PyTorch-Geometric Edge — a Library for Learning
Representations of Graph Edges

Piotr Bielak and Tomasz Kajdanowicz
Department of Artificial Intelligence,
Wroctaw University of Science and Technology,
Wroctaw, Poland
piotr.bielak@pwr.edu.pl

Abstract

Machine learning on graphs (GraphML) has been successfully deployed in a
wide variety of problem areas, as many real-world datasets are inherently rela-
tional. However, both research and industrial applications require a solid, robust,
and well-designed code base. In recent years, frameworks and libraries, such as
PyTorch-Geometric (PyG) or Deep Graph Library (DGL), have been developed
and become first-choice solutions for implementing and evaluating GraphML mod-
els. These frameworks are designed so that one can solve any graph-related task,
including node- and graph-centric approaches (e.g., node classification, graph
regression). However, there are no edge-centric models implemented, and edge-
based tasks are often limited to link prediction. In this extended abstract, we
introduce PyTorch-Geometric Edge (PyGE), a deep learning library that fo-
cuses on models for learning vector representations of edges. As the name suggests,
it is built upon the PyG library and implements edge-oriented ML models, includ-
ing simple baselines and graph neural networks, as well as corresponding datasets,
data transformations, and evaluation mechanisms. The main goal of the presented
library is to make edge representation learning more accessible for both researchers
and industrial applications, simultaneously accelerating the development of the
aforementioned methods, datasets and benchmarks.

1 Introduction

Nowadays, one of the most prominent research areas in machine learning is representation learning.
Solving classification, regression, or clustering tasks by means of popular machine learning models,
like decision trees, SVMs, logistic regression, linear regression, or feed-forward neural networks,
requires the presence of object features in the form of real-valued number vectors (also called
embeddings, or representation vectors). Representation learning aims at finding algorithms and
models that can extract such numeric features from arbitrary objects (images, texts, or graphs) in
an automated and reliable way. In terms of machine learning on graphs (GraphML), these models /
algorithms are called graph representation learning (GRL) methods. In recent years, GRL methods
have been successfully deployed in a wide variety of domains, including social networks, financial
networks, and computational chemistry [1-4].

This wide adoption of graph-based models led to the creation of publicly available implementations,
often in the form of frameworks or libraries with standardized APIs, which describe data formats,
model building blocks, and scalable parameter optimization techniques. First-choice solutions are
currently frameworks like PyTorch-Geometric (PyG) [5] or the Deep Graph Library (DGL) [6].
They include most of the existing graph neural networks and some traditional models, as well as
datasets, preprocessing transformations, and basic evaluation mechanisms. This simplifies both
production-ready model development and conducting GraphML research.

P. Bielak, T. Kajdanowicz, PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges
(Extended Abstract). Presented at the First Learning on Graphs Conference (LoG 2022), Virtual Event, December
9-12, 2022.

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

The implemented design choices allow solving any graph-related task (e.g., node classification, graph
regression). Nevertheless, the main focus in these libraries is on node- and graph-centric models and
tasks, whereas edge-based tasks are often limited to link prediction.

Present work. We aim to fill the gap for edge-centric GRL models and tasks. In this extended
abstract, we introduce PyTorch-Geometric Edge (PyGE), a deep learning library focused on
models for learning vector representations of graph edges. We build upon the PyTorch-Geometric
(PyG) library and provide implementations: (1) for edge-centric models, including simple baselines
and graph neural networks, (2) edge-based GNN layers, (3) datasets and corresponding preprocessing
functions (in a PyTorch- and PyG-compliant format), and (4) evaluation mechanisms for edge tasks.
PyGE should make edge representation learning more accessible for both researchers and industrial
applications, simultaneously accelerating the development of edge-centric methods, datasets and
benchmarks. Disclaimer: Please note that the introduced library is still under active development.
We provide a summary of our planned work in Section 4.

