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Abstract001

Despite their impressive performance in coarse-002
grained video understanding, Video Large Lan-003
guage Models (Video-LLMs) still face chal-004
lenges in fine-grained temporal grounding, in-005
cluding ineffective temporal modeling and in-006
adequate timestamp representations. In this007
work, we introduce Grounded-VideoLLM, a008
novel Video-LLM designed to perceive and009
reason over specific video moments with fine-010
grained temporal precision. Our model features011
(1) a two-stream encoder that explicitly cap-012
tures inter-frame relationships while preserv-013
ing intra-frame visual details and (2) discrete014
temporal tokens enriched with structured time015
knowledge for timestamp representation. Be-016
sides, we propose a multi-stage training strat-017
egy tailored to such grounding-specific archi-018
tecture. The model is initially trained on sim-019
ple video-caption tasks and progressively in-020
troduced to complex video temporal ground-021
ing tasks, ensuring a smooth learning curve022
and temporal alignment. We further strengthen023
Grounded-VideoLLM’s temporal reasoning by024
constructing a VideoQA dataset with grounded025
information using an automated annotation026
pipeline. Extensive experiments demonstrate027
that Grounded-VideoLLM not only surpasses028
existing models in fine-grained grounding tasks029
but also exhibits strong potential as a general030
video understanding assistant.031

1 Introduction032

Multi-modal Large Language Models (MLLMs)033

have made remarkable progress in image-level un-034

derstanding (Liu et al., 2023; Dai et al., 2023; Li035

et al., 2023b). However, extending their capabili-036

ties to the video domain poses distinct challenges.037

Unlike static images, the temporal nature of videos038

challenges models to process not only visual con-039

tent but also the sequence and timing of events.040

While current Video-LLMs (Xu et al., 2024a; Li041

et al., 2024; Zhang et al., 2023b; Lin et al., 2023)042

are capable of capturing global visual semantics 043

and generating coarse-grained captions for short 044

clips, they struggle with fine-grained video under- 045

standing (Liu et al., 2024c; Wang et al., 2024d), 046

which requires decomposing the video along the 047

temporal axis to accurately perceive and reason 048

over specific moments, such as subtle actions, tran- 049

sitions, and events that unfold over time. 050

Previous research efforts (Ren et al., 2024; 051

Huang et al., 2024a; Qian et al., 2024a; Huang 052

et al., 2024b; Guo et al., 2024) have explored tem- 053

poral grounding to improve fine-grained video un- 054

derstanding. However, two main challenges im- 055

pede their potential for achieving effective fine- 056

grained temporal grounding: (1) Models like 057

Video-ChatGPT (Maaz et al., 2024b), P-LLaVA 058

(Xu et al., 2024a), and Video-LLAMA (Zhang 059

et al., 2023b) typically sample multiple frames 060

from a video and encode each frame independently 061

using an image encoder, followed by a feature pro- 062

jector (e.g., sliding Q-former (Ren et al., 2024), 063

visual adapter (Huang et al., 2024a)). This focuses 064

primarily on spatial details while potentially ne- 065

glecting the temporal relationships between frames 066

since their visual encoders are solely trained on 067

images. (2) Current models also struggle with 068

timestamp representation, which is crucial for pin- 069

pointing specific moments in time for fine-grained 070

understanding. Models such as TimeChat (Ren 071

et al., 2024) and VTimeLLM (Huang et al., 2024a) 072

represent timestamps as plain texts, for example, 073

["from 102.3 to 120.1 seconds"]. Despite be- 074

ing straightforward, this needs to tokenize contin- 075

uous floating-point values, which is inefficient for 076

LLMs since their next-token prediction paradigm 077

struggles with handling numerical data (Schwartz 078

et al., 2024; Frieder et al., 2023). Although there 079

have been some previous works (Yang et al., 2023; 080

Huang et al., 2024b; Qian et al., 2024a) using spe- 081

cial tokens to represent time positions, Vid2Seq 082

(Yang et al., 2023) relies heavily on large-scale 083
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Temporal Localization Temporal Reasoning

What is taking place between <12> 
and <28>?

