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Abstract001

Editing presentation slides remains one of the002
most common and time-consuming tasks faced003
by millions of users daily, despite significant004
advances in automated slide generation. Ex-005
isting approaches have successfully demon-006
strated slide editing via graphic user inter-007
face (GUI)-based agents, offering intuitive vi-008
sual control. However, such methods often suf-009
fer from high computational cost and latency.010
In this paper, we propose TALK-TO-YOUR-011
SLIDES, an LLM-powered agent designed to012
edit slides by leveraging structured informa-013
tion about slide objects rather than relying014
on image modality. The key insight of our015
work is designing the editing process with dis-016
tinct high-level and low-level layers to facil-017
itate interaction between user commands and018
slide objects. By providing direct access to019
application objects rather than screen pixels,020
our system enables 34.02% faster processing,021
34.76% better instruction fidelity, and 87.42%022
cheaper operation than baselines. To evalu-023
ate slide editing capabilities, we introduce TS-024
Bench, a human-annotated dataset comprising025
379 diverse editing instructions paired with026
corresponding slide variations in four cate-027
gories. Our code, benchmark and demos are028
available at anonymous.4open.science/r/talk-029
to-your-slides.030

1 Introduction031

Recent advancements in large language models032

(LLMs) have revolutionized how we interact with033

software applications through natural language in-034

structions, demonstrating remarkable success in035

tasks such as code generation, GUI navigation,036

and slide generation (Yang et al., 2024; Hou et al.,037

2024; Zhang et al., 2024a; Xu et al., 2025). While038

these models have enabled significant progress in039

automated slide creation, a critical yet underex-040

plored challenge remains in editing existing pre-041

sentation slides. Presentation slides serve as a fun-042

(a) Manual

(b) GUI Agent

Slides in EnglishSlides in Korean

Goal: Translate Korean text into English in 50-page lecture slides

> N days    High-labor
Requires human effort

Good, but high cost

(c) Ours Faster + Cheaper

5 hours       $ 9.72

3 hours $ 1.84

Figure 1: Comparison of slide editing methods on
translating 50-page lecture slides from Korean to En-
glish. (a) Manual translation requires day(s) and con-
sumes graduate-student labor. (b) A GUI-based agent
reduces human effort but incurs high cost and occupies
the host machine during execution. However, (c) our
approach runs in the background at a low cost and in a
relatively short time.

damental medium for communication across ed- 043

ucation, business, and research. However, modi- 044

fying them to reflect updated content, adjust the 045

layout, or enhance clarity often demands tedious, 046

time-consuming manual effort. For example, as 047

shown in Figure 1, a professor prepares an inter- 048

national lecture that contains 50 slides across 10 049

different sessions and has to be translated from 050

Korean to English while preserving technical ter- 051

minology and formatting. Similarly, a market- 052

ing team needs to update product pricing on 120 053

slides spanning several presentations before a ma- 054

jor launch. 055

Several candidate approaches can be a solution 056

to address these challenges. One straightforward 057

approach is converting natural language instruc- 058

tions into direct scripting code that can be ap- 059

plied to PowerPoint presentations. But this base- 060

line struggles with complex tasks requiring se- 061

quential operations. For instance, instructions like 062
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(c) Document Editing(a) Instruction Understanding

Python codeParsed data

Plan

(b) Document Understanding

Edited data

(d) Code Generator

User instruction

PowerPoint Application 

PowerPoint Application 
Before edit

After edit

High-level
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“Verify the slide for any language
mistakes and correct spelling or
grammar issues.”

Figure 2: Overview of the TALK-TO-YOUR-SLIDES framework. The system consists of four modules: instruction
understanding, document understanding, document editing, and code generator.

“Summarize the text on all slides and highlight063

key points in red” demand understanding both of064

user intent and contextual interpretation of slide065

content. Another approach leverages vision-based066

GUI agents that operate on screen-captured im-067

ages (Figure 1b) through repeated mouse click and068

keyboard interactions. However, due to the high069

computational cost of processing image inputs070

with vision-language models (VLMs), and the la-071

tency between interactions, this method tends to072

be resource-intensive and expensive to deploy.073

This limitation extends beyond presentation soft-074

ware such as PowerPoint to any application where075

vision-only interfaces become bottlenecks, such as076

Windows or iOS navigation agents.077

To alleviate these limitations, we propose078

TALK-TO-YOUR-SLIDES, an LLM-powered079

agent designed to edit presentation slides by080

directly handling objects through text-based081

low-level structured information. This approach082

enables more accurate and cost-effective editing083

operations compared to multi-modal agents. We084

design the editing process with distinct high-level085

and low-level layers to facilitate interaction086

between high-level user commands and low-level087

objects within slides. This insight draws from088

previous research on planning and reasoning089

processes (Guo et al., 2024b; Chen et al., 2024a,b;090

Zhao et al., 2023; Caldiran et al., 2009). At the091

high-level, an LLM agent interprets user instruc-092

tions and formulates structured editing plans. At093

the low-level, our system directly accesses slide094

components and executes precise edits through095

generated code. By providing direct access to096

application objects, we enable 34.02% faster097

processing, 34.76% better instruction fidelity,098

and 87.42% cheaper operation than GUI-based099

methods.100

Furthermore, to complement existing bench-101

marks that primarily focus on the visual aesthet- 102

ics of slide generation (Ge et al., 2025; Zheng 103

et al., 2025; Guo et al., 2023; Zhang et al., 2024b), 104

we present TSBench, a human-annotated dataset 105

specifically designed to evaluate slide editing ca- 106

pabilities. TSBench consists of 379 diverse editing 107

instructions, each paired with corresponding slides 108

created using official Microsoft slide templates. 109

Our benchmark enables systematic assessment of 110

models’ proficiency in applying fine-grained mod- 111

ifications to existing presentation content. We cat- 112

egorize the editing commands into four distinct 113

types: text editing, visual formatting, layout ad- 114

justment, and slide structure manipulation. These 115

categories cover practical tasks such as modifying 116

existing text, adjusting visual elements, aligning 117

components, and managing slide transitions, re- 118

spectively. 119

Our contributions are summarized as follows: 120

• We introduce a system TALK-TO-YOUR- 121

SLIDES, an LLM agent-based system specif- 122

ically designed for slide editing tasks that ap- 123

proaches editing through a division of high- 124

level and low-level operations. 125

• We construct TSBench, a human-annotated 126

benchmark dataset that enables systematic 127

evaluation of slide editing agents in terms 128

of their ability to accurately follow complex 129

user instructions. 130

• Through comprehensive experiments, we 131

demonstrate that TALK-TO-YOUR-SLIDES 132

substantially outperforms baseline methods 133

across execution success rate, instruction fi- 134

delity, and editing efficiency, reducing execu- 135

tion time by up to 87%. 136
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2 Related Work137

