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ABSTRACT

Large Language Models (LLMs) should ideally generate diverse content for open-
ended prompts. Preliminary evidence has suggested that preference-tuned lan-
guage models struggle to generate diverse content, which would have important
implications for how we align models. However, research on this question has
been limited by the difficulty of measuring diversity, which naïvely would require
costly human evaluation. We propose to leverage code as a means to study se-
mantic diversity since code has executable semantics. To this end, we create an
open-ended program synthesis task, enabling us to cheaply evaluate the diversity
of hundreds of thousands of generations. Using our methodology, we find that
while preference-tuning reduces syntactic and lexical diversity, it can increase se-
mantic diversity. We also study the effect of model size and prompting technique
on diversity. Finally, we find that neural diversity metrics correlate poorly with our
semantic diversity metrics, highlighting the need for more rigorous methodologies
for evaluating diversity.

1 INTRODUCTION

As large language models (LLMs) become powerful at a wide variety of tasks (Zhao et al., 2024;
Zheng et al., 2024), it is important to evaluate the diversity of their generations, not just their ac-
curacy. Many real-world tasks are open-ended to some degree with many possible answers—e.g.,
crafting convincing essays, suggesting cooking recipes, writing unit tests, etc. Evaluating diversity
can also provide insights into the nature of language models, especially their creative capabilities.
Additionally, diversity is of paramount importance to the exploration component of algorithms such
as Reinforcement Learning from Human Feedback (RLHF).

One of the key research questions explores how different kinds of instruction tuning impact diversity.
In particular, recent work has demonstrated that RLHF may reduce diversity in summarization with
small ALPACAFARM models (Kirk et al., 2023) and in joke generation with CHATGPT (Jentzsch
& Kersting, 2023). Furthermore, it has been hypothesized that RLHF induces “mode collapse” on
a broader scale (Kirk et al., 2023; janus, 2022). These results may impact decisions about which
algorithms to use for instruction tuning.

However, defining diversity is a key challenge in addressing this and related questions. Linguistics
distinguishes between content (or semantics)—the meaning of an utterance—and form, which refers
to how that meaning is conveyed. Diversity of form can be measured automatically using lexical
metrics, such as n-gram diversity (Li et al., 2016).

Unfortunately, measuring the diversity of content/semantics is challenging since it typically requires
human evaluation, which can be prohibitively expensive to scale and highly subjective from one
individual to another. One strategy is using neural models as proxies for human evaluation; however,
recent work has shown that neural methods are inferior to human evaluation (Tevet & Berant, 2021).

In this work, we propose to address this challenge by evaluating diversity in the task of open-ended
program generation. Since programs have well-defined, executable semantics, we can automatically
evaluate semantic diversity reliably. In particular, we can define three separate forms of diversity for
a given program (and a fixed set of test cases): its lexical form is reflected by the sequence of tokens
in a program, its syntactic form is reflected by the Abstract Syntax Tree, and its semantics is reflected
by the outputs for given test case inputs. Correspondingly, we can measure lexical diversity using
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## Semantically Equivalent: True
## Lexical Diversity: 83.95%
## Syntactic Diversity (Height=4): 100.00%

def f(N: int, T: List[int]):
print(sum(T))

def f(N: int, T):
total = 0
for num in T:

total += num
print(total)

Figure 1: Left: Diversity metrics when modulating the Temperature parameter for LLAMA3-
INSTRUCT 70B. Metrics measuring lexical or syntactic diversity increase with temperature, even as
high-temperature outputs become incoherent. Right: Two Python programs generated by CODEL-
LAMA 7B with different implementations, demonstrating high syntactic diversity and significant
lexical diversity despite being semantically equivalent in our dataset.

.

metrics such as n-gram bag of words, syntactic diversity using extensions of n-grams to trees, and
semantic diversity by comparing executed program outputs. Crucially, evaluating semantic diversity
is objective and involves executing generated programs, enabling us to scale diversity evaluation
to hundreds of thousands of generations from various configurations and prompts. In Figure 1 we
demonstrate how our execution-based semantic diversity captures the phenomenon of a “sweet-
spot" for sampling with temperature: as temperature increases, generations become more diverse.
Until eventually at high temperatures they become degenerate and incoherent. This behavior is not
captured by standard lexical and syntactic diversity metrics.

To implement this strategy, we create a dataset of open-ended program synthesis tasks and evaluate
the impact of different instruction tuning techniques on different kinds of diversity using this dataset.
In particular, we consider models that are instruction-tuned using both supervised fine-tuning (SFT)
and preference-tuning techniques (i.e., combinations of PPO, DPO, and Rejection Sampling). We
find that, in general, compared to base models, instruction tuning reduces the lexical and syntactic
diversity of generations while increasing their semantic diversity; this effect is especially pronounced
in preference-tuned models but persists for SFT models. In addition, we find that neural diversity
metrics are a poor proxy for the actual execution semantics of generated programs, highlighting the
importance of rigorously measuring semantic diversity. Finally, we analyze the impact of model size
and prompting techniques on diversity.

In summary, our contributions are as follows:

• A novel methodology and dataset for evaluating diversity by focusing on programs where se-
mantics can be disentangled from syntactic and lexical forms.

• Empirical results validating that our semantic diversity metric is not captured by neural, lexical,
or syntactic diversity metrics.

• Empirical results assessing the impact of different instruction-tuning strategies on semantic, lex-
ical, and syntactic diversity. In particular, we find that instruction tuning reduces the lexical
and syntactic diversity of generations but increases the semantic diversity of generations, which
paints a more nuanced picture than prior work.

2 BACKGROUND, RELATED WORK, AND MOTIVATION

LLMs and Instruction Tuning Methods. Neural language models (Bengio et al., 2000; Radford
et al., 2019) are remarkably powerful, and some of the earlier efforts to align them with instruction-
following relied on few-shot prompting (Brown, 2020). Later, RLHF using Proximal Policy Op-
timization (PPO) (Schulman et al., 2017; Stiennon et al., 2020) was shown to be highly effective
in aligning LLMs with human preference (Ouyang et al., 2022). Subsequently, numerous alterna-
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tive methods to PPO have been proposed, such as Direct Preference Optimization (DPO) (Rafailov
et al., 2024) and Rejection Sampling (Touvron et al., 2023), which need not be mutually exclusive.
Additionally, language models have shown significant promise in programming tasks and software
engineering (Chen et al., 2021; Roziere et al., 2023).

