Under review as a conference paper at ICLR 2026

FROM CONVERSATION TO QUERY EXECUTION:
BENCHMARKING USER AND TOOL INTERACTIONS
FOR EHR DATABASE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the impressive performance of LLM-powered agents, their adoption for
Electronic Health Record (EHR) data access remains limited by the absence of
benchmarks that adequately capture real-world clinical data access flows. In prac-
tice, two core challenges hinder deployment: query ambiguity from vague user
questions and value mismatch between user terminology and database entries. To
address this, we introduce EHR-ChatQA, an interactive database question answer-
ing benchmark that evaluates the end-to-end workflow of database agents: clarify-
ing user questions, using tools to resolve value mismatches, and generating correct
SQL to deliver accurate answers. To cover diverse patterns of query ambiguity and
value mismatch, EHR-ChatQA assesses agents in a simulated environment with an
LLM-based user across two interaction flows: Incremental Query Refinement (In-
creQA), where users add constraints to existing queries, and Adaptive Query Re-
finement (AdaptQA), where users adjust their search goals mid-conversation. Ex-
periments with state-of-the-art LLMs (e.g., o4-mini and Gemini-2.5-Flash) over
five i.i.d. trials show that while agents achieve high Pass@5 of 90-95% (at least
one of five trials) on IncreQA and 60-80% on AdaptQA, their Pass™5 (consis-
tent success across all five trials) is substantially lower by 35—-60%. These results
underscore the need to build agents that are not only performant but also robust
for the safety-critical EHR domain. Finally, we provide diagnostic insights into
common failure modes to guide future agent development.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly operating as autonomous agents, interacting with
external environments to solve complex tasks. One key application is interfacing with structured
databases, which can substantially enhance data accessibility for non-technical users. This capa-
bility is particularly impactful in high-stakes domains such as Electronic Health Records (EHRs),
where enabling natural language queries over vast patient data repositories has the potential to fun-
damentally transform both clinical research and patient care (Ohno-Machado, [2011} [Yang et al.,
2022). To assess such capabilities, the prevailing evaluation paradigm has relied on text-to-SQL
benchmarks (Yu et al.| [2018; |Wang et al., 2020; [Lee et al., 2022} Li et al., [2023)), which measure
a model’s ability to translate natural language questions into SQL queries. However, these bench-
marks primarily emphasize the isolated task of mapping a single, well-formed question to SQL, a
setting that fails to capture the complexities of how clinicians interact with EHRs.

To further investigate the gap between this evaluation paradigm and real-world clinical needs, we
collaborated with a major academic medical center and reviewed internal text-to-SQL query logs.
This analysis revealed that existing benchmarks are not suitable for capturing two core real-world
challenges, which significantly hinders the adoption of these models: (1) Query Ambiguityﬂ Users
often pose vague questions that do not fully capture their true intent (e.g., a request such as “Show me
recent labs” lacks specifics such as test types or time ranges) (Wang et al.,|2023}; [Saparina & Lapatal
20245 Dong et al.l 2025). (2) Value Mismatch: Clinical terms in EHRs vary due to specialized

"While linguistics distinguishes it from vagueness (a lack of specificity), we adopt the common NLP con-
vention of using “ambiguity” to refer to any query requiring clarification.

Under review as a conference paper at ICLR 2026

Setup Interactive QA Simulation with Tools

'd N\ N\
e N

2 %/;t-;izkszs Find the recent hemoglobin 9 value_search
value for patient 1001 ("hemoglobin")

Simulated 0 Agent
)

i User
Simulated What do you mean
Database
Agent (3) sql_execute

User by 'recent'? (
("SELECT resultvalue ...
itemname ='hgb' ...)

[(10.2)

Simulation L Agent Database)
Validator Rule-based - - :
L J Evaluation (C¥ Simulation Validator)

(.

Tools
vl el In the past 1 month

sql_execute(), Simulated o
e Patient 1001’s recent d
hemoglobin value is 10.2 v

Figure 1: Overview of EHR-ChatQA. Our benchmark places an agent in a simulated environment
with an LLM-powered user and tools. The agent must manage the entire workflow autonomously:
clarifying vague user questions, resolving terminology mismatches, generating and executing ac-
curate SQL, and returning the final answer. Each interaction trace is verified by the simulation
validator, and only then are the final answers assessed via rule-based evaluation.

database naming conventions and often differ from everyday language (e.g., “Lopressor’” may not
match the database entry “metoprolol tartrate”), creating a terminological gap (Holmes et al., 2021}
De Mello et al.|[2022) that must be bridged for accurate SQL generation.

Addressing these challenges requires moving beyond static, single-turn SQL generation to an en-
vironment where an agent can clarify a user’s intent, invoke necessary tools to navigate complex
EHR schemas and clinical values, and synthesize all relevant information to generate an accurate
SQL query. To bridge this gap, we introduce EHR-ChatQA, an interactive database question an-
swering (QA) benchmark designed to assess this end-to-end agentic workflow, from conversation
to query execution, in the EHR domain. By placing agents in a simulated environment with both
an LLM-based user and a suite of tools, EHR-ChatQA provides a holistic evaluation of agent capa-
bilities in interactive clinical data access flows, with each interaction trace verified by a dedicated
validator. Grounded in real-world clinical QA scenarios and two publicly available EHR databases
(MIMIC-IV (Johnson et al.,|2023)) and eICU (Pollard et al.,[2018))), our benchmark consists of tasks
categorized into two different interaction flows designed for various query ambiguities and value
mismatches: Incremental Query Refinement (IncreQA), which evaluates scenarios where users add
new constraints to a query, and Adaptive Query Refinement (AdaptQA), which assesses an agent’s
ability to reformulate its plan when users’ goals are modified mid-conversation.

Our evaluation of various state-of-the-art LLMs on EHR-ChatQA reveals a critical lack of robust-
ness under diverse conversation paths. While agents often succeed in at least one of five attempts
on a task (Pass@5), their ability to succeed consistently in all five attempts (Pass”5) is substantially
lower. This performance gap exceeds 30% for IncreQA and 50% for AdaptQA. This inconsistency
highlights a crucial lack of reliability in current agents, raising significant concerns for their deploy-
ment in safety-critical domains such as EHRs and pointing to key areas for future research.

The main contributions of our work are summarized as follows:

* We propose EHR-ChatQA, the first interactive benchmark for EHR QA that holistically
evaluates agents’ interactive, end-to-end workflows using simulated users and a set of cus-
tomizable tools for schema exploration, value exploration, and web search.

* Grounded in real-world clinical QA scenarios and two publicly available EHR databases,
the benchmark contains two interaction flows to reflect various query ambiguity and value
mismatch patterns.

* Our evaluation of various LLMs reveals a critical performance gap between an agent’s op-
timistic success (Pass@5) and its consistent success (Pass”™5), providing diagnostic insights
for developing more performant and reliable agents in interactive EHR QA.

2 RELATED WORK

Text-to-SQL Benchmarks Text-to-SQL research has largely focused on translating a single, well-
defined question into an SQL query. Benchmarks such as Spider (Yu et al., 2018 and BIRD (L1

Under review as a conference paper at ICLR 2026

Table 1: Comparison of recent benchmarks categorized by core agent capabilities. EHR-ChatQA is
the first benchmark to comprehensively evaluate database agents in the aspects ranging from con-
versational ability to effective tool use in the EHR domain. “Value Explor.” indicates the mapping
of user terminology to database entries (e.g., “WBC” — “white blood cell count”). A denotes reso-
lution of ambiguity through SQL suggestions instead of user clarification.

Benchmark Conversational Ability Tool-Using Ability Domain
User Multi-turn -~ Query Ambiguity Tool Use Value Explor. EHR
Spider (Yu et al.|[2018) X X X X X
SParC (Yu et al.|2019b) X X X X
CoSQL (Yu et al.}[2019a) v v X X X
EHRSQL (Lee et al.|[2022) X X X X v
BIRD (Li et al.;[2023) X X X X X
AgentBench (Liu et al.) X X v X X
EHR-SeqSQL (Ryu et al.|[2024) v X X X v
PRACTIQ (Dong et al.|[2025) v A X X X
Tau-Bench (Yao et al.|[2025) v v v X X
ToolDial (Shim et al.|[2025) v v v X X
MedAgentBench (Jiang et al.|[2025) X X v X v
MedAgentGym (Xu et al.|[2025) X X v X v
EHR-ChatQA (Ours) v v v v v

et al.l [2023)) are prominent examples that have shaped this paradigm. While other benchmarks
such as SParC (Yu et al., 2019b), CoSQL (Yu et al.l 2019a), and PRACTIQ (Dong et al.l 2025)
introduced conversational context, their evaluation scope is often limited by predefined interaction
patterns, such as requiring the model to generate an SQL query each turn or to expect a type of
responses based on the script. This evaluation setting prevents them from capturing the open-ended
and exploratory nature of realistic user interactions, thereby falling short of testing agents’ ability to
resolve query ambiguity and value mismatch. EHR-ChatQA is a benchmark dedicated to bridging
this gap by explicitly evaluating agents’ exploratory and interactive capabilities through simulations.

EHR Question Answering The unique challenges of the medical domain have inspired several
QA benchmarks for structured EHR data. Text-to-SQL benchmarks, from single-turn settings such
as MIMICSQL (Wang et al.,|2020) and EHRSQL (Lee et al.,|2022) to the multi-turn EHR-SeqSQL
(Ryu et al.,2024), have advanced querying on complex EHR schemas but lack support for resolving
query ambiguity and value mismatch. More recently, agent-based benchmarks for EHRs such as
MedAgentBench (Jiang et al., |2025) and MedAgentGym (Xu et al., 2025)) tackle a broad range of
clinical and biomedical tasks. However, their reliance on initial non-ambiguous task instructions
still bypasses the need for dynamic, interactive resolution of query ambiguity and value mismatch,
which are essential for real-world, interactive clinical QA. EHR-ChatQA aims to bridge this gap
by explicitly requiring the simulated user to start from a vague question and allowing the agent to
autonomously resolve the task.

Conversational and Tool-Using Agent Evaluation Evaluating LLM agents in dynamic environ-
ments has spurred progress in two key areas: tool-using agent benchmarks (Yao et al.| [2022; |[Liu
et al.), which assess instrumental competence, and frameworks for evaluating conversational skills
in task-oriented dialogues, from large-scale curated datasets (Budzianowski et al.l 2018}, [Rastogi
et al., 2020) to dynamic user simulations (Sekuli¢ et al., |2024). Recent works such as Tau-Bench
(Yao et al., [2025) and ToolDial (Shim et al., 2025) combine these paradigms to evaluate the crit-
ical dual interaction loop between agents, users, and tools. EHR-ChatQA extends this framework
to question answering over EHR databases. As shown in Table [T} although prior works focus on
resolving query ambiguity and leveraging general tools for complex tasks, they do not specifically
capture the challenges of interactive clinical data access, particularly value mismatch (Holmes et al.,
2021} [De Mello et al} 2022). EHR-ChatQA is designed to holistically address these challenges,
grounded in real-world QA scenarios and EHR databases.

Under review as a conference paper at ICLR 2026

User instruction: Your goal is to explore medication prescription statistics. Specifically, you want to Simulated User Tool
know the percentage of patients diagnosed with atrial fibrillation who were prescribed a medication
recorded exactly as 'Lopressor' ... If no patients were prescribed medication under the exact name
‘Lopressor,' you want to repeat the same question using medications containing its active ingredient.

Database Agent

User Interaction Tool Interaction

I'd like to get some statistics on Since there are no such patients, can @ web_search (query = “active
Lopressor prescriptions among you check the medications with the > ingredient of Lopressor”)

patients with atrial fibrillation.

v

same active ingredient as

Lopressor? @ v &

| can help with that. Could you be drug ingredient metoprolol

$ Lopressor contains the active
more specific about the statistics There are no patients diagnosed with tartrate, ... @

you're interested in? atrial fibrillation prescribed Lopressor.
v Do you need any other help? v

| want to know the percentage of
patients with atrial fibrillation who
were prescribed Lopressor.

4 sql_execute(query = “SELECT
COUNT(DISTINCT patientid ...
medicationname = ‘metoprolol
tartrate’;”)

v 4 ve

Okay, | first need to find the table sql_execute(query = “SELECT
and the column where the diagnosis COUNT(DISTINCT patientid ... [(69.5652,)]

of atrial fibrillation is recorded. medicationname = ‘Lopressor’;") v

A4
The percentage of patients with

5323 table_search() % 5{‘9:3 [demographics, hospitaladmissions, p| atrial fibrillation who received
= diagnosiscodes, procedurecodes, ...]

metoprolol is 69.5652% @

[0.)]

Figure 2: Example interaction trace in EHR-ChatQA (AdaptQA). Given a vague initial user ques-
tion, the agent clarifies the request (1) by refining “some statistics” into the specific goal of “the
percentage.” When the initial query yields no matching records due to a value mismatch, the user
guides the agent to search for its generic name instead (2). The agent then incorporates clinical
knowledge retrieved via web_search () to reformulate the query (3), and finally executes the re-
vised query to produce the correct answer (4).

3 THE EHR-CHATQA BENCHMARK

3.1 TASK FORMULATION

The task instances in EHR-ChatQA can be formulated in the POMDP framework as
(S, A, T,R,Q). This formulation captures the inherent uncertainty and the sequential nature of
translating an ambiguous user request into an executable query. The state s € S is latent and in-
cludes all information relevant to solving the task: the user’s true but unobserved intent (i.e., user
instruction), the full conversation history, the contents of the EHR database, and any accessible ex-
ternal knowledge. The agent’s action space .4 models the dual interaction loop: (1) user interaction,
including asking clarifying questions or providing answers, and (2) tool interaction, including invok-
ing calls to explore the database schema, search relevant values, or access external web knowledge
when necessary. After taking an action @ € A, the agent receives an observation o € €2, which
is either a natural language response from the user or the output from a tool. The transition dy-
namics 7 are a hybrid of deterministic and stochastic processes: tool interactions with the database
are deterministic, while the LLM-based user’s responses and web search results are stochastic. The
reward function R is binary, defined as = 1 if the agent’s answer matches the ground-truth (GT)
and » = 0 otherwise. In our evaluation, the reward assignment is performed in a rule-based manner
against deterministic GT SQL queries and answers (see Appendix [A.6]for details).

3.2 BENCHMARK COMPONENTS

Task Instances and EHR Databases Each task instance defines a unique interactive QA sce-
nario, containing a user instruction that specifies the LLM-based user’s query goal and outlines the
intended conversation flow (e.g., “You want to know the number of patients prescribed Lopressor...
If no patients are found, you want to count the patients for its generic equivalent...”). Each instance
also includes the answer to the interaction goal and the GT SQL queries for evaluation purposes.
All user instructions and answers are grounded in patient data stored in two EHR database schemas
(MIMIC-IV and eICU), and clinical knowledge is essential for locating, filtering, and reasoning over
the retrieved information. The benchmark consists of 366 task instances, distributed across the two
databases and the two interaction flows, as shown in Table

Under review as a conference paper at ICLR 2026

Tools Default tools provided in this benchmark include functionalities for schema explo-
ration (table_search, column_search), value exploration (value_substring_search,
value_similarity.s earc, external knowledge retrieval (web_search), and final query
execution (sgl_execute). The schema and value exploration tools, supplemented with SQL and
physician-level knowledge, provide sufficient resources for constructing correct SQL queries, since
SQL query annotation was performed using an interface restricted to these tools (see Section [4.2)).
The web_search () tool is optionally provided to the agent to supplement or confirm clinical
knowledge, as accurate handling of such knowledge is critical in the EHR domain. More details on
tool specifications are provided in Appendix [A.2]

Simulated User To evaluate user interaction at scale and measure agent performance across di-
verse conversation paths, we use an LLM-based user simulator that leverages a certain level of
stochasticity in user utterances. We use the self-reflection framework (Shinn et al., [2023) with
Gemini-2.0-Flash at a temperature of 1.0. The simulated user is initialized with a system prompt
(see Appendix[A.3.2)) containing a user instruction and a set of behavioral rules. These rules include
intentionally starting with a vague initial query, which forces the agent to engage in dialogue for
clarification. The rules also define the conditions for ending the conversation: either the agent suc-
cessfully retrieves and provides the information requested by the user, or the agent repeatedly fails
to retrieve relevant information and shows no sign of progress (see more details in Appendix [A.3.T).
Crucially, the user is isolated from the database content and the ground truth SQL and answers,
preventing it from “tipping off” the agent with information they should not possess.

