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Abstract

A fundamental challenge of over-parameterized deep learning models is learning
meaningful data representations that yield good performance on a downstream
task without over-fitting spurious input features. This work proposes MaskTune,
a masking strategy that prevents over-reliance on spurious (or a limited number
of) features. MaskTune forces the trained model to explore new features during
a single epoch finetuning by masking previously discovered features. MaskTune,
unlike earlier approaches for mitigating shortcut learning, does not require any
supervision, such as annotating spurious features or labels for subgroup samples
in a dataset. Our empirical results on biased MNIST, CelebA, Waterbirds, and
ImagenNet-9L datasets show that MaskTune is effective on tasks that often suffer
from the existence of spurious correlations. Finally, we show that MaskTune
outperforms or achieves similar performance to the competing methods when
applied to the selective classification (classification with rejection option) task.
Code for MaskTune is available at https://github.com/aliasgharkhani/
Masktune.

1 Introduction

Spurious correlations are coincidental feature associations formed between a subset of the input and
target variables, which may be caused by factors such as data selection bias [Torralba and Efros, 2011,
Jabri et al., 2016]. The presence of spurious correlations in training data can cause over-parameterized
deep neural networks to fail, often drastically, when such correlations do not hold in test data [Sagawa
et al., 2019] or when encountering domain shift [Arjovsky et al., 2019]. Consider the classification
problem of cows and camels [Beery et al., 2018], where most of the images of cows vs. camels
are captured on green fields vs. desert backgrounds due to selection bias (and perhaps the nature
of the problem that camels are often in the desert). A model trained on such data may rely on the
background as the key discriminative feature between cows and camels, thus failing on images of
cows on non-green backgrounds or camels on non-desert backgrounds.

In over-parameterized regimes, there are often several solutions with almost identical loss values,
and the optimizer (e.g., SGD) typically selects a low-capacity one [Wilson et al., 2017, Valle-Perez
et al., 2018, Arpit et al., 2017, Kalimeris et al., 2019]. In the presence of spurious correlations, the
optimizer might choose to leverage them as they generally demand less capacity than the expected
semantic cues of interest, e.g., relying on the local color or texture of grass instead of the elaborate
visual features that give a cow its appearance [Bruna and Mallat, 2013, Bruna et al., 2015, Brendel
and Bethge, 2019, Khani and Liang, 2021].
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Figure 1: MaskTune generates a new set of masked samples by obstructing the features discovered by
a model fully trained via empirical risk minimization (ERM). The ERM model is then fine-tuned for
only one epoch using the masked version of the original training data to force new feature exploration.
The features highlighted in yellow, red, and green correspond to features discovered by ERM, the
masked features, and the newly discovered features by MaskTune, respectively.

In previous work, a supervised loss function has been employed to reduce the effect of spurious
correlations [Sagawa et al., 2019]. However, identifying and annotating the spurious correlations
in a large dataset as a training signal is impractical. Other works have attempted to force models
to discard context and background (as spurious features) through input morphing using perceptual
similarities [Taghanaki et al., 2021] or learning casual variables [Javed et al., 2020]. Discarding
context and background, however, is incompatible with the human visual system that relies on
contextual information when detecting and recognizing objects [Palmer, 1975, Biederman et al., 1982,
Chun and Jiang, 1998, Henderson and Hollingworth, 1999, Torralba, 2003]. In addition, spurious
features may appear on the object itself (e.g., facial attributes). Thus discarding the context and
background may be a futile strategy in these cases.