Contributions. We summarize our contributions as follows: (C1) We publicly release
PyTorch-Geometric Edge, the first deep learning library for edge representation learning —
https://github.com/pbielak/pytorch_geometric_edge. (C2) We implement a subset of
available edge-based models, graph neural network layers, datasets, and corresponding data transfor-
mations.

2 Preliminaries

We start by introducing definitions for basic concepts covered in our presented library and explore
the current state of node and edge embedding approaches, as well as GraphML software.

Graph. A graph G = (V, £) describes a set of nodes V that are connected (pairwise) by a set of
edges £ € V x V. An attributed graph G = (V, £, X, X°%¢) extends this definition by a set of node
attributes: X € RIVIXdwe and optionally also edge attributes: X4 ¢ RIEI*dedge

Edge representation learning. The goal is to find a function fj : £ — R% that maps an edge
€(u,v) € € into a low-dimensional (degee < dim(€)) vector representation (embedding) z,, that
preserves selected properties of the edge (e.g., features or local structural neighborhood information).

Edge-based tasks. Evaluation tasks for edge embeddings include: (1) link prediction — binary
classification problem of the existence (future appearance) of an edge; (2) edge classification —
label/type prediction of an existing edge (e.g., kind of social network relation); (3) edge regression —
prediction a numerical edge feature (e.g., bond strength in a molecule).

Node representation learning methods. Early approaches were built around the transductive
setting with an enormous trainable lookup-embedding matrix, whose rows denote representation
vectors for each node. The optimization process would preserve structural node information. For
instance, DeepWalk [7], and its successor Node2vec [8] use the Skipgram [9] objective to model
random walk-based co-occurrence probabilities. TADW [10] extended this approach to attributed
graphs and reformulated the model as a matrix factorization problem. Other early approaches include:
LINE [11], SDNE [12], or FSCNMF [13]. Recent methods are based on Graph Neural Networks
(GNNSs) — trainable functions that transform feature vectors of a node and its neighbors to a new
embedding vector (inductive setting). These functions can be stacked to create a deep (graph) neural
network. The most popular ideas include: a graph reformulation of the convolution operator (GCN
[14]), neighborhood sampling and aggregation of sampled features (GraphSAGE [15]), attention
mechanism over graph structure (GAT [16]) or modeling injective functions (GIN [17]).

Edge representation learning methods. This area is still underdeveloped, i.e., only a handful of
proposed models and algorithms exists. Most early approaches are node-based transformations,
i.e., the edge embedding z,, is computed from two node embeddings z,, and z,,. There are simple
non-trainable binary operators [8], such as the average (z,, = %), the Hadamard product
(Zuw = Zy * Z), or the weighted L1 (zyy, = |2y — 2y|) or L2 (Zyy, = |24 — Z,|?) operators.
NRIM [18] proposes trainable transformations as two kinds of neural network layers: node2edge

https://github.com/pbielak/pytorch_geometric_edge

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

Zuwo = fo([Zu, 20, X50])) and edge2node (z, = Jo (X venr(u) Zuvs Xu]))- Another group of

edge embedding methods directly learn the edge embeddings, i.e., without an intermediate node
embedding step. Line2vec [19] utilizes a line graph transformation (converting nodes into edges
and vice versa), applies a custom edge weighting method and runs Node2vec on the line graph.
The loss function extends the Skipgram loss with a so-called collective homophily loss (to ensure
closeness of neighboring edges in the embedding space). This method is inherently transductive (due
to Node2vec) and completely ignores any attributes. Those problems are addressed by AttrE2vec
[20]. It samples a fixed number of uniform random walks from two edge neighborhoods (N (u),
N (v)) and aggregates feature vectors of encountered edges (using average, exponential decaying, or
recurrent neural networks) into summary vectors S, S,, respectively. An MLP encoder network
with a self-attention-like mechanism transforms the summary vectors and the edge features into the
final edge embedding. AttrE2vec is trained using a contrastive cosine learning objective and a feature
reconstruction loss. PairE [21] utilizes two kinds of edge feature aggregations: (1) concatenated node
features (self features), (2) concatenation of averaged neighbor features for both nodes (agg features).
An MLP encoder with skip-connections transforms these two vectors into the edge embedding. Two
shallow decoders reconstruct the feature probability distribution. The resulting PairE autoencoder is
trained using the sum of the KL-divergences of the self and agg features. EHGNN [22] proposes a
so-called Dual Hypergraph Transformation (DHT) that inverts the role of nodes and edges — similarly
to the line graph transformation, but with a lower time complexity. DHT can be paired with any
existing node-based GNN approach to obtain the final edge embeddings. Other methods include:
EGNN [23], ConPI [24] or Edge2vec [25].

