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Abstract001

Language modeling has seen seen a tremen-002
dous development over past few years, with a003
considerable rise in their deployment for solv-004
ing domain-specific Natural Language Process-005
ing (NLP) tasks. In recent times, the fundamen-006
tal building blocks of language models are es-007
sentially composed of either an encoder-based008
architecture or a decoder-based architecture or009
a combination of both. In the scholarly domain,010
the majority of use cases have explored only the011
utilization of encoder-only models for a variety012
of tasks using the pre-trained model fine-tuning013
approach. But the same has not yet been repli-014
cated for decoder based models in spite of the015
recent popularity of LLMs. To address this is-016
sue, we fine-tune both encoder-based language017
models and decoder-based language models018
on an array of traditional scholarly NLP tasks.019
This allows us to compare the effect of learned020
representations in contrast to generation-based021
techniques on standard scholarly benchmark022
datasets. We conduct extensive experiments023
on 10 highly popular human-annotated datasets024
over 6 different tasks and also study the effect025
of domain-specific pre-training on these tasks.026
We achieve SOTA over two tasks using decoder-027
based language models, although they prove to028
not being best in terms of computational costs029
or hallucinations.030

1 Introduction031

Scientific literature understanding is an important032

facet of Natural Language Understanding and is033

highly useful in the comprehension of large collec-034

tions of scientific text. There has been a growing035

interest to explore the nuances of standard Natural036

Language Processing tasks in the scholarly domain037

and in most cases the best results have come from038

fine-tuning a pre-trained language model (Beltagy039

et al., 2019; Lahiri et al., 2024; Sadat and Caragea,040

2022; He et al., 2020).041

Researchers have been able to classify the emer-042

gence of language models into four different waves:043
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Figure 1: Comparison of the scores achieved by the best
performing encoder-based and decoder-based LMs.

statistical language models, neural language mod- 044

els, pre-trained language models (PLMs), and large 045

language models (LLMs) (Minaee et al., 2024). 046

Models with tens to hundreds of billions of param- 047

eters are generally considered as LLMs and mod- 048

els with lesser number of parameters are referred 049

to as PLMs. We see with LLMs the paradox of 050

over-parametrization wherein models with greater 051

number of parameters exhibit better performance 052

instead of over-fitting. Decoder-based LLMs, have 053

in fact shown to present strong emergent and rea- 054

soning capabilities (Wei et al., 2022a,b; Yao et al., 055

2023). The emergence of Transformer-based pre- 056

trained language models and the subsequent popu- 057

larity gained by LLMs have transformed the way 058

we solve NLP tasks, since the language understand- 059

ing capabilities of PLMs and LLMs outdo their 060

predecessors by a large margin. 061

PLMs and LLMs are both categories of language 062

models that trace their architectural roots to the 063

original Transformer model (Vaswani et al., 2017). 064

In theory, PLMs mainly differ from their elder sib- 065

lings – the LLMs in terms of size, but may be either 066

encoder-based or decoder-based. Encoder-based 067
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Figure 2: Fine-tuning for a Transformer encoder-based LM (left) and for a Transformer decoder-based LM (right).

