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Abstract

Language modeling has seen seen a tremen-
dous development over past few years, with a
considerable rise in their deployment for solv-
ing domain-specific Natural Language Process-
ing (NLP) tasks. In recent times, the fundamen-
tal building blocks of language models are es-
sentially composed of either an encoder-based
architecture or a decoder-based architecture or
a combination of both. In the scholarly domain,
the majority of use cases have explored only the
utilization of encoder-only models for a variety
of tasks using the pre-trained model fine-tuning
approach. But the same has not yet been repli-
cated for decoder based models in spite of the
recent popularity of LLMs. To address this is-
sue, we fine-tune both encoder-based language
models and decoder-based language models
on an array of traditional scholarly NLP tasks.
This allows us to compare the effect of learned
representations in contrast to generation-based
techniques on standard scholarly benchmark
datasets. We conduct extensive experiments
on 10 highly popular human-annotated datasets
over 6 different tasks and also study the effect
of domain-specific pre-training on these tasks.
We achieve SOTA over two tasks using decoder-
based language models, although they prove to
not being best in terms of computational costs
or hallucinations.

1 Introduction

Scientific literature understanding is an important
facet of Natural Language Understanding and is
highly useful in the comprehension of large collec-
tions of scientific text. There has been a growing
interest to explore the nuances of standard Natural
Language Processing tasks in the scholarly domain
and in most cases the best results have come from
fine-tuning a pre-trained language model (Beltagy
et al., 2019; Lahiri et al., 2024; Sadat and Caragea,
2022; He et al., 2020).

Researchers have been able to classify the emer-
gence of language models into four different waves:
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Figure 1: Comparison of the scores achieved by the best
performing encoder-based and decoder-based LMs.

statistical language models, neural language mod-
els, pre-trained language models (PLMs), and large
language models (LLMs) (Minaee et al., 2024).
Models with tens to hundreds of billions of param-
eters are generally considered as LLMs and mod-
els with lesser number of parameters are referred
to as PLMs. We see with LLMs the paradox of
over-parametrization wherein models with greater
number of parameters exhibit better performance
instead of over-fitting. Decoder-based LLMs, have
in fact shown to present strong emergent and rea-
soning capabilities (Wei et al., 2022a,b; Yao et al.,
2023). The emergence of Transformer-based pre-
trained language models and the subsequent popu-
larity gained by LLMs have transformed the way
we solve NLP tasks, since the language understand-
ing capabilities of PLMs and LLMs outdo their
predecessors by a large margin.

PLMs and LLMs are both categories of language
models that trace their architectural roots to the
original Transformer model (Vaswani et al., 2017).
In theory, PLMs mainly differ from their elder sib-
lings — the LLMs in terms of size, but may be either
encoder-based or decoder-based. Encoder-based
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Figure 2: Fine-tuning for a Transformer encoder-based LM (left) and for a Transformer decoder-based LM (right).

models generally fall into the category of PLMs
because the parameters of the available pre-trained
models are in the order of millions but nowadays
it is very common to find decoder-based models
which have some billion parameters.

Encoder-based models like BERT (Devlin et al.,
2019), although being task agnostic in nature, gen-
erally need to go through fine-tuning over a limited
amount of task-specific data to achieve proficiency
in that particular task. Despite the fact that LLMs
possess greater emergent properties, they have been
reported to be more accomplished when fine-tuned
over task-specific data (Minaee et al., 2024). More-
over, simply prompting decoder-based LMs do not
often produce the best results for scientific litera-
ture understanding tasks (Wadden et al., 2024).

The main objective of this paper is to create
an evaluation setup that can effectively compare
the ability of decoder-based LMs with that of
their encoder-based LM counterparts with a spe-
cial focus on scholarly tasks. To this end, we con-
duct extensive fine-tuning experiments on human-
annotated scholarly datasets, such as Named Entity
Recognition/Typed Keyphrase Recognition, Rela-
tion Classification, Natural Language Inference,
Paraphrase Identification, Citation Intent Classifi-
cation, and Claim Verification.

Our main contributions can summarized as fol-
lows: a) We compare decoder-based LMs with
encoder-based LMs on 10 benchmark scholarly
tasks over 6 different tasks. For this purpose, we
use 2 encoder-based LMs and 6 decoder-based
LMs. b) We analyze the performance for each task,
as well as the hallucinations generated by the mod-
els. c) We study the effect of domain-specific data
in the pre-training corpus and the computational
time complexity of fine-tuning these models.

2 Transformer Architecture

The original transformer architecture (Vaswani
et al., 2017) consists of a combined encoder-
decoder structure that is auto-regressive in nature.
The encoder maps an input sequence of symbol rep-
resentations (1, T2, ..., ) into a sequence of con-
tinuous representations z = (21, 22, ..., 2p). The
encoder is supposed to contain N identical lay-
ers, where each layer consists of a multi-head self-
attention mechanism followed by a position-wise
fully connected feed-forward network.

The decoder takes 2 as the input and generates an
output sequence (Y1, Y2, ---, Ym ). The decoder also
consists of N identical layers, where in addition to
the components of the encoder layer, there exists a
new sub-layer that performs multi-head attention
over the output of the encoder stack.