Provide an overview of what 
happens from <280> to <288>.

When does ‘the car left away’ 
happen in the video?

Can you compile a list of the 
activities and their timestamps 
featured in the video?

From <254> to <276>.
A large off-roading truck drives 
by along a dirt track and comes 
to a stop.

A black screen appears with white 
words that read \“More Videos 
Coming, subscribe to my channel\"

From <12> to <28>, a blue truck is coming 
and stops. From <34> to <60>, many 
people approache the vehicle. From ...... 

Why do the worker and assistants 
approach the vehicle before it 
leaves from <254> to <276>?

To help replace the tire as indicated 
between <58> and <180>.

What does the segment from <280> 
to <288> mean?

It means the end of the video.
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00:19
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Figure 1: Grounded-VideoLLM enables Temporal Referring/Localizing/Reasoning for MLLMs.

pre-training from scratch using noisy transcribed084

speech and is limited to the task of dense video085

captioning, while LITA (Huang et al., 2024b) and086

Momentor (Qian et al., 2024a) only align these to-087

kens with simple fine-tuning stage, which proves088

to be insufficient in our experiments (Table 4).089

To further improve video understanding, we pro-090

pose to sharpen the model with fine-grained tem-091

poral grounding, allowing the model to recognize092

not only what happens but pinpoint when it hap-093

pens with finer granularity, as illustrated in Figure094

1. Targeting these goals, we introduce Grounded-095

VideoLLM, a novel Video-LLM that can perceive096

and reason over specific video moments with fine-097

grained precision. From the perspective of model098

architecture, Grounded-VideoLLM is built upon099

two key innovations: (1) Two-Stream Encoding:100

We decompose each segment of the video into101

spatial and temporal components and encode each102

with an expert encoder. The temporal stream ex-103

tracts motion representations from dense frames104

and complements the spatial stream, which cap-105

tures appearance representations. This dual-stream106

approach forms comprehensive video representa-107

tions enriched with both temporal and spatial in-108

formation. (2) Temporal Tokens: We extend the109

LLM’s vocabulary by introducing discrete tokens110

crafted to denote relative time positions and share111

a unified embedding space with the LLM, allowing112

Grounded-VideoLLM to avoid the inefficiency of to-113

kenizing numerical text and seamlessly predict both114

timestamps and textual outputs in a single sequence115

of discrete tokens. From the perspective of train-116

ing, we start with an image MLLM (Microsoft,117

2024) as the foundation and adopt a three-stage 118

training strategy. We meticulously select different 119

tasks for each stage, and progressively refine the 120

model in a “coarse-to-fine” manner, transitioning 121

from image understanding to video comprehension, 122

and ultimately to fine-grained temporal grounding. 123

This scheme ensures the introduced temporal to- 124

kens align closely with the video timelines and 125

LLM’s semantic space, distinguishing our method 126

from previous studies (Huang et al., 2024b; Qian 127

et al., 2024a; Yang et al., 2023). Furthermore, we 128

enhance the model’s temporal reasoning by curat- 129

ing 17K grounded VideoQA (Xiao et al., 2024) 130

samples with the assistance of GPT-4 (Achiam 131

et al., 2023). Extensive experiments demonstrate 132

that Grounded-VideoLLM shows promising results 133

over existing Video-LLMs not only in traditional 134

video temporal grounding tasks but also in general 135

video understanding benchmarks. 136

2 Related Work 137

Video Large Language Models have caught a 138

growing interest for general video understanding 139

(Zhang et al., 2023b; Lin et al., 2023). How- 140

ever, they struggle with temporal perception (Liu 141

et al., 2024c) and exhibit hallucination (Wang et al., 142

2024d) when asked about specific moments. They 143

typically encode each frame independently using 144

an image encoder to create video embeddings, re- 145

sulting in video representations lacking inherent 146

temporal information and heavily relying on the 147

position embeddings of LLM for temporal under- 148

standing, limiting the model’s capability to perform 149
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fine-grained temporal grounding. In contrast, we150