models generally fall into the category of PLMs068

because the parameters of the available pre-trained069

models are in the order of millions but nowadays070

it is very common to find decoder-based models071

which have some billion parameters.072

Encoder-based models like BERT (Devlin et al.,073

2019), although being task agnostic in nature, gen-074

erally need to go through fine-tuning over a limited075

amount of task-specific data to achieve proficiency076

in that particular task. Despite the fact that LLMs077

possess greater emergent properties, they have been078

reported to be more accomplished when fine-tuned079

over task-specific data (Minaee et al., 2024). More-080

over, simply prompting decoder-based LMs do not081

often produce the best results for scientific litera-082

ture understanding tasks (Wadden et al., 2024).083

The main objective of this paper is to create084

an evaluation setup that can effectively compare085

the ability of decoder-based LMs with that of086

their encoder-based LM counterparts with a spe-087

cial focus on scholarly tasks. To this end, we con-088

duct extensive fine-tuning experiments on human-089

annotated scholarly datasets, such as Named Entity090

Recognition/Typed Keyphrase Recognition, Rela-091

tion Classification, Natural Language Inference,092

Paraphrase Identification, Citation Intent Classifi-093

cation, and Claim Verification.094

Our main contributions can summarized as fol-095

lows: a) We compare decoder-based LMs with096

encoder-based LMs on 10 benchmark scholarly097

tasks over 6 different tasks. For this purpose, we098

use 2 encoder-based LMs and 6 decoder-based099

LMs. b) We analyze the performance for each task,100

as well as the hallucinations generated by the mod-101

els. c) We study the effect of domain-specific data102

in the pre-training corpus and the computational103

time complexity of fine-tuning these models.104

2 Transformer Architecture 105

The original transformer architecture (Vaswani 106

et al., 2017) consists of a combined encoder- 107

decoder structure that is auto-regressive in nature. 108

The encoder maps an input sequence of symbol rep- 109

resentations (x1, x2, ..., xn) into a sequence of con- 110

tinuous representations z = (z1, z2, ..., zn). The 111

encoder is supposed to contain N identical lay- 112

ers, where each layer consists of a multi-head self- 113

attention mechanism followed by a position-wise 114

fully connected feed-forward network. 115

The decoder takes z as the input and generates an 116

output sequence (y1, y2, ..., ym). The decoder also 117

consists of N identical layers, where in addition to 118

the components of the encoder layer, there exists a 119

new sub-layer that performs multi-head attention 120

over the output of the encoder stack. 121

Most recent language models follow variants 122

of this architecture, with small changes like the 123

activation function, or the positional embedding 124

technique or the tokenization procedure. With the 125

Transformer being the basic building block, lan- 126

guage models may contain the encoder only or the 127

decoder only or may contain both the encoder and 128

the decoder. Pre-training of encoder models in- 129

volve various language modelling objectives like 130

masked language modelling while decoder-based 131

models generally use the autoregressive next token 132

prediction objective. 133

Figure 2 shows the fine-tuning approach fol- 134

lowed by encoder-based LMs as well as decoder- 135

based LMs. For encoder-based LMs, the input is 136

tokenized and fed into the encoder blocks to gen- 137

erate their token representations which are then 138

passed through an output layer. Decoder-based 139

LMs provide a sequential output when provided 140

with a instruction and the input. 141
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3 Tasks142

We consider 6 tasks for our experiments, each of143

which is briefly described here. The details of the144

datasets shown in Figure 3 are in the Appendix.145
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Figure 3: Tasks and Datasets

3.1 NER/TK: Named Entity Recognition/146

Typed Keyphrase Recognition147

Named Entity Recognition (NER) is the Informa-148

tion Extraction (IE) task of identifying references149

to rigid designators (Nadeau and Sekine, 2007).150

Recently (Lahiri et al., 2024) presented a broader151

definition for this task in the scientific domain and152

termed it as Typed Keyphrase Recognition.153

Definition: The input is a sequence of tokens154

x = (x1, x2, ..., xn), from which we derive a set155

S = {s1, ...sp}, which represents a set of seman-156

tically meaningful within-sentence contagious se-157

quence spans each of which is assigned a label158

from the set Y = {y1, y2, ..., ym}. The elements in159

set S may contain words, phrases or other syntactic160

units from the given text sequence x. Therefore,161

the final output can be construed as Z = {(si, yj) :162

i ∈ 1, ..., p; j ∈ 1, ...,m; si ∈ S; yj ∈ Y }.163

3.2 REL: Relation Classification164

Relation Classification is also an Information Ex-165

traction task, wherein the objective is to predict the166

relationship type between a given ordered pair of167

spans within a sentence.168

Definition: The input is a sequence of tokens169

x = (x1, x2, ..., xn) and two entities (spans), sA =170

(xi, ..., xj) and sB = (xu, ..., xv), the expected171

output is a triple (sA, sB, r), where r ∈ R such172

that R is a pre-defined set of relation labels.173

3.3 PPHRASE: Paraphrase Recognition 174

Sentences or phrases conveying identical meaning 175

but with the use of different wording are called 176

paraphrases. Automated paraphrase recognition 177

mechanisms are useful in many NLP tasks like 178

textual entailment, machine reading, question an- 179

swering, information extraction, and machine trans- 180

lation (Bhagat and Hovy, 2013). For the scholarly 181

paraphrase identification task, the ability of the 182

model to demonstrate specialized domain knowl- 183

edge is tested (He et al., 2020). 184

Definition: A pair of sentences (s1, s2) are to be 185

classified as paraphrases or non-paraphrases. 186

3.4 NLI: Natural Language Inference 187

Natural Language Inference (NLI), also known 188

as Textual Entailment (Bowman et al., 2015; Sa- 189

dat and Caragea, 2022), is the task of identifying 190

whether there is an entailment or a contradiction 191

between a pair of sentences or whether they are 192

independent of each other. NLI for the scientific 193

domain is relatively new and also quite challenging 194

due to the difference in the vocabulary and sentence 195

structure in comparison to the general domain. 196

Definition: Given a pair of sentences (s1, s2), 197

the task is to assign a label y ∈ Y which indicates 198

the semantic relatedness of the latter to the former. 199

3.5 CIC: Citation Intent Classification 200

Citations form an important part of scientific doc- 201

uments. The kind of purpose the citation serves 202

in the scholarly document is known as its citation 203

intent (Roman et al., 2021). Citation intents are 204

useful in tasks like the measurement of scientific 205

impact (Cohan et al., 2019) and the temporal study 206

of scientific concepts (Jurgens et al., 2018). 207

Definition: The input is a citation sentence x 208

and the aim is to assign a class label y ∈ Y , where 209

Y is the set of citation intents. 210

3.6 CLAIM: Claim Verification 211

This task intends to assess the truthfulness of a 212

claim (Vlachos and Riedel, 2014), which is impor- 213

tant in the scientific domain due to the possibility 214

of a far-reaching impact of a decision taken based 215

on some scientific misinformation. We follow the 216

simplified setting of (Vladika and Matthes, 2024) 217

where the model is provided with golden abstracts: 218

Definition: Given a claim c and an evidence 219

abstract d (each of which is a sequences of tokens), 220

the task is to find whether c supports or refutes the 221

abstract d. 222
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CS-NER (Titles) CS-NER (Abstracts)Model Precision Recall F1 H Precision Recall F1 H
BERT 72.83 76.81 74.77 0 69.38 71.32 70.33 0

SciBERT 72.98 76.66 74.78 0 72.97 71.35 72.14 0
LLaMA-7B 66.00 70.38 68.12 1 83.29 68.18 74.98 0

LLaMA-13B 65.72 70.50 68.03 3 82.64 69.03 75.22 0
LLaMA-70B 66.41 70.61 68.45 3 90.00 62.92 74.06 0

SciLitLLM-7B 67.33 69.35 68.32 0 86.42 70.79 77.83 0
Tülu-2-dpo-7B 66.47 65.74 66.10 1 79.85 70.70 75.00 0
Tülu-2-dpo-70B 67.25 69.83 68.52 3 88.35 69.82 78.00 0

Table 1: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on CS-NER (Titles)
and CS-NER (Abstracts) for Named Entity Recognition. H stands for Hallucinated Tags i.e. the tags which LLMs
have generated, but are not part of the dataset’s annotation schema.