Simulation Validator There are occasions where LLM-based simulations deviate from the in-
tended behavior, not because of the agent’s failure but because the user simulator itself deviates
from its instructions. To mitigate this and ensure reliable evaluation of agents, we implement an
LLM-as-a-judge classifier (Zheng et al. 2023)) as a validato After each completed simulation,
the validator reviews the entire dialogue trajectory. If it determines that the simulated user has vio-
lated its given instruction or rules, the simulation trace is considered invalid and subsequently rerun,
regardless of the task’s outcome. The prompt used in the validator is provided in Appendix[A.4]

4 BENCHMARK CONSTRUCTION

4.1 INTERACTION FLOWS

To capture a wide range of query ambiguity and value mismatch patterns grounded in various clinical
QA scenarios, we include two different interaction flows for the simulated user to follow:

* Incremental Query Refinement (IncreQA): This flow tests an agent’s ability to maintain
conversational context as the user incrementally constructs a query by adding new con-
straints. The agent must integrate new details into the existing context without losing prior
information. Examples of such constraints include adding a patient ID to a cohort of pa-
tients, specifying event timing (e.g., “diagnosed after a year of [Year]”), or adding related
medical events to existing queries (e.g., “a heart attack following a diabetes diagnosis”)
(see Appendix[A.T.T|for a sample task instance).

* Adaptive Query Refinement (AdaptQA): This flow tests an agent’s ability to adapt its
query plan when a user modifies the original goal mid-conversation (e.g., searching for a
medication within the same or different drug classes if the initially requested one is not
found, rolling back when partial information is missing, or adopting fallback strategies
when no relevant data is available). By design, these tasks require more advanced value
mismatch resolution than IncreQA, often going beyond synonym matching (see Appendix

A.1.2).

4.2 ANNOTATION PROCESS

A core team of three annotators (two graduate-level computer science students and one physician)
led the initial development, from drafting through internal quality checks. This phase was followed
by beta testing with 38 graduate-level contributors, whose feedback informed the final revisions.

Text columns are pre-indexed. We use OpenAlI’s text-embedding-3-large.
3We use Gemini-2.5-Flash at a temperature of 0.0.

Under review as a conference paper at ICLR 2026

Table 2: EHR-ChatQA task statistics. x indicates preprocessed databases with renamed schemas.

IncreQA AdaptQA Total

MIMIC-IV* 145 40 185
elCUx 141 40 181
Total 286 80 366

4.2.1 EHR DATABASES

To evaluate agents’ generalizability to different EHR structures, we use two publicly available EHR
databases with distinct schemas and data recording practices: MIMIC-IV 2023),
which contains detailed ICU data from Beth Israel Deaconess Medical Center, and eICU
2018), which includes ICU data from multiple U.S. hospitals. For instance, eICU stores
prescription records as a single string such as “clopidogrel 75 mg,” whereas MIMIC-IV splits it
across three separate columns (drug name, dosage, unit of measurement) as “clopidogrel,” “75,” and
“mg.” For the basis of our task instances, we use a subset of records from the privacy-safe demo
versions of these databases. Although they contain fewer patients, these demos retain the same
schema complexity as the originals.

A key challenge we identified is that SOTA LLMs often memorize the original schemas of these
popular databases, allowing them to generate SQL without genuine schema exploration. To ensure
that our evaluation truly tests an agent’s ability to navigate arbitrary databases, we rename all table
and column names (e.g., “patients” to “demographics”). The resulting databases, MIMIC-IV* and
elCUx, compel agents to rely on schema exploration tools rather than their prior knowledge. Further
details on this process are provided in Appendix [B-4]

4.2.2 INCREQA ANNOTATION

To create IncreQA tasks, we first curate and adapt clinically relevant queries from two primary
sources. These include the EHRSQL dataset and internal logs from our col-
laborating medical center. We then annotate the corresponding ground truth SQL and answers.
Next, we convert these SQL queries into narrative user instructions using a SQL-to-text approach.
This method minimizes ambiguity inherent in natural language. For instance, a vague question like
“How many emergency patients are there?”” could refer to either admission_type=’urgent’
or admit_source=’emergency room’. By deriving instructions directly from specific SQL
constraints (e.g., WHERE admit_source = ’emergency room’), we ensure that the user
instruction precisely reflects the intended database query. The core team manually reviews these
instructions to detect any missing SQL details and ambiguities. Finally, we rephrase database values
into everyday language to introduce value mismatch challenges (e.g., mapping “malignant neo-
plasm” to “cancer”). Detailed IncreQA annotation process is provided in Appendix [B.T.T]

4.2.3 ADAPTQA ANNOTATION

AdaptQA tasks focus on scenarios requiring goal adjustments during interaction. Unlike IncreQA,
we begin by defining eight query modification categories (Table[I0) representing adjustments due to
data absence or schema structures’} We then annotate instructions to enforce conditional workflows
(e.g., pivoting due to missing data) based on specific patient data stored in the database. For instance,
to create a task sample in the “Medication nomenclature traversal” category, we select a patient
lacking records for a brand name (e.g., Lipitor) but having records for its generic equivalent. The
instruction guides the user to request the agent to search for the brand name first and, upon failure,
to check for the generic name. Crucially, the instruction omits the generic name (e.g., atorvastatin),
preventing the user from revealing information that the agent must discover independently. This
enforces a deterministic, decision-tree-like workflow where the evaluation target is determined by
the final intent reached based on the agent’s intermediate responses (e.g., the user pivots only if the
agent correctly reports the brand name’s absence). Following physician verification of these logical
flows, we annotate the corresponding SQL and answers. Detailed AdaptQA annotation process is

provided in Appendix

*We do not consider goal adjustments due to the user’s arbitrary preference changes.

Under review as a conference paper at ICLR 2026

Model IncreQA AdaptQA
SR-5(1) Pass@5(1) Pass”5(1) Gap-5(]) SR-5(1) Pass@5(1) Pass™5(1) Gap-5()

Closed-source Models

Gemini-2.5-Flash 73.1 91.3 47.9 43.4 34.7 64.1 6.2 57.9

Gemini-2.0-Flash 66.2 86.4 37.8 48.6 26.6 54.7 1.6 53.1

o4-mini 81.0 95.1 58.4 36.7 43.8 78.1 15.6 62.5

GPT-40 64.0 86.7 34.6 52.1 26.6 46.9 109 36.0

GPT-40-mini 49.0 75.2 224 52.8 18.1 40.6 4.7 35.9
Open-source Models

Llama 3.3-70B 38.6 66.8 11.2 55.6 12.2 37.5 0.0 37.5

Qwen3-32B 504 79.4 18.2 61.2 20.3 453 0.0 453

Table 3: Overall results on EHR-ChatQA across two different interaction flows: Incremental
Query Refinement (IncreQA) and Adaptive Query Refinement (AdaptQA), averaged over combined
MIMIC-IV* and eICU* samples. Metrics include: SR-5 (average success rate over 5 trials), Pass@5
(success in at least one of 5 trials), Pass™5 (success in all 5 trials), and Gap-5 (Pass@5 - Pass™)).

4.3 QUALITY ASSURANCE

To create a high-quality evaluation benchmark, our quality assurance procedure consists of an inter-
nal validation process followed by an external beta-testing phase. The internal validation has two
components, targeting both the task instances and the simulation environment. First, to assess the
quality of each task instance, we employ an iterative refinement loop, using preliminary simulations
to flag tasks that repeatedly cause agent failures for manual review. The review focuses on checking
the alignment between the annotated SQL and the user instructions and on resolving any ambigui-
ties in the instructions. Second, we validate the quality of the simulation environment by manually
reviewing failed dialogue trajectories, especially the agent’s value-linking logic (e.g., when a user
instruction specifies hemoglobin, we check whether the instruction is clear enough to guide only to
“Hb,” not to other similar terms such as “Hb C”). Following this internal validation, the benchmark
underwent beta testing over two months with 38 graduate-level contributors. During this phase, the
benchmark was progressively improved based on their feedback regarding instruction clarity and
user behavior. The contributor demographics and testing details are provided in Section

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models We evaluate leading closed-source and open-source LLMs with strong function-calling
capabilitiesﬂ For closed-source models, we use OpenAI’s 04-mini and GPT-40, as well as Google’s
Gemini-2.5-Flash and Gemini-2.0-Flash. For open-source models, we evaluate Llama 3.3-70B and
Qwen3-32B, served on four NVIDIA A6000 GPUs using the vLLM library (Kwon et al., [2023)).
All implemented agents are provided with a set of behavioral rules (see Appendix |C.2)), database-
specific SQL generation rules (see Appendix [A.3)), and evaluation rules (see Appendix [A.6). The
temperature for all agent LLMs is set to 0.0, and each simulation is limited to a maximum of 30
agent actions. The agent implementation details are provided in Appendix [C|

Evaluation Metrics We evaluate agent performance using four metrics: SR-k, Pass@k, Pass’k,
and Gap-k. SR-k measures the average success rate across k i.i.d. trials for each task. Pass@k (Chen
et al, |2021), representing an agent’s optimistic performance, is the proportion of tasks solved in at
least one of these k trials. Conversely, Pass’k (Yao et al.l [2025) assesses consistent and reliable
performance by measuring the proportion of tasks solved in all k trials. The final metric, Gap-k,
is the difference between Pass@k and Pass’k. While SR-k serves as a stable measure of overall
performance due to its lower sensitivity to the number of trials, k, the other three metrics vary
with k. In particular, Gap-k indicates an agent’s robustness across diverse conversation paths and is
an important indicator of potential degradation in performance over multiple runs, which must be
avoided in the safety-critical EHR domain. We set k=5 throughout the experiments.

SWe employ a standard function-calling setup to measure the intrinsic performance “floor”, rather than the
“ceiling” of highly optimized agentic architectures.

Under review as a conference paper at ICLR 2026

= Pass@5

100
g
; 80
E 60
80 £
£ a0
g
20
0
= 60 . . 33-66% X 66-100%
X User interaction length by percentile
Q
§ (b) Performances vs. user interaction length across tasks.
§ 40 100 916 —IncreQA
»g = AdaptQA
f) 80
& g
é 60
20 2
8 40
#
20
0 0
33-66% 66-100%
1 2 3 4 5 User interaction length by percentile
k . .
(c) Success rate vs. Average user interaction length
(a) Performances vs. the number of trials (k). within tasks.

Figure 3: Detailed performance of the o4-mini-powered agent.

5.2 MAIN RESULTS

Overall Result Table [3] summarizes the performance of various state-of-the-art LLMs on EHR-
ChatQA. Closed-source models consistently outperform their open-source counterparts. 04-mini
achieves the highest overall performance, with SR-5 scores of 81.0% on IncreQA and 43.8% on
AdaptQA, followed by Gemini-2.5-Flash. Open-source models such as Qwen3-32B and Llama 3.3-
70B show clear limitations, particularly struggling with AdaptQA (12.2% and 20.3% SR-5, respec-
tively). While closed-source models perform strongly on IncreQA, with scores ranging from 60%
to 80%, their performance drops to the 30-40% range on AdaptQA. This indicates that AdaptQA
requires more advanced adaptive query refinement and sophisticated value exploration. The most
salient finding is the substantial discrepancy between the optimistic performance (Pass@5) and the
consistent performance (Pass™5).

Interaction and Cost Analysis On average, agents engage in 4.9 user interactions and 7.0 tool
interactions per IncreQA task, and 5.5 and 10.2 per AdaptQA task, respectively, indicating greater
complexity for AdaptQA. The environment setup, which employs a simulated user and validator,
costs approximately $0.0043 per IncreQA task and $0.0065 per AdaptQA task. The total cost of
running the full benchmark over five runs, using 0o4-mini as the database agent, is approximately
$100 across all task instances, whereas the cost using Gemini-2.5-Flash is about $61.

Further Performance Analysis A deeper analysis of the top model, o4-mini, reveals key factors
behind its performance inconsistency. As expected, Gap-k widens with more trials (k), since the
condition for consistent success becomes stricter (Figure [3a). Furthermore, trials involving more
user interactions tend to have lower overall success rates as well as higher inconsistency (Figure [3b).
This trend holds even for individual trials, where a trial’s success is negatively correlated with its
relative number of user-agent interactions even within the same task (Figure [3c).

5.3 COMMON ERROR CASES IN INTERACTIVE DATABASE AGENTS

We conduct a detailed error analysis of agents using o4-mini and Gemini-2.5-Flash to understand
the root causes of failures and the factors driving the performance gap. We categorize failures into
two distinct groups: (1) Consistent Failures, where the agent fails across all five trials, indicating
fundamental limitations; and (2) Inconsistent Failures, where the agent succeeds in at least one trial
but not all, highlighting brittleness to variations in conversation paths.

Consistent Failures Consistent failures are dominated by difficulties in handling value mismatch
and in generating complex SQL. The largest category, Value Linking Errors (46.9%), arises when

Under review as a conference paper at ICLR 2026

an agent fails to retrieve all relevant database terms. This includes overlooking drug brand names
(e.g., “Coumadin” for warfarin), failing to match textual variations (e.g., finding “essential (primary)
hypertension”), and being unable to resolve synonyms or abbreviations (e.g., “wbc” for “white blood
cells” and “leukocytes™). The second major category, SQL Generation Errors (25.0%), involves
subtle yet critical flaws in query logic. For instance, agents often misinterpret the timing of events,
querying a patient’s overall first hospital visit instead of their first visit for a specific diagnosis. The
remaining failures fall into Rule Violations (15.6%), where agents disregard explicit instructions,
and Limited Clinical Knowledge (12.5%), which leads to improper data filtering, such as failing to
select only the “direct” procedures required for aneurysm resection conducted to a patient.

Inconsistent Failures Inconsistent failures reveal the fragility of current agents. Small variations
in the dialogue trajectory, stemming from stochastic user responses, can lead to drastically different
outcomes. SQL Generation Issues (71.8%): SQL errors are the primary driver of this inconsistency.
Slight variations in user phrasing can disrupt the agent’s context tracking, leading to SQL that omits
crucial context from previous turns, which is the same context handled correctly in successful trials.
For instance, in an IncreQA task, a user might first ask for “patients with diabetes”. In a successful
trial, the follow-up “How many of those are over 65?” correctly maintains both constraints. How-
ever, in a failed trial, a subtle rephrasing such as “And what about their age, specifically over 657
can cause the agent to drop the initial “diabetes” constraint, erroneously querying the age of the
entire patient population. The remaining errors are similar to those observed in consistent failure
cases, including incomplete value retrieval (15.4%) and occasional rule violations (5.1%).

Diagnostic Insights To address consistent failures, which are largely driven by value mismatch,
future work should improve the agent’s exploration strategies. Agents must comprehensively find
relevant database entries. To mitigate the performance gap across multiple runs reflected in incon-
sistent failures, the priority should be to improve context management. This requires developing
techniques that enforce state-tracking consistency across linguistic variations, such as explicit query
state representation or specialized fine-tuning focused on context-dependent query refinement.

6 CHALLENGES IN SIMULATION-BASED EVALUATION

Simulation-based benchmarks present unique challenges due to the stochastic nature of LLM-
generated dialogues. In our experiments, the common error types that cause simulation re-runs
include: no final check (39.3%), where users end conversations without verifying that the agent’s
answer fully addresses the goal®f missing conditions (20.7%), where users omit minor details (e.g.,
specific time constraints) before concluding; performing agent-like tasks (17.0%), where users act
as database agents, such as by writing SQL queries; accepting unverified information (8.9%), where
users accept incorrect details provided by the agent; and various rule violations (14.1%), which in-
clude miscellaneous stylistic errors, such as using overly polite, Al-like phrases. While we make
tremendous efforts to remove ambiguities in user instructions, many cost-effective LLMs, includ-
ing open-source models and Gemini-2.0-Flash, are still not fully reliable at following unfamiliar
or detailed instructions, even when equipped with self-reflection mechanisms. However, if cost is
the primary concern, pairing a cost-effective user with a powerful but costly validator is an effec-
tive compromise. We believe this concern will diminish as more powerful and cost-effective LLMs
demonstrate stronger instruction-following capabilities.

7 CONCLUSION

We introduce EHR-ChatQA, the first conversational benchmark for end-to-end evaluation of
database agents in the safety-critical EHR domain. Moving beyond static text-to-SQL, EHR-
ChatQA assesses an agent’s ability to resolve query ambiguity and value mismatch through user
conversation and active tool use. Our evaluation of state-of-the-art LLMs on two interaction flows,
Incremental (IncreQA) and Adaptive (AdaptQA), reveals a critical robustness gap: the difference
between succeeding in one of five independent trials (Pass@5) and all five (Pass™5) for some models
exceed 35% in IncreQA and 60% in AdaptQA. This gap is mainly rooted in the agent’s failures in ac-
curate context management and SQL generation. We believe EHR-ChatQA can serve as a valuable
resource for advancing database agents in interactive question answering over EHRs.

SThis rule is intentionally included in user instructions to prevent open-ended questions from excessively
deviating and leading to non-terminating conversations.