This section covers related research on slide gener-138

ation, GUI-based agents, and code generation with139

LLMs.140

2.1 Slide Generation141

Prior work has primarily focused on generat-142

ing presentation slides from natural language de-143

scriptions (Sefid et al., 2021). AutoPresent (Ge144

et al., 2025) fine-tuned an LLaMA-based model145

on the SlidesBench training set, a dataset compris-146

ing 7,000 slide-generation examples, to generate147

Python code that invokes the SlidesLib API. How-148

ever, this approach remains prone to execution er-149

rors and does not support fine-grained slide edit-150

ing. PPTAgent (Zheng et al., 2025) presents a sim-151

ple process that mimics how people author slides.152

It first creates an outline and then edits slides using153

a fixed template. It also includes PPTEval, a tool154

to check slide content, design, and structure. PP-155

TAgent works well for generating new slides. Our156

research extends these approaches by introducing157

precise editing capabilities that significantly re-158

duce the manual effort required from users.159

2.2 LLM Agents for GUI Control160

Our work is also related to research on LLM-161

based agents that control graphical user interfaces162

(GUIs) (Gao et al., 2024; Koh et al., 2024). UFO163

and UFO2 by Microsoft (Zhang et al., 2024a)164

introduces a dual-agent framework composed of165

an application-selection agent and an action agent166

that can operate across Windows applications such167

as Word and PowerPoint. By observing applica-168

tion screenshots, the agent executes actions like169

menu clicks and text input. While powerful, UFO170

relies on image-based state representations and171

pixel-level interactions, which can introduce high172

computational costs and imprecise behavior, par-173

ticularly for complex editing tasks. We compare174

our system against this model as a baseline.175

2.3 Code Generation from language176

instructions177

The task of translating natural language instruc-178

tions into executable code has attracted consider-179

able attention with the emergence of LLMs. While180

early work (Zan et al., 2023; Jiang et al., 2024;181

Yin et al., 2023) relied on rule-based systems or182

domain-specific languages-approaches that often183

lacked scalability and adaptability, LLMs have184

{ "understanding": "Emphasize the important p
arts on slide 2 and slide 3.",
"tasks": [
{ "page number": 2,
"description": "Highlight the key phrases in t

he title and body text of slide 2 using bold and re
d font.",

"target": "Title and Body text on slide 2" },
{ "page number": 3,
"description": "Emphasize the most importa

nt content on slide 3 by underlining and changing
text color to blue.",

"target": "All text elements on slide 3 (Title,
Body, Footers, Headers, Captions, Chart/Table la
bels, etc.)" } ] }

Figure 3: Example output generated by the instruction
understanding module.

enabled more flexible, generalizable solutions. 185

Building on this progress, recent studies (Wang 186

et al., 2025a; Sun et al., 2024; Puerto et al., 2024; 187

Yang et al., 2025) have introduced intermediate 188

reasoning steps to further enhance code genera- 189

tion, such as guiding code generation through ex- 190

plicit natural language planning, using intermedi- 191

ate plans to decompose and solve complex, multi- 192

step coding tasks-thereby bridging the gap be- 193

tween high-level user intent and low-level exe- 194

cutable code. We utilize this code generation idea 195

in our system to translate user instructions into 196

slide editing operations. 197

3 Method 198

We categorize the capabilities required to edit 199

slides given a user’s instruction into four key com- 200

ponents. First, the system must accurately under- 201

stand the user’s instruction. Second, to implement 202

this instruction, it needs to comprehend the cur- 203

rent state of the presentation slides. Third, based 204

on the instruction and current state, it should gen- 205

erate slide data that reflects the instruction. Fi- 206

nally, it must implement these generated changes 207

in the presentation environment such as Power- 208

Point. These sequential requirements naturally di- 209

vide slide editing tasks into two levels. High level 210

operations involve instruction interpretation and 211

content editing. Low level operations require di- 212

rect access to and manipulation of the presentation 213

software (Caldiran et al., 2009). 214

With these careful consideration, we propose 215

TALK-TO-YOUR-SLIDES, a system that separates 216

these concerns into high-level and low-level com- 217

ponents, as illustrated in Figure 2. 218
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In the remainder of this section, we describe219

each components in detail.220

3.1 Instruction understanding221

The instruction understanding module operates at222

the high-level of our system architecture. It takes223

user instructions as input and interprets them into224

structured, actionable plans (Ruan et al., 2023)225

specifying which slides to modify, elements to226

target, and actions to perform as shown in Fig-227

ure 2(a). The module outputs a structured list,228

where each entry explicitly details the target slide229

number, targeted element, and corresponding ac-230

tion, allowing for precise and versatile slide edit-231

ing tasks as shown in Figure 3.232

To handle diverse instructions that may target233

specific slides, subsets, or entire presentations, we234

utilize an LLM with carefully crafted prompts to235

support effective in-context learning (Dong et al.,236

2024; Guo et al., 2024a). The specific prompt used237

for instruction understanding is included in Ap-238

pendix E.1. An example of this module’s output239

and the corresponding original slide can be found240

in Figure 3 and Figure 14, respectively.241

3.2 Document understanding242

document understanding is a low-level component243

that accesses slides in our system. It plays a cru-244

cial role in slide editing tasks, as the quality of245

the parsed content essentially defines the set of ed-246

itable elements and thereby determines an upper247

bound on the final editing accuracy.248

To enable fine-grained document understand-249

ing, we develop a custom rule-based parser that250

extracts comprehensive information from each251

slide. This includes metadata such as the layout252

name, background fill type, and transition effects,253

as well as fine-level attributes of individual objects254

such as shapes, images, and text boxes. As shown255

in Figure 4, the parser identifies both the semantic256

type and positional information of each element on257

the slide. The parsed original slide that produced258

the results in Figure 4 is shown in Figure 14.259

Recognizing that text formatting can vary260

within a single text box, we parse text at the run261

level, where each run denotes a contiguous seg-262

ment of text with consistent formatting. This level263

of detail allows the system to more faithfully re-264

flect how humans perceive and manipulate slides,265

thereby enabling precise, style-preserving edits.266

All parsed outputs are converted into a struc-267

tured JSON format. This representation facili-268

{  "contents": {
"Presentation_Name": "Example.pptx",
"Total_Slide_Number": "10",
"Objects_Overview": "Found 1 object in slide number 1.",
"Objects_Detail": [

{ "Object_number": 1,
"Name": "Content Placeholder",
"Type": "Placeholder",
"Position_Left": 60.0,
"Position_Top": 150.0,
"Size_Width": 800.0,
"Size_Height": 300.0,
"Align": "Center",
"More_detail": {

"TextFrame": [
{ "RunIndex": 1,

"Text": "Multi-agent systems can be improved by ",
"Font": {

"Name": "Arial",
"Size": 24.0,
"Bold": false,
"Color": {"R": 0, "G": 0, "B": 0} } },

{ "RunIndex": 2,
"Text": "prompt engineering",
"Font": {

"Name": "Arial",
"Size": 24.0,
"Bold": true,
"Color": {"R": 255, "G": 0, "B": 0}

} } ] } } ] } }

Figure 4: Example output of document understand-
ing. The yellow sections contain information about the
parsed object’s name, type, location, size, and other de-
tails. The runs highlighted in green demonstrate that
different text formatting styles can exist within a single
text box.

tates downstream reasoning and editing, while en- 269

suring compatibility with large language models. 270

Prior work has shown that LLMs can better inter- 271

pret and operate over structured data formats (He 272

et al., 2024; Tan et al., 2025). Our parsing logic is 273

fully implemented and publicly released as part of 274

our codebase to support future research in struc- 275

tured document understanding. Additional details 276

on document understanding are provided in Ap- 277

pendix D. 278

3.3 Document editing 279

The document editing component performs high- 280

level editing in our system. It takes as input the 281

parsed output from the document understanding 282

module and the editing description from the in- 283

struction understanding module. Its role is to mod- 284

ify the parsed content using an LLM in accor- 285

dance with the editing description. For example, 286

if the description specifies changing only the im- 287
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TextEditing VisualFormatting

LayoutAdjustment SlideStructure

"Translate all visible text eleme
nts on ppt slide number {slide_nu
m} into Japanese"

"Review all text elements on pp
t slide number {slide_num} for sp
elling, grammar, and typographic
al errors, and correct them." 