4 Experimental Setup223

4.1 Encoder-based Language Models224

We use the BERT (Devlin et al., 2019) and SciB-225

ERT (Beltagy et al., 2019) model checkpoints as226

the encoder-based LMs in our experiments. More227

details about these models are present in the Ap-228

pendix B. The experimental details for fine-tuning229

encoder-based LMs are as follows:230

NER/TK: We train the uncased versions of231

BERT and SciBERT by passing their output232

through a linear classifier and training using the233

cross-entropy loss for 20 epochs. The maximum234

sequence length considered is 256.235

REL: This task is formulated for encoder-based236

LMs as a special case of text classification: the237

given entities are delineated with special tokens238

and the model learns to predict the relation between239

these entities (Beltagy et al., 2019).240

PPHRASE: We fine-tune BERT and SciBERT241

by considering this task as a text classification task242

as was done for the original PARADE dataset (He243

et al., 2020). We fine-tune the backbone PLMs for244

5 epochs using a learning rate of 2e− 5.245

NLI: The pair of sentences provided as input are246

concatenated separated by a [SEP] token between247

them. A softmax layer is used to predict the out-248

put class from the [CLS] token embedding. Each249

backbone model is trained for 5 epochs and the250

maximum input length is set at 300. We use the251

cased versions of the BERT and SciBERT models252

keeping in line with the original paper (Sadat and253

Caragea, 2022).254

CIC: It is treated as a simple text classification255

problem given the citation sentence, as in (Beltagy256

et al., 2019). Therefore, the BERT vector is given257

as input into a linear classification layer. The learn-258

ing rate is taken as 2e− 5 and the model is trained 259

for 5 epochs. 260

CLAIM: We model the claim verification task as 261

a two-class classification problem, such that given 262

the claim-evidence pair, the model predicts whether 263

the claim supports or contradicts the evidence. 264

4.2 Transformer-decoder based models 265

We use the 7B, 13B and the 70B model variants of 266

LLaMA-2 (Touvron et al., 2023b), SciLitLLM-7B1 267

(Li et al., 2024) and 7B and 70B variants of Tülu-2 268

(Ivison et al., 2023) as the decoder-based LMs in 269

our experiments. Details about these models and 270

the prompts are described in Appendix B and D, 271

respectively. 272

We instruction-tune the decoder-based LMs us- 273

ing QLoRA (Dettmers et al., 2023), which is an 274

efficient approach for fine-tuning LLMs using rela- 275

tively less GPU memory. QLoRA uses 4-bit Nor- 276

malFloat, Double Quantization and Paged Optimiz- 277

ers on the Low-rank Adapter (LoRA) fine-tuning 278

approach (Hu et al., 2022), which makes it possible 279

to fine-tune even 70B parameter models in a 80GB- 280

A100 GPU with minimal performance degradation. 281

We fix both the source length and the target length 282

to 512 for better comprehension. The learning rate 283

is kept at 2e− 4, and we fine-tune each model for 284

1, 875 steps. 285

5 Results 286

5.1 Named Entity Recognition 287

Table 3 and Table 1 shows the results obtained for 288

the SCIERC (Luan et al., 2018) as well as both 289

the CS-NER (Abstracts) and CS-NER (Abstracts) 290

(D’Souza and Auer, 2022) datasets. Apart from 291

1https://huggingface.co/Uni-SMART/SciLitLLM
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Model Cmp. Cnj. Evl.-for Ft.-of Hyp.-of Pt.-of Used-for F1 H
BERT - - - - - - - 78.71* 0

SciBERT - - - - - - - 79.97* 0
LLaMA-7B 87.32 94.4 87.01 71.54 94.03 68.38 93.67 74.54 2
LLaMA-13B 88.31 94.02 89.73 64.08 90 64.35 94.34 83.55 0
LLaMA-70B 88.57 93.02 86.34 66.67 84.93 37.97 93.66 78.74 0

SciLitLLM-7B 87.32 94.82 89.13 64.91 92.09 61.95 93.95 73.02 1
Tülu-2-dpo-7B 88.57 92.86 84.21 60.00 82.64 60 92.84 80.16 0
Tülu-2-dpo-70B 87.18 93.06 83.17 62.50 90.91 66.07 93.83 72.09 3

Table 2: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SCIERC for
Relation Classification. H stands for Hallucinated Tags, i.e., the tags which LLMs have generated, but are not part
of the dataset’s annotation schema. The * denotes that the results are obtained from the original paper.