employ a two-stream architecture that integrates151

a video expert to extract motion features to com-152

plement the appearance features during the early153

encoding process. This is different from traditional154

two-stream networks (Simonyan and Zisserman,155

2014; Feichtenhofer et al., 2016) since we don’t156

rely on heavy extraction of optical flows. Addi-157

tionally, we employ a progressive training strategy158

that gradually adapts an image-based MLLM for159

fine-grained video understanding. Although con-160

current works such as SlowFast-LLaVA (Xu et al.,161

2024b) and VideoGPT+ (Maaz et al., 2024a) also162

introduce an additional stream, SlowFast-LLaVA163

relies on a single image encoder to process each164

video frame without training, missing crucial tem-165

poral relationships between frames. VideoGPT+166

merely arranges video tokens as a prefix to image167

tokens using sparse frames. Instead, our approach168

is specifically designed for fine-grained temporal169

grounding, leveraging a unique encoding, pool-170

ing, and training strategy tailored for dense frames,171

along with a dedicated grounding mechanism.172

Video Temporal Grounding (VTG) tasks usu-173

ally include Temporal Sentence Grounding (Gao174

et al., 2017; Hendricks et al., 2018), Dense Video175

Captioning (Caba Heilbron et al., 2015; Zhou et al.,176

2018), and Grounded VideoQA (Xiao et al., 2024).177

Given the emerging capabilities of Video-LLMs,178

many studies have investigated how to adapt them179

for VTG tasks. For example, TimeChat (Ren et al.,180

2024) and VTimeLLM (Huang et al., 2024a) per-181

form temporal grounding using a fully text-to-text182

approach through instruction-tuning datasets. Mo-183

mentor (Qian et al., 2024a) introduces a temporal184

perception module to address the quantization er-185

rors, and VTG-LLM (Guo et al., 2024) incorporates186

absolute-time tokens to handle timestamps. Com-187

pared to these, we avoid textual representation of188

timestamps and instead introduce discrete temporal189

tokens for timestamp encoding. Different from pre-190

vious methods that also use special tokens (Huang191

et al., 2024b; Qian et al., 2024a; Yang et al., 2023;192

Peng et al., 2023), our model is more efficient by193

continuing training based on an established image194

MLLM with a two-stream architecture and a pro-195

gressive training strategy.196

3 Model Architecture197

Given that current MLLMs already exhibit strong198

image-understanding capabilities, our architecture199

aims to sharpen temporal awareness by capturing 200

motion dynamics across frames, which serve as a 201

vital supplement to spatial content. As shown in 202

Figure 2, we develop Grounded-VideoLLM upon a 203

well-established MLLM for spatial comprehension 204

and integrate an expert video encoder for temporal 205

comprehension. Additionally, to avoid tokenizing 206

numerical texts, we incorporate temporal tokens 207

into the LLM’s vocabulary for efficient and unified 208

timestamp representation. 209

3.1 Two-Stream Encoding 210

Given a video V with T frames, we divide it into 211

K segments and employ a segment-wise encod- 212

ing strategy. Due to the inherent redundancy of 213

consecutive frames, each segment can be naturally 214

represented from two perspectives: spatial and tem- 215

poral. The spatial representation of each segment is 216

derived from an individual keyframe, capturing the 217

primary appearance semantics, while the tempo- 218

ral representation is learned from multiple frames 219

depicting the motion evolution within the segment. 220

Spatial Stream. We sample the middle frame 221

from each segment as the keyframe and extract its 222

spatial features using the original image encoder 223

from the MLLM (Radford et al., 2021), resulting 224

in spatial features FS ∈ RHS×WS×DS , where HS , 225

WS , DS denote the height, width and dimension of 226

the spatial features. Since dense frames are crucial 227

for fine-grained temporal grounding, an appropriate 228

pooling strategy is required to reduce token length. 229

As indicated by (Xu et al., 2024a) and (Yao et al., 230

2024) that a 2D average pooling is both efficient 231

and robust for spatial downsampling, we employ 232

a 2D pooling kernel with a size σS × σS over the 233

feature map and gets FS ∈ RNS×DS as the feature 234