"Change the font of all text ele
ments to Arial on ppt slide numbe
r {slide_num}."

"Color code the keywords in th
e text while following the color th
eme in the slide number {slide_n
um}."

"Center all titles at the top of eac
h slide."

"Resize all images on ppt slide n
umber {slide_num} to have the sa
me width while maintaining aspec
t ratio."

"Add slide numbers to every sli
de on the bottom right corner."

"Divide the content of ppt slide n
umber {slide_num} into two clear 
sections titled 'Overview' and 'Det
ails' for improved structure."

Figure 5: Examples of instructions across four cate-
gories.

portant content in a text box to red, the document288

editing module identifies such content from the289

parsed data and generates output in the same for-290

mat as that produced by the document understand-291

ing module. The prompt used for this module is292

provided in Appendix E.3.293

3.4 Code generator294

The primary function of code generator is to gen-295

erate python code that applies the necessary mod-296

ifications to the low-level instance. It receives the297

raw parsed data before edited, the data after edited298

from document editing module, and the plan. The299

generated codes are dependent on each presen-300

tation environment1. Consequently, the LLM is301

tasked with generating python code based on the302

semantics of presentation environment2.303

Separating the part that modifies actual slides at304

a low-level has a significant advantage. This mod-305

ular design enhances platform adaptability. If the306

presentation application changes from PowerPoint307

to another platform, only the low-level component308

needs modification. The high-level reasoning re-309

mains intact. This minimizes accuracy degradation310

when transitioning between different presentation311

software.312

In addition, we implement a self-reflection313

mechanism (Shinn et al., 2023) to handle execu-314

tion failures. If an error occurs during execution,315

the error message and the generated code are ap-316

pended to the original input, and inference is re-317

1In the case of PowerPoint, we adopt COM (Component
Object Model, https://learn.microsoft.com/en-us/
windows/win32/com/the-component-object-model)

2E.g, VBA API for Powerpoint https://learn.
microsoft.com/en-us/office/vba/api/overview/
powerpoint

Category
Text

Editing
Visual

Formatting
Layout

Adjustment
Slide

Structure
Total

Inst. # 16 19 15 6 56
Aug. # 160 190 150 60 560
Filtered 116 123 95 45 379

Table 1: Instruction count statistics by instruction
category. The ‘Aug. #’ row indicates the GPT-4o-
augmented dataset, while the ‘Filtered’ row represents
the human-annotated, post-filtered dataset.

peated until the modification succeeds or a prede- 318

fined maximum number of iterations is reached. 319

The prompt used for the code generator is de- 320

scribed in Appendix E.3. 321

4 TSBench: Benchmark Dataset 322

Alongside proposing a novel system for editing 323

presentation slides, we also introduce a benchmark 324

dataset, TSBench designed to evaluate the slide 325

editing capabilities of models or frameworks. In 326

this section, we describe the construction process 327

of the benchmark dataset in detail and present its 328

key statistics. 329

4.1 Building the Benchmark 330

The proposed benchmark targets the task of edit- 331

ing PowerPoint slides. For this purpose, we first 332

created a dataset of user instructions, and then 333

developed slide data to which these instructions 334

could be applied. In this section, we describe the 335

construction methodology for each dataset com- 336

ponent. 337

4.1.1 Instructions 338

To collect feasible and practical instructions, we 339

first manually create 56 seed instructions that re- 340

flect plausible user commands. For each seed, we 341

used GPT-4o (OpenAI, 2024) to generate 10 varia- 342

tions or paraphrases. These variations include, for 343

example, replacing the target language in “Trans- 344

late the slide into Chinese” with alternatives such 345

as Japanese, French, or English. Some variations 346

also involve paraphrasing while preserving the 347

original intent. From the generated pool, we man- 348

ually filtered out instructions lacking clear goals or 349

evaluation criteria. Given that the precise interpre- 350

tation of instructions significantly impacts evalua- 351

tion outcomes, we implemented a manual review 352

process where human evaluators examined all in- 353

structions to ensure clarity and validity. Only those 354

with unambiguous objectives were retained. 355
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System Instruction Performance metric Efficiency metric

SR (%) Instruction
Following Text Image Layout Color Exec.

Time (s)
Avg.

Input tokens
Avg.

Output tokens
Avg. Cost
×0.001$

Direct
code generation

TextEditing 62.07 0.00 0.10 1.70 1.70 1.70 23.08 1.21 k 0.93 k 0.7
VisualFormatting 53.66 0.44 0.84 1.04 1.04 0.89 37.72 1.38 k 2.75 k 1.9
LayoutAdjustment 58.95 0.66 1.55 0.79 1.42 1.40 23.25 1.26 k 0.94 k 0.8
SlideStructure 73.33 0.50 1.61 1.25 1.58 1.72 28.17 1.00 k 1.05 k 0.8
Overall 59.90 0.36 0.88 1.22 1.41 1.37 28.35 1.24 k 1.48 k 1.0

UI Agent

TextEditing 66.38 0.54 0.50 1.63 1.49 1.79 117.85 102.04 k 2.26 k 16.6
VisualFormatting 86.18 2.61 2.01 1.72 2.25 1.80 122.25 93.27 k 2.15 k 15.2
LayoutAdjustment 65.26 2.07 2.82 2.38 2.51 2.87 128.23 108.48 k 2.50 k 17.7
SlideStructure 82.22 1.67 2.31 1.55 2.38 2.17 99.18 72.46 k 1.82 k 12.0
Overall 74.41 1.64 1.81 1.83 2.11 2.10 119.66 97.29 k 2.23 k 15.9

Ours

TextEditing 99.14 2.95 3.01 2.65 3.11 3.07 55.98 3.81 k 1.96 k 1.6
VisualFormatting 94.30 1.98 2.22 1.86 2.38 2.16 94.78 5.09 k 3.58 k 2.8
LayoutAdjustment 100.00 1.80 2.39 2.15 2.37 2.56 86.14 4.46 k 2.29 k 2.0
SlideStructure 91.10 1.71 1.95 1.73 2.17 2.35 96.54 2.71 k 1.69 k 1.2
Overall 96.83 2.21 2.48 2.17 2.58 2.57 78.95 4.26 k 2.53 k 2.0

Table 2: System-wise scores by instruction category. “SR’ ’denotes execution success rate. All three systems use
the gemini-2.5-flash model. For UI Agent, we follows (Zhang et al., 2024a), imposing a cut-off for tasks that did
not finish within 180 seconds and considering realistic feasibility constraints. Cost is in USD ($).