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and prioritize ethical considerations in this research. To pro-
tect patient privacy, EHR-ChatQA utilizes publicly available, de-identified EHR datasets (MIMIC-
IV-demo and eICU-demo), which are free of Protected Health Information (PHI), allowing for the
safe evaluation of LLMs. Our findings highlight a significant performance gap in current state-
of-the-art models between optimistic and consistent agent performances across QA tasks, raising
concerns about the premature deployment of these agents in safety-critical clinical environments.
We also acknowledge that the source EHR databases may contain inherent biases reflecting the
demographics and clinical practices of the originating U.S. hospitals.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide comprehensive resources, including
the complete EHR-ChatQA benchmark with all 366 task instances and the EHR databases, an eval-
uation framework, a tool suite, and a simulation environment, which will be available in our GitHub
repository. Detailed methodologies are provided in the appendices, covering database preprocessing
and schema renaming (Appendix [B.4), implementation details for the simulated user and validator
(Appendix [A.3), and the implementation of the database agents (Appendix [C). Due to the stochas-
ticity of the simulated users, the exact numbers reported in the experiments may not be perfectly
reproduced, and occasional user-side errors may persist as these LLLMs are not perfectly instruction-
following. However, we have introduced a simulation validator to mitigate such issues, and we
expect that their occurrence will decrease as LLM steerability continues to improve.

REFERENCES

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Ifiigo Casanueva, Stefan Ultes, Osman
Ramadan, and Milica Gasic. Multiwoz-a large-scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 5016-5026, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Blanda Helena De Mello, Sandro José Rigo, Cristiano André Da Costa, Rodrigo da Rosa Righi,
Bruna Donida, Marta Rosecler Bez, and Luana Carina Schunke. Semantic interoperability in
health records standards: a systematic literature review. Health and technology, 12(2):255-272,
2022.

Mingwen Dong, Nischal Ashok Kumar, Yiqun Hu, Anuj Chauhan, Chung-Wei Hang, Shuaichen
Chang, Lin Pan, Wuwei Lan, Henghui Zhu, Jiarong Jiang, Patrick Ng, and Zhiguo Wang. PRAC-
TIQ: A practical conversational text-to-SQL dataset with ambiguous and unanswerable queries.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), pp. 255-273, Albuquerque, New Mex-
ico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL
https://aclanthology.org/2025.naacl-1long.13/l

John H Holmes, James Beinlich, Mary R Boland, Kathryn H Bowles, Yong Chen, Tessa S Cook,
George Demiris, Michael Draugelis, Laura Fluharty, Peter E Gabriel, et al. Why is the electronic
health record so challenging for research and clinical care? Methods of information in medicine,
60(01/02):032-048, 2021.

Yixing Jiang, Kameron C Black, Gloria Geng, Danny Park, Andrew Y Ng, and Jonathan H Chen.
Medagentbench: Dataset for benchmarking llms as agents in medical applications. arXiv preprint
arXiv:2501.14654, 2025.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

10

https://aclanthology.org/2025.naacl-long.13/

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Min-
joon Seo, Jong-Yeup Kim, and Edward Choi. Ehrsql: A practical text-to-sql benchmark for
electronic health records. Advances in Neural Information Processing Systems, 35:15589-15601,
2022.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls. In Advances in Neural
Information Processing Systems, volume 36, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In The Twelfth Inter-
national Conference on Learning Representations.

Lucila Ohno-Machado. Realizing the full potential of electronic health records: the role of natural
language processing. Journal of the American Medical Informatics Association, 18(5):539-539,
2011.

Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
The eicu collaborative research database, a freely available multi-center database for critical care
research. Scientific data, 5(1):1-13, 2018.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pp. 8689-8696, 2020.

Jaehee Ryu, Seonhee Cho, Gyubok Lee, and Edward Choi. Ehr-seqsql : A sequential text-to-
sql dataset for interactively exploring electronic health records. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 16388—16407, Bangkok, Thailand, 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.971. URL
https://aclanthology.org/2024.findings—acl.971/.

Irina Saparina and Mirella Lapata. Ambrosia: A benchmark for parsing ambiguous questions into
database queries. Advances in Neural Information Processing Systems, 37:90600-90628, 2024.

Ivan Sekulié, Silvia Terragni, Victor Guimaraes, Nghia Khau, Bruna Guedes, Modestas Filipavicius,
André Ferreira Manso, and Roland Mathis. Reliable 1lm-based user simulator for task-oriented
dialogue systems. arXiv preprint arXiv:2402.13374, 2024.

Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, and Yohan Jo. Tooldial: Multi-turn dialogue
generation method for tool-augmented language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
J1J5eGJIsKZl

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou. Know what I don’t know: Handling
ambiguous and unknown questions for text-to-SQL. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 5701-5714, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.352. URL https://aclanthology.org/2023.
findings—acl.352.

Ping Wang, Tian Shi, and Chandan K Reddy. Text-to-sql generation for question answering on
electronic medical records. In Proceedings of The Web Conference 2020, pp. 350-361, 2020.

11

https://aclanthology.org/2024.findings-acl.971/
https://openreview.net/forum?id=J1J5eGJsKZ
https://openreview.net/forum?id=J1J5eGJsKZ
https://aclanthology.org/2023.findings-acl.352
https://aclanthology.org/2023.findings-acl.352

Under review as a conference paper at ICLR 2026

xAl Grok 3 beta — the age of reasoning agents. https://x.ai/news/grok-3, February
2025. Accessed: 2025-09-20.

Ran Xu, Yuchen Zhuang, Yishan Zhong, Yue Yu, Xiangru Tang, Hang Wu, May D Wang, Peifeng
Ruan, Donghan Yang, Tao Wang, et al. Medagentgym: Training 1lm agents for code-based medi-
cal reasoning at scale. arXiv preprint arXiv:2506.04405, 2025.

Xi Yang, Aokun Chen, Nima PourNejatian, Hoo Chang Shin, Kaleb E Smith, Christopher Parisien,
Colin Compas, Cheryl Martin, Anthony B Costa, Mona G Flores, et al. A large language model
for electronic health records. NPJ digital medicine, 5(1):194, 2022.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744-20757, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains. In The Twelfth International Conference on
Learning Representations, 2025.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
3911-3921, Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1425. URL https://aclanthology.org/D18-1425/.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan,
Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexan-
der Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong,
Richard Socher, Walter Lasecki, and Dragomir Radev. CoSQL: A conversational text-to-SQL
challenge towards cross-domain natural language interfaces to databases. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1962-1979, Hong Kong, China, Novem-
ber 2019a. Association for Computational Linguistics. doi: 10.18653/v1/D19-1204. URL
https://aclanthology.orqg/D19-1204/.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er,
Irene Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan
Kraft, Vincent Zhang, Caiming Xiong, Richard Socher, and Dragomir Radev. SParC: Cross-
domain semantic parsing in context. In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pp. 4511-4523, Florence, Italy, July 2019b. Association for Computational Linguistics. doi:
10.18653/v1/P19-1443. URL https://aclanthology.orqg/P19-1443/.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

12

https://x.ai/news/grok-3
https://aclanthology.org/D18-1425/
https://aclanthology.org/D19-1204/
https://aclanthology.org/P19-1443/

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY CONTENTS

[A__Benchmark Details|

IA.1 Sample Task Instances|
IA.LLT IncreQA Sample]l
IA.1.2 AdaptQA Samplel. oL

IA.2 “Tool Specifications|

IA.3 User Implementation|

|A3.2 User System Prompt|

|A.3.3 Example Variability in Stmulated User Turns|

|A.4 Simulation Validator Implementation|. 0.
|IA.5 Database-SpecificRules| L o

AS.1 MIMIC-IVXRules| o o o
AS2 elCUxRules| o

[A.6.2 AdaptQA|
|A.7 Contributor Demographics and Beta Testing Process|

B onDetail

B.1 IncreQA and AdaptQA Annotation|.
IB.1.1 IncreQA Annotation|
IB.1.2 AdaptQA Annotation|. e

IB.2 AdaptQA Categories| e e e e e

IB.3 SQL Annotation Style|.

IB.4 EHR Database Preprocessing| 0.

BT MIMICIIVReEnaming] oo vt oo e et e
B.4.2 elCURenaming|

Agent Implementation|

IC.1 Agent System Prompt|.
IC.2 AgentRules|
|IC.3 Agent Rules for Evaluation|

Sample Trajectories|

ID.1 Incremental Query Refinement|,
ID.1.1 Successful Case (IncreQA)|.
ID.1.2 Failed Case (IncreQA)|,

ID.2 Adaptive Query Refinement|

15
15
15
15
17
18
18
18
19
20
21
21
22
23
23
23
23

24
24
24
24
25
26
27
27
28

29
29
29
30

Under review as a conference paper at ICLR 2026

ID.2.1 Successful Case (AdaptQA)| . .
ID.2.2 Failed Case (AdaptQA)[.
ID.3 Invalidated Trajectories by the Validator|

ID.3.2" Violation of Missing conditions Rule|

ID.3.3 Violation of Performing Agent-like Tasks Rulef

14

Under review as a conference paper at ICLR 2026

A BENCHMARK DETAILS

A.1 SAMPLE TASK INSTANCES

In this section, we present sample task instances for IncreQA and AdaptQA.

A.1.1 INCREQA SAMPLE

"task_.id": "6",

"task_type”: "incre”,

"db_id": "mimic_iv_star”,

"instruction”:
"Your goal is to find the number of patients admitted to the hospital who meet
specific criteria. Specifically, you want to know how many patients admitted in the
past 90 days have a family history of breast cancer.”,

"gold_sql™:
"SELECT COUNT(DISTINCT ha.patientid) AS patient_count FROM hospitaladmissions
ha JOIN admissiondiagnoses ad ON ha.admissionid = ad.admissionid JOIN
diagnosiscodes dc ON ad.icdcode = dc.icdcode AND ad.codeversion = dc.
codeversion WHERE dc.description = "family history of malignant neoplasm of
breast’ AND datetime(ha.admitdatetime) >= datetime('2100-12-31 23:59:00’, '-90
days’)",

"gold_answer”: [[1]]

A.1.2 ADAPTQA SAMPLE

"task_.id": "10",

"task_type”: "adapt”,

"db_id": "mimic_iv_star”,

"instruction”:
"Your goal is to explore patient data related to medication prescriptions.
Specifically, you are interested in patient ID 10008287 and want to know when they
were prescribed carbamazepine for epilepsy treatment. If the patient was
prescribed carbamazepine, you want to know the most recent prescription time
after the first epilepsy diagnosis. If the patient was not prescribed carbamazepine,
you want to identify whether any other class of medication used for epilepsy
treatment was prescribed. If such medications are found, you want to know the
most recent prescription time after the first epilepsy diagnosis. If no such
medications are found, end the conversation. You want the answer in the exact
time format recorded in the database.”,

15

Under review as a conference paper at ICLR 2026

"gold_sql™:
"WITH valid_epilepsy_codes AS (SELECT DISTINCT d.icdcode, d.codeversion, di.
description FROM admissiondiagnoses d JOIN diagnosiscodes di ON d.icdcode = di.
icdcode AND d.codeversion = di.codeversion WHERE di.description LIKE '%epilepsy
%'), epilepsy_diagnoses AS (SELECT d.patientid, d.admissionid, MIN(d.
recordeddatetime) AS first_epilepsy_time FROM admissiondiagnoses d JOIN
valid_epilepsy_codes c ON d.icdcode = c.icdcode AND d.codeversion = c.codeversion
WHERE d.patientid = 10008287 GROUP BY d.patientid, d.admissionid),
carbamazepine_prescriptions AS (SELECT p.patientid, p.admissionid, p.
startdatetime FROM medicationorders p JOIN epilepsy_diagnoses ed ON p.patientid
= ed.patientid AND p.admissionid = ed.admissionid WHERE p.medicationname ="'
carbamazepine’ AND p.startdatetime > ed.first_epilepsy_time),
alternative_epilepsy_prescriptions AS (SELECT p.patientid, p.admissionid, p.
startdatetime FROM medicationorders p JOIN epilepsy_diagnoses ed ON p.patientid
= ed.patientid AND p.admissionid = ed.admissionid WHERE p.medicationname IN ('
levetiracetam’, ‘phenytoin’, 'valproate’, 'lamotrigine’, 'topiramate’) AND p.
startdatetime > ed.first_epilepsy_time), combined_prescriptions AS (SELECT
patientid, admissionid, startdatetime FROM carbamazepine_prescriptions WHERE
EXISTS (SELECT 1 FROM carbamazepine_prescriptions) UNION ALL SELECT patientid,
admissionid, startdatetime FROM alternative_epilepsy_prescriptions WHERE NOT
EXISTS (SELECT 1 FROM carbamazepine_prescriptions)) SELECT startdatetime FROM
combined_prescriptions ORDER BY startdatetime DESC LIMIT 1;",

"gold_answer”: [['2100-10-12 20:00:00']]

16

Under review as a conference paper at ICLR 2026

A.2 ToOOL SPECIFICATIONS

Table] presents the six default tools, categorized by their purposes. These tools serve as channels
for access to database content and external clinical knowledge to solve question-answering tasks in
EHR-ChatQA. For each tool, the equals sign (=) denotes its default arguments.

Table 4: Definition of six default tools provided in EHR-ChatQA.

Tool name Input Output Description
Schema exploration
table_search None List of tables Lists all available tables in the database.
column_search Table name Column names with 3 Shows the columns of a specified table along
sample rows with sample data.
Value exploration

value_substring_search Table name, column k values containing the Finds values that contain the specified substring

name, value, k=10 substring in the given column.
value_similarity_search Table name, column k similar values Finds values similar to the input value based on

name, value, k=10 semantic similarity™.

External knowledge retrieval
web_search Keyword Web search results Retrieves relevant external clinical knowledge
from the web.
SQL execution

sgl_execute SQL query, k=100 SQL result Executes the provided SQL query and returns

up to k results.

*For value_similarity_search, we use FAISS wrapped in the LangChain library (with a
default threshold of 0.8). Text columns frequently used in QA tasks are pre-indexed, as listed below
(table names with their corresponding column names in brackets).

For MIMIC-IV+*, the pre-indexed columns include:

hospitaladmissions: [admissiontype, admitsource, dischargedestination]
diagnosiscodes: [description]

procedurecodes: [description]

medicationorders: [medicationname]

clinicalitemtypes: [itemname]

labtesttypes: [itemname]

microbiologyresults: [specimentype, testname, organismname]

For eICU%, the pre-indexed columns include:

allergy_reaction: [drug_name, allergy_name]
condition: [condition_name]

fluid_balance: [fluid_label]

lab: [lab_name]

prescription: [drug_name]

icupatient: [ethnicity, hospital_admission_source]
treatment: [treatment_name]

17

Under review as a conference paper at ICLR 2026

A.3 USER IMPLEMENTATION

A.3.1 SIMULATED USER

For the implementation of simulated users, we use Gemini-2.0-Flash due to its low cost and effective
instruction-following capabilities. To simulate user stochasticity in natural language utterances,
the temperature of the user simulator is set to 1.0. Table [5] shows the system prompt for the user
simulator.

A.3.2 USER SYSTEM PROMPT

Table 5: User system prompt to teach behavioral rules.

Your task is to simulate a user with no knowledge of SQL or database
management systems, who needs specific information from an EHR
database and relies on the DB agent for help.

Instruction: {user_instruction}

Rules:

— The current time is 2100-12-31 23:59:00.

- Start with a short, broad question that reflects the overall goals
from the instruction.

— Use your own words to describe your goals for the DB agent.

— Do not reveal all your goals at once. Instead, share them

gradually, one or two sentences at a time.

— Speak casually and directly, without functionally unnecessary

phrases (like "please" or "thank you") that make the tone sound like
an AI assistant.

- Do not generate SQL, code snippets, empty messages, or AI-

assistant-like outputs. Stay in the role of a user, not a DB agent.

- If the DB agent requests specific tables or column names, instruct
it to locate them independently (unless the instruction says

otherwise) .

- If the DB agent requests writing or reviewing SQL queries, or

summarizing the overall goal, instruct it to complete the task

independently.

- If the DB agent gives an intermediate answer, don’t complete it

yourself. Instead, instruct it to finalize it (e.g., performing

calculations like time differences or rephrasing answers).

- If the DB agent’s answer seems satisfactory (even though you do

not know whether it is correct or whether the requested data

actually exists), ask the DB agent to double check that their final

answer covers all goals raised. If not, request any missing parts.

- If the DB agent’s answer covers all goals raised, generate only

"#H#HENDH##H#" to end the conversation. Do not add it after every reply
Use it only once in the final message.

- Do not deviate from what is specified in the instruction, such as

failing to mention the top N ranked tied results to retrieve,

requesting medication order records or prescription records instead

of administered records, requesting 6 months of data instead of 180

days, asking follow-up questions when they are not specified in the

instruction, or revealing disallowed information before the DB agent
mentions it.

18

Under review as a conference paper at ICLR 2026

A.3.3 EXAMPLE VARIABILITY IN SIMULATED USER TURNS

Using the annotated user instructions and the user system prompt in Table [5] the LLM-powered
user generates diverse dialogue trajectories with the agent even under the same instruction. Figure[d]
shows sample variability in user turns for both IncreQA and AdaptQA.

-III.-——— 0 —III..— —
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6

9 7 8 9
Max-min difference of user turn counts across trials (IncreQA) Max-min difference of user turn counts across trials (AdaptQA)

100

= N
& S

Number of unique tasks
s

Number of unique tasks

«

(a) IncreQA (b) AdaptQA

Figure 4: Distribution of the difference between the maximum and minimum number of user turns
for each unique task in IncreQA and AdaptQA. A unique task is defined by db_id, task_type,
and task_id. Most tasks have a difference of 1 to 3 turns, which indicates that the user simulator
generates stochastic conversations rather than fixed scripts.