Most recent language models follow variants
of this architecture, with small changes like the
activation function, or the positional embedding
technique or the tokenization procedure. With the
Transformer being the basic building block, lan-
guage models may contain the encoder only or the
decoder only or may contain both the encoder and
the decoder. Pre-training of encoder models in-
volve various language modelling objectives like
masked language modelling while decoder-based
models generally use the autoregressive next token
prediction objective.

Figure 2 shows the fine-tuning approach fol-
lowed by encoder-based LMs as well as decoder-
based LMs. For encoder-based LMs, the input is
tokenized and fed into the encoder blocks to gen-
erate their token representations which are then
passed through an output layer. Decoder-based
LMs provide a sequential output when provided
with a instruction and the input.



3 Tasks

We consider 6 tasks for our experiments, each of
which is briefly described here. The details of the
datasets shown in Figure 3 are in the Appendix.
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Figure 3: Tasks and Datasets

3.1 NER/TK: Named Entity Recognition/
Typed Keyphrase Recognition

Named Entity Recognition (NER) is the Informa-
tion Extraction (IE) task of identifying references
to rigid designators (Nadeau and Sekine, 2007).
Recently (Lahiri et al., 2024) presented a broader
definition for this task in the scientific domain and
termed it as Typed Keyphrase Recognition.

Definition: The input is a sequence of tokens
r = (21,2, ..., Ty ), from which we derive a set
S = {s1,...5p}, which represents a set of seman-
tically meaningful within-sentence contagious se-
quence spans each of which is assigned a label
from the set Y = {y1, 92, ..., Ym }. The elements in
set S may contain words, phrases or other syntactic
units from the given text sequence x. Therefore,
the final output can be construed as Z = {(s;, y;) :
iel,..,pjel,..,mys;eSy; €Y}

3.2 REL: Relation Classification

Relation Classification is also an Information Ex-
traction task, wherein the objective is to predict the
relationship type between a given ordered pair of
spans within a sentence.

Definition: The input is a sequence of tokens
x = (1,22, ..., Tp) and two entities (spans), s4 =
(xi,...,z;) and sp = (zy,...,2y), the expected
output is a triple (sa, sp, ), where 7 € R such
that R is a pre-defined set of relation labels.

3.3 PPHRASE: Paraphrase Recognition

Sentences or phrases conveying identical meaning
but with the use of different wording are called
paraphrases. Automated paraphrase recognition
mechanisms are useful in many NLP tasks like
textual entailment, machine reading, question an-
swering, information extraction, and machine trans-
lation (Bhagat and Hovy, 2013). For the scholarly
paraphrase identification task, the ability of the
model to demonstrate specialized domain knowl-
edge is tested (He et al., 2020).

Definition: A pair of sentences (s, s2) are to be
classified as paraphrases or non-paraphrases.

3.4 NLI: Natural Language Inference

Natural Language Inference (NLI), also known
as Textual Entailment (Bowman et al., 2015; Sa-
dat and Caragea, 2022), is the task of identifying
whether there is an entailment or a contradiction
between a pair of sentences or whether they are
independent of each other. NLI for the scientific
domain is relatively new and also quite challenging
due to the difference in the vocabulary and sentence
structure in comparison to the general domain.
Definition: Given a pair of sentences (s1, $2),
the task is to assign a label y € Y which indicates
the semantic relatedness of the latter to the former.

3.5 CIC: Citation Intent Classification

Citations form an important part of scientific doc-
uments. The kind of purpose the citation serves
in the scholarly document is known as its citation
intent (Roman et al., 2021). Citation intents are
useful in tasks like the measurement of scientific
impact (Cohan et al., 2019) and the temporal study
of scientific concepts (Jurgens et al., 2018).

Definition: The input is a citation sentence x
and the aim is to assign a class label y € Y, where
Y is the set of citation intents.

3.6 CLAIM: Claim Verification

This task intends to assess the truthfulness of a
claim (Vlachos and Riedel, 2014), which is impor-
tant in the scientific domain due to the possibility
of a far-reaching impact of a decision taken based
on some scientific misinformation. We follow the
simplified setting of (Vladika and Matthes, 2024)
where the model is provided with golden abstracts:

Definition: Given a claim ¢ and an evidence
abstract d (each of which is a sequences of tokens),
the task is to find whether c supports or refutes the
abstract d.



Model CS-NER (Titles) CS-NER (Abstracts)
Precision | Recall F1 H | Precision | Recall F1 H
BERT 72.83 7681 | 74.77 | O 69.38 71.32 | 70.33 | O
SciBERT 72.98 76.66 | 74.78 | O 72.97 7135 | 72.14 | O
LLaMA-7B 66.00 70.38 | 68.12 | 1 83.29 68.18 | 7498 | 0
LLaMA-13B 65.72 70.50 | 68.03 | 3 82.64 69.03 | 7522 | 0
LLaMA-70B 66.41 70.61 | 6845 | 3 90.00 62.92 | 74.06 | 0
SciLitLLM-7B 67.33 69.35 | 6832 | 0 86.42 70.79 | 77.83 | O
Tiilu-2-dpo-7B 66.47 65.74 | 66.10 | 1 79.85 70.70 | 75.00 | O
Tiilu-2-dpo-70B 67.25 69.83 | 68.52 | 3 88.35 69.82 | 78.00 | O

Table 1: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on CS-NER (Titles)
and CS-NER (Abstracts) for Named Entity Recognition. H stands for Hallucinated Tags i.e. the tags which LLMs
have generated, but are not part of the dataset’s annotation schema.