In total, we collected 379 instructions, which356

are categorized into four types: TextEditing, Visu-357

alFormatting, LayoutAdjustment, and SlideStruc-358

ture. These categories are also used as evaluation359

dimensions in our subsequent analysis. Examples360

of instructions for each category are illustrated in361

Figure 5.362

4.1.2 Slides363

Constructing slide data tailored to a specific in-364

struction is a non-trivial task. For instance, the365

instruction “Fix all typos in the slide” requires366

the slide to actually contain typographical errors,367

while “Translate the slide into Chinese” assumes368

the slide is written in another language which is369

not a Chinese.370

To generate appropriate slides for each of the371

379 instructions, we observed that each seed in-372

struction and its GPT-4o-generated variants are as-373

sociated with the same base PowerPoint file (Ope-374

nAI, 2024). Based on this insight, we manually375

created a PowerPoint presentation for each of the376

56 seed instructions. To ensure visual quality and377

realism, we utilized publicly available templates3378

and we listed 10 template which we used in bench-379

mark dataset in Table 5.380

We release the full benchmark, including meta-381

data that maps each instruction to its correspond-382

ing PowerPoint file and instruction group. We ref-383

ered this map on Table 4 for detail.384

3https://create.microsoft.com/en-
us/search?filters=powerpoint

4.2 Statistics 385

Table 1 reports the number of instructions in each 386

of the four categories. In the Total column, we ob- 387

serve that the original set of 56 human-authored 388

seed instructions was expanded to 560 through 389

GPT-4o-based augmentation. After excluding 181 390

examples with unclear objectives or those deemed 391

unsuitable for benchmarking, a final set of 379 in- 392

struction–slide pairs remained. Consequently, TS- 393

Bench comprises 379 instructions and 56 corre- 394

sponding .pptx files. Detailed information, in- 395

cluding the mapping between instructions and 396

.pptx files, is provided in Appendix A, and slide 397

content topics are listed in Table 3. 398

5 Experiment 399

In this section, we evaluate our proposed sys- 400

tem, TALK-TO-YOUR-SLIDES, along with base- 401

line methods using the benchmark dataset we in- 402

troduced. 403

5.1 System Configuration 404

Direct code generation. We leverage the docu- 405

ment understanding module (Section 3.2) to ex- 406

tract a structured representation of each slide, 407

then prompt an LLM with this representation and 408

the user instruction to generate executable editing 409

code. 410

GUI agent. We include UFO2(Zhang et al., 411

2024a) as a representative GUI-based agent base- 412

line, capable of operating a wide range of Win- 413

dows applications, including PowerPoint. We used 414
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Instruction: Translate all visible text elements on ppt slide number 
1 into English.

TextEditing
Instruction: Evaluate and adjust text color and background color c-
ontrast on ppt slide number 1 to ensure optimal readability. 

VisualFormatting

Instruction: Resize all images on ppt slide number 2 to have the sa-
me width while maintaining aspect ratio. 

LayoutAdjustment SlideStructure
Instruction: Add slide numbers to every slide on the bottom right c-
orner. 

Before After Before After

Before After Before After

Figure 6: Results of TALK-TO-YOUR-SLIDES across four instruction categories. Modifications are highlighted
with yellow boxes. In the TextEditing example, Korean text has been translated into English according to the
instruction. In the VisualFormatting case, the original background and text colors were too similar, reducing read-
ability; the revised version uses white text for improved contrast and clarity. In LayoutAdjustment, the widths of
the three images have been unified while preserving their aspect ratios, as instructed. Lastly, in the SlideStructure
example, page numbers have been added in response to the instruction.

Gemini-2.5-flash model in GUI agent. Additional415

configuration details are provided in Appendix C.416

Talk-to-Your-Slides. In our proposed frame-417

work, the instruction understanding module is in-418

stantiated with Gemini-1.5-flash, while the doc-419

ument editing and code generation modules are420

evaluated with Gemini-2.5-flash. The code gener-421

ator likewise performs up to three retries.422

Additionally, we conducted experiments using423

GPT-4.1-mini in place of Gemini-2.5-flash across424

all system components. While the main results425

presented in this paper are based on the Gemini-426

2.5-flash configuration, results with GPT-4.1-mini427

are detailed in Appendix F. Full model descrip-428

tions and hyperparameter settings are provided in429

Appendix B.430

5.2 Metrics431

We adopt two primary categories of evaluation432

metrics.433

Editing success metrics assess the system’s434

effectiveness and include the Execution Success435

Rate (SR), LLM judge scores (Wang et al., 2025b),436

and Execution Time. First, SR indicates whether437

the finally generated code is successfully exe-438

cuted. Second, the LLM-based evaluation is cru-439

cial for our benchmark, as many instructions (sum-440

marization, emphasis, translation) lack definitive441

answers. It scores encompass instruction follow- 442

ing, text, image, layout, and color aspects. Instruc- 443

tion following measures how effectively the edited 444

presentation reflects the instruction. The remain- 445

ing four metrics are established as reference-free 446

metrics following (Ge et al., 2025). Scores range 447

from 0 (worst) to 5 (best), with detailed criteria 448

ensuring consistent interpretation. We employ the 449

multimodal gpt-4o model for this evaluation. The 450

model assesses edit quality by comparing original 451

and edited slide images along with slide notes and 452

instructions. The full scoring prompt appears in 453

Figure 12 and 13. Finally, Execution time refers to 454

the latency in seconds required to execute a single 455

instruction. 456

Efficiency metrics capture the system’s re- 457

source usage and include Average Input Tokens, 458

Average Output Tokens, and Average Cost. All av- 459

erages refer to those for a single instruction. To- 460

ken counts are computed by aggregating all tokens 461

passed to the LLM within each module, and the 462

cost is then estimated accordingly. Table 2 reports 463

these metrics using Gemini-2.5-flash in its non- 464

thinking output mode, with cost computed based 465

on the pricing as of May 16, 2025.4 While editing 466

4As of 2025-05-16: $0.15 per million input tokens (text,
image, video), $1.00 per million input tokens (audio), $0.60
per million output tokens (non-thinking), $3.50 per million
output tokens (thinking).
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accuracy is critical, efficiency is equally important467