Instead of requiring contextual and background information to be discarded or relying on a limited
number of features, we propose a single-epoch finetuning technique called MaskTune that prevents a
model from learning only the “first” simplest mapping (potentially spurious correlations) from the
input to the corresponding target variable. MaskTune forces the model to explore other input variables
by concealing (masking) the ones that have already been deemed discriminatory. As we finetune
the model with a new set of masked samples, we force the training to escape its myopic and greedy
feature-seeking approach and encourage exploring and leveraging more input variables. In other
words, as the previous clues are hidden, the model is constrained to find alternative loss-minimizing
input-target mappings. MaskTune conceals the first clues discovered by a fully trained model, whether
they are spurious or not. This forces the model to investigate and leverage new complementary
discriminatory input features. A model relying upon a broader array of complementary features
(some may be spurious while others are not) is expected to be more robust to test data missing a
subset of these features.

Figure 1 visualizes how MaskTune works via a schematic of the cow-on-grass scenario. Even in the
absence of spurious correlations, models tend to focus on the shortcut (e.g., ears or skin texture of a
cow), which can prevent models from generalizing to scenarios where those specific parts are missing.
However, the object is still recognizable from the remaining parts. As an alternative, MaskTune
generates a diverse set of partially masked training examples, forcing the model to investigate a wider
area of the input features landscape e.g., new pixels.

A further disadvantage of relying on a limited number of features is the model’s inability to know
when it does not know. Let’s go back to the cow-camel classification example; if cows only appear
on grass in the training set then it is unclear which of the grass or the cow refers to the "cow" label.
A model that only relies on the grass feature can confidently make a wrong prediction when some
other object appear in the grass in the test time. We need the model to predict only if both cow
and grass appear in the picture and abstain otherwise. One method used in the literature to address
this issue is selective classification [Geifman and El-Yaniv, 2019, 2017, Khani et al., 2016], which
allows a network to reject a sample if it is not confident in its prediction. Selective classification
is essential in mission-critical applications such as autonomous driving, medical diagnostics, and

2



robotics as they need to defer the prediction to human if they are uncertain about the prediction.
Learning different sets of discriminatory features, in addition to reducing the effect of spurious
features, enables MaskTune to be applied to the problem of selective classification.

We apply MaskTune to two main tasks: a) robustness to spurious correlations, and b) selective
classification. We cover four different datasets under (a) including MNIST with synthetic spurious
features, CelebA and Waterbirds with spurious features in different subgroups [Sagawa et al., 2019],
and the Background Challenge [Xiao et al., 2020] which is a dataset for measuring the reliance
of methods on background information for prediction. Under (b) we test MaskTune on CIFAR-
10 [Krizhevsky et al., 2009], SVHN [Netzer et al., 2011], and Cats vs. Dogs [Geifman and El-Yaniv,
2019] datasets. On both tasks, we outperform or perform similarly to the previous complex methods
using our simple technique.

To the best of our knowledge, this is the first work to present a finetuning technique using masked
data to overcome spurious correlations. Our contributions are summarized as follows:

1. We propose MaskTune, a new technique to reduce the effect of spurious correlations or
over-reliance on a limited number of input features without any supervision such as object
location or data subgroup labels.

2. We show that MaskTune leads to learning a model that does not rely solely on the initially
discovered features.

3. We show how our method can be applied to selective classification tasks.
4. We empirically verify the robustness of the learned representations to spurious correlations

on a variety of datasets.

2 Method

Setup. We consider the supervised learning setting with inputs x ∈ X ⊂ Rd and corresponding
labels y ∈ Y = {1, . . . , k}. We assume having access to samples D0 = {(xi, yi)}ni=1 drawn from an
unknown underlying distribution pdata(x, y).

Our goal is to learn the parameters θ ∈ Θ of a prediction model mθ : X → Y that obtains low
classification error w.r.t some loss function (e.g., cross entropy) ℓ : Θ× (X × Y) → R. Specifically,
we minimize:

L(θ) = Ex,y∼pdata(x,y)[ℓ(mθ(x), y)] ≈
1

n

n∑
i=1

ℓ(mθ(xi), yi) (1)

where n is the number of pairs in the training data.