4 Experimental Setup

4.1 Encoder-based Language Models

We use the BERT (Devlin et al., 2019) and SciB-
ERT (Beltagy et al., 2019) model checkpoints as
the encoder-based LMs in our experiments. More
details about these models are present in the Ap-
pendix B. The experimental details for fine-tuning
encoder-based LMs are as follows:

NER/TK: We train the uncased versions of
BERT and SciBERT by passing their output
through a linear classifier and training using the
cross-entropy loss for 20 epochs. The maximum
sequence length considered is 256.

REL: This task is formulated for encoder-based
LMs as a special case of text classification: the
given entities are delineated with special tokens
and the model learns to predict the relation between
these entities (Beltagy et al., 2019).

PPHRASE: We fine-tune BERT and SciBERT
by considering this task as a text classification task
as was done for the original PARADE dataset (He
et al., 2020). We fine-tune the backbone PLMs for
5 epochs using a learning rate of 2e — 5.

NLI: The pair of sentences provided as input are
concatenated separated by a [SEP] token between
them. A softmax layer is used to predict the out-
put class from the [CLS] token embedding. Each
backbone model is trained for 5 epochs and the
maximum input length is set at 300. We use the
cased versions of the BERT and SciBERT models
keeping in line with the original paper (Sadat and
Caragea, 2022).

CIC: It is treated as a simple text classification
problem given the citation sentence, as in (Beltagy
et al., 2019). Therefore, the BERT vector is given
as input into a linear classification layer. The learn-

ing rate is taken as 2e — 5 and the model is trained
for 5 epochs.

CLAIM: We model the claim verification task as
a two-class classification problem, such that given
the claim-evidence pair, the model predicts whether
the claim supports or contradicts the evidence.

4.2 Transformer-decoder based models

We use the 7B, 13B and the 70B model variants of
LLaMA-2 (Touvron et al., 2023b), SciLitLLM-7B!
(Li et al., 2024) and 7B and 70B variants of Tiilu-2
(Ivison et al., 2023) as the decoder-based LMs in
our experiments. Details about these models and
the prompts are described in Appendix B and D,
respectively.

We instruction-tune the decoder-based LMs us-
ing QLoRA (Dettmers et al., 2023), which is an
efficient approach for fine-tuning LLMs using rela-
tively less GPU memory. QLoRA uses 4-bit Nor-
malFloat, Double Quantization and Paged Optimiz-
ers on the Low-rank Adapter (LoRA) fine-tuning
approach (Hu et al., 2022), which makes it possible
to fine-tune even 70B parameter models in a 80GB-
A100 GPU with minimal performance degradation.
We fix both the source length and the target length
to 512 for better comprehension. The learning rate
is kept at 2e — 4, and we fine-tune each model for
1, 875 steps.

5 Results

5.1 Named Entity Recognition

Table 3 and Table 1 shows the results obtained for
the SCIERC (Luan et al., 2018) as well as both
the CS-NER (Abstracts) and CS-NER (Abstracts)
(D’Souza and Auer, 2022) datasets. Apart from

"https://huggingface.co/Uni-SMART/ScilitLLM
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Model Cmp. | Cnj. | Evl.-for | Ft.-of | Hyp.-of | Pt.-of | Used-for F1 H
BERT - - - - - - 78.71% | 0
SciBERT - - - - - - 79.97* | 0
LLaMA-7B 87.32 | 94.4 87.01 | 71.54 | 94.03 | 68.38 93.67 7454 | 2
LLaMA-13B 88.31 | 94.02 | 89.73 | 64.08 90 64.35 94.34 8355 | O
LLaMA-70B 88.57 | 93.02 | 86.34 | 66.67 | 8493 | 37.97 93.66 7874 | O
SciLitLLM-7B | 87.32 | 94.82 | 89.13 | 6491 | 92.09 | 61.95 93.95 73.02 | 1
Tiilu-2-dpo-7B | 88.57 | 92.86 | 84.21 | 60.00 | 82.64 60 92.84 80.16 | 0
Tiilu-2-dpo-70B | 87.18 | 93.06 | 83.17 | 62.50 | 90.91 | 66.07 93.83 72.09 | 3

Table 2: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SCIERC for
Relation Classification. H stands for Hallucinated Tags, i.e., the tags which LLMs have generated, but are not part
of the dataset’s annotation schema. The * denotes that the results are obtained from the original paper.