Model P R F1 H
BERT 59.71 65.95 62.67 0

SciBERT 62.24 67.2 64.62 0
LLaMA-7B 58.57 61.83 60.16 4
LLaMA-13B 57.94 62.26 60.02 0
LLaMA-70B 61.42 64.95 63.14 4

SciLitLLM-7B 58.39 60.67 59.51 1
Tülu-2-dpo-7B 59.95 61.9 60.91 2
Tülu-2-dpo-70B 60.81 60.55 60.68 3

Table 3: Results for fine-tuning encoder-based LMs and
instruction-tuning decoder-based LMs on SCIERC for
Named Entity Recognition. H stands for Hallucinated
Tags, i.e., the tags which LLMs have generated, but are
not part of the dataset’s annotation schema.

CS-NER (Abstracts), encoder-based LMs gener-292

ally perform better than their decoder based coun-293

terparts for the NER task. Domain-specific pre-294

training in models like SciBERT, Tülu-2, and SciL-295

itLLM help boost performance.296

For the NER task, the generative decoder-based297

LMs, despite having the class names specified in298

the prompt, hallucinate new labels such as Objec-299

tive, Scenario, Author, Profession, User, and Drug300

among others. We see that for CS-NER (Abstracts),301

none of the models hallucinate, which is perhaps302

due to the fact that it consists of only two classes.303

5.2 Typed Keyphrase Recognition304

Table 4 shows the results on the Few-TK dataset305

(Lahiri et al., 2024). Similar to the results for NER,306

here too we see that SciBERT outperforms all other307

models, although the results are generally low for308

this dataset. This is due to large number of classes,309

which is 38, in this dataset, that is much higher than310

that of other datasets in this domain. This shows311

that simple vanilla fine-tuning or instruction-tuning312

Model P R F1 H
BERT 40.59 45.05 42.66 0

SciBERT 46.87 47.82 47.29 0
LLaMA-7B 39.54 40.17 39.86 5
LLaMA-13B 40.51 46.12 43.13 8
LLaMA-70B 40.4 44.38 42.29 5

SciLitLLM-7B 41.47 44.96 43.15 16
Tülu-2-dpo-7B 38.36 41.48 39.86 15

Tülu-2-dpo-70B 42.55 45.54 43.99 5

Table 4: Results for fine-tuning encoder-based LMs and
instruction-tuning decoder-based LMs on Few-TK for
Typed Keyphrase Recognition. H stands for Halluci-
nated Tags, i.e., the tags which LLMs have generated,
but are not part of the dataset’s annotation schema.

may not be enough for more complex multi-label 313

tasks such as these as they require significantly 314

higher reasoning capabilities. We also see that 315

due to the larger number of classes into which the 316

keyphrases are to be divided, the number of hallu- 317

cinations for this dataset are also much larger. 318

5.3 Relation Classification 319

Table 2 shows the results for relation classifica- 320

tion on the SCIERC dataset and also includes the 321

F1 scores for each class – Compare, Conjunction, 322

Evaluate-for, Feature-of, Hyponym-Of, Part-of and 323

Used-for. LLaMA-13B is found to be the best per- 324

forming model for this task, which to the best of 325

our knowledge is also the SOTA for relation clas- 326

sification on this dataset. The LLaMA-7B also 327

performs well over the different classes in this task, 328

but its overall performance dips due to the two 329

hallucinated labels that it generates. Some of the 330

hallucinated labels from generative decoder-based 331

LMs are Induced-from, Sum-of and Weighted-sum, 332

in the very rare cases where they hallucinate. 333
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Model Paraphrase Non-paraphrase Accuracy Precision Recall F1
BERT 72.21 73.28 72.78 72.88 72.83 72.74

SciBERT 71.77 73.63 72.59 72.54 72.55 72.54
LLaMA-7B 73.69 72.18 72.96 73.39 73.20 72.93

LLaMA-13B 73.13 71.24 72.22 72.72 72.49 72.19
LLaMA-70B 73.30 77.30 75.46 75.58 75.25 75.30

SciLitLLM-7B 73.15 77.65 75.61 75.82 75.36 75.40
Tülu-2-dpo-7B 65.93 77.27 72.73 75.20 72.02 71.60
Tülu-2-dpo-70B 63.83 76.86 71.78 74.86 70.98 70.35

Table 5: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on PARADE for
paraphrase recognition. We report the overall precision, recall, macro F1, accuracy and the class-wise macro F1.

Model Contrasting Reasoning Entailment Neutral F1 Accuracy
BERT 77.17 71.25 74.37 74.01 74.20 74.27

SciBERT 79.69 74.35 74.35 76.46 77.68 77.67
LLaMA-7B 78.22 69.53 73.53 61.05 70.58 71.10

LLaMA-13B 82.92 74.93 77.60 71.71 76.79 76.98
LLaMA-70B 86.17 74.45 77.77 64.51 75.73 76.50

SciLitLLM-7B 82.54 76.52 77.06 69.77 76.47 76.80
Tülu-2-dpo-7B 79.82 71.03 74.87 63.86 72.39 72.85

Tülu-2-dpo-70B 87.24 78.22 79.20 76.23 80.22 80.37

Table 6: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciNLI for
Natural Language Inference. We report the overall macro F1, accuracy and the class-wise macro F1.