Besides having good prediction accuracy, we aim to develop a model which does not solely rely on
spurious or a limited number of input features. We propose to mask the input training data to create a
new set. We then finetune (for only one epoch) a fully trained ERM model with the new masked data
to reduce over-reliance on spurious or a limited number of features. The single epoch fine-tuning is
done using a small learning rate e.g., the last decayed learning rate that the ERM has used in the first
step. We found that large learning rates or more than one epoch fine-tuning leads to forgetting the
discriminative features learned by the ERM.

Input Masking. A key ingredient of our approach is a masking function G that is applied offline
(i.e., after full training). The goal here is to construct a new masked dataset by concealing the most
discriminative features in the input discovered by a model after full training. This should encourage
the model to investigate new features with the masked training set during finetuning. As for G, we
adopt the xGradCAM [Selvaraju et al., 2017], which was originally designed for a visual explanation
of deep models by creating rough localization maps based on the gradient of the model loss w.r.t.
the output of a desired model layer. Given an input image of size H ×W × C, xGradCAM outputs
a localization map A of size H ×W × 1, which shows the contribution of each pixel of the input
image in predicting the most probable class, i.e., it calculates the loss by choosing the class with
highest logit value (not the true label) as the target class. After acquiring the localization map, for
each sample (xi, yi), where xi ∈ X and yi ∈ Y , we mask the locations with the most contribution
as:
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x̂i = T (Axi
; τ)⊙ xi; Axi

= G(mθ(xi), yi) (2)

where T refers to a thresholding function by the threshold factor τ (i.e., T = 1Axi
≤τ ), and ⊙ denotes

element-wise multiplication. As the resolution of A is typically coarser than that of the input data,
T (Axi

) is up-sampled to the size of the input.

Procedurally, we first learn model minitial
θ using original unmasked training data Dinitial. Then we use

minitial
θ , G and T to create the masked set Dmasked. Finally, the fully trained predictor minitial

θ is tuned
using Dmasked to obtain mfinal

θ .

As for the masking step, any explainability approach can be applied (note that some may have more
computational complexity, such as ScoreCAM [Wang et al., 2020]). We use xGradCAM [Selvaraju
et al., 2017] as it is fast and produces relatively denser heat-maps than other methods [Srinivas and
Fleuret, 2019, Selvaraju et al., 2017, Wang et al., 2020].

2.1 MaskTune in Over-parameterized Regimes

Consider the overparametrized regime, in which the model family has sufficient complexity to fully fit
the training data. It has been shown that deep neural nets are overparametrized and can fit completely
random data [Zhang et al., 2021]. The generalization ability of deep neural nets is still not clear, but
there are some speculation that connect the deep network generalization to their tendency of choosing
simple functions that fit the training data [Valle-Perez et al., 2018, Arpit et al., 2017]. However,
this simplicity bias can cause side effects such as their poor performance with respect to adversarial
examples [Raghunathan et al., 2019] or to distribution shifts [Khani and Liang, 2021, Shah et al.,
2020]. Here we study the effect of masking input features on complexity of a model in a situation
where indeed the training procedure chooses the least complex model that fits training data. We show
that in this case masking will result in learning a more complex model that discovers new features as
the previous ones are blocked.

Formally, let C denote a function that measures model complexity and assume that the masking
function T (as described in 2) only returns binary values, i.e., an indicator function that only keeps
some features and zeros out the rest. We show that if training procedure returns the least complex
model then masking results in a more complex model.

Proposition 1. Consider an optimizing procedure that finds min C(mθ), s.t., ℓ(mθ) = 0 as defined
in 1. Let masking function T return binary values. If both models mθ and minitial

θ fit the training data
(i.e., zero loss) then we have C(mfinal

θ ) ≥ C(minitial
θ ).

Proof. Note that both models belong to the model family (minitial
θ ,mfinal

θ ∈ Θ), and they both fit the
training data. In the first step, training procedure chooses minitial

θ over mfinal
θ ; therefore according to

our assumption C(mfinal
θ ) ≥ C(minitial

θ ).

