnosiscodes WHERE description = ’epilepsy,
unspecified’))”)

Tool: [(None,)]

Agent: The query returned None, which means either the patient was not diagnosed with
epilepsy, was not prescribed any of the listed medications, or the prescriptions occurred
before the diagnosis. Since I already determined that the patient was not diagnosed with
epilepsy, the result is None. <answer>Patient 10008287 was not diagnosed with epilepsy
and was not prescribed any anti−epileptic medications.</answer>

User: Could you double check that your answer covers everything? I wanted to know if
patient 10008287 was prescribed carbamazepine and, if not, if they were prescribed any

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

other epilepsy meds. For any epilepsy meds, I need the most recent prescription time after
their first epilepsy diagnosis.

Agent: Yes, I have confirmed that patient 10008287 was neither diagnosed with epilepsy
nor prescribed carbamazepine or any other anti−epileptic medications from the list I
generated using a web search. Therefore, I cannot provide a prescription time after their
first epilepsy diagnosis. <answer>Patient 10008287 was not diagnosed with epilepsy and
was not prescribed carbamazepine or any other anti−epileptic medications.</answer>

User: ###END###

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

D.3 INVALIDATED TRAJECTORIES BY THE VALIDATOR

Below we show sample trajectories that were invalidated by our simulation validator along with the
specific rules they violated.

D.3.1 VIOLATION OF NO FINAL CHECK RULE

Instruction: Your goal is to find the administration routes of specific ordered medications.
Specifically, you are interested in the administration routes of ordered medications
containing ISDN. You want to search for isosorbide dinitrate specifically, not other similar
medications like \”isosorbide mononitrate\” When querying the DB agent, since you do not
know how isosorbide dinitrate is stored, use common terms like \”ISDN\” when referring
to it, and let the DB agent find it for you.

===

User: I’m trying to figure out how certain meds are given to patients. Can you help?

Agent: I can help with that. Could you please specify which medications you are interested
in and what information about their administration you would like to know? For example,
are you interested in the dosage, frequency, or route of administration?

(...omitted...)

Agent: The administration route for isosorbide dinitrate is ’po/ng’. This likely refers to oral
or nasogastric administration.

User: ###END### (RULE VIOLATION)

→ Before ending the conversation, ask the DB agent to double check that their final answer
covers all goals raised. If not, request any missing parts.

D.3.2 VIOLATION OF MISSING CONDITIONS RULE

Instruction: Your goal is to find information related to a patient’s diagnosis. Specifically,
you are interested in patient ID 10004733 and you want to know how many days have
passed since the patient was diagnosed with cerebral artery occlusion during the current
hospital admission. If the patient has multiple records of the same diagnosis, you want to
know the number of days elapsed since the earliest diagnosis. You want diagnosis names
containing cerebral artery occlusion.

===

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

User: I’m trying to find out some information about a patient’s diagnosis.

Agent: I can help with that. What specific information are you looking for regarding a
patient’s diagnosis? For example, are you trying to find:
− A patient’s diagnosis history?
− The most common diagnoses?
− Diagnoses associated with certain procedures or medications?
− The cost associated with a particular diagnosis?
− Something else entirely?
Please provide more details so I can narrow down my search.

User: I’m interested in patient ID 10004733. I want to know how long ago they were
diagnosed with something.

Agent: Okay, I can help you find out how long ago patient ID 10004733 was diagnosed. Let
me first check the admissiondiagnoses table to see if it contains the diagnosis date and
patient ID.

User: ###END### (RULE VIOLATION)

→ The user must provide all detailed conditions specified in the instruction before ending
the conversation.

D.3.3 VIOLATION OF PERFORMING AGENT-LIKE TASKS RULE

Instruction: Your goal is to find the number of blood culture tests performed on a specific
patient. Specifically, you want to know how many culture tests were collected from
venipuncture blood for patient ID 031−10300 this month.

===

User: I need to figure out how many blood culture tests a particular patient has had.

Agent: To determine the number of blood culture tests, I need the patient’s ID. Could you
please provide the patient ID?

User: The patient ID is 031−10300.

(...omitted...)

Agent: The patient with ID 031−10300 had 2 blood culture tests collected from venipuncture
blood.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

User: Okay, I have the patient ID, the time frame (this month), and the collection method (
venipuncture blood). Does your request include any other conditions? (RULE VIOLATION)

→ The user acts like a DB agent or AI assistant instead of the user (e.g., writing, reviewing,
or executing SQL queries, calling external APIs, or responding to the DB agent in a machine
assistant way).

58

	Introduction
	Related Work
	The EHR-ChatQA Benchmark
	Task Formulation
	Benchmark Components

	Benchmark Construction
	Interaction Flows
	Annotation Process
	EHR Databases
	IncreQA Annotation
	AdaptQA Annotation

	Quality Assurance

	Experiments
	Experimental Setup
	Main Results
	Common Error Cases in Interactive Database Agents

	Challenges in Simulation-Based Evaluation
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Benchmark Details
	Sample Task Instances
	IncreQA Sample
	AdaptQA Sample

	Tool Specifications
	User Implementation
	Simulated User
	User System Prompt
	Example Variability in Simulated User Turns

	Simulation Validator Implementation
	Database-Specific Rules
	MIMIC-IV Rules
	eICU Rules

	Evaluation Details
	IncreQA
	AdaptQA

	Contributor Demographics and Beta Testing Process

	Annotation Details
	IncreQA and AdaptQA Annotation
	IncreQA Annotation
	AdaptQA Annotation

	AdaptQA Categories
	SQL Annotation Style
	EHR Database Preprocessing
	MIMIC-IV Renaming
	eICU Renaming

	Agent Implementation
	Agent System Prompt
	Agent Rules
	Agent Rules for Evaluation

	Sample Trajectories
	Incremental Query Refinement
	Successful Case (IncreQA)
	Failed Case (IncreQA)

	Adaptive Query Refinement
	Successful Case (AdaptQA)
	Failed Case (AdaptQA)

	Invalidated Trajectories by the Validator
	Violation of No Final Check Rule
	Violation of Missing conditions Rule
	Violation of Performing Agent-like Tasks Rule

