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Abstract

Machine learning on graphs (GraphML) has been successfully deployed in a
wide variety of problem areas, as many real-world datasets are inherently rela-
tional. However, both research and industrial applications require a solid, robust,
and well-designed code base. In recent years, frameworks and libraries, such as
PyTorch-Geometric (PyG) or Deep Graph Library (DGL), have been developed
and become first-choice solutions for implementing and evaluating GraphML mod-
els. These frameworks are designed so that one can solve any graph-related task,
including node- and graph-centric approaches (e.g., node classification, graph
regression). However, there are no edge-centric models implemented, and edge-
based tasks are often limited to link prediction. In this extended abstract, we
introduce PyTorch-Geometric Edge (PyGE), a deep learning library that fo-
cuses on models for learning vector representations of edges. As the name suggests,
it is built upon the PyG library and implements edge-oriented ML models, includ-
ing simple baselines and graph neural networks, as well as corresponding datasets,
data transformations, and evaluation mechanisms. The main goal of the presented
library is to make edge representation learning more accessible for both researchers
and industrial applications, simultaneously accelerating the development of the
aforementioned methods, datasets and benchmarks.

1 Introduction

Nowadays, one of the most prominent research areas in machine learning is representation learning.
Solving classification, regression, or clustering tasks by means of popular machine learning models,
like decision trees, SVMs, logistic regression, linear regression, or feed-forward neural networks,
requires the presence of object features in the form of real-valued number vectors (also called
embeddings, or representation vectors). Representation learning aims at finding algorithms and
models that can extract such numeric features from arbitrary objects (images, texts, or graphs) in
an automated and reliable way. In terms of machine learning on graphs (GraphML), these models /
algorithms are called graph representation learning (GRL) methods. In recent years, GRL methods
have been successfully deployed in a wide variety of domains, including social networks, financial
networks, and computational chemistry [1-4].

This wide adoption of graph-based models led to the creation of publicly available implementations,
often in the form of frameworks or libraries with standardized APIs, which describe data formats,
model building blocks, and scalable parameter optimization techniques. First-choice solutions are
currently frameworks like PyTorch-Geometric (PyG) [5] or the Deep Graph Library (DGL) [6].
They include most of the existing graph neural networks and some traditional models, as well as
datasets, preprocessing transformations, and basic evaluation mechanisms. This simplifies both
production-ready model development and conducting GraphML research.
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The implemented design choices allow solving any graph-related task (e.g., node classification, graph
regression). Nevertheless, the main focus in these libraries is on node- and graph-centric models and
tasks, whereas edge-based tasks are often limited to link prediction.

Present work. We aim to fill the gap for edge-centric GRL models and tasks. In this extended
abstract, we introduce PyTorch-Geometric Edge (PyGE), a deep learning library focused on
models for learning vector representations of graph edges. We build upon the PyTorch-Geometric
(PyG) library and provide implementations: (1) for edge-centric models, including simple baselines
and graph neural networks, (2) edge-based GNN layers, (3) datasets and corresponding preprocessing
functions (in a PyTorch- and PyG-compliant format), and (4) evaluation mechanisms for edge tasks.
PyGE should make edge representation learning more accessible for both researchers and industrial
applications, simultaneously accelerating the development of edge-centric methods, datasets and
benchmarks. Disclaimer: Please note that the introduced library is still under active development.
We provide a summary of our planned work in Section 4.

Contributions. We summarize our contributions as follows: (C1) We publicly release
PyTorch-Geometric Edge, the first deep learning library for edge representation learning —
https://github.com/pbielak/pytorch_geometric_edge. (C2) We implement a subset of
available edge-based models, graph neural network layers, datasets, and corresponding data transfor-
mations.

2 Preliminaries

We start by introducing definitions for basic concepts covered in our presented library and explore
the current state of node and edge embedding approaches, as well as GraphML software.

Graph. A graph G = (V, £) describes a set of nodes V that are connected (pairwise) by a set of
edges £ € V x V. An attributed graph G = (V, £, X, X°%¢) extends this definition by a set of node
attributes: X € RIVIXdwe and optionally also edge attributes: X4 ¢ RIEI*dedge

Edge representation learning. The goal is to find a function fj : £ — R% that maps an edge
€(u,v) € € into a low-dimensional (degee < dim(€)) vector representation (embedding) z,, that
preserves selected properties of the edge (e.g., features or local structural neighborhood information).

Edge-based tasks. Evaluation tasks for edge embeddings include: (1) link prediction — binary
classification problem of the existence (future appearance) of an edge; (2) edge classification —
label/type prediction of an existing edge (e.g., kind of social network relation); (3) edge regression —
prediction a numerical edge feature (e.g., bond strength in a molecule).