2.2 Adapting MaskTune for Selective Classification

Here we show how to use MaskTune for the selective classification problem. In order to make a more
reliable prediction, we ensemble the original model (minitial

θ ) and MaskTune (mfinal
θ ) and only predict

if both models agree. As a result, if there exist two sets of features that can predict the label, our
method only predicts if both agree on the label (e.g., grass and cow in Figure 1).

To get an intuition on the performance of MaskTune for selective classification, similar to [Khani
et al., 2016] we analyze the noiseless overparametrized linear regression. We show that MaskTune
adaptation, explained above, abstains in the presence of covariate shift, thus leading to a more reliable
prediction.

In particular, we show that MaskTune only predicts if the relationship between masked and unmasked
features in training data holds in the test time. For example, if features describing “cow” are
predictable of “grass” in training data (i.e., they always co-occur) then we only predict if they co-
occur in the test data as well. Formally, let s denote the masked feature after the first round and z
denote the rest of the d− 1 features. As we are in the overparametrized regime, s can be predicted
from z, let β be the min-norm solution for predicting s from z, i.e., s = β⊤z for training data. We
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now show that both models agree with each other for a new test set if s = β⊤z in the test time as
well. In other words, there is not covariate shift between s and z.

Proposition 2. Let S ∈ Rn be the concatenation, across all n training samples, of a single masked
scalar feature, out of d possible features, and Z ∈ Rn×(d−1) be the remaining d− 1 features. Let
the model family Θ be the linear functions, and the optimization function chooses the min L2-norm
solution that fits the training data. The models trained with and without S agree on the predicted
output for a new test set (z, s), iff s = (Z⊤(ZZT )−1S)⊤z.

The full proof is in the appendix. Note that (Z⊤(ZZT )−1S) is the min-norm solution for predicting
s from z in the training data. This proposition states that the models agree only if the relation between
the masked feature (s) and remaining features (z) in training holds in the test data as well.

In practice, we need to trade off between the coverage and precision. Therefore, instead of a hard
threshold and predicting only if both models agree, we ensemble minitial

θ and mfinal
θ by multiplying

their probabilities. In order to achieve the coverage goal, we find the desired threshold for abstaining
in the validation set (see Section 4 for details).

3 Implementation Details

Classification with Spurious Features. For all of the datasets in Section 4.1, we use SGD with a
momentum of 0.9 and weight decay of 1e-4. For biased MNIST, we used a simple convolutional
neural network with four convolutional layers and a linear head. We trained this model with a batch
size of 128 for 100 epochs with a learning rate of 0.01. We decreased the learning rate by a factor
of 0.5 every 25 epochs. In the case of Background Challenge, we trained an ImageNet pre-trained
ResNet50 with a batch size of 1,024 for 100 epochs decaying the learning rate by 0.1 after every 30
epochs. For the CelebA dataset, we trained an ImageNet pre-trained ResNet50 with a batch size of
512 for 20 epochs with a learning rate of 1e-4.

Selective Classification. For all the datasets in Section 4.2, we trained a ResNet32 from scratch. For
CIFAR-10, we used SGD with a momentum of 0.9, weight decay of 1e-4, learning rate of 0.1, and
batch size of 128. We trained it for 300 epochs and halved the learning rate every 25 epochs. For
SVHN, we used the same hyperparameters as CIFAR-10 with only two differences: the weight decay
and batch size were 5e-4 and 1,024, respectively. For Cats vs. Dogs dataset, we used Adam optimizer
with a weight decay of 1e-4 and a learning rate of 0.001. We trained the model for 200 epochs with a
batch size of 128 and dropped the learning rate by a factor of 0.1 on epoch 50.