Model P R F1 | H Model P R F1 H
BERT 59.71 | 65.95 | 62.67 | O BERT 40.59 | 45.05 | 42.66 | O
SciBERT 62.24 | 67.2 | 64.62 | O SciBERT 46.87 | 4782 | 4729 | O
LLaMA-7B 58.57 | 61.83 | 60.16 | 4 LLaMA-7B 39.54 | 40.17 | 3986 | 5
LLaMA-13B 5794 | 62.26 | 60.02 | O LLaMA-13B 40.51 | 46.12 | 43.13 | 8
LLaMA-70B 6142 | 6495 | 63.14 | 4 LLaMA-70B 404 | 4438 | 4229 | 5
SciLitLLM-7B | 58.39 | 60.67 | 59.51 | 1 SciLitLLM-7B | 41.47 | 44.96 | 43.15 | 16
Tiilu-2-dpo-7B | 59.95 | 619 | 6091 | 2 Tiilu-2-dpo-7B | 38.36 | 41.48 | 39.86 | 15
Tiilu-2-dpo-70B | 60.81 | 60.55 | 60.68 | 3 Tiilu-2-dpo-70B | 42.55 | 45.54 | 43.99 | 5

Table 3: Results for fine-tuning encoder-based LMs and
instruction-tuning decoder-based LMs on SCIERC for
Named Entity Recognition. H stands for Hallucinated
Tags, i.e., the tags which LLMs have generated, but are
not part of the dataset’s annotation schema.

CS-NER (Abstracts), encoder-based LMs gener-
ally perform better than their decoder based coun-
terparts for the NER task. Domain-specific pre-
training in models like SciBERT, Tiilu-2, and SciL-
itLLM help boost performance.

For the NER task, the generative decoder-based
LMs, despite having the class names specified in
the prompt, hallucinate new labels such as Objec-
tive, Scenario, Author, Profession, User, and Drug
among others. We see that for CS-NER (Abstracts),
none of the models hallucinate, which is perhaps
due to the fact that it consists of only two classes.

5.2 Typed Keyphrase Recognition

Table 4 shows the results on the Few-TK dataset
(Lahiri et al., 2024). Similar to the results for NER,
here too we see that SciBERT outperforms all other
models, although the results are generally low for
this dataset. This is due to large number of classes,
which is 38, in this dataset, that is much higher than
that of other datasets in this domain. This shows
that simple vanilla fine-tuning or instruction-tuning

Table 4: Results for fine-tuning encoder-based LMs and
instruction-tuning decoder-based LMs on Few-TK for
Typed Keyphrase Recognition. H stands for Halluci-
nated Tags, i.e., the tags which LLMs have generated,
but are not part of the dataset’s annotation schema.

may not be enough for more complex multi-label
tasks such as these as they require significantly
higher reasoning capabilities. We also see that
due to the larger number of classes into which the
keyphrases are to be divided, the number of hallu-
cinations for this dataset are also much larger.

5.3 Relation Classification

Table 2 shows the results for relation classifica-
tion on the SCIERC dataset and also includes the
F1 scores for each class — Compare, Conjunction,
Evaluate-for, Feature-of, Hyponym-Of, Part-of and
Used-for. LLaMA-13B is found to be the best per-
forming model for this task, which to the best of
our knowledge is also the SOTA for relation clas-
sification on this dataset. The LLaMA-7B also
performs well over the different classes in this task,
but its overall performance dips due to the two
hallucinated labels that it generates. Some of the
hallucinated labels from generative decoder-based
LMs are Induced-from, Sum-of and Weighted-sum,
in the very rare cases where they hallucinate.



Model Paraphrase | Non-paraphrase | Accuracy | Precision | Recall | F1
BERT 72.21 73.28 72.78 72.88 72.83 | 72.74
SciBERT 71.77 73.63 72.59 72.54 72.55 | 72.54
LLaMA-7B 73.69 72.18 72.96 73.39 73.20 | 72.93
LLaMA-13B 73.13 71.24 72.22 72.72 72.49 | 72.19
LLaMA-70B 73.30 77.30 75.46 75.58 75.25 | 75.30
SciLitLLM-7B 73.15 77.65 75.61 75.82 75.36 | 75.40
Tiilu-2-dpo-7B 65.93 77.27 72.73 75.20 72.02 | 71.60
Tiilu-2-dpo-70B 63.83 76.86 71.78 74.86 70.98 | 70.35

Table 5: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on PARADE for
paraphrase recognition. We report the overall precision, recall, macro F1, accuracy and the class-wise macro F1.

Model Contrasting | Reasoning | Entailment | Neutral | F1 | Accuracy
BERT 77.17 71.25 74.37 74.01 | 74.20 74.27
SciBERT 79.69 74.35 74.35 76.46 | 77.68 77.67
LLaMA-7B 78.22 69.53 73.53 61.05 | 70.58 71.10
LLaMA-13B 82.92 74.93 77.60 71.71 | 76.79 76.98
LLaMA-70B 86.17 74.45 77.77 64.51 | 75.73 76.50
SciLitLLM-7B 82.54 76.52 77.06 69.77 | 76.47 76.80
Tiilu-2-dpo-7B 79.82 71.03 74.87 63.86 | 72.39 72.85
Tiilu-2-dpo-70B 87.24 78.22 79.20 76.23 | 80.22 80.37

Table 6: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciNLI for
Natural Language Inference. We report the overall macro F1, accuracy and the class-wise macro F1.

5.4 Paraphrase Recognition

Table 5 shows the results for the task of paraphrase
recognition. Although the results achieved by each
of the models are very close to each other, decoder-
based LMs hold a slight edge in performance over
encoder-based LMs, with the SciLitLLM-7B being
the best performing model by outperforming even
the 70B models.