GraphML software. The backbone of all modern deep learning frameworks are tools for automatic
differentiation, such as: Tensorflow [26] or PyTorch [27]. GraphML libraries are mostly built upon
these tools, e.g., PyG uses PyTorch, GEM [28] and DynGEM [29] use Tensorflow, DGL can be
used both with Tensorflow and PyTorch, whereas some like KarateClub [30] are using a custom
backend. All of these libraries are focused on node- and graph-centric models. Our proposed
PyTorch-Geometric Edge library is the first one that focuses on edge-centric models and layers.
It adapts the PyG library API and uses PyTorch as its backend.

3 PyTorch-Geometric Edge

Relation to PyG. Our proposed PyGE library re-uses the API and data format implemented in
PyTorch-Geometric. The graph is stored as a Data() object with edges in form of a sparse COO
matrix (edge_index). Other fields include: x (node attributes), edge_attr (edge attributes), y
(node/edge labels). We also keep a similar layout of the library package structure, i.e., we have a
module for datasets, models, neural network layers (nn), data transformations (transforms) and
data samplers (samplers). The forward () method in all implemented models/layers accepts two
parameters: x (node or edge features) and edge_index (adjacency matrix). Hence, the implemented
models/layers can be integrated with other PyG models/layers and vice versa (we show that in the
examples/ folder in the repository). The same applies for the datasets.

3.1 Current state of implementation

We now show the current state of the library and what is already implemented. Please refer to Section
4 where we explain our future plans.

Datasets. We currently include 5 datasets (Cora, PubMed, KarateClub, Dolphin and Cuneiform)
that were originally used in the papers of the implemented methods. We summarize their statistic
in Table 1. Note most of them also require preprocessing steps (see: AttrE2vec [20] for details) for
the edge classification evaluation — we implement appropriate data transformations. Moreover, we
add cybersecurity-based datasets — UNSW-NB15 in four different versions. These datasets can be
directly used for edge classification. We create different versions of this dataset by using: (1) different
definitions of nodes (either just the IP address — yielding 49 different nodes, or using a combination
of both the IP address and the port — about 1.1M nodes); (2) different class labels (either binary
classification: attack/normal traffic — two classes, or using a more fine-grained attack definition — 14
classes). The number of edges corresponds to the number of connections — about 2.5M. Note that the
number of features is higher than the one reported in the original paper [31] (49 features) — for the

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

categorical ones, like protocol, state or serivce, we already applied a one-hot encoding (yielding 202
or 204 features in total).

Table 1: Summary of included datasets. The % symbol denotes the number of edge classes after
applying an appropriate data transformation.

Name [V |€] dnode dedge classes
KarateClub [32] 34 156 - - 4*
Dolphin [33] 62 318 - - 5*
Cora [34] 2708 10556 1433 - 8*
PubMed [35] 19717 88 648 500 - 4*
Cuneiform [36] 5 680 23922 3 2 2
UNSW-NB15 (IP) [31] 49 2539739 - 204 2/14
UNSW-NB15 (IP-Port) [31] 1112275 2539739 - 202 2/14

Models and layers. We implement most of the edge representation learning methods discussed
in Section 2 into our proposed PyGE library (see: Table 2). Nevertheless, more of them will be
implemented in future versions.

Table 2: Models and layers implemented in PyGE.