for spatial stream, where NS = HS
σS

× WS
σS

. 235

Temporal Stream. Traditional two-stream net- 236

works typically encode the optical flow as the tem- 237

poral stream. However, given the scale of data and 238

parameters of MLLMs, extracting optical flow is 239

computationally expensive and impractical. Conse- 240

quently, we resort to a strong and well pre-trained 241

video encoder to extract motion representations 242

for each segment, using a lower resolution but 243

more frames. We input each segment, contain- 244

ing T
K frames, into the video encoder to obtain 245

the segment-level features FT ∈ R
T
K
×HT×WT×DT , 246

where HT , WT , DT denote the height, width and 247

dimension of each frame feature. Similar to the 248

spatial stream, we apply a 2D average pooling strat- 249
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Figure 2: Overview of Grounded-VideoLLM. For temporal modeling, we employ a segment-wise encoding strategy
by decomposing each segment into a spatial part and a temporal part and encoding each respectively. For timestamp
representation, we introduce additional special temporal tokens sharing a unified embedding space with LLM.

egy to downsample FT . However, as the temporal250

stream focuses primarily on temporal modeling,251

we retain the complete temporal information by252

only pooling along the spatial dimensions. Specif-253

ically, we aggressively downsample FT using a254

kernel with a larger size of σT × σT , resulting in255

the compressed FT ∈ R
T
K
×NT×DT for temporal256

stream, where NT = HT
σT

× WT
σT

. To get the com-257

plete segment-level representation, we flatten the258

features of both stream and concat them together :259

FSeg = Concat [f(FS); g(FT )] (1)260

where FSeg ∈ R(NS+
T
K
·NT )×D, f(·) and g(·)261

are two MLPs that project the visual features to262

LLM’s dimension D. The final video representa-263

tion is formed by concatenating the K segment-264

level representations FSeg, resulting in FV id ∈265

RK·(NS+
T
K
·NT )×D. This representation retains de-266

tailed spatial information across all segments along267

with their global temporal contexts, while main-268

taining a manageable token length. The combined269

video representation FV id is then fed into the LLM270

serving as soft prompts, alongside the word embed-271

dings of the instruction text FText to generate the272

target response A. The model is trained using the273

standard cross-entropy loss function for LLM.274

3.2 Unified Temporal Tokens275

Given a text depicting a video and its associated276

timestamps, we employ a relative time represen-277

tation that converts continuous timestamps into a278

sequence of discrete tokens. For a video V with a 279

duration of L seconds, we evenly divide V into M 280

equal-length chunks, and then define M+1 anchor 281

points (ranging from <0> to <M>) across V , denot- 282

ing relative temporal positions. Each anchor point 283

corresponds to a specific timestamp and is encoded 284

as a temporal token. For instance, <0> denotes the 285

very start of V while <M> indicates the end. These 286

M+1 tokens are added to the LLM’s vocabulary to 287

enable unified modeling alongside text. A specific 288

continuous timestamp τ can be easily converted to 289

a temporal token <t> and vice verse: 290

t = Round(M · τ
L
), τ = L · t

M
(2) 291

While this may introduce minor quantization errors, 292

these can be minimized by selecting an appropriate 293

M or an interpolation expansion. We then organize 294

the text span and its corresponding temporal tokens 295

in a unified format. Both text tokens and tempo- 296

ral tokens are mapped to embeddings through the 297

extended word embedding layer of LLM. 298

This strategy avoids the need to tokenize and 299

process numerical values, which has been iden- 300

tified as a limitation of LLMs (Schwartz et al., 301

2024). Notably, special tokens in LLMs are widely 302

used in various domains. For example, Pix2Seq 303

(Chen et al., 2021) leverages special tokens to repre- 304

sent spatial grounding in images, Open-VLA (Kim 305

et al., 2024) and RT-2 (Brohan et al., 2023) utilize 306

them for encoding robot action spaces, Yo’LLaVA 307
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(Nguyen et al., 2024) use special tokens to refer308