Node representation learning methods. Early approaches were built around the transductive
setting with an enormous trainable lookup-embedding matrix, whose rows denote representation
vectors for each node. The optimization process would preserve structural node information. For
instance, DeepWalk [7], and its successor Node2vec [8] use the Skipgram [9] objective to model
random walk-based co-occurrence probabilities. TADW [10] extended this approach to attributed
graphs and reformulated the model as a matrix factorization problem. Other early approaches include:
LINE [11], SDNE [12], or FSCNMF [13]. Recent methods are based on Graph Neural Networks
(GNNSs) — trainable functions that transform feature vectors of a node and its neighbors to a new
embedding vector (inductive setting). These functions can be stacked to create a deep (graph) neural
network. The most popular ideas include: a graph reformulation of the convolution operator (GCN
[14]), neighborhood sampling and aggregation of sampled features (GraphSAGE [15]), attention
mechanism over graph structure (GAT [16]) or modeling injective functions (GIN [17]).

Edge representation learning methods. This area is still underdeveloped, i.e., only a handful of
proposed models and algorithms exists. Most early approaches are node-based transformations,
i.e., the edge embedding z,, is computed from two node embeddings z,, and z,,. There are simple
non-trainable binary operators [8], such as the average (z,, = %), the Hadamard product
(Zuw = Zy * Z), or the weighted L1 (zyy, = |2y — 2y|) or L2 (Zyy, = |24 — Z,|?) operators.
NRIM [18] proposes trainable transformations as two kinds of neural network layers: node2edge
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Zuwo = fo([Zu, 20, X50])) and edge2node (z, = Jo (X venr(u) Zuvs Xu]))- Another group of

edge embedding methods directly learn the edge embeddings, i.e., without an intermediate node
embedding step. Line2vec [19] utilizes a line graph transformation (converting nodes into edges
and vice versa), applies a custom edge weighting method and runs Node2vec on the line graph.
The loss function extends the Skipgram loss with a so-called collective homophily loss (to ensure
closeness of neighboring edges in the embedding space). This method is inherently transductive (due
to Node2vec) and completely ignores any attributes. Those problems are addressed by AttrE2vec
[20]. It samples a fixed number of uniform random walks from two edge neighborhoods (N (u),
N (v)) and aggregates feature vectors of encountered edges (using average, exponential decaying, or
recurrent neural networks) into summary vectors S, S,, respectively. An MLP encoder network
with a self-attention-like mechanism transforms the summary vectors and the edge features into the
final edge embedding. AttrE2vec is trained using a contrastive cosine learning objective and a feature
reconstruction loss. PairE [21] utilizes two kinds of edge feature aggregations: (1) concatenated node
features (self features), (2) concatenation of averaged neighbor features for both nodes (agg features).
An MLP encoder with skip-connections transforms these two vectors into the edge embedding. Two
shallow decoders reconstruct the feature probability distribution. The resulting PairE autoencoder is
trained using the sum of the KL-divergences of the self and agg features. EHGNN [22] proposes a
so-called Dual Hypergraph Transformation (DHT) that inverts the role of nodes and edges — similarly
to the line graph transformation, but with a lower time complexity. DHT can be paired with any
existing node-based GNN approach to obtain the final edge embeddings. Other methods include:
EGNN [23], ConPI [24] or Edge2vec [25].

GraphML software. The backbone of all modern deep learning frameworks are tools for automatic
differentiation, such as: Tensorflow [26] or PyTorch [27]. GraphML libraries are mostly built upon
these tools, e.g., PyG uses PyTorch, GEM [28] and DynGEM [29] use Tensorflow, DGL can be
used both with Tensorflow and PyTorch, whereas some like KarateClub [30] are using a custom
backend. All of these libraries are focused on node- and graph-centric models. Our proposed
PyTorch-Geometric Edge library is the first one that focuses on edge-centric models and layers.
It adapts the PyG library API and uses PyTorch as its backend.

3 PyTorch-Geometric Edge

Relation to PyG. Our proposed PyGE library re-uses the API and data format implemented in
PyTorch-Geometric. The graph is stored as a Data() object with edges in form of a sparse COO
matrix (edge_index). Other fields include: x (node attributes), edge_attr (edge attributes), y
(node/edge labels). We also keep a similar layout of the library package structure, i.e., we have a
module for datasets, models, neural network layers (nn), data transformations (transforms) and
data samplers (samplers). The forward () method in all implemented models/layers accepts two
parameters: x (node or edge features) and edge_index (adjacency matrix). Hence, the implemented
models/layers can be integrated with other PyG models/layers and vice versa (we show that in the
examples/ folder in the repository). The same applies for the datasets.

3.1 Current state of implementation

We now show the current state of the library and what is already implemented. Please refer to Section
4 where we explain our future plans.