Method Type Inductive Attributed Characteristics

Node pair op [8] layer X non-trainable
node2edge [18] layer trainable

Line2vec [19] model X X line graph, random-walk
AttrE2vec [20] model contrastive, AE, random-walk
PairE [21] model AE, KL-div
EHGNN [22] framework time efficient, hypergraph

Embedding evaluation. We implement a ready-to-use edge classification evaluator class, which
takes edge embeddings and edge labels, applies a logistic regression classifier and returns typical
classification metrics, like ROC-AUC, F1 or accuracy. This is a widely adopted technique in
unsupervised learning, called the linear evaluation protocol [37].

Example usage. In the repository, we provide an end-to-end script showing the usage of a given
model/layer. Every script: (1) loads a dataset and applies the required data transformations (prepro-
cessing), (2) prepares the data split of edges into train and test sets, (3) builds a model, (4) trains the
model for a certain amount of epochs, (5) evaluates the learned edge embeddings. We provide also an
example script in this extended abstract — see Section A.

3.2 Maintenance

An open-source library requires continuous maintenance. We host our code base at GitHub, which
allows to track all development progress and user-generated issues. We will build library releases and
announce them on GitHub and host them later on the Python Package Index (PyPI) to allow users
to simply run a pip install torch-geometric-edge command to install our library. We use
the MIT license to give potential users, researchers, and industrial adopters a good user experience
without worrying about the rights to use or modify our code base. Another aspect of software
development and maintenance is Continuous Integration. We use the GitHub Actions module to
automatically execute code quality checks and unit tests with every pull request to our library. This
prevents that a change will break existing functionality or lower our assumed code quality.

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

4 Summary and roadmap

In this extended abstract, we presented an initial version of PyTorch-Geometric Edge, the first
deep learning library that focuses on representation learning for graph edges. We provided information
about currently implemented models/layers and datasets. Our roadmap is extensive and includes: (I)
preparation of a complete documentation (right now: we rely on code quality checks and example
scripts on how to use particular models/layers), (II) addition of more datasets (e.g., Enron Email
Dataset', FF-TW-YT?, among others), (IIT) implementation of other mentioned edge-centric models
(and a continuous extension of the literature review to find new methods), (IV) we want to add
more edge evaluation schemes, (V) in the full paper, we want to include an extensive benchmark
of all implemented models and compare them in different downstream tasks; moreover we want to
provide the entire reproducible experimental pipeline and pretrained models. With such an amount of
incoming work, we want to encourage readers interested in edge representation learning to contact
the authors and contribute to our library. We are convinced that edge representation learning can be
widely adopted in networked tasks, like message classification in social networks, connection/attack
classification in cybersecurity applications, to name only a few.

References

[1] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, Jure Leskovec, Regina Barzilay, Peter Battaglia, Yoshua Bengio, Michael Bronstein,
Stephan Giinnemann, Will Hamilton, Tommi Jaakkola, Stefanie Jegelka, Maximilian Nickel,
Chris Re, Le Song, Jian Tang, Max Welling, and Rich Zemel. Open graph benchmark: Datasets
for machine learning on graphs, may 2020. URL http://arxiv.org/abs/2005.00687. 1

[2] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network Representation Learning:
A Survey. IEEE Transactions on Big Data, 6(1):3-28,2018. doi: 10.1109/tbdata.2018.2850013.

[3] Bentian Li and Dechang Pi. Network representation learning: a systematic literature review.
Neural Computing and Applications, 32(21):16647-16679, nov 2020. ISSN 0941-0643. doi:
10.1007/s00521-020-04908-5.