for real-world applicability and user adoption of468

agent-based editing systems.469

5.3 Results470

This section analyzes the main experimental re-471

sults. Then based on these findings, we discuss472

how agents should approach tasks that assist hu-473

mans beyond PowerPoint editing when interacting474

with computing systems in general.475

5.3.1 Main Results476

Table 2 presents the results of PowerPoint edit-477

ing systems evaluated on our proposed TSBench.478

Except for the execution success rate, all metrics479

are computed on the subset of examples for which480

the generated editing code executed successfully.481

Our proposed system, TALK-TO-YOUR-SLIDES,482

achieves the highest overall execution success483

rate and the highest average judge score. How-484

ever, in the LayoutAdjustment categories, the GUI485

agent attains higher judge scores. In particular, for486

layout-related instructions, the GUI agent consis-487

tently received higher scores, suggesting that GUI-488

based operations offer advantages for layout ma-489

nipulation. To justify the reliability of the LLM490

judge scores, we conducted an experiment on 30491

instances, which yielded a Pearson correlation co-492

efficient above 0.8 and similarly high Spearman493

correlation across all judge metrics as shown in494

Table 9. Four illustrative examples of slides edited495

by TALK-TO-YOUR-SLIDES is shown in Figure 6.496

As for efficiency, our system requires just over497

one minute on average to edit slides. For the498

GUI agent, any run exceeding three minutes was499

deemed a failure, among successful runs, the mean500

execution time approaches two minutes. This dif-501

ference is explained by the efficiency metrics: the502

GUI agent’s average input token count is nearly503

twenty times larger than that of the other ap-504

proaches, resulting in an average cost per instruc-505

tion that is roughly ten times higher. These trends506

are stem from the use of image inputs, which is507

inherent to vision–language models.508

5.3.2 Should Software Agents Ultimately Use509

Only GUI Images?510

To better understand the trade-offs between GUI-511

based and code-based approaches in slide edit-512

ing, we present concrete examples using the513

same instructions applied through different meth-514

ods. When comparing the efficiency of GUI-515

based and code-based slide editing approaches, 516

errors in VLM-based optical character recogni- 517

tion (OCR) provide persuasive evidence. The GUI 518

agent, which relies on Vision Language Models 519

(VLMs) for text recognition, failed to accurately 520

identify text due to OCR limitations, resulting in 521

low scores on text editing metrics. In contrast, the 522

code-based system Talk-to-Your-Slides directly 523

accessed text data without requiring VLM-based 524

OCR processing. These results demonstrate that 525

direct access to structured data is more reliable 526

than external perception mechanisms like VLMs, 527

highlighting how system accuracy depends on data 528

accessibility. 529

Nevertheless, visual information from the GUI 530

remains useful in software automation. There are 531

editing tasks where purely low-level textual infor- 532

mation is insufficient. For instance, when translat- 533

ing Chinese text into English, the translated con- 534

tent often expands in length, causing overflow be- 535

yond the original text box. In such cases, visual 536

layout information helps preserve the slide’s aes- 537

thetic quality. Here, GUI images complement the 538

limitations of low-level approaches and can raise 539

the upper bound of what can be achieved. 540

In this work, we demonstrated that a low-level, 541

code-based approach is both effective and efficient 542

for many core editing tasks in presentation soft- 543

ware. Moving forward, we believe future research 544

should explore hybrid approaches that combine 545

the semantic precision and efficiency of structured 546

parsing with the contextual awareness of visual 547

understanding. We encourage the community to 548

pursue this direction to further advance automated 549

presentation editing systems. 550

6 Conclusion 551

This paper introduced TALK-TO-YOUR-SLIDES, 552

an LLM-powered agent for editing slides through 553

natural language instructions. By decomposing 554

editing tasks into high-level semantic operations 555

and low-level object manipulations, our system 556

interacts with PowerPoint application to execute 557

complex edits. We developed TSBench, a bench- 558

mark with 379 diverse editing instructions, to eval- 559

uate slide editing agents. Experiments show our 560

approach significantly outperforms baselines in 561

execution success, instruction following, and edit- 562

ing efficiency, demonstrating the effectiveness of 563

our agent framework for automating slide editing 564

tasks. 565
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7 Limitations566

Our current implementation focuses primar-567

ily on Powerpoint-based workflows, leveraging568

COM (Component Object Model) communica-569

tion. While this architectural choice enabled us to570

deliver robust functionality for PowerPoint users,571

it currently offers limited support for alternative572

options. Although our high- and low-level imple-573

mentation details are applicable to other presenta-574

tion environments, we limited our experiments to575

PowerPoint in order to effectively compare with576

the other baseline that utilize a GUI.577

References578

Mohamed Aghzal, Erion Plaku, Gregory J. Stein,579
and Ziyu Yao. 2025. A survey on large lan-580
guage models for automated planning. Preprint,581
arXiv:2502.12435.582

Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok,583
Can Palaz, Esra Erdem, and Volkan Patoglu. 2009.584
Bridging the gap between high-level reasoning and585
low-level control. In International Conference on586
Logic Programming and Nonmonotonic Reasoning,587
pages 342–354. Springer.588

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené,589
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A Detail of TSBench780

In this section, we present detailed information781

about TSBench. First, we have listed the topics of782

slide content in Table 3.783

Additionally, the mapping between instruc-784

tion numbers, slide IDs, and the four categories785

is listed in Table 4. Each instruction is as-786

signed an instruction key of the form n or787

n-m, where n denotes one of the original 56788

seeds, and n-m indicates the mth augmentation789

derived from seed n. The PowerPoint files are790

named slide <instruction key>.pptx (e.g.,791

slide 0.pptx, slide 3-1.pptx), with the suffix792

matching the corresponding instruction key.793

The list of slide templates is enumerated in Ta-794

ble 5 along with their corresponding links.795

Examples of TSBench slides and instructions796

are presented in Figure 7.797

B Model798

In this section, we provide details about the exter-799

nal LLM APIs used in the experiments. Gemini-800

2.5-flash and GPT-4.1-mini were embedded in the801

agent system, while GPT-4o was used as a judge802

when evaluating the system. The price of each803

models is illustrated in Table 6.804

Gemini-1.5-flash (gemini-1.5-flash) Gemini805

1.5 Flash offers cost-effective multimodal capabil-806

ities with tiered pricing based on context length.807

Released in early 2024, this model represents808

Google’s focus on balancing accuracy with ef-809

ficiency. It supports a context window of up to810

1,048,576 tokens, max output token is 8,192, al-811

lowing for processing of extensive documents and812

conversations in a single request. The model han-813

dles multiple modalities including text, code, im-814

ages, and limited audio processing. While not as815

powerful as its larger counterparts in complex816

reasoning tasks, it demonstrates strong capability817

in straightforward instruction following, summa-818

rization, and multimodal understanding tasks. We819

used this model for instruction understanding with820

maxtoken: 2048, temperature 0.05, and top p 1.0.821

Gemini-2.5-flash (gemini-2.5-flash-preview-822

04-17). Gemini 2.5 Flash is a high-throughput823

thinking model designed to strike an optimal bal-824

ance between speed, cost, and reasoning capabil-825

ity. As Google’s latest preview-tier model, it ex-826

tends the popular 2.0 Flash foundation with major827

upgrades in reasoning capability, while still pri-828

oritizing low latency and economical usage for829

developers. It supports a wide range of modal- 830

ities—including text, code, images, audio, and 831

video—making it well suited for diverse AI tasks 832

where both multimodal understanding and cost ef- 833

ficiency are critical. We used this model for doc- 834

ument editing and code generation with the max- 835

imum supported token limit of 65536, a tempera- 836

ture of 0.05, and top p of 1.0. 837

GPT-4.1-mini (gpt-4.1-mini-2025-04-14). 838

GPT-4.1-mini is the ‘mini’ variant of the GPT-4.1 839

family, released April 14, 2025. It inherits the core 840

strengths of the flagship GPT-4.1 series—state-of- 841

the-art coding ability, robust instruction following, 842

and support for very long (up to one million- 843

token) contexts—while reducing model size to 844

cut inference latency by roughly 50% and lower 845

operational cost. This makes GPT-4.1-mini an 846

ideal choice for applications that demand the latest 847

model capabilities in a more resource-efficient 848

footprint. We used this model for document 849

editing and code generation with the maximum 850

supported token limit of 32768, a temperature of 851

0.05, top p 1.0. 852

GPT-4o (gpt-4o-2024-08-06). GPT-4o (“o” for 853

“omni”) is OpenAI’s multimodal flagship, re- 854

leased August 6, 2024. It can ingest and generate 855

text, images, and audio in real time, enabling uni- 856

fied reasoning across these modalities. Compared 857

to its predecessor (GPT-4 Turbo), GPT-4o offers 858

faster API throughput and lower per-token cost, 859

making it especially powerful for tasks that require 860

seamless cross-modal understanding and genera- 861

tion. We used this model as an LLM judge with a 862

max token of 512, a temperature of 0.2, top p 1.0. 863

C UFO: GUI Agent 864

We employ UFO2 (Zhang et al., 2024a), a state- 865

of-the-art multi-agent GUI automation system for 866

Windows desktops, as one of our baseline meth- 867

ods. UFO2 is designed to execute natural language 868

instructions by integrating both visual and API- 869

based control over various applications. It fea- 870

tures a centralized HostAgent for task decompo- 871

sition and orchestration, and multiple AppAgents 872

tailored to specific applications such as Power- 873

Point. 874

In our experimental setup, both the HostAgent 875

and AppAgent are powered by the vision-language 876

model Gemini-2.5-flash. The system is further 877

backed by a retry mechanism with up to three 878

fallback attempts to ensure robust execution. This 879
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slide_6slide_2

slide_11

slide_15 page1 slide_15 page2 slide_15 page3

slide_29 page1 slide_29 page2 slide_29 page32

slide_36

slide_40 slide_52

Instruction: Simplify the main body text on ppt slide nu
mber {slide_num} into a concise summary while retainin
g the key points.