Masking Threshold. Our goal is to mask the most important features, i.e., the core of the heat
maps generated by the explainability methods. Masking a few input variables has almost no effect
on the model’s behavior, whereas large masks may destroy useful signals in the input, resulting in
very low training accuracy. To reduce the search space of the masking threshold τ across all tasks,
we experimented with τ = {µi, µi + σi, µi + 2σi, µi + 3σi} where µi and σi represent mean and
standard deviation over the heatmap values for training sample xi. We also experimented with mean
value over all training samples, using soft masks (i.e., no threshold), and sorting and masking the
K-top activated variables. We found µi + 2σi works better in general as µi and µi + σi remove a
large portion of the input while µi + 3σi removes very few variables.

4 Experimental Results

We evaluate our MaskTune method on two main applications: a) classification with spurious
correlations—we expect MaskTune to prevent such correlations by identifying and masking them and
b) selective classification where the ability to abstain is critical—we expect MaskTune to improve
reliability by forcing a model to investigate additional variables in the input and learn more complex
relationships. In each experiment, we compare our method to relevant baselines and competing
methods.

4.1 Classification with Spurious Features

MNIST with Colored Squares on the Corners: As a warm-up, we test the ability of our method
to distinguish between two MNIST digit groups (0-4 and 5-9) in the presence of spurious features.
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Input ERM MaskTune

Figure 2: Left: Test accuracy on the original and biased MNIST datasets. MaskTune outperforms
other methods on both the original and biased test sets. Right: xGradCAM visualizations before
(ERM) and after applying MaskTune. MaskTune enforces exploring more input features, which leads
to more robust predictions. Here the spurious feature is the blue square on the top left corner.

We construct a dataset such that a classifier would achieve poor accuracy by relying on spurious
input features. To this end, we group digits labeled 0 to 4 into class 0 and those labeled 5 to 9 into
class 1. Next, in the training set, we place 99% and 1% of the new class 0 and new class 1 data on a
background with a small blue square on the top left corner, respectively, and keep the remaining data
intact. We use two test sets during testing: the original raw MNIST test set and a biased test set. To
create the biased test set we place all of the digits from the group “5-9” on a background with a small
blue square (representing spurious features) on the top left corner and keep all of the digits from
the group “0-4” unchanged (i.e., we don’t add any squares to their background and use the original
images). Figure 2 demonstrates the performance of the ERM, RandMask, and our MaskTune on both
original and biased test sets. The RandMask method is similar to MaskTune, but masks a randomly
chosen area of the input image. As shown in Figure 2, MaskTune outperforms other methods by
a large margin on both test sets. As demonstrated in Figure 2 (right), MaskTune forces the model
to explore more features, as opposed to the ERM, which only looks into the spurious feature (the
blue square). We also ran an experiment with multiple spurious features (Appendix ??) and reported
results for iterative version of MaskTune.

Classification with Spurious Features in Subgroups. In this experiment, we leverage the
CelebA [Liu et al., 2015] and the Waterbirds [Sagawa et al., 2019] datasets. In the CelebA dataset,
there is a high correlation between features gender={male, female} and hair_color={blond, dark},
meaning that the feature gender might be used as a proxy to predict the hair_color. In other words,
an ERM would assign the label dark to male images since the majority of male images have dark
hair, and there are only 1,387 (0.85%) blond males in the training set of size 162,770. To balance the
accuracy of predictions on different subgroups of data, the existing methods [Sagawa et al., 2019]
use subgroup information, i.e., wrong predictions of an ERM on the worst group (blond males) can
be penalized during training. Some other approaches [Levy et al., 2020, Nam et al., 2020, Pezeshki
et al., 2021, Taghanaki et al., 2021, Liu et al., 2021] use subgroup information during model selection
(labeled validation set). However, it is impractical to recognize “all” subgroups in a dataset and label
them. In Table 1, we show that MaskTune achieves comparable performance to both these groups of
methods without using group information in training or in model selection. We also show MaskTune
significantly improves worst-group accuracy (78% vs. 55% classification accuracy) in comparison to
methods that do not use subgroup information during training or model selection. In Figure 3 (left),
we highlight the important input features for predicting hair color on the CelebA dataste. As shown,
the ERM model leverages gender features while MaskTune forces to investigate other features as
well.