19

Under review as a conference paper at ICLR 2026

A.4 SIMULATION VALIDATOR IMPLEMENTATION

Tables [6] and [7] show the system and input prompts used by the simulation validator. If the validator
outputs “user_error” instead of “no_error,” the conversation is flagged and the simulation is re-run.

Table 6: System prompt for the simulation validator.

Your task is to determine whether [USER] accurately followed the
provided rules and user instruction during their conversation with [
DB AGENT]. Errors are defined as any deviations from the rules or
user instruction. You must carefully review the rules, user
instruction, conversation between [USER] and [DB AGENT], and the
gold SQL query to identify any errors made by [USER].

Table 7: Input prompt for the simulation validator.

{user_system_prompt}

Conversation:
{conversation}

Gold SQL:
{gold_sqgl}

Types of common user errors:

— The user gives away their goals all at once in the same turn.

— The user acts like a DB agent or AI assistant instead of the user
(e.g., writing, reviewing, or executing SQL queries, calling
external APIs, or responding to the DB agent in a machine assistant

way) .

— The user asks for information that is slightly different from what
is specified in the instruction (e.g., requesting medication order
records or prescription records instead of administered records, or
requesting 6 months of data instead of 180 days).

— The user confirms values that differ from those in the gold SQL,

unless specified otherwise in the instruction (e.g., requesting data
for just "diabetes" when the gold SQL uses LIKE "%$diabetes$").

— The user mentions information beyond the instruction, including
related or unrelated details not specified (e.g., asking follow-up
questions not in the instruction).

— The user does not provide all the detailed conditions specified in
the instruction before ending the conversation. These conditions

may include, for example, retrieving all tied ranked results,
specifying the top "N" results to retrieve, handling duplicate

patient records, or indicating keywords to include or exclude when
searching for data. However, if the DB agent retrieves no relevant
data, these conditions are not required.

— The user does not provide all the detailed conditions specified in
the predicates of the gold SQL, either explicitly or implicitly,

before ending the conversation.

— The user does not double-check with the DB agent to see if the
agent’s final answer satisfies all the information the user provided
before ending the conversation.

— The user violates any other rules specified in the rules or the

user instruction.

You must respond in JSON format with the following fields:

- explanation: Provide a clear and concise explanation of why you

made the decision.

- broken_rule: If a user error is found, provide the exact rule or
instruction that the user violated. If no error is found, provide an
empty string.

- evidence: If a user error is found, provide the exact user
response that caused the error. If no error is found, provide an
empty string.

— result: Answer "user_error" if a user error 1is found. Answer "

no_error" if no user error is found.

20

Under review as a conference paper at ICLR 2026

A.5 DATABASE-SPECIFIC RULES

Database-specific rules guide the agent in referencing database contents and generating SQL queries.
These rules complement the general agent rules (Section [C.I), covering time-related operations,
database-specific schema structures (e.g., the hierarchy linking patient records to admission records,
and admission records to ICU records), and hints for complex numerical operations, such as survival
rate calculations. The complete database-specific rules are detailed in Sections [A.5.T]and[A.5.2]

A.5.1 MIMIC-IV* RULES

Table 8: SQL assumptions for MIMIC-IV*.

Below are the SQL generation rules:

- Use SQLite for SQL query generation.

— The current time is ’2100-12-31 23:59:00’. When referring to time,
do not use SQLite’s native functions like now. Instead, use
72100-12-31 23:59:00" for ’'now’, ’2100-12-31’" for ’"today’, ’2100-12’
for ’'this month’, and 2100’ for ’'this year’.

— Use DENSE_RANK () for questions involving ranked results (e.g., the
most or the top N most common/frequent events) to retrieve values
from the specified column (e.g., diagnosis names). Exclude counts or

ranks unless the user explicitly requests them. Do not use
DENSE_RANK () for questions without ranked result requests.
- For cost-related questions, use costrecords.eventtype to specify
the event type (’admissiondiagnoses’, ’admissionprocedures’, '
labresults’, ’'medicationorders’) when specifically retrieving costs
for diagnoses, procedures, lab results, or medications, respectively
When retrieving costs for diagnoses, join costrecords.costid with
admissiondiagnoses.recordid. For procedures, join with
admissionprocedures.recordid. For lab results, Jjoin with labresults.
recordid. For medications, join with medicationorders.recordid.
— The medicationorders table stores ordered or prescribed
medications, while the intakerecords table records administered
drugs or fluids
— When asked to retrieve procedures, diagnoses, or lab tests, return
their names instead of their codes.
— All values stored in the database are in lowercase.
— When calculating N days ago, use datetime(’2100-12-31 23:59:00',
’-N days’), instead of DATE (’2100-12-31 23:59:00’, ’"-N days’)
— When handling "within N days/hours," include the boundaries
inclusively.
- For questions involving the timing of diagnoses or conditions
relative to other events, you must use the first diagnosis time for
each patient unless directed otherwise.
— When searching for specific medication names in the database, use
a pattern like %$morphine% instead of exact matches like morphine
unless directed otherwise.
— As clinical and lab events often share identical names but have
different codes (e.g., codes 50902 and 52535 both represent chloride
), use the names if grouping them in SQL.
— If the results contain numerical values (e.g., time differences in
days or hours, or survival rates), round them to four decimal
places.

21

Under review as a conference paper at ICLR 2026

A.5.2 EICU* RULES

Table 9: SQL assumptions for eICU*.

Below are the SQL generation rules:

- Use SQLite for SQL query generation.

— The current time is ’2100-12-31 23:59:00’. When referring to time,
do not use SQLite’s native functions like now. Instead, use

72100-12-31 23:59:00" for 'now’, ’2100-12-31’ for ’'today’, ’2100-12’
for ’'this month’, and 2100’ for 'this year’.

— Use DENSE_RANK () for questions involving ranked results (e.g., the
most or the top N most common/frequent events) to retrieve values
from the specified column (e.g., diagnosis names). Exclude counts or

ranks unless the user explicitly requests them. Do not use

DENSE_RANK () for questions without ranked result requests.

— The patient identifiers patient_id, hosp_id, and unit_id represent
the unique patient ID, hospital admission ID, and ICU admission ID,
respectively. The hierarchy of them is patient -> hospital -> icu.

— When retrieving specific hospital or ICU admission records, use

their admission IDs rather than admission or discharge times.

- For cost-related questions, use cost.event_type to specify the

event type (’condition’, ’treatment’, ’lab’, ’prescription’) when

specifically retrieving costs for conditions, treatments, lab
results, or prescriptions, respectively. For example, when
retrieving costs for conditions, join cost.event_id with condition.
condition_id with event_type = ’‘condition’.

- Use fluid_balance for both input and output events. Specify input

events using fluid_balance.fluid_path LIKE ’$intake%’ and output

events using fluid_balance.fluid_path LIKE ’S%output%’.

— The prescription table stores ordered or prescribed medications,

while the fluid_balance table records administered drugs or fluids

when fluid_balance.fluid_path LIKE ’$intake%’.

— All values stored in the database are in lowercase.

- Patients with no records of death are considered to have survived

when dealing with death-related questions.

— When calculating N days ago, use datetime(’2100-12-31 23:59:00’,

’-N days’), instead of DATE (’2100-12-31 23:59:00’, ’'-N days’)

— When handling "within N days/hours," include the boundaries

inclusively.

- For questions involving the timing of diagnoses or conditions

relative to other events, you must use the first diagnosis time for

each patient unless directed otherwise.

— When searching for specific medication names in the database, use

a pattern like %$morphine% instead of exact matches like morphine

unless directed otherwise.

- If the results contain numerical values (e.g., time differences in
days or hours, or survival rates), round them to four decimal

places.

22

Under review as a conference paper at ICLR 2026

A.6 EVALUATION DETAILS

The evaluation methods for IncreQA and AdaptQA differ, and the appropriate method is applied
based on the interaction flow type.

A.6.1 INCREQA

For IncreQA tasks, we evaluate the agent by executing the SQL query it generates (parsed from the
input to the sgl_execute tool). We compare the resulting output to the ground truth (GT) SQL
output to ensure accuracy even for queries that return many rows. Up to 100 results are checked.
Evaluation logic: The GT SQL is constructed to satisfy all constraints introduced throughout the
interaction. Example: If a user first asks for “patients with diabetes” and then refines it to “among
them, who are over 6577, the GT SQL filters for both conditions. If the agent executes a query
checking only for “age > 65” (ignoring the diabetes context), the result will not match the GT,
leading to failure.

A.6.2 ADAPTQA

For AdaptQA tasks, correctness is evaluated based on the content within the
<answer></answer> tags of the agent’s response to the user. This method is better suited for
tasks that require clinical reasoning beyond simple SQL retrieval. For instance, after retrieving
medication data, the agent might need to identify drugs within the same class or those with similar
purposes but different mechanisms. For tasks requiring numerical answers (e.g., patient counts),
the instructions explicitly ask the agent to respond in words rather than numerals (e.g., “ten”
instead of “10”). This avoids false positives from numeral-word mismatches during evaluation.
Evaluation logic: Since the simulator follows a fixed procedure, the correct answer is deterministic.
We evaluate success by checking if the content within the <answer> tags strictly matches the
annotated GT answer, which reflects the user’s final intent after all refinements. Example: Consider
a user asking for “Aspirin” (Count: 0) and then refining to “acetylsalicylic acid” (Count: 10). The
GT answer is explicitly set to “ten”. If the agent answers <answer>ten</answer>, it succeeds.
If it fails to update the search term and answers “zero”, it fails.

A.7 CONTRIBUTOR DEMOGRAPHICS AND BETA TESTING PROCESS

To ensure the robustness and usability of the EHR-ChatQA benchmark, we conducted a beta-testing
phase involving 38 graduate-level contributors.

Demographics and Background The cohort consisted of Master’s and Ph.D. students specializ-
ing in Computer Science and Artificial Intelligence. All contributors were participants in a graduate-
level course focused on Healthcare Al Their strong technical background ensured that they ef-
fectively represented the target audience of this benchmark, namely researchers and developers of
database agents.

Training and Setup Contributors were not trained to act as simulated users but were instead
onboarded as “agent developers.” To facilitate this, we provided them with a standardized devel-
opment environment, which included: (1) the complete benchmark codebase and the simulation
environment, (2) detailed documentation defining the task objectives and evaluation metrics, and (3)
a baseline agent implementation to serve as a reference point for tool usage and API interaction.

Task and Feedback Mechanism Over a duration of two months, contributors were tasked with
developing and optimizing their own database agents to solve the benchmark tasks. During this
process, they were instructed to report qualitative failures in the simulation environment via Google
Form. Specifically, they identified edge cases where the LLM-based user simulator deviated from
intended behaviors, such as revealing constraints too early or terminating conversations prematurely.

Outcome This human-in-the-loop testing phase was critical for quality assurance. Based on the
reported issues, we iteratively refined the user instructions and the simulation validator to better
detect and filter out invalid dialogue traces.

23

Under review as a conference paper at ICLR 2026

B ANNOTATION DETAILS

B.1 INCREQA AND ADAPTQA ANNOTATION

Each task instance (examples in Appendix [AI) consists of a “instruction,” “gold_sql,”
“gold_answer,” and metadata (e.g., sample_id, db_id). Below, we detail the construction pipeline
for both interaction flows.

B.1.1 INCREQA ANNOTATION

Source Selection IncreQA tasks are designed to mimic a user who incrementally adds constraints
through multi-turn interactions. We curate and adapt clinically relevant queries from two primary
sources: the EHRSQL dataset [2022)), originally collected from over 200 hospital profes-
sionals, and a set of question-SQL pairs internally stored at our collaborating medical center.

SQL/Answer Annotation After collecting a set of candidate queries, we perform value sampling
to ensure the queries return non-empty results in our specific EHR databases (MIMIC-IV and eICU
Demo). For a query like “patients diagnosed with [Diagnosis] during [Time Range],” selecting ran-
dom values often yields zero results due to data sparsity. We manually explore the database to sample
valid value pairs (e.g., specific diagnosis codes and overlapping admission dates). We then use XAI’s
Grok 3 to generate initial SQL drafts, explicitly prioritizing Common Table Expressions
(CTEs) for readability and maintainability (see Appendix [B.3). Finally, we manually verify that the
SQL execution produces the intended result based on the corresponding natural language question.
The final SQL and its execution result become “gold_sql” and “gold_answer.”

Instruction Creation Once the SQL queries are finalized, we create user instructions through a
SQL-to-text approach. This method is crucial for preserving fine-grained SQL conditions within
the narrative instructions. By decomposing complex SQL logic into discrete semantic components,
we ensure that every constraint corresponds to a specific part of the user’s goal. For example, a
SQL query containing ORDER BY charttime DESC LIMIT 1 encodes a strict operational
constraint: fetching only the latest record. A natural language question often glosses over this detail
(e.g., “What is the patient’s creatinine level?”’), which could be interpreted as requesting an average,
a full history, or the peak value. However, our approach captures this SQL operation explicitly in the
narrative: “You want to check the creatinine level. Specifically, you are interested only in the most
recent value,” reducing errors in omitting details required for the agent to generate correct SQL. We
also introduce value mismatches by manually replacing exact database values with lay terms (e.g.,
mapping “malignant neoplasm of breast” to “breast cancer”).

B.1.2 ADAPTQA ANNOTATION

Source Selection AdaptQA tasks are designed around conversational flows that mimic clinical
interactions requiring query goal adjustments. To facilitate this, we define eight categories of query
modification, including interaction flows such as traversing medication nomenclature (e.g., brand <>
generic) and switching a primary lab test to its clinical alternative for a condition (e.g., hemoglobin
— hematocrit). (see Appendix [B.2]for the full list of categories).

Instruction Creation Unlike IncreQA, the annotation process for AdaptQA begins with instruc-
tion creation, followed by SQL/Answer annotation. This reverse order is necessary because Adap-
tQA scenarios are highly dependent on the patient data stored in the database and the database
schema. Using each of the defined categories, we prompt Grok 3 to generate various scenarios that
fit under the corresponding category. For example, for “medication nomenclature traversal,” the
prompt generates instructions such as: “First search for Lasix. If not found, pivot to search for its
generic name (Furosemide).” We then manually verify these scenarios against the actual database
to find patient records where the condition holds true (e.g., a patient who has no record for “Lasix”
but does have a record for “Furosemide”). A physician verifies the clinical validity of these goal ad-
justments. By design, these tasks require more advanced value-mismatch resolution strategies than
IncreQA, often requiring domain knowledge beyond simple synonym matching.

24

Under review as a conference paper at ICLR 2026

SQL/Answer Annotation Since AdaptQA instructions imply a conditional step-by-step flow, the
order of operations is critical. We annotate the SQL queries to reflect how a user proceeds through
the logical pivot. For logic based on data existence, we utilize conditional expressions in the GT
SQL such as EXISTS (SELECT 1 FROM lasix._patients) assuming that specific CTEs
are defined. However, fully capturing the pivot logic in a single SQL statement is not always feasible.
For patterns involving schema unavailability (for example, asking for a table that does not exist) or
complex clinical reasoning that can only be inferred from the retrieved tool output, we bypass the
intermediate logical pivoting and annotate the SQL straightforwardly so that it corresponds to the
ground truth answer.

B.2 ADAPTQA CATEGORIES

Table 10: Eight categories of query goal modification in AdaptQA.

Category Description

Medication nomenclature traversal This category involves queries that navigate the medication nomenclature, such as from a brand name
to a generic name or vice versa. The tasks begin by requesting information about a specific medication
name (e.g., “Lipitor”) and then, if that name is not found, adapt the query to search for its generic
name.

Within drug class adaptation This category encompasses queries that require a user to adapt their search within a single drug class.
The query goals might be to expand from a specific drug to the entire class, narrow the search from
a broad class to a specific subclass, or exclude a particular medication from a class. This flexibility
demonstrates a deeper understanding of therapeutic classifications beyond simple name-to-name con-
version.

Across drug class traversal This category is defined by queries that involve navigating between different drug classes. The tasks
may require the identification of medications from one class while excluding another (e.g., finding
PUD medications other than PPIs) or the combination of multiple distinct drug classes in a single
query (e.g., patients prescribed both ACE inhibitors and Beta-blockers).

Primary condition to related condition This category includes tasks where the initial query focuses on a primary diagnosis or procedure, and
the subsequent goal is to identify clinically related conditions. This often involves looking for common
comorbidities, complications from a surgery, or side effects of a medication.

Alternative lab test for condition This category is designed for scenarios where the initial query for a specific lab test is unsuccessful.
The system must then identify and pivot to a clinically relevant alternative lab test used to assess the
same condition (e.g., from “troponin I”” to “troponin T” for myocardial damage). This mimics clinical
reasoning when a preferred test is unavailable.