[4] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
Learning on Graphs: A Model and Comprehensive Taxonomy, 2020. URL http://arxiv.
org/abs/2005.03675. 1

[5] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 1

[6] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019. 1

[7] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social
Representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD 14, pages 701-710, New York, New York,
USA, 2014. ACM Press. ISBN 9781450329569. doi: 10.1145/2623330.2623732. URL
http://dl.acm.org/citation.cfm?doid=2623330.2623732. 2

[8] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, volume 13-17-Augu, pages 855-864, 2016. ISBN 9781450342322. doi: 10.1145/
2939672.2939754. 2, 4

[9] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
pages 3111-3119, USA, 2013. Curran Associates Inc. URL http://dl.acm.org/citation.
cfm?i1d=2999792.2999959. 2

"https://www.cs.cmu.edu/~enron/
’http://multilayer.it.uu.se/datasets.html

http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.03675
http://arxiv.org/abs/2005.03675
http://dl.acm.org/citation.cfm?doid=2623330.2623732
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://www.cs.cmu.edu/~enron/
http://multilayer.it.uu.se/datasets.html

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

[10] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. Network rep-
resentation learning with rich text information. In Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAI’ 15, pages 2111-2117. AAAI Press, 2015. ISBN
978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?id=2832415.2832542. 2

[11] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-
scale information network embedding. In WWW 2015 - Proceedings of the 24th International
Conference on World Wide Web, pages 1067-1077, 2015. ISBN 9781450334693. doi: 10.1145/
2736277.2741093. 2

[12] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, volume
13-17-Augu, pages 1225-1234, 2016. ISBN 9781450342322. doi: 10.1145/2939672.2939753.
2

[13] Sambaran Bandyopadhyay, Harsh Kara, Aswin Kannan, and M N Murty. FSCNMF: Fusing
structure and content via non-negative matrix factorization for embedding information networks,
2018. 2

[14] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017. 2

[15] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NIPS, pages 1024-1034, 2017. 2

[16] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018. 2

[17] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826. 2

[18] Thomas Kipf, Ethan Fetaya, Kuan Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for Interacting systems. In 35th International Conference on Machine
Learning, ICML 2018, volume 6, pages 4209-4225, 2018. ISBN 9781510867963. 2, 4

[19] Sambaran Bandyopadhyay, Anirban Biswas, Narasimha Murty, and Ramasuri Narayanam. Be-
yond node embedding: A direct unsupervised edge representation framework for homogeneous
networks, 2019. 3, 4

[20] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. Attre2vec: Unsupervised attributed
edge representation learning. Information Sciences, 592:82-96, 2022. ISSN 0020-0255.
doi: https://doi.org/10.1016/j.ins.2022.01.048. URL https://www.sciencedirect.com/
science/article/pii/S0020025522000779. 3, 4

[21] You Li, Bei Lin, Binli Luo, and Ning Gui. Graph representation learning beyond node and
homophily. IEEE Transactions on Knowledge and Data Engineering, pages 1-1, 2022. doi:
10.1109/tkde.2022.3146270. URL https://doi.org/10.1109%2Ftkde.2022.3146270. 3,
4

[22] Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju Hwang. Edge
representation learning with hypergraphs. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurlPS
2021, December 6-14, 2021, virtual, pages 7534-7546, 2021. 3, 4

[23] Liyu Gong and Qiang Cheng. Adaptive edge features guided graph attention networks. CoRR,
abs/1809.02709, 2018. URL http://arxiv.org/abs/1809.02709. 3

[24] Zhen Wang, Bo Zong, and Huan Sun. Modeling context pair interaction for pairwise tasks on
graphs. In Proceedings of the 14th ACM International Conference on Web Search and Data
Mining, WSDM °21, page 851-859, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450382977. doi: 10.1145/3437963.3441744. URL https://doi.org/
10.1145/3437963.3441744. 3

[25] Changping Wang, Chaokun Wang, Zheng Wang, Xiaojun Ye, and Philip S. Yu. Edge2vec:
Edge-based social network embedding. ACM Trans. Knowl. Discov. Data, 14(4), may 2020.
ISSN 1556-4681. doi: 10.1145/3391298. URL https://doi.org/10.1145/3391298. 3