5.4 Paraphrase Recognition334

Table 5 shows the results for the task of paraphrase335

recognition. Although the results achieved by each336

of the models are very close to each other, decoder-337

based LMs hold a slight edge in performance over338

encoder-based LMs, with the SciLitLLM-7B being339

the best performing model by outperforming even340

the 70B models.341

5.5 Natural Language Inference342

Table 6 shows the results for scientific Natural343

Language Inference. The Tülu-2-dpo-70B model344

shows superior performance among the tested mod-345

els and also achieves the SOTA performance on346

this dataset (Sadat and Caragea, 2024).347

5.6 Citation Intent Classification348

Table 7 and Table 8 shows the result for Citation In-349

tent Classification on the ACL-ARC (Jurgens et al.,350

2018) and SciCite (Cohan et al., 2019) datasets,351

respectively. We see that for both the datasets SciB-352

ERT shows better performance. Only for F1 scores353

of two classes of the ACL-ARC dataset and the354

overall accuracy score, other language models are355

able to perform better than SciBERT. LLaMA-70B356

and Tülu-2-dpo-70B – both 70B LLMs clock al-357

most about the same overall F1 score, whereas the 358

two 7B models show some hallucinations like Re- 359

peats and Inspired. 360

5.7 Claim Verification 361

Table 9 shows the result for Claim Verification on 362

the SCIFACT dataset (Wadden et al., 2020). This 363

is the only task where we find that a large lan- 364

guage model i.e. the Tülu-2-dpo-70B model is the 365

best performing model on all metrics and is also 366

separated from the encoder-based LMs by a huge 367

margin. 368

6 Performance Analysis 369

We find that encoder-based LMs offer stiff com- 370

petition to their decoder-based counterparts even 371

though the encoder-based LMs are quite smaller 372

in size and trained on much less data. Decoder- 373

based LMs perform well in those tasks where the 374

number of labels or classification heads are less 375

than or equal to 3. Among the tasks considered, 376

decoder-based LMs have been found to work well 377

in tasks like Paraphrase Recognition, Natural Lan- 378

guage Inference and Claim Verification. 379

(Wadden et al., 2024) reports the F1 score in the 380

SCIERC using GPT-4 to be 42.2 and using their 381
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Model Bckg. Comp. Extends Future Motiv. Uses Accuracy F1 H
BERT 84.12 59.15 44.81 21.67 00.00 64.91 45.78 70.74 0

SciBERT 87.67 73.76 73.13 76.26 41.79 78.42 74.96 77.70 0
LLaMA-7B 84.62 60.00 61.54 50.00 71.43 84.44 77.70 58.86 2

LLaMA-13B 86.09 68.18 50.00 66.67 40.00 80.77 78.42 65.29 0
LLaMA-70B 84.97 63.41 72.73 80.00 26.67 79.17 76.98 67.82 0

SciLitLLM-7B 84.00 60.47 61.54 72.73 36.36 76.00 75.54 65.18 0
Tülu-2-dpo-7B 84.93 60.00 46.15 72.73 44.44 77.55 74.82 55.12 1

Tülu-2-dpo-70B 84.97 61.90 80.00 72.73 53.33 85.11 79.14 73.01 0

Table 7: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on ACL-ARC for
Citation Intent Classification. We report the overall macro F1, accuracy and the class-wise macro F1. H stands for
Hallucinated Tags i.e. the tags which LMs have generated, but are not part of the dataset’s annotation schema.

Model Background Method Result Accuracy F1
BERT 88.28 85.28 80.6 86.17 84.72

SciBERT 88.51 86.33 81.53 86.75 85.46
LLaMA-7B 85.85 81.44 77.96 83.37 81.75
LLaMA-13B 85.31 80.28 77.12 82.56 80.90
LLaMA-70B 86.83 82.58 79.92 84.55 83.11

SciLitLLM-7B 86.10 81.02 79.06 83.48 82.06
Tülu-2-dpo-7B 86.54 82.41 76.73 83.80 81.89
Tülu-2-dpo-70B 86.19 83.09 80.00 84.23 83.10

Table 8: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciCite for
Citation Intent Classification. We report the overall macro F1, accuracy and the class-wise macro F1.

own SCITÜLU 70B model to be 35.9. Therefore,382

we see that fine-tuning decoder-based LMs gives383

far better results than the simply prompting.384

We see that many of the decoder-based LMs385

hallucinate when there are too many labels for clas-386

sification. Hallucinations are a major reason for387

the overall decrease in performance of decoder-388

based LMs in many tasks. We postulate that the389

pre-training of large generative models plays a ma-390

jor part in such hallucinations, where in spite of391

the classes being mentioned in the training prompt,392

the model in a few exceptional cases generates data393

which is meaningful but does not pertain to the394

constrained framework of the given task.395

On the bright side, our experiments on decoder-396

based LMs have led to achieving SOTA perfor-397

mance on two tasks – Relation Classification and398

Natural Language Inference.399

6.1 Computational Time Complexity400

Encoder-based LMs take much lower time for both401

training and inferencing than decoder-based LMs,402

which require anywhere about 4 to 26 A100 GPU403

hours per dataset only for the training part. Apart404

from this, the inferencing stage is also a time-405

consuming process with datasets like CS-NER 406

which have large amounts of test data requiring 407

more than 12 hours on an A100 GPU. In compari- 408

son, encoder-based LMs require at most 5-6 hours 409

for the completion of both the training and infer- 410

encing stages. SciLitLLM (Li et al., 2024) takes an 411

inordinately large amount of time for the inferenc- 412

ing phase in spite of its model size. 413

6.2 Effect of using domain-specific 414

pre-trainined models 415

We see across all tasks that language models that 416

have been pre-trained on scholarly data perform 417

better than those trained on general domain data. 418

We observe this trend both in the case of encoder- 419

based models (SciBERT) and decoder-based mod- 420

els (SciLitLLM and Tülu-2). But, we notice an 421

interesting scenario in the case of Tülu-2: SCI- 422

ERC (one of our NER and relation classification 423

datasets) is included within its pre-training data and 424

even after explicitly fine-tuning on the same data, 425

we do not obtain an improvement in the results. 426

Yet, although SciFact occurs in Tülu-2 pre-training 427

corpus, hallucinations do not occur during claim 428

verification on SciFact. Therefore, we again con- 429
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Model Support Contradict Accuracy Precision Recall F1
BERT 77.14 00.52 62.82 34.15 49.21 38.83