Alternative procedure for treatment This category handles tasks that require finding alternative procedures when a primary treatment
method is not found or is not applicable. The queries start by searching for a specific procedure for a
condition and then, if necessary, adjust to look for other clinically appropriate procedures or surgeries
for the same condition.

Multi-criteria resolution This category involves complex queries that require resolving multiple, often compound, criteria si-
multaneously. The tasks integrate various clinical events, such as diagnoses, lab results, and vital
signs, using logical operators (AND/OR) to identify a specific patient cohort. The complexity lies in
accurately interpreting and executing these complex queries while considering what to include and
exclude in a patient cohort.

Schema fallback handling This category addresses situations where the primary data source (a specific database table or schema)
is unavailable. The query system must then “fall back” to an alternative data source or a modified
search strategy to fulfill the user’s goal. This demonstrates robustness in handling missing data schema
by adapting the query to existing information (e.g., a “cancer registry table” vs. the general “diagnosis
table™).

25

Under review as a conference paper at ICLR 2026

B.3 SQL ANNOTATION STYLE

SQL annotations in EHR-ChatQA use Common Table Expressions (CTEs) to enhance readability
and maintainability. A sample user instruction and its corresponding gold SQL query are shown in

Table[TT]

Table 11: Sample user instruction and its GT SQL query.

User Instruction

Gold SQL

Your goal is to find information related to a specific
patient’s lab tests. Specifically, you are interested in
patient ID 10018845 and want to know all timestamps
when the Hb value was 8 or lower during the patient’s
last hospital visit. You want to search for Hb specif-
ically, not other similar lab tests like “Hb C” or “Hb
A2 When querying the DB agent, since you do not
know how Hb is stored, use common terms like “Hb”
or “Hgb” when referring to it, and let the DB agent find
it for you.

WITH LastAdmission AS
SELECT admissionid
FROM hospitaladmissions
WHERE patientid 10018845
ORDER BY admitdatetime DESC
LIMIT 1

)I

HbTest AS (

SELECT itemcode
FROM labtesttypes
WHERE itemname

)

SELECT lr.resultdatetime

FROM labresults 1lr

JOIN LastAdmission la
ON lr.admissionid

JOIN HbTest ht
ON lr.itemcode ht.itemcode

WHERE lr.patientid 10018845
AND lr.resultvalue <= 8
AND lr.resultvalue IS NOT NULL

ORDER BY lr.resultdatetime;

(

"hemoglobin’

la.admissionid

26

Under review as a conference paper at ICLR 2026

B.4 EHR DATABASE PREPROCESSING
Our preliminary analysis revealed that many LLMs memorize the original MIMIC-IV and eICU
schemas, which leads to SQL generation without actual schema exploration. To prevent this, we

rename the schema so that generating SQL without using the provided schema tools inevitably
results in errors. The detailed schema mappings are provided in Table[12]and Table 13}

B.4.1 MIMIC-IV RENAMING

Table 12: Table and column renaming mappings for MIMIC-IV.

Original Table Mapped Table Column Mappings (MIMIC-IV to MIMIC-IVx)

patients demographics row_id — recordid, subject_id — patientid, gender — gender, dob — dateof-
birth, dod — dateofdeath

admissions hospitaladmissions row_id — recordid, subject_id — patientid, hadm_id — admissionid, admit-
time — admitdatetime, dischtime — dischargedatetime, admission_type —
admissiontype, admission_location — admitsource, discharge_location — dis-
chargedestination, insurance — insurancetype, language — language, mari-
tal_status — maritalstatus, age — age

d_icd_diagnoses diagnosiscodes row_id — recordid, icd_code — icdcode, icd_version — codeversion, long_title
— description

d_icd_procedures procedurecodes row_id — recordid, icd_code — icdcode, icd_version — codeversion, long_title
— description

d_labitems labtesttypes row_id — recordid, itemid — itemcode, label — itemname

d_items clinicalitemtypes row_id — recordid, itemid — itemcode, label — itemname, abbreviation —
abbreviation, linksto — itemtype

diagnoses_icd admissiondiagnoses row_id — recordid, subject_id — patientid, hadm_id — admissionid, icd_code
— icdcode, icd_version — codeversion, charttime — recordeddatetime

procedures_icd admissionprocedures row_id — recordid, subject_id — patientid, hadm_id — admissionid, icd_code
— icdcode, icd_version — codeversion, charttime — recordeddatetime

labevents labresults row_id — recordid, subject_id — patientid, hadm_id — admissionid, itemid —
itemcode, charttime — resultdatetime, valuenum — resultvalue, valueuom —
resultunit

prescriptions medicationorders row_id — recordid, subject.id — patientid, hadm_id — admissionid, start-

time — startdatetime, stoptime — enddatetime, drug — medicationname,
dose_val_rx — dosevalue, dose_unitrx — doseunit, route — administra-

tionroute

cost costrecords row_id — recordid, subject_id — patientid, hadm_id — admissionid, event_type
— eventtype, event_id — costid, chargetime — costdatetime, cost — costa-
mount

chartevents clinicalevents row_id — recordid, subject_id — patientid, hadm_id — admissionid, stay_id —

icuadmissionid, itemid — itemcode, charttime — recordeddatetime, valuenum
— value, valueuom — unit

inputevents intakerecords row_id — recordid, subject_id — patientid, hadm_id — admissionid, stay_id —
icuadmissionid, starttime — startdatetime, itemid — itemcode, totalamount —
totalvolume, totalamountuom — volumeunit

outputevents outputrecords row_id — recordid, subject_id — patientid, hadm_id — admissionid, stay_id —
icuadmissionid, charttime — recordeddatetime, itemid — itemcode, value —
volume, valueuom — volumeunit

microbiologyevents microbiologyresults row_id — recordid, subject_id — patientid, hadm_id — admissionid, charttime
— collecteddatetime, spec_type_desc — specimentype, test_-name — testname,
org_name — organismname

icustays icuepisodes row_id — recordid, subject_id — patientid, hadm_id — admissionid, stay_id —
icuadmissionid, first_careunit — initialcareunit, last_careunit — finalcareunit,
intime — admitdatetime, outtime — dischargedatetime

transfers patienttransfers row_id — recordid, subject_id — patientid, hadm_id — admissionid, transfer_id
— transferid, eventtype — transfertype, careunit — careunit, intime — trans-
ferindatetime, outtime — transferoutdatetime

27

Under review as a conference paper at ICLR 2026

B.4.2 EICU RENAMING

Table 13: Table and column renaming mappings for eICU.

Original Table

Mapped Table

Column Mappings (eICU to eICUx)

patient

diagnosis
treatment
lab

medication

cost

allergy

intakeoutput

microlab

vitalperiodic

hospital

person

condition
treatment
lab

prescription

cost

allergy_reaction

fluid_balance

microbiology

vital_signs

hospital

uniquepid — person_id, patienthealthsystemstayid — hosp_id, patientunitstayid
— unit.id, gender — gender, age — age, ethnicity — ethnicity, hospitalid
— hospital_id, wardid — ward_id, admissionheight — height_admission, ad-
missionweight — weight_admission, dischargeweight — weight_discharge,
hospitaladmittime — hospital_admit_time, hospitaladmitsource — hospi-
tal_admission_source, unitadmittime — unit_admit_time, unitdischargetime —
unit_discharge_time, hospitaldischargetime — hospital_discharge_time, hospi-
taldischargestatus — hospital_discharge_status

diagnosisid — condition_id, patientunitstayid — unit_id, diagnosisname —
condition_name, diagnosistime — condition_time, icd9code — icd9_code

treatmentid — treatment_id, patientunitstayid — unit_id, treatmentname —
treatment_name, treatmenttime — treatment_time

labid — lab_id, patientunitstayid — unit_id, labname — lab_name, labresult —
lab_result, labresulttime — lab_result_time

medicationid — prescription_id, patientunitstayid — unit_id, drugname —
drug_name, dosage — dosage, routeadmin — administration_route, drugstart-
time — medication_start_time, drugstoptime — medication_stop_time

costid — cost_id, patienthealthsystemstayid — hosp-id, patientunitstayid —
unit_id, eventtype — event_type, eventid — event_id, chargetime — cost_time,
cost — cost_amount

allergyid — allergy_id, patientunitstayid — unit_id, drugname — drug_name,
allergyname — allergy_name, allergytime — allergy_time

intakeoutputid — fluid_balance_id, patientunitstayid — unit_id, cellpath —
fluid_path, celllabel — fluid_label, cellvaluenumeric — fluid_value_numeric, in-
takeoutputtime — fluid_balance_time

microlabid — microbiology_id, patientunitstayid — unit_id, culturesite — cul-
ture_site, organism — organism, culturetakentime — culture_taken_time

vitalperiodicid — vital_sign_id, patientunitstayid — unit_id, temperature —
temperature, sao2 — sao2, heartrate — heart_rate, respiration — respira-
tion_rate, systemicsystolic — systolic_bp, systemicdiastolic — diastolic_bp,
systemicmean — mean_bp, observationtime — vital_time

hospitalid — hospital_id, numbedscategory — bed_capacity_category, teach-
ingstatus — teaching_status, region — region

28

Under review as a conference paper at ICLR 2026

C AGENT IMPLEMENTATION

For selecting the backbone LLMs for the agents, small models (e.g., 7B or 13B), DeepSeek-R1,
and the Gemma 3 series are excluded due to their limited performance in tool invocation tasks.
Owing to budget constraints, we also exclude Anthropic models (e.g., Opus 4 and Sonnet) as well

as Gemini-2.5-Pro.

Table [T4] presents the system prompt used for our agent baselines. In addition to the system prompt,
the agent’s input includes three other components: (1) agent behavioral rules detailing interaction
behavior (Section[C.2)); (2) evaluation rules for IncreQA and AdaptQA to ensure accurate evaluation
(Section@); and (3) database-specific rules outlining the SQL annotation assumptions for MIMIC-

IV* and eICU* (Section[A.3).

C.1 AGENT SYSTEM PROMPT

Table 14: Agent system prompt.

Instruction:
- You are a DB agent that helps users by answering their questions
in natural language using information from a database.
- You are currently engaged in a conversation with a user who wants
to retrieve some data or statistics from an EHR database.
— If the user’s request is ambiguous or lacks important details (e.g
., filtering criteria), ask clarifying gquestions to better
understand the request.
- You have access to a set of tools to assist the user:
— table_search: search tables in the database
— column_search: search columns in a table
- value_substring_search: search values in a column by substring
match
- value_similarity_search: search values in a column by semantic
similarity (embedding-based)
- sgl_execute: execute an SQL query on the database
- web_search: search the web for external clinical knowledge
— Use table_search and column_search to explore the database schema.
— Use value_substring_search and value_similarity_search to explore
stored values.
— Clinical concepts (e.g., diagnoses, procedures, medications, lab
tests) in the database may not exactly match the user’s words. Use
the value search tools to find relevant entries.
- If you need clinical knowledge beyond what is in the database (e.g
., a drug’s mechanism of action), use web_search.
- Never invent or assume information that is not provided by the
user or retrieved using the tools.
— Make only one tool call at a time. Do not send a user—facing
response in the same turn as a tool call.
— After gathering all necessary information, use sgl_execute to
write and run a single valid SQL query that fully answers the user’s
latest request.
— When you write an SQL query, always execute it with sqgl_execute
and return the results to the user along with your explanation.

{agent_rule}

{database_rule}

C.2 AGENT RULES

Table 15: Agent rules.

Below are the general rules for the DB agent:
— The DB agent must assume the user has no knowledge of SQIL,
databases, or stored values, and cannot execute queries.

29

Under review as a conference paper at ICLR 2026

- The DB agent must interact with the user only in natural language
and must not show raw SQL queries.

— The DB agent must not modify the database schema or contents. The
following commands are forbidden: INSERT, UPDATE, DELETE, DROP,
ALTER.

- The DB agent must write queries that finish within 60 seconds;
otherwise, the query results will be invalid.

— The DB agent must limit each conversation to 30 interactions (
including user exchanges and tool calls) and 600 seconds total.

— The DB agent must always explain answers in natural language,
including the reasoning or conditions used to arrive at those
answers. If SQL references are necessary, the DB agent must explain
them in terms understandable to someone with no SQL knowledge.

— The DB agent must clearly explain when a question cannot be
answered (e.g., due to limitations of SQL or empty results) and ask
the user to rephrase or modify the request.

- The DB agent must generate a non-empty response, which must
include either a message or a tool call.

C.3 AGENT RULES FOR EVALUATION

Table[T6]and Table[I7]present the prompts used for IncreQA and AdaptQA tasks, respectively. These
prompts are appended to the agent rules to guide the agent toward behavior that aligns with accurate
evaluation criteria. Note that for both task types, the agent’s responses are evaluated each time they
are generated, as correct answers may emerge during the conversation due to iterative nature of open

QA dialogues.

Table 16: Scoring rules for IncreQA.

Below are the grading rules:
— The DB agent’s performance is evaluated based on the generated SQL
queries, requiring at least one SQL query (via sgl_execute) to
retrieve answers during the interaction with the database.

- For accurate assessment, when the user revises their question, the
DB agent must write a new SQL query from scratch to fully address

the latest request, without relying on previous query results.

- For questions that involve calculations (such as time differences
or survival rates) or data manipulation/aggregation, the DB agent

must use SQL language to compute the results rather than relying on
its LLM capabilities.

Table 17: Scoring rules for AdaptQA.

Below are the grading rules:

— The DB agent’s performance is evaluated based on the results in
its natural language response to the user.

— When providing answers to the user, the DB agent must enclose the
final answer in <answer></answer> tags (e.g., <answer>42</answer>).
All other content, including intermediate results, explanations,
units, and any additional details, must be placed outside these tags

- When answers are textual data (e.g., timestamps or diagnosis names
), use them exactly as stored in the database. For numerical answers
, round them to four decimal places.

30

Under review as a conference paper at ICLR 2026

D SAMPLE TRAJECTORIES

In this section, we present sample task instances along with one successful and one failed conversa-
tion trajectory for IncreQA and AdaptQA.

D.1 INCREMENTAL QUERY REFINEMENT
D.1.1 SUCCESSFUL CASE (INCREQA)

The agent successfully retrieves the number of patients diagnosed with breast cancer by querying
values in the description column of the diagnosiscodes table.

Instruction: Your goal is to find the number of patients admitted to the hospital who meet
specific criteria. Specifically, you want to know how many patients admitted in the past 90
days have a family history of breast cancer.

User: I'm trying to figure out how many patients admitted to the hospital have certain
conditions.

Agent: table_search(arguements={"tool_input”:""})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

nn

Agent: column _search(arguements={"table_names”:"admissiondiagnoses,diagnosiscodes”})

Tool: CREATE TABLE admissiondiagnoses (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (codeversion) REFERENCES diagnosiscodes (codeversion),
FOREIGN KEY (icdcode) REFERENCES diagnosiscodes (icdcode),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)
)
/-k
3 rows from admissiondiagnoses table:
recordid patientid admissionid icdcode codeversion recordeddatetime
0 10035185 22580999 4139 9 2100-05-17 12:53:00

31

Under review as a conference paper at ICLR 2026

110035185 22580999 V707 9 2100-05-17 12:53:00
2 10035185 22580999 41401 9 2100-05-17 12:53:00
*/

CREATE TABLE diagnosiscodes (
recordid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
description TEXT NOT NULL,
PRIMARY KEY (recordid)
)
/*
3 rows from diagnosiscodes table:
recordid icdcode codeversion description
0 0090 9 infectious colitis, enteritis, and gastroenteritis
101160 9 tuberculous pneumonia [any form], unspecified
2 01186 9 other specified pulmonary tuberculosis, tubercle bacilli not found by
bacteriological or histological examination, but tuberculosis confirmed by other methods [
inoculation of animals]

*/

Agent: Could you clarify which specific conditions you'd like to count? For example, are you
interested in diabetes, heart failure, COPD, etc.? Also, should these diagnoses be those
recorded at the time of hospital admission?

User: | want to know how many patients admitted in the last 90 days have a family history
of breast cancer.

nn

Agent: value_substring_search(arguements={"table":"diagnosiscodes”,"column”:"

nn

description”,"value”:"family”})

Tool: Values in diagnosiscodes.description containing 'family’: ['family history of polycystic
kidney’, 'non-family member, perpetrator of maltreatment and neglect’, 'family history of
unspecified malignant neoplasm’, ..., family history of eye disorders’, ‘family disruption due
to death of family member’].