Evaluating Language Models for Code. Evaluating the code generation abilities of neural models
has roots in the semantic parsing literature (Oda et al., 2015; Yin et al., 2018), which relied on
n-gram similarity metrics like BLEU (Papineni et al., 2002). Numerous executable programming
benchmarks have been proposed, especially given that n-gram similarity does not imply correctness
(Hendrycks et al., 2021; Chen et al., 2021; Puri et al., 2021; Li et al., 2022). However, diversity has
not been a major consideration in the context of programming tasks.

Approaches to Measuring Diversity. Traditional methods for automatically measuring diversity
fall into lexical or neural approaches. Lexical metrics generally involve calculating summary statis-
tics using n-grams, such as Distinct-N (Li et al., 2016; Du & Black, 2019) and Self-BLEU (a
modified BLEU metric) (Zhu et al., 2018). More recently, deep learning has been used to model
the similarity of natural language sentences (Zhang et al., 2019; Reimers & Gurevych, 2019; Nee-
lakantan et al., 2022) and code (Feng et al., 2020; Zhou et al., 2023; Guo et al., 2022; Liu et al.,
2023; Zhuo, 2024). These techniques have been adapted to measuring diversity in natural language
(Lai et al., 2020; Tevet & Berant, 2021; Stasaski & Hearst, 2022), but not in code. Tevet & Berant
(2021) compare lexical and neural models, demonstrating that while neural metrics outperform lex-
ical ones, they still fall short of human performance. Shaib et al. (2024) show that lexical diversity
often captures the same information as traditional compression algorithms and recommend reporting
a combination of lexical and neural diversity scores for a more comprehensive evaluation.

Diversity of LLM Content. Empirical work evaluating the diversity and creativity of LLM genera-
tions is relatively sparse. McCoy et al. (2023) investigate whether smaller language models exhibit
linguistic novelty by evaluating combinations of n-grams not present in the training corpus. With
the advent of more capable LLMs, it has been argued that models such as CHATGPT are incapable
of generating diverse jokes Jentzsch & Kersting (2023). Additionally, Kirk et al. (2023) contend that
RLHF induces “mode collapse", using both lexical and neural metrics to measure the diversity of
summarized content. Furthermore, (Padmakumar & He, 2023) show that human-written essays as-
sisted by an RLHF-tuned model are less diverse than those assisted by a base model when assessed
using neurodiversity measures.

The dominant narrative in this body of research suggests that preference-tuned LLMs reduce diver-
sity. This is problematic because diversity is paramount for reinforcement learning (RL) and pref-
erence tuning, as exploration is necessary to improve any RL system (Sutton & Barto, 2018). Ad-
ditionally, useful assistants should be capable of producing diverse outputs in open-ended domains,
ranging from brainstorming and creative writing to software testing, drafting website front-ends,
mining data for insights, and scientific discovery. Diversity is also critical in addressing ambigu-
ity, such as when responding to a question like “How can I add new functionality to my code?"
These use cases are not captured by programming benchmarks that typically assume a single cor-
rect answer. The empirical question of diversity in LLM-generated content is crucial for building
better RL-inspired systems and creating agents capable of handling real-world, open-ended tasks.
However, current benchmarks fail to reflect this. Our best methods for automatically measuring the
diversity of newer and more powerful LLMs still rely on n-gram-based metrics or on smaller and
weaker neural models to evaluate stronger ones.

3 DIVERSITY EVALUATION METHODOLOGY

We describe our methodology for evaluating diversity. First, we create a dataset of problem de-
scriptions, D = {xi}ni=1, where each problem is designed to prompt a given LLM to generate a
diverse set of programs. All programs must be executable in a standard way; we provide a detailed
description of our dataset below. Next, we use the following approach to evaluate a given gener-
ative model, f(y | x). For each problem description xi in our dataset, we generate K programs,
Pi = {p1i , p2i , ..., pKi } ∼i.i.d. f(· | xi). We then calculate a diversity score, Divm(Pi), where m
denotes the diversity metric used (see Section 4 for the metrics we employ). Finally, we compute
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Input Description:
• Multiple datasets.
• Each dataset consists of four real numbers:

a, b, c, d.
• There are no more than 30 datasets.

Example Input:
35.68 139.77 51.15 359.82
01.37 103.92 41.78 272.25
51.15 359.82 -34.58 301.52

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Function Signature:
Write a function f(inputs) that processes the list of tuples where each tuple contains four
real numbers.

from typing import List, Tuple
def f(inputs: List[Tuple[float, float, float, float]]):

'''
inputs: a list of tuples, where each tuple contains four real

numbers↪→
'''

Figure 2: An example of an open-ended problem description from our dataset.

the average diversity across the entire dataset:

AvgDivm =
1

N

N∑
i=1

Divm(Pi). (1)

One key challenge is ensuring that our diversity metrics are invariant to the number of samples.
When analyzing diversity among only well-formed and syntactically correct programs (see “Coher-
ence” in Section 4), the number of samples can vary across instances. In such cases, a naïve strategy,
such as calculating the proportion of semantically unique generations divided by the sample size,
can lead to incorrect conclusions if sample size is not properly accounted for. Figure 3 illustrates
this effect: using the naïve strategy (left), smaller samples yield significantly higher diversity scores
than larger ones. To address this issue, we adopt a technique from Tevet & Berant (2021) to ensure
invariance to sample size. Let (p1, p2) be two input programs, and let mdist ∈ R be a measure
of distinctness or diversity. The diversity score for model f on a problem description xi is then
computed as the average over all unordered pairs in the multiset Pi of LLM generations:

Divm(Pi) =
1(|Pi|
2

) ∑
pj ,pk∈Pi,j>k

mdist(pj , pk). (2)

Although this metric was initially motivated by other considerations, we find that it effectively ad-
dresses our sample size issue. In Appendix A.4, we prove that the metric does not depend on the
sample size n when n is sufficientlylarge.

Dataset and execution environment. Several desiderata guide the creation of our dataset of prob-
lem descriptions. First, while the tasks should be open-ended, they must also be standardized enough
to allow execution using consistent test cases and to enable comparison of outputs. Additionally, the
tasks should be simple enough for both pre-trained and instruction-tuned models of varying sizes to
generally solve.