to personalized subjects, and, most relevant to our309

work, Vid2Seq employs special tokens for tem-310

poral grounding in videos. However, the afore-311

mentioned works lack effective strategies to align312

these tokens with both LLM’s semantic meanings313

and specific functionalities. For example, Vid2Seq314

(Yang et al., 2023) simply appends temporal to-315

kens as a prefix to the caption and trains the entire316

T5 model from scratch using noised transcribed317

speech, which disrupts the language model’s origi-318

nal semantic embedding. In contrast, we introduce319

a temporal token alignment training stage in Sec.320

4 to mitigate this issue. Instead of training the en-321

tire model, we update only the word embeddings322

of temporal tokens and the final logit head, with323

carefully curated grounding-specific datasets. This324

ensures that temporal tokens are aligned with both325

the video timeline and the LLM’s semantic space,326

and timestamps and text can be jointly decoded as327

a single sequence while maintaining the general328

video understanding ability.329

4 Progressive Training330

Different from previous methods (Zhang et al.,331

2023b; Lin et al., 2023) that train models from332

scratch using mixed image and video datasets, we333

start with a pre-trained image-based MLLM (Mi-334

crosoft, 2024) and progressively enhance its fine-335

grained temporal grounding capabilities. This strat-336

egy can be applied to any off-the-shelf MLLM and337

is more efficient. Appendix Table 7 enumerates the338

datasets used at different stages.339

Stage-1: Video-Caption Alignment. We lever-340

age approximately 1.28 million video-text pairs341

sampled from diverse sources (Wang et al., 2024a;342

Bain et al., 2021; Chen et al., 2024b) to align video343

encoder’s features with the MLLM. This alignment344

allows the MLLM, which was pre-trained solely345

on images, to gain a foundational understanding of346

videos. Since 2D down-sampling has been applied347

to the visual features, only the two projectors f(·)348

and g(·) are trainable, while the video encoder, im-349

age encoder, and LLM remain frozen. As this stage350

does not involve any temporal grounding tasks, the351

temporal tokens in Sec.3.2 are not yet incorporated.352

Stage-2: Temporal Token Alignment. While353

Video-Caption Alignment connects videos and the354

MLLM at a coarse level, a gap persists between this355

alignment and fine-grained temporal grounding. To356

address this, we introduce the temporal tokens de-357

scribed in Sec.3.2 and continue pre-training the 358

model on a diverse range of grounding datasets 359

(Huang et al., 2024a; Qian et al., 2024a; Wang 360

et al., 2024c), focusing on tasks such as Temporal 361

Sentence Grounding, Dense Video Captioning, and 362

Temporal Referring, which enables the model to re- 363

fer to and localize temporal information effectively. 364

Since new tokens are introduced, we additionally 365

make the word embedding matrix and the final 366

classifier head of the LLM trainable. This stage en- 367

hances the model’s ability to comprehend multiple 368

events and aligns the temporal tokens with both the 369

video timelines and the LLM’s semantic space as 370

shown in Figure 3 and Table 4, distinguishing us 371

from previous works (Huang et al., 2024b; Yang 372

et al., 2023; Qian et al., 2024a). 373

Stage-3: Multi-Task Instruction Tuning. Fol- 374