Agent: column_search(arguments={"table_names”:"hospitaladmissions”})
Tool: CREATE TABLE hospitaladmissions (
recordid INTEGER NOT NULL,

patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,

32

Under review as a conference paper at ICLR 2026

admitdatetime TEXT NOT NULL,

dischargedatetime TEXT,

admissiontype TEXT NOT NULL,

admitsource TEXT NOT NULL,

dischargedestination TEXT,

insurancetype TEXT NOT NULL,

language TEXT,

maritalstatus TEXT,

age INTEGER NOT NULL,

PRIMARY KEY (recordid),

FOREIGN KEY (patientid) REFERENCES demographics (patientid)
)
/-k
3 rows from hospitaladmissions table:
recordid patientid admissionid admitdatetime dischargedatetime admissiontype
admitsource dischargedestination insurancetype language maritalstatus age
0 10004235 24181354 2100-03-19 14:38:00 2100-03-28 14:02:00 urgent transfer from hospital
skilled nursing facility medicaid english single 47
110009628 25926192 2100-09-30 17:08:00 2100-10-08 13:20:00 urgent transfer from
hospital home health care medicaid ? married 58
2 10006053 22942076 2100-11-15 23:39:00 2100-11-17 17:20:00 urgent transfer from hospital
died medicaid english None 52
*/

nn n.n

Agent: value_substring_search(arguements={"table":"diagnosiscodes”,"column”:

nn

description”,"value”:"breast”})

Tool: Values in diagnosiscodes.description containing 'breast’: ['other and unspecified
disorder of breast associated with childbirth, postpartum condition or complication’,’
malignant neoplasm of axillary tail of female breast’, 'full-thickness skin loss [third degree,
not otherwise specified] of chest wall, excluding breast and nipple’, ..., 'personal history of
malignant neoplasm of breast’, ‘open wound of breast, without mention of complication’].

Agent: sql_execute(arguements={"query”: "SELECT COUNT(DISTINCT ha.patientid) AS
num_patients FROM hospitaladmissions AS ha JOIN admissiondiagnoses AS ad ON ha.
admissionid = ad.admissionid JOIN diagnosiscodes AS dc ON ad.icdcode = dc.icdcode AND
ad.codeversion = dc.codeversion WHERE dc.description = "family history of malignant
neoplasm of breast’ AND ha.admitdatetime >= datetime('2100-12-31 23:59:00’, "-90 days’)

)

Tool: [(1,)]

33

Under review as a conference paper at ICLR 2026

Agent: There have been 1 unique patient admitted in the last 90 days with a diagnosis of
family history of malignant neoplasm of breast.

User: Can you double check that the answer covers my goals?

Agent: Yes-here's how the query addresses each part of your goal:

- Last 90 days: We filtered admissions with

ha.admitdatetime >= datetime('2100-12-31 23:59:00’,"-90 days’)

- Family history of breast cancer: We joined admissions -> diagnoses -> codes and used
dc.description = "family history of malignant neoplasm of breast’

- Unique patients: We counted DISTINCT ha.patientid so repeat admissions aren't double-
counted.

The result was 1 patient. Let me know if you'd like any further breakdown or checks!

User: ###END#HiH

34

Under review as a conference paper at ICLR 2026

D.1.2 FAILED CASE (INCREQA)

The agent fails to retrieve information on breast cancer, as it queries unrelated tables and columns
(e.g., clinicalevents and clinicalitemtypes) instead of the diagnosiscodes table. Due to the use of
FAISS, wrapped in the LangChain library, values with semantic similarity below the default thresh-
old (0.8) are not retrieved. Consequently, values below this threshold are not retrieved. In the
example below, the agent applies the value similarity tool to the itemname column of the clini-
calitemtypes table for “cancer,” but the tool returns no result. Note that itemname corresponds to the
label in the d_item table in MIMIC-IV, which covers a wide range of clinical practices, vital signs,
and measurements.

Instruction: Your goal is to find the number of patients admitted to the hospital who meet
specific criteria. Specifically, you want to know how many patients admitted in the past 90
days have a family history of breast cancer.

User: | want to find out how many patients have been admitted to the hospital recently and
also have a family history of breast cancer.

Agent: To assist you with your request, | need to clarify a couple of things:

1. What do you mean by "recently”? Are you looking for admissions within a specific time
frame (e.g., the last month, last year)?

2. How is the family history of breast cancer recorded in the database? Is there a specific
table or column that indicates this information?

Once | have this information, | can proceed to gather the necessary data from the database

User: I'm interested in patients admitted in the last 90 days. As for the family history, could
you check the database to find where that info is stored?

Agent: table_search(arguements={"tool_input”:""})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

Agent: table_names(arguements={"table_names”:"demographics”})

Tool: CREATE TABLE demographics (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
gender TEXT NOT NULL,
dateofbirth TEXT NOT NULL,
dateofdeath TEXT,

35

Under review as a conference paper at ICLR 2026

PRIMARY KEY (recordid)
)
/-k
3 rows from demographics table:
recordid patientid gender dateofbirth dateofdeath
0 10014729 f 2079-07-22 00:00:00 None
110003400 f 2028-07-25 00:00:00 None
2 10002428 f 2020-07-30 00:00:00 None
*/

nn

Agent: column _search(arguements={"table_names™:"clinicalevents”})

Tool: CREATE TABLE clinicalevents (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icuadmissionid INTEGER NOT NULL,
itemcode INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
value DOUBLE PRECISION,
unit TEXT,
PRIMARY KEY (recordid),
FOREIGN KEY (itemcode) REFERENCES clinicalitemtypes (itemcode),
FOREIGN KEY (icuadmissionid) REFERENCES icuepisodes (icuadmissionid),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)
)
/*
3 rows from clinicalevents table:
recordid patientid admissionid icuadmissionid itemcode recordeddatetime value unit
0 10005817 20626031 32604416 220210 2100-12-24 00:00:00 19.0 insp/min
110005817 20626031 32604416 220051 2100-12-24 00:00:00 37.0 mmhg
2 10005817 20626031 32604416 223762 2100-12-24 00:00:00 37.0 C
*/

"

Agent: column_search(arguements={"table_names”:"clinicalitemtypes”})

Tool: CREATE TABLE clinicalitemtypes (
recordid INTEGER NOT NULL,
itemcode INTEGER NOT NULL,
itemname TEXT NOT NULL,
abbreviation TEXT NOT NULL,
itemtype TEXT NOT NULL,

36

Under review as a conference paper at ICLR 2026

PRIMARY KEY (recordid)
)
/-k
3 rows from clinicalitemtypes table:
recordid itemcode itemname abbreviation itemtype
0 226228 gender gender clinicalevents
1226545 race race clinicalevents
2229877 suction events (ch) suction events (ch) clinicalevents
*/

”n n.n

Agent: value_substring_search(arguements={"table":"clinicalitemtypes”,’column”:

”n

itemname”,"value”:"family history”})

Tool: No values in clinicalitemtypes.itemname contain 'family history’.

nn "

Agent: value_similarity_search(arguements={"table":"clinicalitemtypes”,"column”:

”n

itemname”,"value”:"family history”})
Tool: No matches found in clinicalitemtypes.itemname for *family history'.
Agent: column_search(arguements={"table_names”:"hospitaladmissions”})

Tool: CREATE TABLE hospitaladmissions (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
admitdatetime TEXT NOT NULL,
dischargedatetime TEXT,
admissiontype TEXT NOT NULL,
admitsource TEXT NOT NULL,
dischargedestination TEXT,
insurancetype TEXT NOT NULL,
language TEXT,
maritalstatus TEXT,
age INTEGER NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (patientid) REFERENCES demographics (patientid)
)
/*
3 rows from hospitaladmissions table:
recordid patientid admissionid admitdatetime dischargedatetime admissiontype
admitsource dischargedestination insurancetype language maritalstatus age

37

Under review as a conference paper at ICLR 2026

0 10004235 24181354 2100-03-19 14:38:00 2100-03-28 14:02:00 urgent transfer from hospital
skilled nursing facility medicaid english single 47

110009628 25926192 2100-09-30 17:08:00 2100-10-08 13:20:00 urgent transfer from
hospital home health care medicaid ? married 58

2 10006053 22942076 2100-11-15 23:39:00 2100-11-17 17:20:00 urgent transfer from hospital
died medicaid english None 52

*|
Agent: column_search(arguements={"table_names”:"demographics”})

Tool: CREATE TABLE demographics (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
gender TEXT NOT NULL,
dateofbirth TEXT NOT NULL,
dateofdeath TEXT,

PRIMARY KEY (recordid)

)

/*

3 rows from demographics table:

recordid patientid gender dateofbirth dateofdeath

0 10014729 f 2079-07-22 00:00:00 None

110003400 f 2028-07-25 00:00:00 None

2 10002428 f 2020-07-30 00:00:00 None

*/

nn

Agent: column _search(arguements={"table_names™:"clinicalevents"})

Tool: CREATE TABLE clinicalevents (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icuadmissionid INTEGER NOT NULL,
itemcode INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
value DOUBLE PRECISION,
unit TEXT,
PRIMARY KEY (recordid),
FOREIGN KEY (itemcode) REFERENCES clinicalitemtypes (itemcode),
FOREIGN KEY (icuadmissionid) REFERENCES icuepisodes (icuadmissionid),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

38

Under review as a conference paper at ICLR 2026

)

/-k

3 rows from clinicalevents table:

recordid patientid admissionid icuadmissionid itemcode recordeddatetime value unit
0 10005817 20626031 32604416 220210 2100-12-24 00:00:00 19.0 insp/min

110005817 20626031 32604416 220051 2100-12-24 00:00:00 37.0 mmhg

2 10005817 20626031 32604416 223762 2100-12-24 00:00:00 37.0 C

*/

nn n.n

Agent: value_substring_search(arguements={"table":"clinicalitemtypes”,"column”:

”n ”.n

itemname”,"value™:"cancer”})

Tool: No values in clinicalitemtypes.itemname contain 'cancer’.

nn IR ”n

Agent: value_similarity_search({"table":"clinicalitemtypes”,"column”:"itemname”,

nn

value”:

cancer”})
Tool: No matches found in clinicalitemtypes.itemname for "cancer’.

Agent: It seems that | couldn’t find any specific entries related to "family history of breast
cancer” in the database. This could mean that the information is either stored in a different
format or not recorded in the tables | checked.

To proceed, | can look for any general family history or cancer-related entries in the
clinical events or demographics tables. Would you like me to do that?

User: Yes, please check for any general family history or cancer-related info.

” on n,on

Agent: value_substring_search(arguements={"table": "clinicalitemtypes”, "column”:

”n n

itemname”, "value”: "family history”})

Tool: No values in clinicalitemtypes.itemname contain 'family history’.

”n "

Agent: value_substring_search(arguements={"table”:"clinicalitemtypes”,"column”:

”n ”.n

itemname”,"value™:"cancer”})

Tool: No values in clinicalitemtypes.itemname contain 'cancer’.

Agent: | have searched for general family history and cancer-related information in the
database, but unfortunately, | couldn’t find any relevant entries in the clinical item types. It

appears that the information regarding family history of breast cancer may not be
explicitly recorded in the database, or it might be stored in a different format or table that |

39

Under review as a conference paper at ICLR 2026

haven’t checked. If you have any other specific criteria or different information you would
like to explore, please let me know!

User: Okay, can you at least tell me how many patients have been admitted in the last 90
days?

Agent: sql_execute(arguemetns={"query”: "SELECT COUNT(DISTINCT patientid) AS
patient_count FROM hospitaladmissions WHERE admitdatetime >="2100-09-30""})

Tool: [(38,)]

Agent: There have been 38 patients admitted to the hospital in the last 90 days. If you have

any other questions or need further assistance, feel free to ask!

User: Okay, so you couldn’t find the family history info. Just to confirm, you were able to
find the number of patients admitted in the last 90 days?

Agent: Yes, that's correct! | was able to find that there have been 38 patients admitted to
the hospital in the last 90 days. However, | couldn’t find any specific information regarding
family history of breast cancer in the database. If you have any other questions or need
further assistance, please let me know!

User: Double check that you've covered my goals: the number of patients admitted in the
last 90 days with a family history of breast cancer.

Agent: | understand your request clearly now. You want to know the number of patients
who were admitted in the last 90 days and also have a family history of breast cancer.
Unfortunately, | was unable to find any specific entries related to family history of breast
cancer in the database. This means | cannot confirm how many patients meet both criteria.
If you have any other specific information or different criteria you would like to explore,
please let me know!

User: ###END#H#H

40

Under review as a conference paper at ICLR 2026

D.2 ADAPTIVE QUERY REFINEMENT
D.2.1 SUCCESSFUL CASE (ADAPTQA)

The user initially asks whether a specific patient was prescribed carbamazepine for epilepsy treat-
ment, but the agent finds that no such records exist for the patient. The user then requests information
about other medications for epilepsy. The agent searches the database using clinical knowledge with
keywords such as levetiracetam, phenytoin, and phenobarbital. The agent checks whether the patient
was prescribed any of these medications and successfully retrieves the most recent prescription date
for levetiracetam, as requested.

Instruction: Your goal is to explore patient data related to medication prescriptions.
Specifically, you are interested in patient ID 10008287 and want to know when they were
prescribed carbamazepine for epilepsy treatment. If the patient was prescribed
carbamazepine, you want to know the most recent prescription time after the first epilepsy
diagnosis. If the patient was not prescribed carbamazepine, you want to identify whether
any other class of medication used for epilepsy treatment was prescribed. If such
medications are found, you want to know the most recent prescription time after the first
epilepsy diagnosis. If no such medications are found, end the conversation. You want the
answer in the exact time format recorded in the database.

User: I'm looking into patient prescriptions. Can you help me find some info about the

medications prescribed to patient ID 10008287?
Agent: table_search(arguements={"tool_input”:""})

Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,
intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

nn

Agent: column _search(arguements={"table_names”:"medicationorders”})

Tool: CREATE TABLE medicationorders (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
startdatetime TEXT NOT NULL,
enddatetime TEXT,
medicationname TEXT NOT NULL,
dosevalue TEXT NOT NULL,
doseunit TEXT NOT NULL,
administrationroute TEXT NOT NULL,
PRIMARY KEY (recordid),

41

Under review as a conference paper at ICLR 2026

FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)
)
/-k
3 rows from medicationorders table:
recordid patientid admissionid startdatetime enddatetime medicationname dosevalue
doseunit administrationroute
0 10020740 23831430 2100-04-19 11:00:00 2100-04-20 22:00:00 insulin 0.0 unit sc
110005817 20626031 2100-12-20 02:00:00 2100-12-21 12:00:00 insulin 0.0 unit sc
2 10005817 20626031 2100-12-27 10:00:00 2100-12-28 19:00:00 insulin 0.0 unit sc
*/

Agent: Could you clarify which details you'd like to see for patient 10008287’s prescriptions
? For example, are you interested in the medication names only, the start/end dates,
dosages, administration routes, or all of those?

User: I'm particularly interested in whether patient 10008287 was prescribed
carbamazepine for epilepsy. If so, | want to know the most recent time it was prescribed,
but only after their first epilepsy diagnosis.

”n ”n.n

Agent: value_substring_search(arguements={"table”:"medicationorders”,"column”:

”n ”n

medicationname”,"value™:"carbamazepine”,’k":10})

Tool: Values in medicationorders.medicationname containing 'carbamazepine”: [’
carbamazepine’l.

nn

Agent: column _search(arguements={"table_names™:"admissiondiagnoses”})

Tool: CREATE TABLE admissiondiagnoses (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (codeversion) REFERENCES diagnosiscodes (codeversion),
FOREIGN KEY (icdcode) REFERENCES diagnosiscodes (icdcode),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)
)
/-k
3 rows from admissiondiagnoses table:
recordid patientid admissionid icdcode codeversion recordeddatetime

42

Under review as a conference paper at ICLR 2026

0 10035185 22580999 4139 9 2100-05-17 12:53:00
110035185 22580999 V707 9 2100-05-17 12:53:00
2 10035185 22580999 41401 9 2100-05-17 12:53:00
*/

Agent: column _search(arguements={"table_names”:"diagnosiscodes”})

Tool: CREATE TABLE diagnosiscodes (
recordid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
description TEXT NOT NULL,
PRIMARY KEY (recordid)
)
/*
3 rows from diagnosiscodes table:
recordid icdcode codeversion description
0 0090 9 infectious colitis, enteritis, and gastroenteritis
101160 9 tuberculous pneumonia [any form], unspecified
2 01186 9 other specified pulmonary tuberculosis, tubercle bacilli not found by
bacteriological or histological examination, but tuberculosis confirmed by other methods [
inoculation of animals]
*/

nn n.n

Agent: value_substring_search(arguements={"table":"diagnosiscodes”,"column”:

nn ”n

description”,"value”:"epilepsy”,"k":10})

Tool: Values in diagnosiscodes.description containing 'epilepsy’: ['epilepsy complicating
pregnancy, childbirth, or the puerperium, delivered, with mention of postpartum
complication’, 'epilepsy, unspecified, without mention of intractable epilepsy’, 'epilepsia
partialis continua, with intractable epilepsy’, 'epilepsy complicating pregnancy, childbirth,
or the puerperium, unspecified as to episode of care or not applicable’, 'localization-
related (focal) (partial) epilepsy and epileptic syndromes with complex partial seizures,
with intractable epilepsy’, ‘generalized convulsive epilepsy, with intractable epilepsy’,’
localization-related (focal) (partial) epilepsy and epileptic syndromes with complex partial
seizures, without mention of intractable epilepsy’, 'localization-related (focal) (partial)
epilepsy and epileptic syndromes with simple partial seizures, without mention of
intractable epilepsy’, 'epilepsia partialis continua, without mention of intractable epilepsy’,
‘epilepsy complicating pregnancy, childbirth, or the puerperium, postpartum condition or
complication’].