We constructed our dataset by manually adapting competitive programming-style problems into ab-
stracted programming tasks. In Figure 2, we show an example problem description from our dataset.
For each problem description in our dataset, we provide an “Input Description” in natural language
specifying the input format, an “Example Input” demonstrating potential inputs the function would
handle, and a “Function Signature” providing a concrete specification of the function name and typ-
ing hints for the inputs. Importantly, we aggressively abstracted all program descriptions, removing
any direct reference to the programming task in the description, standardizing the function name to
f(...), and using generic argument names.

We used competitive programming problems from CODENET (Puri et al., 2021) and accompany-
ing test cases from ALPHACODE (Li et al., 2022) as a starting point for our dataset. Specifically,
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Pairwise Semantic Diversity

Llama3-70B-Instruct (Zero-Shot)
CodeLlama-70B-Instruct (Zero-Shot)

Llama3-70B-Base (Two-Shot)
CodeLlama-70B-Base (Two-Shot)

Figure 3: Sample size confounds naïve diversity metrics: For each sample size S on the x-axis,
we randomly sample S programs and compute both a naïve diversity metric (left) and the pairwise
diversity metric (right) and plot the mean and standard deviation across 500 random seeds.

we selected 21 competitive programming problems from CODENET and we abstracted problem de-
scriptions into a canonicalized and open-ended format. Further details about the test set, its creation,
and our execution environment are provided in Appendix A.1.

Prompt selection. The choice of prompt can significantly affect generation. Furthermore, LLMs
that are not fine-tuned for instruction-following may struggle to generate any coherent programs
without prompts that provide examples (Brown, 2020) or elicit chain-of-thought reasoning (Wei
et al., 2022). To address this, we created three separate prompt templates: a zero-shot prompt, a
two-shot prompt, and a two-shot prompt with chain-of-thought reasoning. This design allows us
to probe generation behavior across a variety of settings. The few-shot examples included in the
prompts were simple, manually written examples shared across all problems in the dataset. We
provide the examples in Appendix A.6

4 DIVERSITY METRICS

Next, we describe the metrics used to measure diversity, focusing specifically on our choice of
pairwise distance mdist(pj , pk).

Semantic diversity. We define two programs as semantically distinct if their outputs differ across a
given set of test cases: 1(O(pj) ̸= O(pk)), where O(p) denotes the vector of outputs obtained by
executing the test cases on program p. If the execution of p results in an error for a particular test
case, the test case output is recorded as the error. We allow two programs to be considered incorrect
in different ways—for example, a syntactic error and a type error are treated as distinct. Note
that if the generated programs fail to implement the function f(...) entirely, this metric penalizes
diversity, as such generations are all incorrect in the same way. In Appendix A.3, we analyze
semantic diversity among only the subset of well-formed programs, using Equation (2) to reduce
bias.

Lexical diversity. We use Expectation-Adjusted Distinct n-grams (EAD), an adaptation of the
Distinct-N metric that removes bias towards shorter sequence length (Liu et al., 2022; Kirk et al.,
2023). The Distinct-N metric (Li et al., 2016; Du & Black, 2019) computes the ratio between the
number of unique n-grams divided by the total number of n-grams; in our case, we apply this to the
combined text of the two generated programs. We tokenize programs using the Parso Tokenizer,1
which allows tokenization of Python in the presence of syntax errors. We report EAD using n-

1https://github.com/davidhalter/parso
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grams of length n=4. For our lexical and syntactic diversity metrics, we approximate Equation (2)
by randomly sampling 300 pairs with replacement for efficiency.

Syntactic diversity. We adapt the Distinct-N metric to the Abstract Syntax Tree (AST) of each
generated program. To further isolate the syntactic structure of a program (e.g., for-loop instead of
recursion) from superficial choices (e.g., variable names), we canonicalize all identifiers and numeric
constants in the AST, which we call the Canonicalized AST. We implement the Distinct measure
on Canonicalized ASTs for two programs by calculating the ratio of the number of unique subtrees
of height H across both programs to the total number of subtrees of height H in both programs,
where H=4. In Appendix A.5, we provide a figure visually demonstrating a Canoncalized AST for
a small Python expression and additional implementation details.

Neural diversity. We adapt existing methods of neural diversity metrics (Tevet & Berant, 2021) to
our domain by using CODEBERTSCORE (Zhou et al., 2023) and ICE-SCORE, an LLM-based code-
evaluation tool (Zhuo, 2024). For ICE-SCORE, we use gpt-4o-2024-11-20 and the functional
correctness setting. Since higher scores should indicate higher similarity, we use 1− Score(pj , pk)
for distinctness. While CODEBERTSCORE and ICE-SCORE were not intended for evaluating pro-
gram diversity, we choose them since it either closely resemble models used in the NLP literature to
evaluate semantic diversity (Tevet & Berant, 2021) or are state-of-the-art in neural code evaluation.

In our analysis, we report this number as the semantic diversity in the context of all samples taken: if
a generation does not contain a program, we penalize the model as it does not produce semantically
meaningful content.

Coherence. We additionally report a metric that measures the “quality” of generations. We use the
term “coherence” to describe a well-formed generation with the following properties: (i) contains
the definition of the function f(...), (ii) has no syntax errors, (iii) is capable of being run on all test
cases without runtime errors, and (iv) prints out any output (as requested by the prompt).

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

Models. For open models, we use LLAMA-3, LLAMA3.1 (Dubey et al., 2024), CODE-
LLAMA (Roziere et al., 2023), and QWEN-CODER-2.5 (Hui et al., 2024). A key benefit is that
each one is instruction-tuned with different strategies—i.e., LLAMA-3 with a mix of PPO, DPO,
Rejection Sampling, and SFT, LLAMA3.1 with a mix of DPO, Rejection Sampling, and SFT,
QWEN-CODER-2.5 with DPO, and CODE-LLAMA with SFT only.2 In addition to publicly available
model checkpoints, we also created SFT-finetuned checkpoints for CODE-LLAMA, LLAMA-3, and
LLAMA3.1 using MAGICODER’s OSS-Instruct Instruction-Tuning Dataset (Wei et al., 2024). We
fine-tune for two epochs with a learning rate of 3e-6, batch size of 32, a cosine learning-rate sched-
uler, and 300 warmup steps. For commercial models, we use babbage-002, davinci-002,
gpt-3.5-turbo-0125, gpt-3.5-turbo-instruct, and gpt-4o-mini from OpenAI
and SONNET 3 and HAIKU 3 from Anthropic.