The Waterbirds dataset [Sagawa et al., 2019] was proposed to assess the degree to which models pick
up spurious correlations in the training set. We discovered and fixed two issues with the Waterbirds
dataset: a) because the background images in the Places dataset [Zhou et al., 2017] may already
contain bird images, multiple birds may appear in an image after overlaying the segmented bird
images from the Caltech-UCSD Birds-200-2011 (CUB) dataset [Wah et al., 2011]. For example, the
label of an image may be “landbird”, but the image contains both land and water birds. We manually
removed such images from the dataset. b) Because the names of the species are similar, some land
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Table 1: Results from the CelebA dataset using ResNet-50. Our method outperforms all fully
unsupervised methods.

Method Group labels
in training set

Group labels
in validation set

Worst-group
accuracy

Avgerage
accuracy

Group DRO Sagawa et al. [2019] Yes Yes 88.3 91.8

CVaR DRO Levy et al. [2020] No Yes 64.4 82.5
LfF Nam et al. [2020] No Yes 77.2 85.1
SD Pezeshki et al. [2021] No Yes 83.2±2.0 91.6±0.6
JTT Liu et al. [2021] No Yes 81.1 88.0
CIM Taghanaki et al. [2021] No Yes 81.3 89.2

ERM Sagawa et al. [2019] No No 47.2 95.6
CVaR DRO Levy et al. [2020] No No 36.1 82.5
LfF Nam et al. [2020] No No 24.4 85.1
JTT Liu et al. [2021] No No 40.6 88.0
DivDis Lee et al. [2022] No No 55.0 90.8
MaskTune (ours) No No 78.0±1.2 91.3±0.1

Input                 ERM                MaskTune Input                  ERM               MaskTune

Figure 3: Activation visualizations of ERM and MaskTune for CelebA (left) and Waterbirds (right)
samples. MaskTune enforces exploring new features. As demonstrated, after applying MaskTune, the
task-relevant input signals (hair colour and bird features) are emphasised.

birds have been mislabeled as waterbirds which we corrected. The corrected Waterbirds dataset can
be found on MaskTune’s GitHub page. After addressing the two issues, the ERM model’s worst-group
accuracy increased from 60% which is reported in [Sagawa et al., 2019] to 80.8±1.3%. We repeated
the group-DRO method and ERM experiments on the corrected waterbirds dataset and reported the
results in Table 2. As demonstrated, our method (without any group supervision) achieves similar
accuracy to the group-DRO that benefits from full supervision. In Figure 3 (right), we visualized
feature importance before and after applying our MaskTune on the modified Waterbirds dataset.

The Background Challenge. As a further step, we evaluated MaskTune on the Background Challenge
data [Xiao et al., 2020] to see if the positive observations from the MNIST experiment apply to a
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Table 2: Results from the Waterbirds dataset using ResNet-50. Our method significantly improves
ERM’s worst-group accuracy without supervision.

Method Group labels
in training set

Group labels
in validation set

Worst-group
accuracy

Avgerage
accuracy

GroupDRO [Sagawa et al., 2019] Yes Yes 89.3±3.1 94.4±0.7

ERM No No 80.8±1.3 94.0±0.2
MaskTune No No 86.4±1.9 93.0±0.7

more realistic scenario. The Background Challenge is a publicly available dataset that consists of
ImageNet-9 [Deng et al., 2009] test sets with various levels of foreground and background signals. It
is intended to assess how much deep classifiers rely on spurious features for image classification. We
used two configurations to compare MaskTune’s performance: Only FG, in which the background is
completely removed, Mixed-same, in which the foreground is placed on a different background from
the same class, and Mixed-rand, where the foreground is overlaid onto a random background.