SciBERT 80.22 53.15 69.82 66.89 65.15 65.41
LLaMA-7B 81.87 51.89 73.67 74.64 66.20 66.88
LLaMA-13B 85.59 71.11 80.77 79.90 77.46 78.35
LLaMA-70B 90.20 79.26 86.69 87.86 83.16 84.73

SciLitLLM-7B 85.27 69.68 80.18 79.47 76.46 77.48
Tülu-2-dpo-7B 83.41 67.83 78.11 76.55 75.02 75.62
Tülu-2-dpo-70B 93.08 88.72 91.42 90.25 91.86 90.9

Table 9: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciFact for Claim
Verification. We report the overall precision, recall, macro F1, accuracy and the class-wise macro F1.

clude that hallucinations play a large role in the430

performance of decoder-based models.431

6.3 Experimental Setup Analysis432

We do not opt for multi-task fine-tuning of LLMs433

as we have chosen a diverse range of tasks and434

therefore, there is a high possibility of negative435

transfer even though multi-task fine-tuning is a vi-436

able option sometimes while dealing with related437

tasks (Karimi Mahabadi et al., 2021).438

We choose BERT (Devlin et al., 2019) over other439

variants of Transformer encoder based model vari-440

ants because other architecturally similar models441

do not show any drastic improvement in perfor-442

mance over BERT and also because of the popular-443

ity of BERT on standard NLP tasks. We do not use444

the SCITÜLU (Wadden et al., 2024) checkpoints445

for our experiments as most of the datasets overlap446

with their training data and this would not have447

been suitable for our experiments.448

7 Related Work449

A series of instruction-tuned models have been450

built on LLaMA (Touvron et al., 2023a) and451

LLaMA-2 (Touvron et al., 2023b) including Code452

LLaMA (Rozière et al., 2024), Gorilla (Patil et al.,453

2023), Giraffe (Pal et al., 2023), Vigogne (Huang,454

2023), Tülu (Wang et al., 2023), Tülu-2 (Ivison455

et al., 2023), Long LLaMA (Tworkowski et al.,456

2023), and Stable Beluga2 (Mahan et al.).457

Galactica (Taylor et al., 2022), DARWIN (Xie458

et al., 2023), SCITÜLU (Wadden et al., 2024) and459

SciLitLLM (Li et al., 2024) are some recently de-460

veloped LLMs that have scientific knowledge in-461

jected into them and are able to perform better than462

general-domain LLMs on scientific tasks.463

(AI4Science and Quantum, 2023) explores the464

performance of GPT-4 on a range of scientific465

domains, SCIBENCH (Wang et al., 2024) is a 466

benchmark for examining the reasoning capabil- 467

ities of LLMs, SciEval (Sun et al., 2024) con- 468

tains 18, 000 objective and subjective questions 469

for evaluating the scientific reasoning capabilities 470

of LLMs. Domain-specific evaluation of LLMs 471

has been carried out in areas like chemistry (Cas- 472

tro Nascimento and Pimentel, 2023) (Guo et al., 473

2024) , molecular discovery (Janakarajan et al., 474

2024), biomedicine (Jahan et al., 2024), biological 475

protocol planning (O’Donoghue et al., 2023) and 476

material science (Jablonka et al., 2023). These stud- 477

ies mainly examine only the zero-shot, few-shot 478

and chain-of-thought inferencing capabilities of 479

LLMs, whereas our study highlights the difference 480

of fine-tuning encoder-based LMs with decoder- 481

based LMs. With respect to scientific literature 482

understanding, perhaps the closest work to ours is 483

the SCIRIFF (Wadden et al., 2024), which creates 484

an instruction-tuning dataset for scientific literature 485

understanding and fine-tunes the TÜLU V2 check- 486

point on the dataset to finally create a set of models 487

called SCITÜLU. In contrast, our work is more 488

aligned towards the evaluation of decoder-based 489

LMs and encoder-based LMs. 490

8 Conclusion 491

We fine-tune and examine 2 encoder-based lan- 492

guage models and 6 decoder-based language mod- 493

els on 10 benchmark scholarly datasets over a span 494

of 6 tasks. We observe that there is no clear winner 495

among these two groups of models. In the case of 496

decoder-based language models, we find that there 497

is a huge dissimilarity between the performance 498

achieved and the computational costs involved. We 499

also report the usefulness of fine-tuning and using 500

domain-specific large language models. 501
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Limitations502