5.5 Natural Language Inference

Table 6 shows the results for scientific Natural
Language Inference. The Tiilu-2-dpo-70B model
shows superior performance among the tested mod-
els and also achieves the SOTA performance on
this dataset (Sadat and Caragea, 2024).

5.6 Citation Intent Classification

Table 7 and Table 8 shows the result for Citation In-
tent Classification on the ACL-ARC (Jurgens et al.,
2018) and SciCite (Cohan et al., 2019) datasets,
respectively. We see that for both the datasets SciB-
ERT shows better performance. Only for F1 scores
of two classes of the ACL-ARC dataset and the
overall accuracy score, other language models are
able to perform better than SciBERT. LLaMA-70B
and Tiilu-2-dpo-70B — both 70B LLMs clock al-

most about the same overall F1 score, whereas the
two 7B models show some hallucinations like Re-
peats and Inspired.

5.7 Claim Verification

Table 9 shows the result for Claim Verification on
the SCIFACT dataset (Wadden et al., 2020). This
is the only task where we find that a large lan-
guage model i.e. the Tiilu-2-dpo-70B model is the
best performing model on all metrics and is also
separated from the encoder-based LMs by a huge
margin.

6 Performance Analysis

We find that encoder-based LMs offer stiff com-
petition to their decoder-based counterparts even
though the encoder-based LMs are quite smaller
in size and trained on much less data. Decoder-
based LMs perform well in those tasks where the
number of labels or classification heads are less
than or equal to 3. Among the tasks considered,
decoder-based LMs have been found to work well
in tasks like Paraphrase Recognition, Natural Lan-
guage Inference and Claim Verification.

(Wadden et al., 2024) reports the F1 score in the
SCIERC using GPT-4 to be 42.2 and using their



Model Bckg. | Comp. | Extends | Future | Motiv. | Uses | Accuracy | F1 | H
BERT 84.12 | 59.15 44.81 21.67 | 00.00 | 64.91 45.78 70.74 | O
SciBERT 87.67 | 73.76 73.13 76.26 | 41.79 | 78.42 74.96 77.70 | O
LLaMA-7B 84.62 | 60.00 61.54 50.00 | 71.43 | 84.44 77.70 58.86 | 2
LLaMA-13B 86.09 | 68.18 50.00 66.67 | 40.00 | 80.77 78.42 6529 | 0
LLaMA-70B 84.97 | 63.41 72.73 80.00 | 26.67 | 79.17 76.98 67.82 | 0
SciLitLLM-7B | 84.00 | 60.47 61.54 72.73 | 36.36 | 76.00 75.54 65.18 | O
Tiilu-2-dpo-7B | 84.93 | 60.00 46.15 72.73 | 44.44 | 77.55 74.82 55.12 | 1
Tiilu-2-dpo-70B | 84.97 | 61.90 80.00 72.73 | 53.33 | 85.11 79.14 73.01 | O

Table 7: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on ACL-ARC for
Citation Intent Classification. We report the overall macro F1, accuracy and the class-wise macro F1. H stands for
Hallucinated Tags i.e. the tags which LMs have generated, but are not part of the dataset’s annotation schema.

Model Background | Method | Result | Accuracy | F1
BERT 88.28 85.28 80.6 86.17 84.72
SciBERT 88.51 86.33 81.53 86.75 85.46
LLaMA-7B 85.85 81.44 77.96 83.37 81.75
LLaMA-13B 85.31 80.28 77.12 82.56 80.90
LLaMA-70B 86.83 82.58 79.92 84.55 83.11
SciLitLLM-7B 86.10 81.02 79.06 83.48 82.06
Tiilu-2-dpo-7B 86.54 82.41 76.73 83.80 81.89
Tiilu-2-dpo-70B 86.19 83.09 80.00 84.23 83.10

Table 8: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciCite for
Citation Intent Classification. We report the overall macro F1, accuracy and the class-wise macro F1.

own SCITULU 70B model to be 35.9. Therefore,
we see that fine-tuning decoder-based LMs gives
far better results than the simply prompting.

We see that many of the decoder-based LMs
hallucinate when there are too many labels for clas-
sification. Hallucinations are a major reason for
the overall decrease in performance of decoder-
based LMs in many tasks. We postulate that the
pre-training of large generative models plays a ma-
jor part in such hallucinations, where in spite of
the classes being mentioned in the training prompt,
the model in a few exceptional cases generates data
which is meaningful but does not pertain to the
constrained framework of the given task.

On the bright side, our experiments on decoder-
based LMs have led to achieving SOTA perfor-
mance on two tasks — Relation Classification and
Natural Language Inference.

6.1 Computational Time Complexity

Encoder-based LMs take much lower time for both
training and inferencing than decoder-based LMs,
which require anywhere about 4 to 26 A100 GPU
hours per dataset only for the training part. Apart
from this, the inferencing stage is also a time-

consuming process with datasets like CS-NER
which have large amounts of test data requiring
more than 12 hours on an A100 GPU. In compari-
son, encoder-based LMs require at most 5-6 hours
for the completion of both the training and infer-
encing stages. SciLitLLM (Li et al., 2024) takes an
inordinately large amount of time for the inferenc-
ing phase in spite of its model size.