Sampling. For each problem description xi in our dataset, we generate K = 100 programs, yielding
2,100 total programs sampled for each model × prompt pair experiment. For all Open Models,
we used HuggingFace’s text-generation-inference3 on servers with 8 x NVIDIA RTX
A6000 GPUs. For ANTHROPIC Models, we use the Amazon Bedrock API, and for OPENAI models,
we use the OpenAI API. For all models, outside of Figure 1, we set the temperature to 1.0 without
nucleus sampling.

Statistical tests. In Section 5.2, we evaluate the correlation between pairs of diversity metrics m1

and m2; to summarize these results, we report the Spearman and Kendall’s Tau Rank Correlation
coefficients of the values Divm1

(Pi) and Divm2
(Pi) aggregated across all sets of generations Pi

over all problem descriptions and all models.

2We tried to use models from ALPACAFARM (Dubois et al., 2024) given their clear documentation on
instruction-tuning techniques used; however, they were incapable of generating coherent programs.

3https://github.com/huggingface/text-generation-inference
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Figure 4: Correlation between diversity metrics: We analyzed the correlation of our diversity
metrics across many experiments. We report the Spearman Rank Correlation and Kendall’s Tau
Rank Correlation Coefficients.

In subsequent experiments, we aim to determine if one kind of model increases or decreases diversity
compared to another (e.g., instruction tuned or not). To summarize these results, we report the two-
tailed Wilcoxon Signed-Rank Test (to measure significance) and Cohen’s D (to measure effect size)
for AvgDivm over the entire dataset. A benefit of the non-parametric Wilcoxon statistical test is
that we can make rigorous conclusions even if only limited samples are available We always pair
models from the same family and vary whether the model is instruction-tuned, larger, or prompted
with a different strategy while fixing all other factors unless otherwise noted. For example, when
isolating model size, we would compare CODELLAMA7B-INSTRUCT with Zero-Shot prompting
to CODELLAMA34B-INSTRUCT with Zero-Shot prompting, and so on. We use a paired test since
models of one kind can be paired to natural counterparts of the other kind.

5.2 DIVERSITY METRICS CAN FAIL TO REFLECT EXECUTION SEMANTICS

# CodeBertScore: 99.04
def f(A: int, B: int):

print(A + B)

def f(A: int, B: int):
print(A ^ B)

# CodeBertScore: 98.78
def f(N: int, A: List[int]):

print(min(A))

def f(N: int, A: List[int]):
print(max(A))

Figure 5: Examples where CODEBERTSCORE fails to reflect execution semantics. Note we compare
the program above to the program below. Both sets of programs are semantically different, but
CODEBERTSCORE is very high. The similarity scores are in the top 1th percentile for all programs
and, despite being semantically distinct, is also in the top 1th percentile of the wrong class (of all
semantically equal programs).

Existing diversity metrics fail to reflect execution semantics. We report the Spearman and
Kendall’s Tau rank correlation coefficient matrices for diversity metrics in Figure 4. Our purpose is
to motivate that diversity in program execution struggles to be captured by (and may even be nega-
tively correlated with) lexical and neural diversity metrics. This is in line with prior work demon-
strating that lexical and neural similarity metrics, at best, correlate relatively weakly with functional
correctness (Hendrycks et al., 2021; Zhou et al., 2023; Zhuo, 2024), however now for diversity. We
find that neural, lexical, and syntactic diversity fail to reflect semantic diversity based on executions
accurately. All are negatively correlated. Additionally, lexical, syntactic, and neural diversity are
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all inter-correlated to varying degrees. Given that neural metrics fail to reflect execution semantics,
they did not offer insight into other forms of diversity for our task, so we omit them from subsequent
experiments. In Section 5.3, we find a tradeoff in semantic diversity and lexical/syntactic diversity
with instruction tuning. Given the large amount base and instruct models under consideration, these
kinds of phenomena may contribute to the negative correlations.

Program semantics may be more complicated to model than natural language. Programming
is a skill-intensive activity, and often, minor details can greatly impact program behavior. Whereas
models can achieve over 90% accuracy on textual entailment tasks (He et al., 2021; Zhong et al.,
2022), CODEBERTSCORE and ICE-SCORE report a moderate correlation with accuracy (Zhou
et al., 2023; Zhuo, 2024). The complex nature of understanding programs combined with diverse
and off-distribution generations may contribute to the relationships observed.

Anecdotally, for CODEBERTSCORE we found minor differences like a min instead of a max, and
extra comments / unrelated generated code could trigger poor performance. Even though we may
identify failure modes with our strict notion of semantics, this may be expected given CODE-
BERTSCORE is not trained on execution semantics, and examples such as those in Figure 5 code
are still related. Our takeaway is that we should not prima facie assume neural models can fully
capture true semantic diversity: caution should used when evaluating diversity at scale, especially
for programs.

5.3 EFFECT OF INSTRUCTION-TUNING ON DIVERSITY

Coherence Semantic Syntactic Lexical

Model N W (p) ES (d) W (p) ES (d) W (p) ES (d) W (p) ES (d)

ALL OPEN 36 <0.001 0.611 <0.001 0.788 0.001 -0.743 0.001 -0.572
ALL OPEN (BEST COH.) 6 0.028 1.073 0.028 1.609 0.028 -1.862 0.046 -1.414
ALL OPEN (BEST SEM.) 6 0.028 1.130 0.028 1.652 0.075 -1.467 0.116 -0.811

CODELLAMA (SFT) 9 0.039 0.579 0.020 0.454 0.164 -0.749 0.203 -0.278
CL & ML W/SFT (SFT) 18 0.130 0.245 0.119 0.359 0.899 0.159 1.000 0.248

ML& QWEN (PT) 18 0.001 0.958 0.002 10.240 <0.001 -16.182 <0.001 -14.786
ML-3 (PT) 6 0.031 1.979 0.031 2.154 0.031 -3.026 0.031 -1.834
ML-3.1 & QWEN (PT) 12 0.042 0.929 0.042 7.741 0.001 -17.719 <0.001 -16.288

Table 1: Base vs. Instruct Comparisons. Results from Wilcoxon’s Signed-Rank Test p-values: W
(p), and Effect Size measured by Cohen’s D: ES (d) with paired sample size as N. Bold p-values
are below 0.05, and bold d-values have an absolute value greater than 0.8 (large effect size). BEST
COH. and BEST SEM. are paired comparisons when choosing the best Model × Prompt pair for
the given metric. PT indicates a preference-tuned model, SFT indicates supervised fine-tuning.
Abbreviations CL and ML denote CODE-LLAMA and METALLAMA respectively.