[26] TensorFlow Developers. Tensorflow, May 2022. URL https://doi.org/10.5281/
zenodo.6574269. Specific TensorFlow versions can be found in the "Versions"

http://dl.acm.org/citation.cfm?id=2832415.2832542
http://arxiv.org/abs/1810.00826
https://www.sciencedirect.com/science/article/pii/S0020025522000779
https://www.sciencedirect.com/science/article/pii/S0020025522000779
https://doi.org/10.1109%2Ftkde.2022.3146270
http://arxiv.org/abs/1809.02709
https://doi.org/10.1145/3437963.3441744
https://doi.org/10.1145/3437963.3441744
https://doi.org/10.1145/3391298
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.5281/zenodo.6574269

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

list on the right side of this page.
See the full list of authors <a href="htt
ps://github.com/tensorflow/tensorflow/graphs/contr ibutors">on GitHub. 3

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf. 3

[28] Palash Goyal and Emilio Ferrara. Gem: A python package for graph embedding methods.
Journal of Open Source Software, 3(29):876. 3

[29] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for
dynamic graphs. CoRR, abs/1805.11273, 2018. 3

[30] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-
source Python Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th
ACM International Conference on Information and Knowledge Management (CIKM ’20), page
3125-3132. ACM, 2020. 3

[31] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detec-
tion systems (unsw-nb15 network data set). In 2015 Military Communications and Information
Systems Conference (MilCIS), pages 1-6, 2015. doi: 10.1109/MilCIS.2015.7348942. 3, 4

[32] Wayne W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33(4):452-473, 1977. ISSN 00917710. URL http:
//www.jstor.org/stable/3629752. 4

[33] D Lusseau, K Schneider, O J Boisseau, P Haase, E Slooten, and S M Dawson. The bottlenose
dolphin community of doubtful sound features a large proportion of long-lasting associations -
can geographic isolation explain this unique trait? Behavioral Ecology and Sociobiology, 54:
396-405, 2003. ISSN 0340-5443. doi: 10.1007/s00265-003-0651-y. 4

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. Al Magazine, 29(3):93, Sep. 2008.
doi: 10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2157. 4

[35] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven Active Surveying
for Collective Classification. In Proceedings ofthe Workshop on Mining and Learn- ing with
Graphs, pages 1-8, Edinburgh, Scotland, UK., 2012. 4

[36] Nils M. Kriege, Matthias Fey, Denis Fisseler, Petra Mutzel, and Frank Weichert. Recognizing
cuneiform signs using graph based methods. CoRR, abs/1802.05908, 2018. URL http:
//arxiv.org/abs/1802.05908. 4

[37] Petar Velickovié, William Fedus, William L. Hamilton, Pietro Lid, Yoshua Bengio, and R Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rkl1z9iAcKQ. 4

A Example 1: PairE model

Let’s explore how to use PyGE in practice. We will be using the PairE model to classify the citation
type between academic papers (citation within a research area or cross citation; if the same research
area, then which one). We start by loading the Cora dataset and extracting the target edge labels using
our implemented MatchingNodeLabelsTransform() (if two node labels match, use this label, else
use special label —1):

from torch_geometric_edge.datasets import Cora
from torch_geometric_edge.transforms import MatchingNodeLabelsTransform

data = Cora("/tmp/pyge/", transform=MatchingNodeLabelsTransform()) [0]

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.jstor.org/stable/3629752
http://www.jstor.org/stable/3629752
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
http://arxiv.org/abs/1802.05908
http://arxiv.org/abs/1802.05908
https://openreview.net/forum?id=rklz9iAcKQ

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

Next, we split the edges into train and test sets:

import torch
from sklearn.model_selection import train_test_split

train_mask, test_mask = train_test_split(
torch.arange(data.num_edges),
stratify=data.y,
test_size=0.8,

)
Now, let’s create the PairE model:

from torch_geometric_edge.models import PairE

model = PairE(
num_nodes=data.num_nodes,
node_feature_dim=data.num_node_features,
emb_dim=128,

)

We can train our model using standard PyTorch training-loop boilerplate code. Note, that we only
use training edges (data.edge_index[:, train_mask]).