6.2 Effect of using domain-specific
pre-trainined models

We see across all tasks that language models that
have been pre-trained on scholarly data perform
better than those trained on general domain data.
We observe this trend both in the case of encoder-
based models (SciBERT) and decoder-based mod-
els (SciLitLLM and Tiilu-2). But, we notice an
interesting scenario in the case of Tiilu-2: ScCI-
ERC (one of our NER and relation classification
datasets) is included within its pre-training data and
even after explicitly fine-tuning on the same data,
we do not obtain an improvement in the results.
Yet, although SciFact occurs in Tiilu-2 pre-training
corpus, hallucinations do not occur during claim
verification on SciFact. Therefore, we again con-



Model Support | Contradict | Accuracy | Precision | Recall | F1
BERT 77.14 00.52 62.82 34.15 49.21 | 38.83
SciBERT 80.22 53.15 69.82 66.89 65.15 | 65.41
LLaMA-7B 81.87 51.89 73.67 74.64 66.20 | 66.88
LLaMA-13B 85.59 71.11 80.77 79.90 77.46 | 78.35
LLaMA-70B 90.20 79.26 86.69 87.86 83.16 | 84.73
SciLitLLM-7B 85.27 69.68 80.18 79.47 76.46 | 77.48
Tiilu-2-dpo-7B 83.41 67.83 78.11 76.55 75.02 | 75.62
Tiilu-2-dpo-70B | 93.08 88.72 91.42 90.25 91.86 | 90.9

Table 9: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciFact for Claim
Verification. We report the overall precision, recall, macro F1, accuracy and the class-wise macro F1.

clude that hallucinations play a large role in the
performance of decoder-based models.

6.3 Experimental Setup Analysis

We do not opt for multi-task fine-tuning of LLMs
as we have chosen a diverse range of tasks and
therefore, there is a high possibility of negative
transfer even though multi-task fine-tuning is a vi-
able option sometimes while dealing with related
tasks (Karimi Mahabadi et al., 2021).

We choose BERT (Devlin et al., 2019) over other
variants of Transformer encoder based model vari-
ants because other architecturally similar models
do not show any drastic improvement in perfor-
mance over BERT and also because of the popular-
ity of BERT on standard NLP tasks. We do not use
the SCITULU (Wadden et al., 2024) checkpoints
for our experiments as most of the datasets overlap
with their training data and this would not have
been suitable for our experiments.

7 Related Work

A series of instruction-tuned models have been
built on LLaMA (Touvron et al.,, 2023a) and
LLaMA-2 (Touvron et al., 2023b) including Code
LLaMA (Roziere et al., 2024), Gorilla (Patil et al.,
2023), Giraffe (Pal et al., 2023), Vigogne (Huang,
2023), Tiilu (Wang et al., 2023), Tiilu-2 (Ivison
et al., 2023), Long LLaMA (Tworkowski et al.,
2023), and Stable Beluga2 (Mahan et al.).
Galactica (Taylor et al., 2022), DARWIN (Xie
et al., 2023), SCITULU (Wadden et al., 2024) and
SciLitLLM (Li et al., 2024) are some recently de-
veloped LLMs that have scientific knowledge in-
jected into them and are able to perform better than
general-domain LLMs on scientific tasks.
(Al4Science and Quantum, 2023) explores the
performance of GPT-4 on a range of scientific

domains, SCIBENCH (Wang et al., 2024) is a
benchmark for examining the reasoning capabil-
ities of LLLMs, SciEval (Sun et al., 2024) con-
tains 18,000 objective and subjective questions
for evaluating the scientific reasoning capabilities
of LLMs. Domain-specific evaluation of LLMs
has been carried out in areas like chemistry (Cas-
tro Nascimento and Pimentel, 2023) (Guo et al.,
2024) , molecular discovery (Janakarajan et al.,
2024), biomedicine (Jahan et al., 2024), biological
protocol planning (O’Donoghue et al., 2023) and
material science (Jablonka et al., 2023). These stud-
ies mainly examine only the zero-shot, few-shot
and chain-of-thought inferencing capabilities of
LLMs, whereas our study highlights the difference
of fine-tuning encoder-based LMs with decoder-
based LMs. With respect to scientific literature
understanding, perhaps the closest work to ours is
the SCIRIFF (Wadden et al., 2024), which creates
an instruction-tuning dataset for scientific literature
understanding and fine-tunes the TULU V2 check-
point on the dataset to finally create a set of models
called SCITULU. In contrast, our work is more
aligned towards the evaluation of decoder-based
LMs and encoder-based LMs.

8 Conclusion

We fine-tune and examine 2 encoder-based lan-
guage models and 6 decoder-based language mod-
els on 10 benchmark scholarly datasets over a span
of 6 tasks. We observe that there is no clear winner
among these two groups of models. In the case of
decoder-based language models, we find that there
is a huge dissimilarity between the performance
achieved and the computational costs involved. We
also report the usefulness of fine-tuning and using
domain-specific large language models.