Less diversity in form, but more semantic diversity. In Table 1, we summarize our results across
all diversity metrics when comparing base models and their instruction-tuned counterparts. We
find that across model sizes, prompts, and instruction-tuning methods, the general trend is that
instruction-tuning; and furthermore, preference-tuning, increases coherence and semantic diversity
and significantly decreases lexical and syntactic diversity. We also include two rows where we
perform our paired tests for the best “Model × Prompt” group for both Coherence and Semantic
diversity, discarding all other prompt pairs (e.g., we would compare LLAMA3-8B-BASE with Two-
Shot prompting to LLAMA3-8B-INSTRUCT with Zero-Shot prompting if the prompts maximized
coherence for the respective models). This adjusts for the potential that instruction-tuned models
may behave differently than their base models for each prompt. After making this adjustment, the
trend generally remains the same.

The effect is stronger in preference-tuned models than in SFT models. For the models fine-
tuned with SFT, while the increase in semantic diversity and coherence is statistically significant
for CODE-LLAMA, the effect sizes are moderate, the decreases in lexical and syntactic diversity
are not significant. Furthermore, when considering the additional CODE-LLAMA, LLAMA-3, and
LLAMA3.1 fine-tuned with SFT on MAGICODER’s OSS-Instruct Instruction-Tuning Dataset, none
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of the results are statistically significant. The results for these models could be due to the smaller SFT
corpus or due to under-fitting. In contrast, this pattern is statistically significant for the preference-
tuned LLAMA-3, LLAMA3.1, and QWEN-CODER-2.5 models and the effect size for semantic di-
versity ranges from very large to huge (Sawilowsky, 2009).

Base Model Instruction-Tuned

Model Coh. Sem. Syn. Lex. ∆ Coh. ∆ Sem. ∆ Syn. ∆ Lex.
CODELLAMA-7B 23.47 7.67 80.58 74.13 11.96 4.43 -2.26 -4.96

CODELLAMA-34B 26.56 10.24 80.00 74.06 14.51 5.14 -0.28 0.36
CODELLAMA-70B 10.63 10.24 81.78 73.31 0.09 0.24 -8.15 -4.06

META-LLAMA-3-8B 25.18 9.05 84.26 71.97 47.29 22.81 -15.13 -6.94
META-LLAMA-3-70B 32.60 11.48 80.13 72.76 16.44 6.95 -8.41 -8.43

META-LLAMA-3.1-8B 8.31 8.19 84.30 68.48 11.51 11.43 -16.29 -3.73
META-LLAMA-3.1-70B 14.51 13.05 88.73 79.94 15.92 16.28 -17.44 -12.82

Table 2: Comparison of Base Models vs Instruction-Tuned Models on Metrics. We report the
the metric and the difference for each model when choosing the “best prompt" according to the
coherence score (positive values indicate that the metric increased).

In Table 2, we break down each model’s results when taking the “best prompt" according to coher-
ence. We see the relationship highlighted again: for the LLAMA-3 and LLAMA3.1 preference-tuned
models, the preference-tuned models generally have much higher semantic diversity and more dra-
matic decreases in lexical and syntactic diversity.

5.4 EFFECT OF MODEL SIZE

Coherence Semantic Syntactic Lexical

Comparison Model N W (p) ES (d) W (p) ES (d) W (p) ES (d) W (p) ES (d)

SMALL VS. LARGE

ALL OPEN 18 0.108 0.151 0.001 0.515 0.038 0.353 0.108 0.287
BASE 9 0.570 0.154 0.098 0.506 0.570 0.015 0.910 0.099
INSTRUCT 9 0.203 0.180 0.012 0.688 0.004 0.817 0.039 0.522
COMMERCIAL 18 0.579 0.237 0.212 0.425 0.284 -0.496 0.495 -0.282

ZS VS. FS

ALL 21 0.055 0.055 1.000 0.017 0.002 -0.450 <0.001 -1.414
BASE 7 0.016 2.575 0.016 7.020 0.047 -0.794 0.016 -6.751
INSTRUCT 7 1.000 0.087 0.297 -0.525 0.109 -0.619 0.047 -0.998
COMMERCIAL 7 0.813 0.246 0.742 -0.077 0.055 -0.444 0.008 -1.201

Table 3: Model Size and Zero- vs. Few-Shot Comparisons. Results from Wilcoxon’s Signed-
Rank Test p-values: W (p), and Effect Size measured by Cohen’s D: ES (d) with paired sample size
as N. Bold p-values are below 0.05, and bold d-values have an absolute value greater than 0.8 (large
effect size). For Commercial models, because model size is unknown, we use cost-per-token as a
proxy and match models within the same family to the best of our ability.

Next, we study how model size impacts coherence and diversity. In Table 3, we show the results
when comparing small and large models of the same family.4 For commercial models, model size is
not transparent, so we use price per generated token as a proxy for size.

Larger models increase semantic diversity without reducing the diversity of form. We generally
see higher semantic diversity in larger models without sacrificing lexical/syntactic diversity. This
effect is more pronounced in instruction-tuned models, while results for base models are noisier and
have smaller effect sizes. However, there is no statistically significant trend for commercial models,
likely due to the variance in results across all pairs. If anything, there is weak evidence that more
expensive commercial models may have less lexical and syntactic diversity than less expensive ones.
We cannot draw stronger conclusions because these models are not well documented.

4We omit CODELLAMA-70B from being compared to the smaller models since the 70B base model and
instruct-model were specialized with different pipelines than the smaller ones.
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5.5 EFFECT OF ZERO-SHOT VS. FEW-SHOT

Few-shot prompting increases semantic diversity in base models. We find that few-shot prompts
significantly increase both coherence and semantic diversity for base models. Similar to the effect of
instruction-tuning on base models, we also see that few-shot prompting decreases lexical/syntactic
diversity for base models.

Instruction-tuned and commercial models lose lexical diversity. Whereas there is no strong
evidence that few-shot prompting impacts coherence or semantic diversity, there is strong evidence
that it reduces lexical diversity for all models.