lowing the initial two stages, the model has devel- 375

oped a basic understanding of video content and 376

can locate specific timestamps. In this stage, we 377

further enhance the model’s fine-grained temporal 378

grounding while improving its responsiveness to 379

diverse instructions. To achieve this, we gather two 380

types of datasets: (1) We compile a wide range 381

of datasets for temporal grounding tasks, similar 382

to Time-IT (Ren et al., 2024) and VTG-IT (Guo 383

et al., 2024), which include tasks of dense video 384

captioning (remove ActivityNet (Caba Heilbron 385

et al., 2015)), temporal sentence grounding, and 386

grounded VideoQA. (2) We incorporate a subset of 387

instructional datasets from VideoChat2 (Li et al., 388

2024) and ShareGPT-4Video (Chen et al., 2024a) 389

to further enhance the model’s ability to gener- 390

ate detailed video captions. By utilizing these di- 391

verse datasets, which encompass both temporal 392

grounding and video instruction tasks, Grounded- 393

VideoLLM excels in temporal referring, localiza- 394

tion, reasoning, and general comprehension of 395

video content. In this stage, the trainable parame- 396

ters remain the same as in Stage 2, with the addition 397

of LoRA parameters (Hu et al., 2022) for the LLM. 398

5 Grounded VideoQA Dataset Generation 399

Grounded VideoQA requires the model to not only 400

answer questions but identify timestamps that sup- 401

port predicted answers, demonstrating the temporal 402

reasoning abilities. NExT-GQA (Xiao et al., 2024) 403

was manually developed by extending NExT-QA 404

(Xiao et al., 2021) with temporal labels for start 405

and end timestamps. However, annotating these 406

labels is labor-intensive and time-consuming, limit- 407
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Model LLM Charades-STA ActivityNet-Grounding ActivityNet-Captions

Scale R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU SODA_c METEOR

Video-LLaMA (Zhang et al., 2023b) 7B 25.2 10.6 3.4 16.8 21.9 10.8 4.9 16.5 1.9 1.9
SeViLA (Yu et al., 2023) 3B 27.0 15.0 5.8 18.3 31.6 19.0 10.1 23.0 - -
Video-ChatGPT (Maaz et al., 2024b) 7B 27.2 6.2 1.9 19.7 19.5 10.6 4.8 14.2 1.9 2.1
Valley (Luo et al., 2023) 7B 28.4 1.8 0.3 21.4 30.6 13.7 8.1 21.9 0.3 0.8
VideoChat (Li et al., 2023c) 7B 32.8 8.6 0.0 25.9 23.5 12.6 6.0 17.4 0.9 0.9
Momenter (Qian et al., 2024a) 7B 42.6 26.6 11.6 28.5 42.9 23.0 12.4 29.3 2.3 4.7
VTimeLLM (Huang et al., 2024a) 7B 51.0 27.5 11.4 31.2 44.0 27.8 14.3 30.4 5.8 6.8
TimeChat (Ren et al., 2024) 7B - 32.2 13.4 - - - - - - -
VTG-LLM (Guo et al., 2024) 7B - 33.8 15.7 - - - - - - -
HawkEye (Wang et al., 2024c) 7B 50.6 31.4 14.5 33.7 49.1 29.3 10.7 32.7 - -

Grounded-VideoLLM (Vicuna) 7B 51.8 34.3 18.3 34.7 43.9 29.1 18.3 34.5 6.2 6.4
Grounded-VideoLLM (Phi3.5) 4B 54.2 36.4 19.7 36.8 46.2 30.3 19.0 36.1 6.0 6.8

Table 1: Zero shot results on temporal sentence grounding and dense video captioning tasks.

Model Acc@GQA mIoP IoP@0.5 mIoU IoU@0.5

VIOLETv2 (Fu et al., 2023) 12.8 23.6 23.3 3.1 1.3
Temp[CLIP] NG+ (Xiao et al., 2024) 16.0 25.7 25.5 12.1 8.9
SeViLA (Yu et al., 2023) 16.6 29.5 22.9 21.7 13.8
LangRepo (Kahatapitiya et al., 2024) 17.1 31.3 28.7 18.5 12.2
FrozenBiLM NG+ (Yang et al., 2022) 17.5 24.2 23.7 9.6 6.1
VideoStreaming (Qian et al., 2024b) 17.8 32.2 31.0 19.3 13.3
LLoVi (Zhang et al., 2023a) 24.3 37.3 36.9 20.0 15.3

Grounded-VideoLLM (Vicuna) 24.0 32.2 31.2 20.8 16.9
Grounded-VideoLLM (Phi3.5) 26.7 34.5 34.4 21.1 18.0