As shown in Table 3, MaskTune outperforms the baseline ResNet-50’s performance by 2.5% on
the Only-FG test set and 1.2% on Mixed-same, showing that MaskTune does not rely much on
the background and uses both background and foreground for prediction. On the Mixed-same and
Only-FG test sets, MaskTune outperforms other techniques because mixing/removing the background
texture/info confuses other methods. These results show that our technique helps to learn task-relevant
features without depending on nuisance signal sources.

Table 3: Results from the Background Challenge on ImageNet-9 using ResNet-50. Our method
outperforms the baselines on both Mixed-same and Only FG test sets.

Method Original Mixed-same Mixed-rand Only-FG

Baseline [Xiao et al., 2020] 96.3 89.8 75.6 85.6
CIM [Taghanaki et al., 2021] 97.7 89.8 81.1 -
SIN [Sauer and Geiger, 2021] 89.2 73.1 63.7 -
INSIN [Sauer and Geiger, 2021] 94.7 85.9 78.5 -
INCGN [Sauer and Geiger, 2021] 94.2 83.4 80.1 -
MaskTune (Ours) 95.6 91.1 78.6 88.1

4.2 Selective Classification

For selective classification task, we evaluated MaskTune on three datasets: CIFAR-10 [Krizhevsky
et al., 2009], SVHN [Netzer et al., 2011], and Cats vs. Dogs [Geifman and El-Yaniv, 2019], with
coverage values of {90%, 95%, 100%}. For example 90% coverage means abstaining 10% of the
samples.

Given input image j and the original (minitial
θ ) and finetuned (mfinal

θ ) models, let their respective
inference-time prediction probabilities for class i be P init

ij and P final
ij . Then MaskTune does not abstain

and declares the class i as the predicted class, iff P init
ij · P final

ij > γ, where γ is a threshold that allows
for controlling the target coverage. To find the proper γ for achieving the targeted coverage, we
iterate over the validation set and find a threshold that, if applied to the validation set, would give
the desired coverage (i.e., if our target coverage is 90%, we seek for a threshold which if we apply
for abstention on the validation set, we will abstain predicting 10% of validation data). Note that
the probabilities of the two models are multiplied to ensure that as the value of either probability
decreases, the possibility of abstention increases.

We compare our method to the other selective classification approaches such as Softmax Response
(SR) [Geifman and El-Yaniv, 2019], SelectiveNet (SN) [Geifman and El-Yaniv, 2019], Deep Gamblers
(DG) [Liu et al., 2019], and One-sided Prediction (OSP) [Gangrade et al., 2021]. Like the OSP, we
first split the training data into train and validation sets. After training, we search for the abstention
threshold on the validation set, then use it at the test time. As seen in Table 4, MaskTune outperforms
all prior techniques on all three datasets on 95% and 100% coverage rates. For results on more
coverage rates refer to Appendix ??.
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Table 4: Selective classification results on CIFAR-10, SVHN, and Cats vs. Dogs datasets for different
coverage values.

Dataset Target
Coverage

SR SN DG OSP MaskTune
Cov. Err. Cov. Err. Cov. Err. Cov. Err. Cov. Err.

Cifar-10
100% 99.99 9.58 100 11.07 100 10.81 100 9.74 99.99±0.02 8.96±0.48
95% 95.2 8.74 94.7 8.34 95.1 8.21 95.1 6.98 94.86±0.18 6.54±0.39
90% 90.5 6.52 89.6 6.45 90.1 6.14 90.0 4.67 89.73±0.22 4.74±0.31

SVHN
100% 99.97 3.86 100 4.27 100 4.03 100 4.27 100.0±0.00 3.68±0.16
95% 95.1 1.86 95.1 2.53 95.0 2.05 95.1 1.83 95.19±0.09 1.84±0.23
90% 90.0 1.04 90.1 1.31 90.0 1.06 90.1 1.01 89.55±0.26 0.96±0.11

Cats vs. Dogs
100% 100 5.72 100 7.36 100 6.16 100 5.93 99.98±0.00 4.83±0.17
95% 95.0 3.46 95.2 5.1 95.1 4.28 95.1 2.97 95.01±0.14 2.96±0.15
90% 90.0 2.28 90.2 3.3 90.0 2.5 90.0 1.74 90.78±0.16 1.94±0.18

5 Related Work

In the following, we review the related works which have attempted to mitigate the effect of spurious
correlation in training deep models. We also discuss previous methods that use attention-based online
masking and how our method differs.