6 DISCUSSION AND CONCLUSION

Contributions in methodology and empirical findings. We have proposed a novel strategy for
studying semantic diversity by focusing on code generation, where semantics can be automatically
evaluated by executing programs on test cases. Using this methodology, we perform an extensive
empirical analysis of LLM diversity. Our findings that all existing metrics (including neural metrics)
correlate poorly with our semantic diversity metric motivate us not to assume these metrics reflect
semantic content, especially for code. The result highlights the need for more rigorous methodolo-
gies for automatically measuring LLM diversity at scale.

Our methods and results advance the discussion on LLMs and diversity. We find that instruction
tuning decreases lexical and syntactic diversity but increases semantic diversity; semantic diversity
is not lost when accounting for coherence. Our empirical findings have intellectual merit. They add
depth to the growing discussion on how instruction-tuning, model size, and prompting technique
impact diversity. We speculate that if preference-tuning is associated with lower lexical/syntactic,
it may impart a specific “voice" or style to the model. We hypothesize that a dynamic between
the online and reward models used for rejection-sampling, PPO, and potentially DPO may induce a
preference for certain lexical and syntactic constructs while preserving semantic diversity in specific
domains like coding.

Our empirical findings have practical consequences. For creative endeavors and search-intensive
tasks ranging from red-teaming LLMs (Perez et al., 2022), generating synthetic training data (Dubey
et al., 2024), program testing Deng et al. (2024); Xia et al. (2024), and program optimization (Shy-
pula et al., 2024), our insights may help others to decide which model configuration is optimal
for both high-quality and diverse generations. For example, it may be more important to allocate
resources to align smaller, cheaper, and faster models to the task with instruction-tuning than to
allocate time and funds to sampling from a larger, slower, and more expensive model.

This result highlights the differentiated impact of instruction tuning on different kinds of diversity,
suggesting that there may not be a "one-size-fits-all" strategy for preserving or improving diversity.

Finally, by the nature of our approach, we are restricted to evaluating code diversity. Code is an
important domain in its own right; furthermore, for many tasks, code can be viewed as a formal
representation of the natural language utterance (Liang, 2016), suggesting that our results may have
implications for the diversity of natural language. Nevertheless, further study is needed to establish
whether our findings translate to more traditional natural language tasks.

Future Work. While our work investigates the impact of instruction tuning, model size, and prompt-
ing on diversity, the nature of pre-training (e.g., the corpus and other training configurations) on di-
versity is an important direction for future work. We currently evaluate off-the-shelf neural models
for their ability to reflect diversity in execution and note that other alternatives such as UNIXCODER
(Guo et al., 2022) or CODEEXECUTOR (Liu et al., 2023) could have been chosen. We believe that
efforts to make neural models more robust to capturing content diversity as well as more rigorous
evaluations of neural models to measure LLM content diversity in natural language (for example,
a human study following Tevet & Berant (2021) for LLM-generated content instead of human-
generated content, is important. We also believe rigorously evaluating content diversity with more
samples by modulating the degrees of open-mindedness in questions and across many domains and,
from potentially sensitive domains to more harmless ones, will be important to understand patterns
more broadly and the impact of efforts to reduce toxicity in LLMs.
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7 REPRODUCIBILITY AND ETHICS STATEMENT

Upon acceptance of our work, we will release our dataset and the source code used to sample gener-
ations and evaluate diversity. We provide our dataset and driver scripts used for experiments in our
Supplementary Material. We ensured that we saved all model generations used for our study, and we
will publish the model generations related to all our experiments. We also constructed our program
execution harness inside an isolated DOCKER container so that the reproduction of execution can be
done safely for other researchers. We do not anticipate any risks in releasing our dataset and related
code to the public.

No human subjects were involved in our work. While diversity in generation can be desirable,
it is not always optimal, and practitioners should not overoptimize LLMs for diverse generations.
For example, diverse generations may have adverse consequences for susceptible topics in natural
language. In the code domain, diverse content must not entail the generation of malware or further
enable bad actors to engage in cybercrime.
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A APPENDIX

A.1 DATASET CREATION AND ADDITIONAL DETAILS

We created our dataset through a multi-step process starting from the CODENET dataset and test-
cases from ALPHACODE. The process involved problem standardization, language model assistance
for scaling, and manual validation.

Initial Processing. We began by randomly selecting a single problem description from IBM Co-
deNet. We used this to as a seed to construct examples for a 1-shot prompt for a Language Model
to assist us. Specifically we manually wrote one example of the following outputs that should be
generated for each individual problem description from CODENET

1. A canonicalized problem description
2. A wrapper function that would take any generation for that function, parse inputs for the

function, and instrument the generation with the entire suite of test cases
3. A property-based testing function for generating additional test cases when needed

Dataset Expansion. We then wrote prompt templates for gpt-3.5-turbo-0125 that were
designed to take our 1-shot prompt, and then prompt the LLM to repeat the same for the new example
we select from CODENET. We randomly sampled 75 programs from CodeNet and attempted to
generate the three components for each original problem description from CODENET. We then
saved these into individual files, and also wrote them into an HTML document for manual review.

Manual Review and Selection. For the 75 problem ids that were processed, we then manually
inspected the output components checking for the following criteria:

1. The language model correctly parsed inputs into our desired format
2. The problem added diversity to our dataset

We tracked the original CodeNet problem IDs and validation results in a spreadsheet. These were
the 21 examples then used for our dataset.

Manual Editing of Problem Descriptions. After selecting our problems, we then manually went
through each of the three components, and manually edited them to be correct: a large amount
required revisions, as the LLM assistant made mistakes. We saved our manually edited components
to be further processed.

Test Case Integration. For each of the individual problem descriptions, we then merged test cases
from CODENET and ALPHACODE. We required at least 10 test cases per problem. For the three
problems that lacked sufficient test cases, we used our property-based testing scripts to generate
100 additional cases, such that we would have sufficient coverage. We then saved the canonicalized
problem descriptions, the function to extract and parse input test cases, and the input test cases into
a dataset.

Final Checks. During experimental validation, we found and fixed one incorrect problem descrip-
tion and two faulty argument parsing functions. We then saved this corrected version as our final
dataset.

Additional Dataset Details. In our experiments, we instruct LLMs to print their outputs to
stdout; then, for each generation, we execute all test cases and capture the resulting outputs.