43

Under review as a conference paper at ICLR 2026

Tool: sql_execute(arguements={"query”: "SELECT MAX(mo.startdatetime) AS
most_recent_prescription FROM medicationorders mo WHERE mo.patientid = 10008287 AND
mo.medicationname = 'carbamazepine’ AND mo.startdatetime > (SELECT MIN(ad.
recordeddatetime) FROM admissiondiagnoses ad JOIN diagnosiscodes dc ON ad.icdcode =
dc.icdcode AND ad.codeversion = dc.codeversion WHERE ad.patientid = 10008287 AND dc.
description LIKE '%epilepsy%');"})

Tool: [(None,)]

Agent: sql_execute(arguements={"query”: "SELECT ad.recordeddatetime AS diagnosis_time
FROM admissiondiagnoses ad JOIN diagnosiscodes dc ON ad.icdcode = dc.icdcode AND ad.
codeversion = dc.codeversion WHERE ad.patientid = 10008287 AND dc.description LIKE '%
epilepsy%’' ORDER BY ad.recordeddatetime ASC LIMIT 1;"})

Tool: [('2100-10-09 01:17:00’,)]

Agent: sql_execute(arguements={"query”: "SELECT * FROM medicationorders WHERE
patientid = 10008287;"})

Tool: [(354, 10008287, 22168393, '2100-10-10 09:00:00’, '2100-10-10 10:00:00’, 'bag’, '1.0’, ’
bag’, 'iv"), (356, 10008287, 22168393, '2100-10-10 07:00:00’, '2100-10-10 08:00:00, 'bag’, '1.0,
'bag’, 'iv'), (655, 10008287, 22168393, '2100-10-09 22:00:00’, '2100-10-11 01:00:00’, 'cefazolin
’,"1.0,'¢, "Iv"), ..., (6797, 10008287, 22168393, '2100-10-09 22:00:00', '2100-10-10 10:00:00’,
'0.9% sodium chloride’, 1000.0’, 'ml, 'iv’), (6804, 10008287, 22168393, '2100-10-09 22:00:00’,
'2100-10-10 10:00:00’, '0.9% sodium chloride’, "1000.0’, 'ml’, 'iv’)]

Agent: sql_execute(arguements={"query”: "SELECT COUNT(*) AS count_prescriptions FROM
medicationorders WHERE patientid = 10008287 AND medicationname = 'carbamazepine’;"})

Tool: [(0,)]

Agent: The answer is <answer>No, patient 10008287 was not prescribed carbamazepine
after their first epilepsy diagnosis.</answer>

User: Ok, if carbamazepine wasn't prescribed, can you check if they were prescribed any
other medications for epilepsy after their first epilepsy diagnosis? If so, give me the most
recent prescription time.

Agent: sql_execute(arguements={"query”: "WITH first_epi AS (SELECT MIN(ad.
recordeddatetime) AS dt FROM admissiondiagnoses ad JOIN diagnosiscodes dc ON ad.
icdcode = dc.icdcode AND ad.codeversion = dc.codeversion WHERE ad.patientid = 10008287
AND dc.description LIKE '%epilepsy%’) SELECT MAX(m.startdatetime) AS

44

Under review as a conference paper at ICLR 2026

most_recent_prescription FROM medicationorders m JOIN first_epi f ON m.startdatetime > f.
dt WHERE m.patientid = 10008287 AND (m.medicationname LIKE '%levetiracetam%’ OR m.
medicationname LIKE '%phenytoin%’ OR m.medicationname LIKE '%phenobarbital%’ OR m.
medicationname LIKE '%valpro%' OR m.medicationname LIKE '%lamotr%’ OR m.
medicationname LIKE '%gabapentin%’ OR m.medicationname LIKE '%topir%’ OR m.
medicationname LIKE '%pregabat%’ OR m.medicationname LIKE '%ethosux%’ OR m.

medicationname LIKE '%lacosamide%');"})

Tool: [('2100-10-12 20:00:00’,)]

Agent: The answer is <answer>2100-10-12 20:00:00< /answer>

User: Great! Just to be sure, this time represents the most recent time patient 10008287 was
prescribed any medication for epilepsy after their first diagnosis? | need the answer in the

exact time format recorded in the database.

Agent: Yes, that is correct. The most recent epilepsy medication prescription time after

their first epilepsy diagnosis is <answer>2100-10-12 20:00:00< /answer:>.

User: Perfect, thanks!

HHHEND###

45

Under review as a conference paper at ICLR 2026

D.2.2 FAILED CASE (ADAPTQA)

After the user initially asks about carbamazepine for epilepsy treatment for a specific patient, the
agent finds no relevant data. The user then asks about other medications for epilepsy. The agent
uses a web search tool to retrieve a list of medications, including levetiracetam. The agent writes
an SQL query using the diagnosis “epilepsy, unspecified” and the medication list for the patient.
However, since the patient was diagnosed with “epilepsy, unspecified, not intractable, without status
epilepticus,” the agent fails to retrieve the specific data needed, despite having the list of epilepsy
medications.

Instruction: Your goal is to explore patient data related to medication prescriptions.
Specifically, you are interested in patient ID 10008287 and want to know when they were
prescribed carbamazepine for epilepsy treatment. If the patient was prescribed
carbamazepine, you want to know the most recent prescription time after the first epilepsy
diagnosis. If the patient was not prescribed carbamazepine, you want to identify whether
any other class of medication used for epilepsy treatment was prescribed. If such
medications are found, you want to know the most recent prescription time after the first
epilepsy diagnosis. If no such medications are found, end the conversation. You want the
answer in the exact time format recorded in the database.

User: | want to know about the prescriptions for patient ID 10008287.

Agent: Could you please specify what information about the prescriptions you are
interested in? For example, are you looking for the medication names, dosages, dates, or
something else?

User: I'm interested in finding out if patient 10008287 was prescribed carbamazepine for
epilepsy. If they were, | need the most recent prescription time after their first epilepsy
diagnosis.

Agent: Okay, | need to find out if patient 10008287 has been diagnosed with epilepsy and
prescribed carbamazepine. Then, if both conditions are met, | need to find the most recent
prescription time for carbamazepine after the first epilepsy diagnosis. First, | need to find
the relevant tables containing diagnoses and medication orders.

Agent: table_search(arguements={"tool_input”: ""})
Tool: admissiondiagnoses, admissionprocedures, clinicalevents, clinicalitemtypes,
costrecords, demographics, diagnosiscodes, hospitaladmissions, icuepisodes,

intakerecords, labresults, labtesttypes, medicationorders, microbiologyresults,
outputrecords, patienttransfers, procedurecodes

46

Under review as a conference paper at ICLR 2026

Agent: Okay, the tables admissiondiagnoses and medicationorders seem relevant. | need to
explore these tables to see how diagnoses and medication orders are recorded.

Agent: column _search(arguements={"table_names”: "admissiondiagnoses,
medicationorders”})

Tool: CREATE TABLE admissiondiagnoses (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
icdcode TEXT NOT NULL,
codeversion INTEGER NOT NULL,
recordeddatetime TEXT NOT NULL,
PRIMARY KEY (recordid),
FOREIGN KEY (codeversion) REFERENCES diagnosiscodes (codeversion),
FOREIGN KEY (icdcode) REFERENCES diagnosiscodes (icdcode),
FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)
)
/*
3 rows from admissiondiagnoses table:
recordid patientid admissionid icdcode codeversion recordeddatetime
0 10035185 22580999 4139 9 2100-05-17 12:53:00
110035185 22580999 V707 9 2100-05-17 12:53:00
2 10035185 22580999 41401 9 2100-05-17 12:53:00
*/

CREATE TABLE medicationorders (
recordid INTEGER NOT NULL,
patientid INTEGER NOT NULL,
admissionid INTEGER NOT NULL,
startdatetime TEXT NOT NULL,
enddatetime TEXT,
medicationname TEXT NOT NULL,
dosevalue TEXT NOT NULL,
doseunit TEXT NOT NULL,
administrationroute TEXT NOT NULL,
PRIMARY KEY (recordid),

FOREIGN KEY (admissionid) REFERENCES hospitaladmissions (admissionid)

)

/-k

3 rows from medicationorders table:

47

Under review as a conference paper at ICLR 2026

recordid patientid admissionid startdatetime enddatetime medicationname dosevalue
doseunit administrationroute

0 10020740 23831430 2100-04-19 11:00:00 2100-04-20 22:00:00 insulin 0.0 unit sc
110005817 20626031 2100-12-20 02:00:00 2100-12-21 12:00:00 insulin 0.0 unit sc

2 10005817 20626031 2100-12-27 10:00:00 2100-12-28 19:00:00 insulin 0.0 unit sc

*/

Agent: Now | need to find the icdcode for epilepsy in the diagnosiscodes table. | will use
value_similarity_search to find similar values to "epilepsy” in the description column of the
diagnosiscodes table.

Agent: value_similarity_search(arguements={"column”: "description”, "table": "

” on n,n

diagnosiscodes”, "value”: "epilepsy”})

Tool: | found close matches in diagnosiscodes.description: ['epilepsy and recurrent seizures
', 'epilepsy, unspecified’, 'other epilepsy’, 'epileptic spasms’, 'epilepsy, unspecified, not
intractable’, 'epilepsy, unspecified, without mention of intractable epilepsy’, ‘epilepsy,
unspecified, with intractable epilepsy’, 'epilepsy, unspecified, intractable’, 'other epilepsy
and recurrent seizures’, 'epilepsy, unspecified, intractable, without status epilepticus’,’
epilepsy, unspecified, not intractable, without status epilepticus’, 'other epilepsy,
intractable, without status epilepticus’, ‘epilepsy, unspecified, intractable, with status
epilepticus’, 'other epilepsy, intractable, with status epilepticus’, ‘epilepsy, unspecified, not
intractable, with status epilepticus’, ‘generalized idiopathic epilepsy and epileptic
syndromes’, ‘other epilepsy, not intractable, without status epilepticus’, 'generalized
idiopathic epilepsy and epileptic syndromes, intractable’].

Agent: The value similarity search returned several matches. To proceed, | will use 'epilepsy
, unspecified’ as the diagnosis for epilepsy. Now | need to check if patient 10008287 was
diagnosed with 'epilepsy, unspecified’ and prescribed 'carbamazepine’. If so, | need to find
the most recent prescription time after the first epilepsy diagnosis.

n,on n,on

Agent: value_substring_search(arguements={"column”: "medicationname”, "table”:

”n on n,on

medicationorders”, "value”: "carbamazepine”})

Tool: Values in medicationorders.medicationname containing 'carbamazepine’: [’
carbamazepine’l.

Agent: Okay, the medication name is ‘carbamazepine’. Now | have all the information |
need to construct the SQL query.

Agent: sql_execute(arguements={"query”: "SELECT MAX(m.startdatetime) FROM
medicationorders m JOIN admissiondiagnoses a ON m.patientid = a.patientid WHERE m.

48

Under review as a conference paper at ICLR 2026

patientid = 10008287 AND m.medicationname = 'carbamazepine’ AND a.icdcode IN (SELECT
icdcode FROM diagnosiscodes WHERE description = 'epilepsy, unspecified’) AND m.
startdatetime > (SELECT MIN(recordeddatetime) FROM admissiondiagnoses a2 WHERE a2.
patientid = 10008287 AND a2.icdcode IN (SELECT icdcode FROM diagnosiscodes WHERE
description = 'epilepsy, unspecified’))"})

Tool: [(None,)]

Agent: The query returned None, which means either the patient was not diagnosed with
epilepsy, was not prescribed carbamazepine, or the prescription occurred before the
diagnosis.

Agent: sql_execute(arguements={"query": "SELECT MIN(recordeddatetime) FROM
admissiondiagnoses a WHERE a.patientid = 10008287 AND a.icdcode IN (SELECT icdcode
FROM diagnosiscodes WHERE description = "epilepsy, unspecified’)”)

Tool: [(None,)]

Agent: Since the query to find the first epilepsy diagnosis returned None, it means the
patient was never diagnosed with epilepsy. Therefore, | cannot find the most recent

carbamazepine prescription time after the first epilepsy diagnosis.

Agent: sql_execute(arguements={"query": "SELECT DISTINCT patientid FROM
medicationorders WHERE medicationname = 'carbamazepine’ AND patientid = 10008287")

Tool: []

Agent: The patient 10008287 was not prescribed carbamazepine. Therefore, | cannot find
the most recent carbamazepine prescription time after the first epilepsy diagnosis. <
answer>Patient 10008287 was not diagnosed with epilepsy and was not prescribed
carbamazepine.</answer>

User: Okay, if they weren’t prescribed carbamazepine, I'd like to know if they were
prescribed any other medications for epilepsy. If so, | want the most recent prescription
time after their first epilepsy diagnosis, just like | asked for carbamazepine.

Agent: Okay, | need to find out if patient 10008287 has been diagnosed with epilepsy. If
they have, | need to find any medications prescribed to them that are used to treat
epilepsy and then find the most recent prescription time for those medications after the
first epilepsy diagnosis. First, | need to identify medications used to treat epilepsy. | will
use a web search for this.

49

Under review as a conference paper at ICLR 2026

Agent: web_search(arguements={"query”: "medications used to treat epilepsy”})

Tool: [
"Below is a list of some of the most common brand-name drugs currently used to treat
epilepsy. Your doctor may prefer that you take the brand name of anticonvulsant and not
the generic substitution. Talk with your doctor about this important issue.\n\
nBrivaracetam (Briviact)\n\nCannabidiol (Epidiolex)\n\nCarbamazepine (Carbatrol or
Tegretol)\n\nCenobamate(Xcopri)\n\nDiazepam (Valium), lorazepam (Ativan) and similar
benzodiazepine tranquilizers such as clonazepam (Klonopin)\n\nEslicarbazepine (Aptiom
) [...] Ethosuximide (Zarontin)\n\nFelbamate (Felbatol)\n\nFenfluramine (Fintepla)\n\
nLacosamide (VIMPAT)\n\nLamotrigine (Lamictal)\n\nLevetiracetam (Keppra)\n\
nOxcarbazepine (Oxtellar XR, Trileptal)\n\nPerampanel (Fycompa)\n\nPhenobarbitol\n\
nPhenytoin (Dilantin)\n\nPregabalin (Lyrica)\n\nTiagabine (Gabitril)\n\nTopiramate (
Topamax)\n\nValproate, valproic acid (Depakene, Depakote)\n\nZonisamide (Zonegran)
[...] The most commonly used medications are benzodiazepines because they get into the
bloodstream quickly to start working on the brain to stop the seizure. They include:\n\n
Epilepsy Drug Guidelines\n\nlt may take several months before the best drug and
dosage are determined for you. During this adjustment period, you will be carefully
monitored through frequent blood tests to measure your response to the medication.”,
"Below is a list of some of the most common brand-name drugs currently used to treat
epilepsy. Your doctor may prefer that you take the brand name of anticonvulsant and not
the generic substitution. Talk with your doctor about this important issue.\n\
nBrivaracetam (Briviact)\n\nCannabidiol (Epidiolex)\n\nCarbamazepine (Carbatrol or
Tegretol)\n\nCenobamate(Xcopri)\n\nDiazepam (Valium), lorazepam (Ativan) and similar
benzodiazepine tranquilizers such as clonazepam (Klonopin)\n\nEslicarbazepine (Aptiom
) [...] Ethosuximide (Zarontin)\n\nFelbamate (Felbatol)\n\nFenfluramine (Fintepla)\n\
nLacosamide (VIMPAT)\n\nLamotrigine (Lamictal)\n\nLevetiracetam (Keppra)\n\
nOxcarbazepine (Oxtellar XR, Trileptal)\n\nPerampanel (Fycompa)\n\nPhenobarbitol\n\
nPhenytoin (Dilantin)\n\nPregabalin (Lyrica)\n\nTiagabine (Gabitril)\n\nTopiramate (
Topamax)\n\nValproate, valproic acid (Depakene, Depakote)\n\nZonisamide (Zonegran)
[...] The most commonly used medications are benzodiazepines because they get into the
bloodstream quickly to start working on the brain to stop the seizure. They include:\n\n
Epilepsy Drug Guidelines\n\nIt may take several months before the best drug and
dosage are determined for you. During this adjustment period, you will be carefully
monitored through frequent blood tests to measure your response to the medication.”,
"Medications used to treat epilepsy are called antiepileptic drugs (AEDs). There are more
than 30 prescription AEDs on the market, and they're mostly available as oral tablets or
capsules.\n\nYour options depend on:\n\n## Types of antiepileptic drugs (AEDs)\n\
nThere are two types of medications for epilepsy:\n\nSome people may need to take
more than one medication to prevent seizures. [...] ### Levetiracetam (Elepsia XR, Keppra,
Keppra XR, Spritam)\n\nLevetiracetam (Elepsia XR, Keppra, Keppra XR, Spritam) may
treat a range of epileptic seizures, including:\n\nlt's available as a pill, an IV solution, an