Instruction: Identify placeholder text (such as 'Lorem ipsu
m') on ppt slide number {slide_num} and replace it with app
ropriate real content relevant to the slide context.

Instruction: Emphasize important words in text bo
xes using bold and italic types in slide number {slid
e_num}.

Instruction: Write a script for each presentation slide in the speaker's note. Each slide should 
take about 2 minutes to present.

Instruction: Convert all freeform drawn shapes on ppt slid
e number {slide_num} into static images to preserve visual 
consistency.

Instruction: Center all titles at the top of each slide.

Instruction: Apply smooth slide transition effects (such 
as Fade or Push) to ppt slide number {slide_num} for a 
polished flow.

Instruction: Re-order the slides so that they match the 
table of contents in slide number {slide_num}.

00

Figure 7: Example from the TSBench dataset. Some data points consist of a single slide, while others contain
multiple slides.
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Table 3: Content topics of slides in TSBench dataset.

Index Topic Index Topic Index Topic

0 Linguistics 19 Economics 38 AI Strategy
1 Communication 20 Climate Change 39 Marketing
2 News Articles 21 Quotes 40 Marketing
3 Presentation 22 Some Numbers 41 Marketing
4 Remote Work 23 Aesthetics 42 Company
5 Data Collection 24 Presentation 43 Company
6 Sleeping 25 Presentation 44 Marketing
7 LLMs 26 Design 45 Financials
8 Hypertension 27 Q&A 46 Competitive Landscape
9 Impressionism 28 Presentation 47 Product Overview
10 Immanuel Kant 29 Visual Communication 48 AI Assistant Platform
11 Modern Architecture 30 Presentation Theme 49 Future Outlook
12 Aesthetics 31 What I Like 50 Design
13 Education 32 What I Like 51 Presentation
14 Cognitive Dissonance 33 Creative Vision 52 Visual Appeal
15 Nervousness 34 Sports 53 Design
16 Linear Algebra 35 Marketing Strategies 54 NLP
17 Artificial Intelligence 36 Marketing 55 Presentation
18 Economics 37 Marketing

configuration enables UFO2 to leverage its hy-880

brid GUI–API action interface, speculative multi-881

action execution, and a Picture-in-Picture (PiP)882

sandbox for non-intrusive user experience.883

For additional technical details and evaluation884

results, we refer readers to the original UFO2 pa-885

per (Zhang et al., 2024a).886

D Details of document understanding887

Although a .pptx file is technically a collection of888

XML files, directly working with these raw XML889

structures is highly impractical for document-level890

understanding. The XML files are excessively ver-891

bose, and their content is fragmented across mul-892

tiple interlinked components. This makes parsing893

both time-consuming and error-prone.894

XML format of PowerPoint is also inherently895

index-based. For example, attributes such as text896

formatting (e.g., bold, italic) are not stored as897

human-readable strings but instead encoded as nu-898

meric indices that point to style definitions in sepa-899

rate lookup tables. As a result, even simple queries900

such as “is this text bolded?” require multi-step901

resolution across files.902

To mitigate these challenges, Zheng et al.903

(2025) proposed converting slides into HTML for-904

mat. While this method simplifies parsing to some905

extent, it introduces an additional rendering step906

and often fails to retain the full range of visual907

and structural information available in the original 908

slide-particularly layout metadata, positional pre- 909

cision, and fine-grained formatting. 910

In contrast, our system avoids HTML-based 911

conversion and instead directly parses the Pow- 912

erPoint object model through COM (Compo- 913

nent Object Model) interfaces. This design choice 914

enables precise extraction of layout, style, and 915

object-level data with full fidelity to the original 916

file. The extracted information is then normalized 917

into a structured JSON format to support down- 918

stream semantic reasoning and editing tasks. 919

E Prompt 920

In this section, we present the prompts used for the 921

LLMs in our experiments. Following Chen et al. 922

(2025) and Liu et al. (2024), we carefully designed 923

detailed prompts. As experimental outcomes can 924

vary significantly depending on subtle differences 925

in prompts, we disclose our prompts in full to en- 926

sure specificity and reproducibility. 927

E.1 instruction understanding prompt 928

In the instruction understanding stage, the system 929

interprets the user’s intent and formulates a plan 930

(Aghzal et al., 2025; Oelerich et al., 2024; Hao 931

et al., 2024). The prompt of this is shown in Fig- 932

ure 8. 933
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Table 4: Category mapping of slides in TSBench dataset.

Index Category Index Category Index Category

0 TextEditing 19 TextEditing 38 LayoutAdjustment
1 TextEditing 20 VisualFormatting 39 LayoutAdjustment
2 TextEditing 21 VisualFormatting 40 VisualFormatting
3 TextEditing 22 VisualFormatting 41 VisualFormatting
4 TextEditing 23 VisualFormatting 42 VisualFormatting
5 TextEditing 24 VisualFormatting 43 LayoutAdjustment
6 TextEditing 25 VisualFormatting 44 LayoutAdjustment
7 TextEditing 26 VisualFormatting 45 VisualFormatting
8 TextEditing 27 VisualFormatting 46 SlideStructure
9 TextEditing 28 VisualFormatting 47 SlideStructure
10 TextEditing 29 LayoutAdjustment 48 SlideStructure
11 VisualFormatting 30 LayoutAdjustment 49 LayoutAdjustment
12 VisualFormatting 31 LayoutAdjustment 50 SlideStructure
13 TextEditing 32 LayoutAdjustment 51 SlideStructure
14 VisualFormatting 33 LayoutAdjustment 52 SlideStructure
15 TextEditing 34 LayoutAdjustment 53 VisualFormatting
16 VisualFormatting 35 LayoutAdjustment 54 TextEditing
17 LayoutAdjustment 36 LayoutAdjustment 55 TextEditing
18 VisualFormatting 37 LayoutAdjustment

Instruction understanding prompt

You are a planning assistant for PowerPoint modifications.
Your job is to create a detailed, specific, step-by-step plan for modifying a PowerPoint presentation based on the user’s request.
present ppt state: {get simple powerpoint info()} Break down complex requests into highly specific actionable tasks that can
be executed by a PowerPoint automation system.
Focus on identifying:
1. Specific slides to modify (by page number)
2. Specific sections within slides (title, body, notes, headers, footers, etc.)
3. Specific object elements to add, remove, or change (text boxes, images, shapes, charts, tables, etc.)
4. Precise formatting changes (font, size, color, alignment, etc.)
5. The logical sequence of operations with clear dependencies
Please write one task for one slide page.
Format your response as a JSON format with the following structure: {{ ”understanding”: ”Detailed summary of what the user
wants to achieve”, ”tasks”: [ {{ ”page number”: 1, ”description”: ”Specific task description”, ”target”: ”Precise target location
(e.g., ’Title section of slide 1’, ’Notes section of slide 3’, ’Second bullet point in body text’, ’Chart in bottom right’)”, ”action”:
”Specific action with all necessary details”, ”contents”: {{ ”additional details required for the action” }} }}, ... ], }}
Below is the example question and example output.
input: Please translate the titles of slide 3 and slide 5 of the PPT into English.
output: {{ ”understanding”: ”English translation of slide titles on slides 3 and 5”, ”tasks”: [ {{ ”page number”: 3, ”descrip-
tion”: ”Translate the title text of slide 3”, ”target”: ”Title section of slide 3”, ”action”: ”Translate to English”, ”contents”: {{
”source language”: ”auto-detect”, ”preserve formatting”: true }} }}, {{ ”page number”: 5, ”description”: ”Translate the title
text of slide 5”, ”target”: ”Title section of slide 5”, ”action”: ”Translate to English”, ”contents”: {{ ”source language”: ”auto-
detect”, ”preserve formatting”: true }} }} ], }}
Response in JSON format.