Limitations

We do not test over different prompt templates
due to computational costs. Moreover, using more
prompt engineering and using more latest decoder-
based language models can be tested for these
tasks.
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A Dataset

A.1 Named Entity Recognition/ Typed
Keyphrase Recognition

We make use of the following popular datasets for
Named Entity Recognition: SCIERC (Luan et al.,
2018), CS-NER (Abstracts) (D’Souza and Auer,
2022), CS-NER (Abstracts) (D’Souza and Auer,
2022). For the Typed Keyphrase Extraction task,
we use FEW-TK (Lahiri et al., 2024). Almost all
of these datasets are annotated on research paper
abstracts or titles or both.

A.2 Relation Classification

We use SCIERC (Luan et al., 2018), which con-
tains about 4, 716 relations over 500 scientific doc-
ument abstracts.

A.3 Paraphrase Recognition

PARADE (PARAphrase identification based on Do-
main knowledgE) (He et al., 2020) is a dataset
tailored for paraphrase identification consisting of
10, 182 pairs of definitions that describe 788 dis-
tinct entities in the Computer Science domain. Out
of these, 4, 778 are paraphrases and 5, 404 are non-
paraphrases.

A.4 Natural Language Inference

SciNLI (Sadat and Caragea, 2022) is a Natural
Language Inference (NLI) dataset tailored for the
scientific domain, consisting of 101,412 samples in
the training set, 2,000 samples in the validation set,
and 4,000 samples in the test set. In comparison
to traditional datasets, this dataset contains two
new classes, taking the total number of classes to
four: "Contrasting", "Entailment", "Reasoning"
and "Neutral".

A.5 Citation Intent Classification

We consider two datasets for this task: ACL-ARC
(six categories) (Jurgens et al., 2018) and SciCite
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(three categories) (Cohan et al., 2019). SciCite con-
sists of 11,020 instances and is larger than ACL-
ARC which contains 1, 941 data points.

A.6 Claim Verification

SCIFACT (Wadden et al., 2020) is a dataset that is
made up of 1, 409 expert-written scientific claims
which are verified against a corpus of 5,183 ab-
stracts. The claims in this dataset

B Model Checkpoints

B.1 BERT

BERT (Devlin et al., 2019) stands for Bidirec-
tional Encoder Representations from Transformers.
BERT is a multi-layer bidirectional Transformer
encoder model that is pre-trained on unlabelled
data from the BooksCorpus and English Wikipedia
for two different tasks: the masked language mod-
elling (MLM) task and the next sentence prediction
(NSP) task. The BERT model may be fine-tuned
for several downstream tasks and this fine-tuning
paradigm has found success in almost all major
NLP tasks.

B.2 SciBERT

SciBERT (Beltagy et al., 2019) is domain-specific
variant of BERT that is pre-trained on scientific
text. SCiBERT retains the architecture as well as all
the major characteristics of BERT except that it is
pre-trained on a corpus that consists of papers from
the biomedical domain and the computer science
domain in a 82 : 18 ratio.

B.3 LLaMA family of models

LLaMA is a family of pre-trained foundational lan-
guage models that have been open-sourced by Meta
in recent times. LLaMA models incorporates the
following three minor architectural changes within
the original Transformer architecture (Vaswani
et al., 2017): (1) use of SwiGLU (Shazeer, 2020)
activation function instead of ReLU, (2) use of ro-
tary positional embeddings (Su et al., 2021) instead
of absolute positional embedding, and, (3) use of
RMSNorm (Zhang and Sennrich, 2019) normaliz-
ing function instead of layer-normalization.

B.4 SciLitLLM

SciLitLLM (Li et al., 2024) is a very recently re-
leased LLM designed for the task of scientific litera-
ture understanding that has been trained using both
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Corpora Domain Classes Papers Tokens  Entities
SCIERC (Luan et al., 2018) Al 5 500 60,749 8,089
CS-NER (Abstracts) (D’Souza and Auer, 2022) Al 2 12,271 1,317,256 29,273
CS-NER (Titles) (D’Souza and Auer, 2022) CL 7 31,044 263,143 67,270
FEW-TK (Lahiri et al., 2024) Al 38 500 115,745 20064

Table 10: Details of standard scientific-domain Named Entity Recognition datasets and FEW-TK for Typed

Keyphrase Recognition

continual pre-training (CPT) and supervised fine-
tuning (SFT).This strategy is used on Qwen2.5 to
obtain SciLitLLM. The CPT stage uses 73,000 text-
books and 625,000 academic papers, while the SFT
stage uses SciLitIns, SciRIFF (Wadden et al., 2024)
and Infinity-Instruct?. We use the SciLitLLM 7B?
for our experimental purposes.

B.5 Tiilu family of models

Tilu (Wang et al., 2023) is a set of models that
are instruction-tuned on LLaMA (Touvron et al.,
2023a) using a mixture of human-generated as well
as GPT-generated data. Tiilu-2 (Ivison et al., 2023)
is trained on LLaMA-2 over a more updated and
refined data mixture, which contains even datasets
from scientific literature like SciERC (Luan et al.,
2018), Qasper (Dasigi et al., 2021), SciFact (Wad-
den et al., 2020) and SciTLDR (Cachola et al.,
2020). Tiilu-2 is further trained using the direct
preference optimization (DPO) algorithm (Rafailov
et al., 2023).

C Hallucinated Labels

The following tables show the hallucinated labels
in different decoder-based language models.