We do not test over different prompt templates503

due to computational costs. Moreover, using more504

prompt engineering and using more latest decoder-505

based language models can be tested for these506

tasks.507
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A Dataset851

A.1 Named Entity Recognition/ Typed852

Keyphrase Recognition853

We make use of the following popular datasets for854

Named Entity Recognition: SCIERC (Luan et al.,855

2018), CS-NER (Abstracts) (D’Souza and Auer,856

2022), CS-NER (Abstracts) (D’Souza and Auer,857

2022). For the Typed Keyphrase Extraction task,858

we use FEW-TK (Lahiri et al., 2024). Almost all859

of these datasets are annotated on research paper860

abstracts or titles or both.861

A.2 Relation Classification862

We use SCIERC (Luan et al., 2018), which con-863

tains about 4, 716 relations over 500 scientific doc-864

ument abstracts.865

A.3 Paraphrase Recognition866

PARADE (PARAphrase identification based on Do-867

main knowledgE) (He et al., 2020) is a dataset868

tailored for paraphrase identification consisting of869

10, 182 pairs of definitions that describe 788 dis-870

tinct entities in the Computer Science domain. Out871

of these, 4, 778 are paraphrases and 5, 404 are non-872

paraphrases.873

A.4 Natural Language Inference874

SciNLI (Sadat and Caragea, 2022) is a Natural875

Language Inference (NLI) dataset tailored for the876

scientific domain, consisting of 101,412 samples in877

the training set, 2,000 samples in the validation set,878

and 4,000 samples in the test set. In comparison879

to traditional datasets, this dataset contains two880

new classes, taking the total number of classes to881

four: "Contrasting", "Entailment", "Reasoning"882

and "Neutral".883

A.5 Citation Intent Classification884

We consider two datasets for this task: ACL-ARC885

(six categories) (Jurgens et al., 2018) and SciCite886

(three categories) (Cohan et al., 2019). SciCite con- 887

sists of 11, 020 instances and is larger than ACL- 888

ARC which contains 1, 941 data points. 889

A.6 Claim Verification 890

SCIFACT (Wadden et al., 2020) is a dataset that is 891

made up of 1, 409 expert-written scientific claims 892

which are verified against a corpus of 5, 183 ab- 893

stracts. The claims in this dataset 894

B Model Checkpoints 895

B.1 BERT 896

BERT (Devlin et al., 2019) stands for Bidirec- 897

tional Encoder Representations from Transformers. 898

BERT is a multi-layer bidirectional Transformer 899

encoder model that is pre-trained on unlabelled 900

data from the BooksCorpus and English Wikipedia 901

for two different tasks: the masked language mod- 902

elling (MLM) task and the next sentence prediction 903

(NSP) task. The BERT model may be fine-tuned 904

for several downstream tasks and this fine-tuning 905

paradigm has found success in almost all major 906

NLP tasks. 907

B.2 SciBERT 908

SciBERT (Beltagy et al., 2019) is domain-specific 909

variant of BERT that is pre-trained on scientific 910

text. SciBERT retains the architecture as well as all 911

the major characteristics of BERT except that it is 912

pre-trained on a corpus that consists of papers from 913

the biomedical domain and the computer science 914

domain in a 82 : 18 ratio. 915

B.3 LLaMA family of models 916

LLaMA is a family of pre-trained foundational lan- 917

guage models that have been open-sourced by Meta 918

in recent times. LLaMA models incorporates the 919

following three minor architectural changes within 920

the original Transformer architecture (Vaswani 921

et al., 2017): (1) use of SwiGLU (Shazeer, 2020) 922

activation function instead of ReLU, (2) use of ro- 923

tary positional embeddings (Su et al., 2021) instead 924

of absolute positional embedding, and, (3) use of 925

RMSNorm (Zhang and Sennrich, 2019) normaliz- 926

ing function instead of layer-normalization. 927

B.4 SciLitLLM 928

SciLitLLM (Li et al., 2024) is a very recently re- 929

leased LLM designed for the task of scientific litera- 930

ture understanding that has been trained using both 931
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Corpora Domain Classes Papers Tokens Entities
SCIERC (Luan et al., 2018) AI 5 500 60,749 8,089
CS-NER (Abstracts) (D’Souza and Auer, 2022) AI 2 12,271 1,317,256 29,273
CS-NER (Titles) (D’Souza and Auer, 2022) CL 7 31,044 263,143 67,270
FEW-TK (Lahiri et al., 2024) AI 38 500 115,745 20064

Table 10: Details of standard scientific-domain Named Entity Recognition datasets and FEW-TK for Typed
Keyphrase Recognition

continual pre-training (CPT) and supervised fine-932

tuning (SFT).This strategy is used on Qwen2.5 to933

obtain SciLitLLM. The CPT stage uses 73,000 text-934

books and 625,000 academic papers, while the SFT935

stage uses SciLitIns, SciRIFF (Wadden et al., 2024)936

and Infinity-Instruct2. We use the SciLitLLM 7B3937

for our experimental purposes.938

B.5 Tülu family of models939

Tülu (Wang et al., 2023) is a set of models that940

are instruction-tuned on LLaMA (Touvron et al.,941

2023a) using a mixture of human-generated as well942

as GPT-generated data. Tülu-2 (Ivison et al., 2023)943

is trained on LLaMA-2 over a more updated and944

refined data mixture, which contains even datasets945

from scientific literature like SciERC (Luan et al.,946

2018), Qasper (Dasigi et al., 2021), SciFact (Wad-947

den et al., 2020) and SciTLDR (Cachola et al.,948

2020). Tülu-2 is further trained using the direct949

preference optimization (DPO) algorithm (Rafailov950

et al., 2023).951

C Hallucinated Labels952

The following tables show the hallucinated labels953

in different decoder-based language models.954

Model SciERC (REL)

LLaMA-7B
COMBINATION-STRATEGY
-OVER, WEIGHTED-SUM.