Response: JSON

Figure 8: A prompt used in instruction understanding.

E.2 document editing prompt934

In the document editing stage, the system gener-935

ates the post-editing data in JSON format based936

on the plan and the parsed data. This process is937

illustrated in Figure 9.938

E.3 Code generator prompt 939

In the code generation stage, the system takes as 940

input the original slide data, the document-edited 941

slide data, and the plan, and outputs Python code 942

that applies the corresponding changes in Power- 943

Point. The prompt used for this step is shown in 944

Figure 10. 945
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Document editing prompt

Information about slide {page number}:
- Task description: {description}
- Action type: {action}
- Slide contents: {contents}
You are a specialized AI that analyzes PowerPoint slide content and performs specific tasks. You will receive the following
JSON data, perform the designated tasks, and return the results in exactly the same JSON format.
Important rules: 1. You must maintain the exact input JSON structure
2. Only perform the work described in the ’action’ within ’tasks’
3. Only modify the elements specified in ’target’ within ’tasks’
4. Output must contain pure JSON only - no explanations or additional text
5. Preserve all formatting information (fonts, sizes, colors, etc.)
6. Verify that the JSON format is valid after completing the task
Before starting the task:
1. Check the ’understanding’ field to grasp the overall task objective
2. Review ’page number’, ’description’, ’target’, and ’action’ within ’tasks’
3. Identify all text elements in ’Objects Detail’
The output must maintain the identical structure as the original JSON, with only the necessary text modified according to the
task.
Give only the JSON.

Response: JSON

Figure 9: A prompt used in Document Editing.

Code generator prompt

Generate Python code modify an active PowerPoint presentation based on the provided JSON task data. The code should:
0. Find activate powerpoint app with ppt app
= win32com.client.GetActiveObject (”PowerPoint.Application”)
active presentation = ppt app.ActivePresentation
1. Find the slide specified by page number: {slide num}
2. Target to change: {before}
3. New content to apply: {after}
4. Generate ONLY executable code that will directly modify the PowerPoint.
CRITICAL REQUIREMENTS:
- DO NOT create a new PowerPoint application - use the existing one
- Please check if the slide number you want to work on exists and proceed with the work. The index starts with 1.
- The code should NOT be written as a complete program with imports - it will be executed in an environment where PowerPoint
is already open
- Focus on finding and modifying the specified content
- For text changes, use both shape.Name and TextFrame.TextRange.Text to identify the correct element
- Make sure to explicitly apply any changes (e.g., shape.TextFrame.TextRange.Text = new text)
- Do not write print function or comments.
- You can write at slide note with slide.NotesPage
“‘python slide.NotesPage.Shapes.Placeholders(2). TextFrame.TextRange.Text = notes text “‘ Note that the code will run in a
context where these variables are already available:
- ppt application: The PowerPoint application instance
- active presentation: The currently open presentation
IMPORTANT: In PowerPoint, color codes use BGR format (not RGB). For example, RGB(255,0,0) for red should be specified
as RGB(0,0,255) in the code. Always convert any color references accordingly.
If you want to modify the formatting, refer to the following code for modification:
if text frame.HasText: text range = text frame.TextRange # Find text found range = text range.Find(text to highlight) while
found range: found any = True found range.Font.Bold = True # Bold found range.Font.Color.RGB = 255 # Example color
(RED in BGR format - 0,0,255) found range.Font.Size = found range.Font.Size * 1.2 # Increase font size by 20% start pos =
found range.Start + len(text to highlight) found range = text range.Find(text to highlight, start pos)
Do not use any ”**” to make bold. It won’t be applied on powerpoint. - You can add or split a page with ’presentation =
ppt app.Presentations.Add()’.
Make sure to close all curly braces properly and all variables used are properly defined. Omit Strikethrough, Subscript, Super-
script as they caused issues.
The code must be direct, practical and focused solely on making the specific change re-
quested. Ensure all color references use the BGR format for proper appearance in PowerPoint.

Response: Python code

Figure 10: A prompt used in Code Generator.
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Template Link File Size (KB)

Architecture pitch deck Link 3,820
Classic frame design Link 3,054
Creative perspective presentation Link 13,832
Helena design Link 12,023
Light modernist design Link 7,601
Modern geometry design Link 9,701
PowerPoint party Link 6,029
Rose suite presentation Link 1,438
Simple company overview presentation Link 7,254
Vivid circles presentation Link 2,966

Table 5: Microsoft Create PowerPoint templates: direct
search links and downloaded file sizes.

E.4 Direct code generation prompt946

In the case of the Direct code generation, the sys-947

tem directly generates code using only the parsed948

slide data and the instruction, without intermedi-949

ate planning or editing. The prompt used for this950

process is shown in Figure 11.951

E.5 LLM judge prompt952

To evaluate slide editing capabilities, we em-953

ployed an LLM-based judge, following a similar954

approach to Ge et al. (2025). The prompt used to955

assess how well the instruction was followed is956

shown in Figure E.5, while the prompt used for957

evaluating text, image, layout, and color,based on958

the criteria from Ge et al. (2025), is presented in959

Figure 13.960

F Auxiliary results 961

In this section, we report the results of our ex- 962

periments conducted using gpt-4.1-mini instead of 963

gemini-2.5-flash. The results are presented in Ta- 964

ble F, and the correlation coefficients for the met- 965

rics assessed by the LLM judge are reported in Ta- 966

ble 8. 967

We also report the human correlation results for 968

the Gemini-2.5-flash experiments, where model 969

outputs were evaluated using LLM-based judges. 970

These correlation analyses are presented in Fig- 971

ure 9. 972

G Auxiliary image 973

The original slide is presented in Figure 14 from 974

which the example parsed data Figure 4 was ex- 975

tracted. 976
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Table 6: Pricing information for LLM models used in experiments (in USD per million tokens).

Model Input Cached Input Output Additional Features

Gemini-2.5-flash $0.15a $0.0375a $0.60 / $3.50b Google Searchc

Gemini-1.5-flash $0.075 / $0.15d $0.01875 / $0.0375d $0.30 / $0.60d Storage: $1.00/hr
GPT-4.1-mini $0.40 $0.10 $1.60 –
GPT-4o $2.50 $1.25 $10.00 –
a $1.00 for audio input, $0.25 for cached audio input
b $0.60 without thinking mode, $3.50 with thinking mode
c Free up to 1,500 RPD, then $35 per 1,000 requests
d Lower price for contexts <128K tokens, higher price for contexts >128K tokens

Baseline prompt

The following is information parsed from a PPT slide.
{parsed data}
Create a Python code with win32com library that can edit PowerPoint presentations by executing the following command:
{instruction}
IMPORTANT: Your response must contain ONLY valid Python code wrapped in triple backticks with the ‘python’ language
tag. Follow this exact format:
“‘python
# Your Python code here
# Include proper comments, imports, and function definitions
# No explanations or text outside this code block
“‘

Response: Python code

Figure 11: A prompt used in baseline system.