Model ACL-ARC
LLaMA-7B INSPIRED, TUV
LLaMA-13B -
LLaMA-70B -

SciLitLLM-7B
Tulu-2-dpo-7B
Tulu-2-dpo-70B

REPEATS

Table 12: Hallucinated Labels for Citation Intent Classi-

fication datasets

D Prompt Template

Table 15 shows the prompt templates used by the
generative decoder-based language models.

Model SciERC (REL)
COMBINATION-STRATEGY
LLaMA-7B -OVER, WEIGHTED-SUM.
LLaMA-13B -
LLaMA-70B

SciLitLLM-7B
Tulu-2-dpo-7B

Tulu-2-dpo-70B

INDUCED-FROM

FOR-FOR, SUM-OF,
OUT-OF-NLP.

Table 11: Hallucinated Labels for Relation Extraction

datasets

Zhttps://huggingface.co/datasets/BAAIL/

Infinity-Instruct

Shttps://huggingface.co/Uni-SMART/ScilitLLM
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Model Few-TK

‘Data Mining Information Retrieval metrics’, ‘Compute architecture’, ‘Data Mining’
LLaMA-7B ‘Information Retrieval dataset’, ‘Statistical Mathematical domain’,
‘Statistical Mathematical phenomenon’

‘Astronomy term’, ‘Astronomy term’, ‘Astronomy term’, ‘Astronomy term’,
LLaMA-13B ‘Statistical Mathematical domain’, ‘Statistical Mathematical technique’,
‘Statistical Mathematical domain’, ‘Bioinformatics algorithm tool’

‘Garbage value: Tourism is the typed
LLaMA-70B keyphrase identified from the given text.’, ‘Statistical Mathematical focus’, ‘Statistical
Mathematical domain’, ‘New York City dog park’, ‘Al ML DL metrics’

‘Reference’, ‘Optimization

algorithm tool’, ‘Data Mining Information Retrieval dataset’,

‘Al ML DL library’, ‘Q&A site for programmers’,

‘Commercial LP solver’, ‘Data Mining Information Retrieval dataset’,
‘Miscellaneous result’, ‘Data Mining Information Retrieval strategy’,
’Statistical Mathematical focus’,

*Statistical Mathematical domain’, ‘NLP author’, ‘NLP author’, ‘Information
Retrieval focus’, ‘Garbage value: 600 words of type’

SciLitLLM-7B

‘Miscellaneous dataset’, ‘Miscellaneous dataset’, ‘Miscellaneous result’, ‘Statistical
Mathematical focus’, ‘Statistical Mathematical focus’

, ‘Data Mining Information Retrieval

Tulu-2-dpo-7B | dataset’, ‘Computer vision algorithm step’,

‘Financial term’, ‘Quality metrics’, ‘Statistical Mathematical focus’,

‘Statistical Mathematical discipline’, ‘author’, ‘author’, ‘Information retrieval
focus’, ‘Statistical Mathematical focus

‘Application term’, ‘Computer Vision algorithm tool’,
Tulu-2-dpo-70B | ‘Data Mining Information Retrieval tool’,
‘Miscellaneous dataset’, ‘NLP framework’

Table 13: Hallucinated Labels for Typed Keyphrase Recognition dataset, Few-TK
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Model CS-NER (Titles) SciERC (NER)
LLaMA-7B AUTHOR OBJECTIVE, SCENARIO, AUTHOR
LLaMA-13B DATE -

LLaMA-70B AUTHOR, R, REGION AUTHOR, HUMAN

SciLitLLM-7B
Tulu-2-dpo-7B
Tulu-2-dpo-70B

DATE
DATE, REGION, DATE

PROFESSION
FUNCTION, AUTHOR
USER, PLATFORM, DRUG

Table 14: Hallucinated Labels for Named Entity Recognition datasets

Task Instruction Input Output
) In the given sentence, find the named ..
Named Entity . vt . The entities s; of type y; are
.. entity mentions and classify them among X . . -
Recognition . . . identified from the given text.
the following possible categories - Y
In the given sentence, find the
Typed £ . The typed keyphrases s;
typed keyphrase mentions and . .
Keyphrase . . X of type y; are identified
.. classify them among the following .
Recognition . . from the given text.
possible categories - Y
In the given sentence, find and
. classify the relation between the .
Relation 0y . .. The relation between
Extraction mentioned pair of named entities, X s and s is 1
where the relation can be of the A B=T
following types: Y
Paraphrases are sentences that
express the same meaning b . .
press aming by The given pair of
Paraphrase using different wording. Are
. . . (s1,52) sentences are paraphrases/
Recognition the following pair of sentences
non-paraphrases.
paraphrases or non-paraphrases?
SEP separates the two sentences.
Analyze the provided pair of
Natural y P . P .
Laneuace sentences to determine their (51, 52) cy
guas relationship. Choose one of the 1o Y
Inference . .
following categories: Y
Given a scientific text containing The intent of the citation
Citation Intent a citation and the citation string, D falls under the
Classification classify the intent of the citation following category:
among the following categories: Y. yey
Claim Given a scientific claim, evaluate the The given evidence
. . evidence to determine whether (s1,52) supports/refutes
Verification . . L .
it supports or refutes the claim. the scientific claim.

Table 15: Table showing prompts used to instruction-tune LLMs
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