Datasets. We currently include 5 datasets (Cora, PubMed, KarateClub, Dolphin and Cuneiform)
that were originally used in the papers of the implemented methods. We summarize their statistic
in Table 1. Note most of them also require preprocessing steps (see: AttrE2vec [20] for details) for
the edge classification evaluation — we implement appropriate data transformations. Moreover, we
add cybersecurity-based datasets — UNSW-NB15 in four different versions. These datasets can be
directly used for edge classification. We create different versions of this dataset by using: (1) different
definitions of nodes (either just the IP address — yielding 49 different nodes, or using a combination
of both the IP address and the port — about 1.1M nodes); (2) different class labels (either binary
classification: attack/normal traffic — two classes, or using a more fine-grained attack definition — 14
classes). The number of edges corresponds to the number of connections — about 2.5M. Note that the
number of features is higher than the one reported in the original paper [31] (49 features) — for the
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categorical ones, like protocol, state or serivce, we already applied a one-hot encoding (yielding 202
or 204 features in total).

Table 1: Summary of included datasets. The % symbol denotes the number of edge classes after
applying an appropriate data transformation.

Name [V |€]  dnode  dedge  classes
KarateClub [32] 34 156 - - 4*
Dolphin [33] 62 318 - - 5*
Cora [34] 2708 10556 1433 - 8*
PubMed [35] 19717 88 648 500 - 4*
Cuneiform [36] 5 680 23922 3 2 2
UNSW-NB15 (IP) [31] 49 2539739 - 204 2/14
UNSW-NB15 (IP-Port) [31] 1112275 2539739 - 202 2/14

Models and layers. We implement most of the edge representation learning methods discussed
in Section 2 into our proposed PyGE library (see: Table 2). Nevertheless, more of them will be
implemented in future versions.

Table 2: Models and layers implemented in PyGE.

Method Type Inductive Attributed Characteristics

Node pair op [8] layer X non-trainable
node2edge [18] layer trainable

Line2vec [19] model X X line graph, random-walk
AttrE2vec [20] model contrastive, AE, random-walk
PairE [21] model AE, KL-div
EHGNN [22] framework time efficient, hypergraph

Embedding evaluation. We implement a ready-to-use edge classification evaluator class, which
takes edge embeddings and edge labels, applies a logistic regression classifier and returns typical
classification metrics, like ROC-AUC, F1 or accuracy. This is a widely adopted technique in
unsupervised learning, called the linear evaluation protocol [37].

Example usage. In the repository, we provide an end-to-end script showing the usage of a given
model/layer. Every script: (1) loads a dataset and applies the required data transformations (prepro-
cessing), (2) prepares the data split of edges into train and test sets, (3) builds a model, (4) trains the
model for a certain amount of epochs, (5) evaluates the learned edge embeddings. We provide also an
example script in this extended abstract — see Section A.

3.2 Maintenance

An open-source library requires continuous maintenance. We host our code base at GitHub, which
allows to track all development progress and user-generated issues. We will build library releases and
announce them on GitHub and host them later on the Python Package Index (PyPI) to allow users
to simply run a pip install torch-geometric-edge command to install our library. We use
the MIT license to give potential users, researchers, and industrial adopters a good user experience
without worrying about the rights to use or modify our code base. Another aspect of software
development and maintenance is Continuous Integration. We use the GitHub Actions module to
automatically execute code quality checks and unit tests with every pull request to our library. This
prevents that a change will break existing functionality or lower our assumed code quality.
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4 Summary and roadmap

In this extended abstract, we presented an initial version of PyTorch-Geometric Edge, the first
deep learning library that focuses on representation learning for graph edges. We provided information
about currently implemented models/layers and datasets. Our roadmap is extensive and includes: (I)
preparation of a complete documentation (right now: we rely on code quality checks and example
scripts on how to use particular models/layers), (II) addition of more datasets (e.g., Enron Email
Dataset', FF-TW-YT?, among others), (IIT) implementation of other mentioned edge-centric models
(and a continuous extension of the literature review to find new methods), (IV) we want to add
more edge evaluation schemes, (V) in the full paper, we want to include an extensive benchmark
of all implemented models and compare them in different downstream tasks; moreover we want to
provide the entire reproducible experimental pipeline and pretrained models. With such an amount of
incoming work, we want to encourage readers interested in edge representation learning to contact
the authors and contribute to our library. We are convinced that edge representation learning can be
widely adopted in networked tasks, like message classification in social networks, connection/attack
classification in cybersecurity applications, to name only a few.
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A Example 1: PairE model