LLaMA-13B -
LLaMA-70B -

SciLitLLM-7B INDUCED-FROM
Tulu-2-dpo-7B -

Tulu-2-dpo-70B
FOR-FOR, SUM-OF,

OUT-OF-NLP.

Table 11: Hallucinated Labels for Relation Extraction
datasets

2https://huggingface.co/datasets/BAAI/
Infinity-Instruct

3https://huggingface.co/Uni-SMART/SciLitLLM

Model ACL-ARC
LLaMA-7B INSPIRED, TUV
LLaMA-13B -
LLaMA-70B -

SciLitLLM-7B -
Tulu-2-dpo-7B -

Tulu-2-dpo-70B REPEATS

Table 12: Hallucinated Labels for Citation Intent Classi-
fication datasets

D Prompt Template 955

Table 15 shows the prompt templates used by the 956

generative decoder-based language models. 957
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Model Few-TK

LLaMA-7B
‘Data Mining Information Retrieval metrics’, ‘Compute architecture’, ‘Data Mining’
‘Information Retrieval dataset’, ‘Statistical Mathematical domain’,
‘Statistical Mathematical phenomenon’

LLaMA-13B
‘Astronomy term’, ‘Astronomy term’, ‘Astronomy term’, ‘Astronomy term’,
‘Statistical Mathematical domain’, ‘Statistical Mathematical technique’,
‘Statistical Mathematical domain’, ‘Bioinformatics algorithm tool’

LLaMA-70B
‘Garbage value: Tourism is the typed
keyphrase identified from the given text.’, ‘Statistical Mathematical focus’, ‘Statistical
Mathematical domain’, ‘New York City dog park’, ‘AI ML DL metrics’

SciLitLLM-7B

‘Reference’, ‘Optimization
algorithm tool’, ‘Data Mining Information Retrieval dataset’,
‘AI ML DL library’, ‘Q&A site for programmers’,
‘Commercial LP solver’, ‘Data Mining Information Retrieval dataset’,
‘Miscellaneous result’, ‘Data Mining Information Retrieval strategy’,
’Statistical Mathematical focus’,
’Statistical Mathematical domain’, ‘NLP author’, ‘NLP author’, ‘Information
Retrieval focus’, ‘Garbage value: 600 words of type’

Tulu-2-dpo-7B

‘Miscellaneous dataset’, ‘Miscellaneous dataset’, ‘Miscellaneous result’, ‘Statistical
Mathematical focus’, ‘Statistical Mathematical focus’
, ‘Data Mining Information Retrieval
dataset’, ‘Computer vision algorithm step’,
‘Financial term’, ‘Quality metrics’, ‘Statistical Mathematical focus’,
‘Statistical Mathematical discipline’, ‘author’, ‘author’, ‘Information retrieval
focus’, ‘Statistical Mathematical focus

Tulu-2-dpo-70B
‘Application term’, ‘Computer Vision algorithm tool’,
‘Data Mining Information Retrieval tool’,
‘Miscellaneous dataset’, ‘NLP framework’

Table 13: Hallucinated Labels for Typed Keyphrase Recognition dataset, Few-TK
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Model CS-NER (Titles) SciERC (NER)
LLaMA-7B AUTHOR OBJECTIVE, SCENARIO, AUTHOR
LLaMA-13B DATE -
LLaMA-70B AUTHOR, R, REGION AUTHOR, HUMAN

SciLitLLM-7B - PROFESSION
Tulu-2-dpo-7B DATE FUNCTION, AUTHOR
Tulu-2-dpo-70B DATE, REGION, DATE USER, PLATFORM, DRUG

Table 14: Hallucinated Labels for Named Entity Recognition datasets

Task Instruction Input Output

Named Entity
Recognition

In the given sentence, find the named
entity mentions and classify them among

the following possible categories - Y
X

The entities si of type yi are
identified from the given text.

Typed
Keyphrase

Recognition

In the given sentence, find the
typed keyphrase mentions and

classify them among the following
possible categories - Y

X
The typed keyphrases si
of type yi are identified

from the given text.

Relation
Extraction

In the given sentence, find and
classify the relation between the

mentioned pair of named entities,
where the relation can be of the

following types: Y

X
The relation between

sA and sB is r.

Paraphrase
Recognition

Paraphrases are sentences that
express the same meaning by
using different wording. Are

the following pair of sentences
paraphrases or non-paraphrases?
SEP separates the two sentences.

(s1, s2)
The given pair of

sentences are paraphrases/
non-paraphrases.

Natural
Language
Inference

Analyze the provided pair of
sentences to determine their

relationship. Choose one of the
following categories: Y

(s1, s2) y ∈ Y

Citation Intent
Classification

Given a scientific text containing
a citation and the citation string,
classify the intent of the citation

among the following categories: Y .

X

The intent of the citation
falls under the

following category:
y ∈ Y

Claim
Verification

Given a scientific claim, evaluate the
evidence to determine whether
it supports or refutes the claim.

(s1, s2)
The given evidence

supports/refutes
the scientific claim.

Table 15: Table showing prompts used to instruction-tune LLMs
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