Because LLMs often generate natural language to accompany generated programs, extracting pro-
grams from the generations is a non-trivial task, especially for pre-trained models. We developed an
extraction utility that extracts not only the target function f(...), but also any helper functions and
imports that may be relevant. To safely execute programs at scale, we perform all execution inside
an isolated DOCKER container to prevent adverse consequences of blindly executing LLM outputs.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Final Validation

Fix Errors

Test Case Processing

Sufficient cases (≥10)

Insufficient cases (<10)

Merge test cases

From CodeNet

From AlphaCode

Check test count Save to dataset

Generate additional cases

Manual Refinement

Edit all components

Fix problem descriptions

Correct input parsing/execution 
wrapper

Adjust test generators

Manual Review & Selection

Review all 75 problems Check criteria

Correctly implemented?

Adds richness to dataset?

Track in spreadsheet Select 21 problems

Dataset Expansion

Create GPT-3.5-turbo prompts
Sample 75 random CodeNet 

problems
LLM Drafts components for 

each problem

Problem descriptions

Input parsing/execution wrapper

Property-based test generator

Write into HTML for review

Initial Setup

Select seed problem from 
CodeNet

Manually create 1-shot 
examples

Canonicalized description

Input parsing/execution wrapper

Property-based test generator

Figure 6: A flow-chart of the creation process showing the steps from initial prob-
lem selection through final validation. The process involved manual of 1-shot examples,
gpt-3.5-turbo-0125, manual review and selection of diverse problems, refinement of prob-
lem descriptions and test cases, and final validation.
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A.2 MODEL CORRECTNESS BENCHMARKS

Model Size Code Generation Benchmarks
HumanEval MBPP

CODE-LLAMA
7B 33.5 41.4

34B 48.8 55.0
70B 53.0 62.4

CODE-LLAMA-INSTRUCT
7B 34.8 44.4

34B 41.5 57.0
70B 67.8 62.2

CODE-LLAMA-PYTHON
7B 38.4 47.6

34B 53.7 56.2
70B 57.3 65.6

LLAMA-3 8B 37.2 -
70B 58.5 -

LLAMA-3.1 8B 8.5 47.6
70B - 66.2

LLAMA-3-INSTRUCT
8B 60.4 70.6

70B 81.7 82.5

LLAMA-3.1-INSTRUCT
8B 72.6 72.8

70B 80.5 86.0

Qwen2.5-Coder
7B 61.6 76.9

14B 64.0 81.0
32B 65.9 83.0

Qwen2.5-Coder-Instruct
7B 88.4 83.5

14B 89.6 86.2
32B 92.7 90.2

code-davinci-002 47.0 58.10
gpt-3.5-turbo-0125 48.1 -
gpt-3.5-turbo-instruct 68.0 82.0
gpt-4o-mini 87.2 -

Claude 3 Sonnet 73.0 79.4
Claude 3 Haiku 75.9 80.4

Table 4: Pass@1 scores on HumanEval and MBPP. Results for the models as provided
by Roziere et al. (2023) (CODE-LLAMA), Dubey et al. (2024) (LLAMA-3, LLAMA-3.1, Mis-
tral, gpt-3.5-turbo-instruct), Hui et al. (2024) (Qwen2.5-Coder), Zheng et al. (2023)
(code-davinci-002), OpenAI et al. (2023) (gpt-3.5-turbo-0125, gpt-4o-mini), and
Anthropic (2024) (Claude 3).

A.3 DIVERSITY WHEN CONTROLLING FOR COHERENCE

Generally, avoiding writing well-formed programs (i.e., without syntax and runtime errors) provides
a good starting point for improving semantic diversity. In Table 5, we report results for the subset of
generations without syntax or runtime errors.

Semantic diversity does not increase. When restricting to coherent programs, we find that
instruction-tuning, increasing model size, and using few-shot prompting does not increase the se-
mantic diversity. These results suggest that higher proportions of well-formed programs drive in-
creases in diversity found above. Significantly as well, we find no evidence that instruction-tuning
or larger models reduce semantic diversity.
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Semantic Syntactic Lexical

Comparison Model Size W (p) ES (d) W (p) ES (d) W (p) ES (d)

BASE VS. INSTRUCT

ALL OPEN 21 0.708 -0.051 0.083 -0.527 0.083 -0.548
ALL OPEN (BEST COH) 6 0.075 0.079 0.046 -1.566 0.028 -1.608
ALL OPEN (BEST SEM.) 6 0.345 0.030 0.116 -1.224 0.028 -1.276
CODELLAMA (SFT) 9 0.570 0.040 0.426 0.474 0.570 0.386
LLAMA3 & LLAMA3.1 (PT) 12 0.910 -0.125 0.001 -1.886 0.005 -1.624
LLAMA3 (PT) 6 0.688 -0.268 0.031 -2.023 0.063 -2.143
LLAMA3.1 (PT) 6 1.000 -0.006 0.063 -1.606 0.063 -1.139

SMALL VS. LARGE

ALL OPEN 18 0.332 0.134 0.039 0.462 0.098 0.420
BASE 9 0.401 0.238 0.176 0.176 0.461 0.130
INSTRUCT 9 0.734 0.013 0.098 0.813 0.129 0.733
COMMERCIAL* 18 0.890 -0.109 0.454 -0.470 0.330 -0.381

ZS VS. FS

ALL 21 0.015 -0.501 0.869 0.146 0.927 0.115
BASE 7 0.688 -0.308 0.156 1.336 0.094 1.353
INSTRUCT 7 0.219 -0.554 0.813 -0.249 0.813 -0.220
COMMERCIAL 7 0.028 -0.682 0.219 -0.686 0.156 -0.731

Table 5: Restricting to Coherent Generations. Results from Wilcoxon’s Signed-Rank Test p-
values: W (p), and Effect Size measured by Cohen’s D: ES (d) with paired sample size as N. Bold
p-values are below 0.05, and bold d-values have an absolute value greater than 0.8 (large effect size).

Preference-tuning reduces diversity of form. We find that preference tuning reduces syntactic
and lexical diversity, whereas syntactic and lexical diversity is somewhat greater in the SFT CODE-
LLAMA models.