Let’s explore how to use PyGE in practice. We will be using the PairE model to classify the citation
type between academic papers (citation within a research area or cross citation; if the same research
area, then which one). We start by loading the Cora dataset and extracting the target edge labels using
our implemented MatchingNodeLabelsTransform() (if two node labels match, use this label, else
use special label —1):

from torch_geometric_edge.datasets import Cora
from torch_geometric_edge.transforms import MatchingNodeLabelsTransform

data = Cora("/tmp/pyge/", transform=MatchingNodeLabelsTransform()) [0]
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Next, we split the edges into train and test sets:

import torch
from sklearn.model_selection import train_test_split

train_mask, test_mask = train_test_split(
torch.arange(data.num_edges),
stratify=data.y,
test_size=0.8,

)
Now, let’s create the PairE model:

from torch_geometric_edge.models import PairE

model = PairE(
num_nodes=data.num_nodes,
node_feature_dim=data.num_node_features,
emb_dim=128,

)

We can train our model using standard PyTorch training-loop boilerplate code. Note, that we only
use training edges (data.edge_index[:, train_mask]).

optimizer = torch.optim.AdamW (model.parameters(), lr=1e-3)

model.train()
for _ in range(100):

optimizer.zero_grad()

x_self, x_aggr = model.extract_self_aggr(data.x, data.edge_index[:, train_mask])
h_edge = model(data.x, data.edge_index[:, train_mask])
x_self_rec, x_aggr_rec = model.decode(h_edge)

loss = model.loss(x_self, x_aggr, x_self_rec, x_aggr_rec)

loss.backward()
optimizer.step()

Finally, we can evaluate our model’s edge embedding in the edge classification task using the
LogisticRegressionEvaluator. The returned metrics will be prefixed to indicate the train/test
split. Note that we use now all edges during inference:

from torch_geometric_edge.evaluation import LogisticRegressionEvaluator

model.eval()
with torch.no_grad():
Z = model(data.x, data.edge_index)

metrics = LogisticRegressionEvaluator(["auc"]) .evaluate(
7Z=Z,
Y=data.y,
train_mask=train_mask,
test_mask=test_mask,
)

print(metrics)

B Example 2: Node2Edge, Edge2Node layers

Let’s explore another PyGE example code. We will be using the Node2Edge and Edge2Node layers
to classify network traffic. We start by loading the UNSW-NB15 dataset:
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from torch_geometric_edge.datasets import UNSW_NB15
data = UNSW_NB15(version="ip/multi", root="/tmp/pyge/") [0]
Next, we split edge into train and test sets:

import torch
from sklearn.model_selection import train_test_split

train_mask, test_mask = train_test_split(
torch.arange(data.num_edges),
stratify=data.y,
test_size=0.8,

Now, we build a supervised model using the Node2Edge and Edge2Node layers:

from torch import nn
from torch_geometric_edge.nn import Edge2Node, Node2Edge

class Model (nn.Module) :

def __init__(self, num_nodes: int, edge_dim: int, num_classes: int):
super().__init__Q)
self.e2n = Edge2Node(
num_nodes=num_nodes,
node_dim=0,
edge_dim=edge_dim,
out_dim=128,
)
self.n2e = Node2Edge (
node_dim=128,
edge_dim=edge_dim,
out_dim=num_classes,
net=nn.Sequential(
nn.Linear(2 * 128 + edge_dim, 128),
nn.RelLU(Q),
nn.Linear (128, num_classes),
nn.LogSoftmax (dim=-1),
)3
)

def forward(
self,
edge_attr: torch.Tensor,
edge_index: torch.Tensor,
) -> torch.Tensor:
h = self.e2n(edge_attr=edge_attr, edge_index=edge_index)
y_pred = self.n2e(x=h, edge_attr=edge_attr, edge_index=edge_index)

return y_pred

model = Model(
num_nodes=data.num_nodes,
edge_dim=data.num_edge_features,
num_classes=data.y.unique() .shape[0],
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Similarly to the previous example we build the train loop (using standard PyTorch boilerplate code)
and evaluate our classifier:

from sklearn.metrics import roc_auc_score
from torch.nn import functiomnal as F

optimizer = torch.optim.AdamW (model.parameters(), lr=1e-3)

for _ in range(5):
# Train
model.train()
optimizer.zero_grad()

y_pred = model(data.edge_attr[train_mask], data.edge_index[:, train_mask])
y_true = data.y[train_mask]

loss = F.nll_loss(input=y_pred, target=y_true)
print (loss)

loss.backward()
optimizer.step()

# Evaluate

model.eval()

with torch.no_grad():
y_score = model(data.edge_attr[test_mask], data.edge_index[:, test_mask]).exp()
y_true = data.y[test_mask]

test_auc = roc_auc_score(y_true=y_true, y_score=y_score, multi_class="ovr"
print("Test AUC:", test_auc)

10



	1 Introduction
	2 Preliminaries
	3 PyTorch-Geometric Edge
	3.1 Current state of implementation
	3.2 Maintenance

	4 Summary and roadmap
	A Example 1: PairE model
	B Example 2: Node2Edge, Edge2Node layers