Robustness to Spurious Correlations. Distributionally robust optimization (DRO) [Ben-Tal et al.,
2013, Gao et al., 2017, Duchi et al., 2021] has been proposed to improve generalization to worst cases
(minority distributions) in a dataset. However, the DRO objective leads to disproportionate attention
to the worst cases, even if they are implausible. To address this issue, Sagawa et al. [2019] proposed
to leverage subgroup information during optimization. Although this method reduces the likelihood
of the worst-case failure, it is based on prior solid information (i.e., subgroup labels), which is not
always available. Several efforts have been made to reduce the subgroup-level supervision. Sohoni
et al. [2020] proposed a clustering-based method for obtaining sub-group information to be used in
DRO setup. However, determining the number of clusters (sub-groups) in a dataset is not trivial since
a small number may still dismiss minor subgroups while a large number may lower overall accuracy.
Yaghoobzadeh et al. [2019] proposed measuring sample accuracy throughout training to discover
forgettable instances, then fine-tuning models using such samples to increase model resilience against
spurious correlations. Chen et al. [2020] demonstrated that self-training can also help decrease the
effect of spurious features, but only if the source classifier is very accurate and there are not too
many isolated sub-groups in the data. Liu et al. [2021] discovered that training a model twice helps it
become resistant to spurious correlation. However, if a model reaches high classification accuracy
in the first run, this technique is no longer useful since there is not enough misclassified data to
retrain the model. MaskTune, on the other hand, employs an orthogonal approach to learn robust
representations through gradient-based masking and fine-tuning and does not require subgroup-level
labels during training or model selection.

Online Attention-based Masking. A large number of studies suggest using attention-based (soft)
masks to eliminate irrelevant information from input data during training [Sharma et al., 2015, Wang
et al., 2017, Xu et al., 2015, Zheng et al., 2017]. Although these methods increase overall classification
accuracy, they are incapable of disregarding spurious correlations since attention may be on an area
of the input where the spurious correlations are dominant during training. For concentrating attention
only on the foreground, Li et al. [2018] developed a guided attention model. Their technique,
however, needs additional annotations of object locations/masks. Nonetheless, none of these methods
aimed to reduce the effects of spurious correlations. Even with complete supervision (i.e., masking
the whole background), spurious correlations might still occur in the foreground. MaskTune, on the
other hand, produces masks from a fully trained model and uses them for a single epoch fine-tuning.
MaskTune does not require any additional supervision such as object location annotations.
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6 Conclusion

In this work, we considered the problem of preventing models from learning spurious correlations.
We introduced a new fine-tuning technique that is designed explicitly for spurious correlations. It
enforces a model to explore more variables in the input and map them to the same target. Through
experiments and theoretical analysis on classification with nuisance background information which
typically suffers from the presence of spurious correlations in the data, we showed that models trained
with MaskTune outperform previous relevant methods. We also showed that MaskTune helps to
improve the accuracy significantly in selective classification tasks. Adapting MaskTune for non-image
data, such as sentiment analysis, can be an intriguing future work. Another area for future work is
how best to identify and use the most effective masked samples (rather than all) when fine-tuning the
final model, perhaps using uncertainty information or active learning. Although MaskTune can help
reduce the effect of many types of spurious correlation, such as texture, color, and localized nuisance
features e.g., artifacts added to x-ray images by medical imaging devices, there are some cases where
MaskTune may not be effective, such as a small transformation in all pixel values for some of the
images in a dataset. This occurs in medical devices or cameras that add almost imperceptible color
(values) to captured images.
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