A.4 ANALYSIS OF PAIRWISE DIVERSITY METRIC

For a given large language model (LLM) f , we assume that only a finite number K of distinct
semantic meanings can be generated by f . We first establish that the original semantic diversity
metric converges to zero as the number of sampled responses tends to infinity. Specifically, the
original semantic diversity metric is defined as

N

n
,

where N is the number of distinct semantic clusters, and n is the number of sampled responses.
Since only a finite number of semantic meanings can be generated by f , the number of semantic
clusters N is bounded above, implying the existence of a constant C1 > 0 such that N ≥ C1.
Therefore, we have

N

n
≥ C1

n
for all sufficiently large n.

Now, observe that

lim
n→∞

C1

n
= 0,

so applying the squeeze theorem, we conclude that

lim
n→∞

N

n
= 0.

Next, we show that the new metric defined in Equation (2), converges to a constant as n → ∞.
As before, we assume that there are K distinct semantic meanings in total, and let πk denote the
proportion of responses corresponding to the k-th semantic meaning. This implies that the number
of times each semantic meaning is sampled is πkn, where

∑K
k=1 πk = 1. Thus, we have∑

pi,pj∈P,i>j

mdist(pi, pj) =
∑
k ̸=h

(πkn) · (πhn) =
∑
k ̸=h

(πkπh)n
2,
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where the summation is taken over distinct semantic meanings k and h, and mdist(pi, pj) measures
the semantic distance between generations. Moreover, the number of possible response pairs is(

|P |
2

)
=

n(n− 1)

2
.

Thus, the new metric becomes

1(|P |
2

) ∑
pi,pj∈P,i>j

mdist(pi, pj) =
2
∑

k ̸=h(πkπh)n
2

n(n− 1)
= 2

∑
k ̸=h

(πkπh) +
2
∑

k ̸=h(πkπh)

n− 1
.

Finally, we have

lim
n→∞

2
∑
k ̸=h

(πkπh) +
2
∑

k ̸=h(πkπh)

n− 1

 = 2
∑
k ̸=h

πkπh.

That is, as n → ∞, the value of the new metric converges to the constant value:

2
∑
k ̸=h

πkπh.

A.5 ADDITIONAL INFORMATION THE SYNTACTIC DIVERSITY METRIC

We extract and process all Abstract Syntax Trees (ASTs) using Python’s AST library with Python
version 3.12.0, and report metrics for subtrees of height 4. Because syntactically incorrect programs
do not parse, we can only calculate this metric over the subset of syntactically correct generations.

Figure 7: An Example of Canonicalizing an Abstract Syntax subtree used in the Distinct-CAST
metric. The expression under consideration is for a simple lambda expression that negates a given
variable. The first two ASTs are not equal because of the usage of the variables X and Y , respec-
tively, even though they are alpha-equivalent expressions. The AST on the far right canonicalizes
identifier names such as arguments and variables so that both expressions would be equivalent.

A.6 PROMPTS USED IN EXPERIMENTS

In Figure 8, Figure 9, and Figure 10, we show the prompting templates we use across all experiments.
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{problem_description}

Now please implement the function f; do not return anything, the
function f should print the result of the operation.↪→

It should terminate within 30 seconds.

Figure 8: Zero-Shot Prompt: Our template for our zero-shot prompt, where the problem description
would be input inside the curly braces.

### Input Description:
1. An integer \( N \) (1 \( N \) 10000), representing some

quantity or size.↪→
### Example Input:
```
1000
```
### Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: int):

'''
N: an integer
'''

Now please implement the function f; do not return anything, the
function f should print the result of the operation.↪→

It should terminate within 30 seconds.
def f(N: int):

print(n**2)
### Input Description:
1. A floating point number \( N \) (1 \( N \) 10000),

representing some quantity or size.↪→
### Example Input:
```
143.23
```
### Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: float):

'''
N: a float
'''

Now please implement the function f; do not return anything, the
function f should print the result of the operation.↪→

It should terminate within 30 seconds.
def f(N: float):

i = 0
while N > 1:

N = N / 2
i += 1

print(i)
{problem_description}
Now please implement the function f; do not return anything, the

function f should print the result of the operation.↪→
It should terminate within 30 seconds.

Figure 9: Two-Shot Prompt: Our template for our two-shot prompt, where the problem description
would be input near the end inside the curly braces.
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### Input Description:
1. An integer \( N \) (1 \( N \) 10000), representing some

quantity or size.↪→
### Example Input:
```
1000
```
### Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: int):

'''
N: an integer
'''

Now please implement the function f; do not return anything, the
function f should print the result of the operation.↪→

It should terminate within 30 seconds. First describe the
function you would write, then implement it.↪→

The following function will print out the square of the input
number. We will take the square using the ** operator in
Python within the print statement.

↪→
↪→
def f(N: int):

print(n**2)
### Input Description:
1. A floating point number \( N \) (1 \( N \) 10000),

representing some quantity or size.↪→
### Example Input:
```
143.23
```
### Function Signature:
Write a function `f(N)` that takes in the input.
```python
def f(N: float):

'''
N: a float
'''

Now please implement the function f; do not return anything, the
function f should print the result of the operation.↪→

It should terminate within 30 seconds. First describe the
function you would write, then implement it.↪→

The following function will calculate the number of times the
input number can be divided by 2 before it becomes less than
1. We will increment a counter variable i each time we
divide the number by 2 inside a while loop.

↪→
↪→
↪→
def f(N: float):

i = 0
while N > 1:

N = N / 2
i += 1

print(i)
{problem_description}
Now please implement the function f; do not return anything, the

function f should print the result of the operation.↪→
It should terminate within 30 seconds. First describe the

function you would write, then implement it.↪→

Figure 10: Two-Shot Chain-of-Thought Prompt: Our template for our two-shot Chain-of-Thought
prompt, where the problem description would be input near the end inside the curly braces.

21


	Introduction
	Background, Related Work, and Motivation
	Diversity Evaluation Methodology
	Diversity Metrics
	Experimental Results
	Experimental Setup
	Diversity Metrics Can Fail to Reflect Execution Semantics
	Effect of Instruction-Tuning on Diversity
	Effect of Model Size
	Effect of Zero-Shot vs. Few-Shot

	Discussion and Conclusion
	Reproducibility and Ethics Statement
	Appendix
	Dataset Creation and Additional Details
	Model Correctness Benchmarks
	Diversity When Controlling For Coherence
	Analysis of Pairwise Diversity Metric
	Additional Information the Syntactic Diversity Metric
	Prompts Used in Experiments