LLM Judge prompt

You are an expert slide-editing judge.
TASK
- Compare the ORIGINAL slide with the EDITED slide.
- Decide how well the EDITED slide follows the INSTRUCTION and how aesthetically pleasing it is.
SCORING
Return valid JSON with exactly these keys:
{instruction adherence <int 0-5>,
visualquality <int 0-5>
}
GUIDELINES
Score each from 0 to 5, based on the following rubric:
5 = Perfect: Fully satisfies the instruction / visually excellent with no flaws.
4 = Mostly correct: Clearly reflects the instruction / visually strong but with minor flaws.
3 = Partially correct: Instruction was followed to a noticeable degree, but key aspects are missing or flawed / visual layout or
formatting needs improvement.
2 = Slightly changed but inadequate: Some edits related to the instruction are present but insufficient or poorly done / visual
design is lacking.
1 = Attempted but incorrect: Some change is visible, but it does not match the instruction / visual result is clearly poor.
0 = Completely fails: No meaningful attempt to follow the instruction / visually broken or irrelevant.
Judge only what you can see in the given image(s) and notes.
Return *only* the JSON object, nothing else.

Response: Python code

Figure 12: A prompt used in LLM judge.
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LLM Judge Text, Image, Layout, Color evaluation prompt

You are an expert slide-editing judge.
TASK
- Compare the ORIGINAL slide with the EDITED slide.
- Evaluate how well the EDITED slide handles Text, Image, Layout, and Color aspects based on the INSTRUCTION.
SCORING
Return valid JSON with exactly these keys:
{ text quality <int 0-5>,
image quality <int 0-5>,
layout quality <int 0-5>,
color quality <int 0-5>
} GUIDELINES
Score each from 0 to 5, based on the following rubric:
TEXT QUALITY:
5 = Perfect: Text content, formatting, and typography are flawless and fully satisfy the instruction.
4 = Mostly correct: Text elements are clearly improved but have minor issues in content, formatting, or typography.
3 = Partially correct: Text improvements are noticeable but have significant issues in content, formatting, or typography.
2 = Slightly changed but inadequate: Some text edits are present but insufficient or poorly implemented.
1 = Attempted but incorrect: Text changes are visible but do not match the instruction or improve the slide.
0 = Completely fails: No meaningful text improvements or changes are severely detrimental.
IMAGE QUALITY:
5 = Perfect: Images are optimal in selection, placement, sizing, and enhancement, fully satisfying the instruction.
4 = Mostly correct: Images are well-selected and implemented with only minor issues in placement, sizing, or visual quality.
3 = Partially correct: Image improvements are noticeable but have significant issues in selection, placement, sizing, or quality.
2 = Slightly changed but inadequate: Some image edits are present but insufficient or poorly implemented.
1 = Attempted but incorrect: Image changes are visible but do not match the instruction or improve the slide.
0 = Completely fails: No meaningful image improvements or changes are severely detrimental.
LAYOUT QUALITY:
5 = Perfect: Slide organization, spacing, alignment, and element relationships are flawless and fully satisfy the instruction.
4 = Mostly correct: Layout is clearly improved but has minor issues in organization, spacing, or alignment.
3 = Partially correct: Layout improvements are noticeable but have significant issues in organization, spacing, or alignment.
2 = Slightly changed but inadequate: Some layout edits are present but insufficient or poorly implemented.
1 = Attempted but incorrect: Layout changes are visible but do not match the instruction or improve the slide.
0 = Completely fails: No meaningful layout improvements or changes are severely detrimental.
COLOR QUALITY:
5 = Perfect: Color scheme, contrast, balance, and emphasis are flawless and fully satisfy the instruction.
4 = Mostly correct: Color choices are clearly improved but have minor issues in scheme, contrast, or emphasis.
3 = Partially correct: Color improvements are noticeable but have significant issues in scheme, contrast, or emphasis.
2 = Slightly changed but inadequate: Some color edits are present but insufficient or poorly implemented.
1 = Attempted but incorrect: Color changes are visible but do not match the instruction or improve the slide.
0 = Completely fails: No meaningful color improvements or changes are severely detrimental.
Judge only what you can see in the given image(s) and notes.
Return *only* the JSON object, nothing else.

Response: text: integer, image: integer, layout: integer, color:integer

Figure 13: A prompt used in LLM judge which evaluate text, image, layout, color.
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System Instruction Performance metric Efficiency metric

SR (%) Instruction
Following Text Image Layout Color Exec.

Time (s)
Avg.

Input tokens
Avg.

Output tokens
Avg. Cost
×0.001$

Direct
code generation

TextEditing 76.72 0.00 0.00 1.04 1.04 1.04 18.55 1.03 k 0.41 k 1.0
VisualFormatting 78.05 0.53 0.73 1.06 1.02 0.86 18.08 1.16 k 0.45 k 1.1
LayoutAdjustment 69.47 0.07 1.45 1.09 1.40 1.40 17.06 1.04 k 0.53 k 1.2
SlideStructure 84.44 0.17 1.78 1.11 1.91 1.64 19.57 0.91 k 0.65 k 1.4
Overall 76.25 0.53 0.81 1.07 1.23 1.15 18.19 1.06 k 0.48 k 1.2

UI Agent

TextEditing 65.48 0.48 0.67 1.58 1.48 1.56 110.84 101.48 k 2.10 k 15.9
VisualFormatting 88.09 2.44 1.89 1.67 1.79 1.48 134.57 94.12 k 2.44 k 14.9
LayoutAdjustment 62.64 1.48 2.76 2.20 2.23 2.45 127.13 121.04 k 2.47 k 18.8
SlideStructure 82.30 1.55 2.27 1.30 2.08 1.99 95.07 75.45 k 1.77 k 11.9
Overall 73.84 1.68 1.94 1.55 2.16 2.04 121.08 98.22 k 2.30 k 15.4

Ours

TextEditing 98.28 2.6 3.01 3.09 3.54 3.6 58.17 3.35 k 1.66 k 3.3
VisualFormatting 95.93 2.00 2.02 1.71 2.25 1.88 89.99 4.24 k 2.15 k 4.5
LayoutAdjustment 97.89 1.40 2.37 1.81 2.26 2.48 89.86 3.99 k 2.10 k 4.3
SlideStructure 91.11 1.40 2.44 2.59 2.78 2.9 74.39 2.24 k 1.28 k 2.1
Overall 96.57 2.13 2.46 2.26 2.71 2.68 78.37 3.60 k 1.89 k 3.8

Table 7: System-wise scores by instruction category. ‘SR’ denotes execution success rate. All three systems use
the GPT-4.1-mini model. For UI Agent, we follows (Zhang et al., 2024a), imposing a cut-off for tasks that did not
finish within 180 seconds and considering realistic feasibility constraints. Cost is in USD ($).
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Correlation
Coefficient Instruction Text Image Layout Color

Pearson 0.93 0.94 0.89 0.78 0.88
Spearman 0.91 0.92 0.85 0.74 0.86

Table 8: Correlation coefficients between LLM
judge–based metrics and human evaluation in the main
experiment using GPT-4.1-mini. All p-values are below
10−3.

Correlation
Coefficient Instruction Text Image Layout Color

Pearson 0.92 0.95 0.95 0.87 0.94
Spearman 0.91 0.93 0.95 0.84 0.88

Table 9: Correlation coefficients between LLM
judge–based metrics and human evaluation in the main
experiment using Gemini-2.5-flash. All p-values are
below 10−3.

Figure 14: The original slide from which the example
parsed data was extracted.
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