optimizer = torch.optim.AdamW (model.parameters(), lr=1e-3)

model.train()
for _ in range(100):

optimizer.zero_grad()

x_self, x_aggr = model.extract_self_aggr(data.x, data.edge_index[:, train_mask])
h_edge = model(data.x, data.edge_index[:, train_mask])
x_self_rec, x_aggr_rec = model.decode(h_edge)

loss = model.loss(x_self, x_aggr, x_self_rec, x_aggr_rec)

loss.backward()
optimizer.step()

Finally, we can evaluate our model’s edge embedding in the edge classification task using the
LogisticRegressionEvaluator. The returned metrics will be prefixed to indicate the train/test
split. Note that we use now all edges during inference:

from torch_geometric_edge.evaluation import LogisticRegressionEvaluator

model.eval()
with torch.no_grad():
Z = model(data.x, data.edge_index)

metrics = LogisticRegressionEvaluator(["auc"]) .evaluate(
7Z=Z,
Y=data.y,
train_mask=train_mask,
test_mask=test_mask,
)

print(metrics)

B Example 2: Node2Edge, Edge2Node layers

Let’s explore another PyGE example code. We will be using the Node2Edge and Edge2Node layers
to classify network traffic. We start by loading the UNSW-NB15 dataset:

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

from torch_geometric_edge.datasets import UNSW_NB15
data = UNSW_NB15(version="ip/multi", root="/tmp/pyge/") [0]
Next, we split edge into train and test sets:

import torch
from sklearn.model_selection import train_test_split

train_mask, test_mask = train_test_split(
torch.arange(data.num_edges),
stratify=data.y,
test_size=0.8,

Now, we build a supervised model using the Node2Edge and Edge2Node layers:

from torch import nn
from torch_geometric_edge.nn import Edge2Node, Node2Edge

class Model (nn.Module) :

def __init__(self, num_nodes: int, edge_dim: int, num_classes: int):
super().__init__Q)
self.e2n = Edge2Node(
num_nodes=num_nodes,
node_dim=0,
edge_dim=edge_dim,
out_dim=128,
)
self.n2e = Node2Edge (
node_dim=128,
edge_dim=edge_dim,
out_dim=num_classes,
net=nn.Sequential(
nn.Linear(2 * 128 + edge_dim, 128),
nn.RelLU(Q),
nn.Linear (128, num_classes),
nn.LogSoftmax (dim=-1),
)3
)

def forward(
self,
edge_attr: torch.Tensor,
edge_index: torch.Tensor,
) -> torch.Tensor:
h = self.e2n(edge_attr=edge_attr, edge_index=edge_index)
y_pred = self.n2e(x=h, edge_attr=edge_attr, edge_index=edge_index)

return y_pred

model = Model(
num_nodes=data.num_nodes,
edge_dim=data.num_edge_features,
num_classes=data.y.unique() .shape[0],

PyTorch-Geometric Edge — a Library for Learning Representations of Graph Edges

Similarly to the previous example we build the train loop (using standard PyTorch boilerplate code)
and evaluate our classifier:

from sklearn.metrics import roc_auc_score
from torch.nn import functiomnal as F

optimizer = torch.optim.AdamW (model.parameters(), lr=1e-3)

for _ in range(5):
Train
model.train()
optimizer.zero_grad()

y_pred = model(data.edge_attr[train_mask], data.edge_index[:, train_mask])
y_true = data.y[train_mask]

loss = F.nll_loss(input=y_pred, target=y_true)
print (loss)

loss.backward()
optimizer.step()

Evaluate

model.eval()

with torch.no_grad():
y_score = model(data.edge_attr[test_mask], data.edge_index[:, test_mask]).exp()
y_true = data.y[test_mask]

test_auc = roc_auc_score(y_true=y_true, y_score=y_score, multi_class="ovr"
print("Test AUC:", test_auc)

10

	1 Introduction
	2 Preliminaries
	3 PyTorch-Geometric Edge
	3.1 Current state of implementation
	3.2 Maintenance

	4 Summary and roadmap
	A Example 1: PairE model
	B Example 2: Node2Edge, Edge2Node layers