50

Under review as a conference paper at ICLR 2026

oral solution, and an injection.\n\nLevetiracetam may cause fewer side effects than
other medications used for epilepsy. It's safe to take during pregnancy, according to
experts such as the United Kingdom’s Commission on Human Medicines.\n\n###
Lorazepam (Ativan) [...] Lorazepam (Ativan) is a benzodiazepine that's used to treat all
types of seizures. It's also used to treat status epilepticus. Status epilepcticus is a
prolonged, critical seizure that's regarded as a medical emergency.\n\nlt’s available as a
pill, an oral concentrate, and an injection.\n\ n### Methsuximide (Celontin)\n\
nMethsuximide (Celontin) is used for absence seizures. It's prescribed when other
treatments don't work in treating your seizures.”,

"Donate\n\nPopular searches: Diagnosing Epilepsy Treatments and Therapies what is
epilepsy\n\nMake an Impact\n\nEpilepsy and Seizure Medications\n
================================\n\ n##ft Learn about FDA-approved medications to
treat epilepsy and seizures.\n\nIlmage 7: Epilepsy and Seizure Medications\n\nSearch\n\
nFilter Alphabetically Select Clear\n\nLoading ...\n\n##### Acetazolamide\n\nMore info(
Brand names: Diamox, Diamox Sequels, generics) [...] Acetazolamide (a SEET a ZOLE a
mide) has been FDA-approved for the treatment of, along with other drugs,
centrencephalic epilepsies (absence, generalized seizures).\n\n##### Brivaracetam\n\
nMore info(Brand names: Briviact)\n\nBrivaracetam (briv a RA se tam) has been
approved by the FDA to treat focal (partial) onset seizures in patients 1 month of age and
older.\n\n##### Cannibadiol\n\nMore info(Brand names: Epidiolex) [...] More info(Brand
names: Aptiom)\n\nEslicarbazepine acetate (ES li Kar BAZ e peen) has been approved by
the FDA to treat focal onset seizures in patients 4 years of age and older.\n\n#####
Ethosuximide\n\nMore info(Brand names: Zarontin, generics)\n\nEthosuximide (ETH oh
SUX i mide) has been approved by the FDA to control absence (petit mal) epilepsy.\n\n
#iu#t Ethotoin\n\nMore info(Brand names: Peganone, generics)”,

"Healthcare providers prescribe antiseizure medications to treat epilepsy and
symptomatic seizures. They also prescribe these medications to prevent and/or treat
seizures that happen during or following brain surgery. [...] Gray gradient\nGray gradient\
nSearch Icon Blue\nCleveland Clinic logo\n\n# Antiseizure Medications (Formerly Known
as Anticonvulsants)\n\nAntiseizure medications (anticonvulsants) help treat epilepsy
and other causes of seizures. They can treat other conditions as well, like anxiety and
neuropathic pain. There are several different types of antiseizure medications. You and
your healthcare provider will work together to find the best one for you.\n\
nAdvertisement [...] Cleveland Clinic is a non-profit academic medical center. Advertising
on our site helps support our mission. We do not endorse non-Cleveland Clinic products
or services. Policy\n\n## Overview\n\n### What are antiseizure medications (
anticonvulsants)?\n\nAntiseizure medications (previously known as antiepileptic or
anticonvulsant medications) are prescription medications that help treat and prevent
seizures. Healthcare providers may prescribe these medications to treat other conditions
as well.”,

"Epilepsy Website Logo\n\n# List of Anti-Seizure Medications (ASMs)\n\ n####
Understanding Epilepsy\n\nAnti-epileptic drugs (ASMs) are the main form of treatment

51

Under review as a conference paper at ICLR 2026

for people living with epilepsy, with up to 70% (7 in 10 people) having their seizures
controlled through this medication.\n\nlIn Australia there are over 20 ASMsare used to
treat seizures. The ASMsprescribed are often selected on the basis of the seizure type/s,
age, gender and side effects. ASMsmay be prescribed as tablets, syrups and liquids.”,
"One large randomized trial, the Standard and New Antiepileptic Drugs (SANAD) trial,
demonstrated some comparative advantages of certain AEDs when treating focal or
generalized epilepsy. In the end, when comparing valproate, lamotrigine, or topiramate
for generalized seizures, they recommended valproic acid as their first-line choice.
Additionally, when comparing carbamazepine, gabapentin, lamotrigine, oxcarbazepine,
and topiramate for focal seizures, lamotrigine was cited as the first-line [...] In summary,
it is now abundantly clear that anti-seizure medications wield disparate mechanistic
profiles, but they all effectively suppress epileptic seizures in one way or another.
Accordingly, grouping the drugs together by mechanism is a very helpful organizing
principle. From this viewpoint, it may become easier to appreciate that some drugs have
different efficacy profiles for different seizures types and epilepsy syndromes.
Ethosuximide is an exception with its specific limited use with [...] Phenytoin is one of the
oldest anti-seizure medications and is still widely used for focal and generalized
seizures. It is also administered for status epilepticus. In addition, practitioners may
invoke phenytoin as a second-line agent for patients with mixed seizure types (e.g., tonic
-clonic and myoclonic). As mentioned, phenytoin blocks voltage-gated sodium channels,
but other possible mechanisms revolve around decreased synaptic transmission, smaller
changes in ionic gradients involving the”,

"Medicines.\n Surgery.\n Therapies that stimulate the brain using a device.\n A
ketogenic diet.\n\n#t#t# Medication\n\nMost people with epilepsy can become seizure-
free by taking one anti-seizure medicine, which is also called an anti-epileptic medicine.
Others may be able to decrease the number and intensity of their seizures by taking
more than one medicine. [...] Tell your healthcare professional immediately if you notice
new or increased feelings of depression or suicidal thoughts. Also contact your
healthcare professional right away if you have changes in your mood or behaviors.\n Tell
your healthcare professional if you have migraines. You may need an anti-seizure
medicine that can prevent your migraines and treat epilepsy. [...] ### Potential future
treatments\n\nResearchers are studying many potential new treatments for epilepsy,
including:\n\n Continuous stimulation of the seizure onset zone, known as subthreshold
stimulation. Subthreshold stimulation is continuous stimulation to an area of the brain
below a level that's physically noticeable. This type of therapy appears to improve
seizure outcomes and quality of life for some people with seizures. Subthreshold
stimulation helps stop a seizure before it happens.”,

”| stiripentol | Diacomite | Image 50: Medline unavailable | Image 51: Medline unavailable
[\n| sulthiame | Ospolot | Image 52: Medline available | Image 53: Medline unavailable |\n
| tiagabine | Gabitril | Image 54: Medline available | Image 55: Medline available |\n|
topiramate | Topamax | Image 56: Medline available | Image 57: Medline available |\n|
vigabatrin | Sabril | Image 58: Medline available | Image 59: Medline available | [...] |

52

Under review as a conference paper at ICLR 2026

ethosuximide | Zarontin | Image 20: Medline available | Image 21: Medline available [\n|
felbamate | Felbatol | Image 22: Mims unavailable | Image 23: Medline available |\n|
gabapentin | Neurontin | Image 24: Medline available | Image 25: Medline available |\n|
lacosamide | Vimpat | Image 26: Medline available | Image 27: Medline available |\n|
lamotrigine | Lamictal | Image 28: Medline available | Image 29: Medline available | [...] |
phenobarbitone | Phenobarbitone | Image 40: Medline available | Image 41: Medline
unavailable [\n| phenytoin | Dilantin | Image 42: Medline available | Image 43: Medline
available |\n| potassium bromide | Dibro-Be mono | Image 44: Medline unavailable |
Image 45: Medline unavailable |\n| primidone | Mysoline | Image 46: Medline available |
Image 47: Medline available |\n| sodium valproate | Epilim | Image 48: Medline available |
Image 49: Medline available |”,

"Sodium valproate is an epilepsy drug prescribed for all seizure types including absence,
myoclonus and tonic clonic seizures. New regulations have been introduced by the
Medicines and Healthcare products Regulatory Agency (MHRA) around the way in which
the drug, sodium valproate is prescribed to women and girls of childbearing age.\n\nLET’
S STAY IN TOUCH... [...] The decision whether to start taking anti-epileptic drugs (AEDs)
can be difficult, and there is a lot to think about. Here we look at the benefits and risks of
taking, or not taking, AEDs.\n\nSodium valproate [...] Epilepsy Society\n\nSite
Navigation\n\nUtility Nav\n\nSite Search\n\nbreadcrumb navigation:\n\nList of anti-
seizure medication\n\nPublished on 8 October 2024\n\nUpdated: 7 April 2025\n\
nAuthored by Anonymous\n\nAlso in this section\n\nList of anti-seizure medication\n\
nHere is a list of anti-seizure medication (ASM), previously called anti-epileptic drugs or
AEDs.”

Agent: Based on the web search results, here’s a list of medications commonly used to
treat epilepsy:
Brivaracetam
Cannabidiol
Carbamazepine
Cenobamate
Diazepam
Lorazepam
Clonazepam
Eslicarbazepine
Ethosuximide
Felbamate
Fenfluramine
Lacosamide
Lamotrigine
Levetiracetam
Oxcarbazepine

53

Under review as a conference paper at ICLR 2026

Perampanel

Phenobarbitol

Phenytoin

Pregabalin

Tiagabine

Topiramate

Valproate, valproic acid

Zonisamide

Acetazolamide

Methsuximide

Stiripentol

Sulthiame

Gabapentin

Primidone

Sodium valproate

I will now construct a query to find the most recent prescription time for any of these
medications after the first epilepsy diagnosis.

Agent: sql_execute("query”: "SELECT MAX(m.startdatetime) FROM medicationorders m JOIN
admissiondiagnoses a ON m.patientid = a.patientid WHERE m.patientid = 10008287 AND m.
medicationname IN ('brivaracetam’, ‘cannabidiol’, 'carbamazepine’, 'cenobamate’, ’
diazepam’, 'lorazepam’, 'clonazepam’, 'eslicarbazepine’, 'ethosuximide’, 'felbamate’, ’
fenfluramine’, 'lacosamide’, 'lamotrigine’, 'levetiracetam’, 'oxcarbazepine’, ‘perampanel’,’
phenobarbitol’, ‘phenytoin’, 'pregabalin’, 'tiagabine’, 'topiramate’, 'valproate’, 'valproic acid’,
'zonisamide’, 'acetazolamide’, 'methsuximide’, 'stiripentol’, 'sulthiame’, ‘'gabapentin’,’
primidone’, "sodium valproate’) AND a.icdcode IN (SELECT icdcode FROM diagnosiscodes
WHERE description = "epilepsy, unspecified’) AND m.startdatetime > (SELECT MIN(
recordeddatetime) FROM admissiondiagnoses a2 WHERE a2.patientid = 10008287 AND a2.
icdcode IN (SELECT icdcode FROM diagnosiscodes WHERE description = "epilepsy,
unspecified’))”)

Tool: [(None,)]

Agent: The query returned None, which means either the patient was not diagnosed with

epilepsy, was not prescribed any of the listed medications, or the prescriptions occurred

before the diagnosis. Since | already determined that the patient was not diagnosed with
epilepsy, the result is None. <answer>Patient 10008287 was not diagnosed with epilepsy
and was not prescribed any anti-epileptic medications.</answer>

User: Could you double check that your answer covers everything? | wanted to know if
patient 10008287 was prescribed carbamazepine and, if not, if they were prescribed any

54

Under review as a conference paper at ICLR 2026

other epilepsy meds. For any epilepsy meds, | need the most recent prescription time after
their first epilepsy diagnosis.

Agent: Yes, | have confirmed that patient 10008287 was neither diagnosed with epilepsy
nor prescribed carbamazepine or any other anti-epileptic medications from the list |
generated using a web search. Therefore, | cannot provide a prescription time after their
first epilepsy diagnosis. <answer>Patient 10008287 was not diagnosed with epilepsy and
was not prescribed carbamazepine or any other anti-epileptic medications.</answer>

User: ###END#H#H

55

Under review as a conference paper at ICLR 2026

D.3 INVALIDATED TRAJECTORIES BY THE VALIDATOR

Below we show sample trajectories that were invalidated by our simulation validator along with the
specific rules they violated.

D.3.1 VIOLATION OF NO FINAL CHECK RULE

Instruction: Your goal is to find the administration routes of specific ordered medications.
Specifically, you are interested in the administration routes of ordered medications
containing ISDN. You want to search for isosorbide dinitrate specifically, not other similar
medications like \"isosorbide mononitrate\” When querying the DB agent, since you do not
know how isosorbide dinitrate is stored, use common terms like \"ISDN\"” when referring
to it, and let the DB agent find it for you.

User: I'm trying to figure out how certain meds are given to patients. Can you help?

Agent: | can help with that. Could you please specify which medications you are interested
in and what information about their administration you would like to know? For example,
are you interested in the dosage, frequency, or route of administration?

(...omitted...)

Agent: The administration route for isosorbide dinitrate is ‘po/ng’. This likely refers to oral
or nasogastric administration.

User: ###END### (RULE VIOLATION)

— Before ending the conversation, ask the DB agent to double check that their final answer
covers all goals raised. If not, request any missing parts.

D.3.2 VIOLATION OF MISSING CONDITIONS RULE

Instruction: Your goal is to find information related to a patient’s diagnosis. Specifically,
you are interested in patient ID 10004733 and you want to know how many days have
passed since the patient was diagnosed with cerebral artery occlusion during the current
hospital admission. If the patient has multiple records of the same diagnosis, you want to
know the number of days elapsed since the earliest diagnosis. You want diagnosis names
containing cerebral artery occlusion.

56

Under review as a conference paper at ICLR 2026

User: I'm trying to find out some information about a patient’s diagnosis.

Agent: | can help with that. What specific information are you looking for regarding a
patient’s diagnosis? For example, are you trying to find:

- A patient’s diagnosis history?

- The most common diagnoses?

- Diagnoses associated with certain procedures or medications?

- The cost associated with a particular diagnosis?

- Something else entirely?

Please provide more details so | can narrow down my search.

User: I'm interested in patient ID 10004733. | want to know how long ago they were

diagnosed with something.

Agent: Okay, | can help you find out how long ago patient ID 10004733 was diagnosed. Let
me first check the admissiondiagnoses table to see if it contains the diagnosis date and
patient ID.

User: ###END### (RULE VIOLATION)

— The user must provide all detailed conditions specified in the instruction before ending
the conversation.

D.3.3 VIOLATION OF PERFORMING AGENT-LIKE TASKS RULE

Instruction: Your goal is to find the number of blood culture tests performed on a specific
patient. Specifically, you want to know how many culture tests were collected from
venipuncture blood for patient ID 031-10300 this month.

User: | need to figure out how many blood culture tests a particular patient has had.

Agent: To determine the number of blood culture tests, | need the patient’s ID. Could you
please provide the patient ID?

User: The patient ID is 031-10300.

(...omitted...)

Agent: The patient with ID 031-10300 had 2 blood culture tests collected from venipuncture
blood.

57

Under review as a conference paper at ICLR 2026

User: Okay, | have the patient ID, the time frame (this month), and the collection method (
venipuncture blood). Does your request include any other conditions? (RULE VIOLATION)

— The user acts like a DB agent or Al assistant instead of the user (e.g., writing, reviewing,

or executing SQL queries, calling external APIs, or responding to the DB agent in a machine
assistant way).

58

	Introduction
	Related Work
	The EHR-ChatQA Benchmark
	Task Formulation
	Benchmark Components

	Benchmark Construction
	Interaction Flows
	Annotation Process
	EHR Databases
	IncreQA Annotation
	AdaptQA Annotation

	Quality Assurance

	Experiments
	Experimental Setup
	Main Results
	Common Error Cases in Interactive Database Agents

	Challenges in Simulation-Based Evaluation
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Benchmark Details
	Sample Task Instances
	IncreQA Sample
	AdaptQA Sample

	Tool Specifications
	User Implementation
	Simulated User
	User System Prompt
	Example Variability in Simulated User Turns

	Simulation Validator Implementation
	Database-Specific Rules
	MIMIC-IV Rules
	eICU Rules

	Evaluation Details
	IncreQA
	AdaptQA

	Contributor Demographics and Beta Testing Process

	Annotation Details
	IncreQA and AdaptQA Annotation
	IncreQA Annotation
	AdaptQA Annotation

	AdaptQA Categories
	SQL Annotation Style
	EHR Database Preprocessing
	MIMIC-IV Renaming
	eICU Renaming

	Agent Implementation
	Agent System Prompt
	Agent Rules
	Agent Rules for Evaluation

	Sample Trajectories
	Incremental Query Refinement
	Successful Case (IncreQA)
	Failed Case (IncreQA)

	Adaptive Query Refinement
	Successful Case (AdaptQA)
	Failed Case (AdaptQA)

	Invalidated Trajectories by the Validator
	Violation of No Final Check Rule
	Violation of Missing conditions Rule
	Violation of Performing Agent-like Tasks Rule