Table 2: Results on NExT-GQA. Acc@GQA is defined
as the percentage of questions that are both correctly
answered and visually grounded with IoP ≥ 0.5.

ing NExT-GQA only to QA pairs for the validation408

and test sets. To create a scalable training dataset,409

we utilized OpenAI GPT-4 (Achiam et al., 2023) to410

assist in constructing training sets for the grounded411

VideoQA task. These sets were built on public412

datasets that already contain temporal labels, such413

as QVHighlights (Lei et al., 2021). We framed414

the task as a multiple-choice VideoQA using a415

two-round conversational format, as depicted in416

Appendix Figure 4 and detailed in Appendix A.3.417

6 Experiments418

Implementation Details. We select Phi3.5-V-419

Instruct-3.8B (Microsoft, 2024) as the base MLLM420

of Grounded-VideoLLM. We also build another421

Grounded-VideoLLM based on LLaVA-1.5-7B (Liu422

et al., 2024a) using Vicuna-1.5 (Chiang et al., 2023)423

as the LLM for fair comparison. For temporal424

stream, we adopt InternVideo2-1B (Wang et al.,425

2024b) as the video encoder. Each video is sampled426

as a sequence of T = 96 frames, which are evenly427

divided into K = 12 segments. We set the pool-428

ing size σS = 2 for the spatial stream (NS = 144429

tokens per frame) while σT = 4 (NT = 16 to-430

kens per frame) for the temporal stream. Moreover,431

we introduce M = 300 temporal tokens into the432

LLM’s vocabulary for timestamp representation.433

We use the Phi3.5 version for ablations in Section434

6.2. More details are in Appendix A.1. 435

Tasks and Benchmarks. We assess Grounded- 436

VideoLLM across three video temporal ground- 437

ing tasks: Temporal Sentence Grounding, Dense 438

Video Captioning, and Grounded VideoQA, utiliz- 439

ing benchmarks such as Charades-STA (Gao et al., 440

2017), ActivityNet-Captions (Caba Heilbron et al., 441

2015), and NExT-GQA (Xiao et al., 2024). We 442

also show its reasoning capability by the task of 443

Open-Ended VideoQA with benchmarks including 444

MSVD-QA, MSRVTT-QA (Xu et al., 2017), and 445

ActicityNet-QA (Yu et al., 2019). Additionally, to 446

evaluate the model’s general video understanding 447

capabilities, we benchmark Grounded-VideoLLM 448

against existing models using VCG-Bench (Maaz 449

et al., 2024b) and MVBench (Li et al., 2024). The 450

evaluation details are in Appendix A.4. 451

6.1 Main Results 452

Temporal Sentence Grounding. As shown in 453

Table 1, Grounded-VideoLLM (Phi3.5) achieves 454

"mIoU" scores of 36.8 on Charades-STA and 36.1 455

on ANet-Grounding, respectively. This perfor- 456

mance surpasses previous SoTA end-to-end Video- 457

LLMs, such as HawkEye (Wang et al., 2024c), by a 458

substantial margin of +3.4. It is worth emphasizing 459

that this promising "mIoU" performance is largely 460

attributed to significant gains in the "R@0.7" met- 461

ric compared to other thresholds, demonstrating 462

that Grounded-VideoLLM is more advanced in lo- 463

calizing specific moments with finer granularity. 464

Interestingly, although Grounded-VideoLLM (Vi- 465

cuna) may be larger than the Phi3.5 version in terms 466

of model parameters, its overall performance is 467

slightly lower. This is because the base Vicuna 468

model is inherently weaker than Phi3.5. Neverthe- 469

less, when using the same LLM as the base model, 470

Grounded-VideoLLM (Vicuna) still outperforms 471

other models like TimeChat and VTimeLLM. 472
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Dense Video Captioning. We evaluated473

Grounded-VideoLLM on the ANet-Captions, and474

the results in Table 1 show that Grounded-475

VideoLLM (Phi3.5) achieves the highest SODA_c476

score of 6.0, which demonstrates that, thanks477

to the Temporal Token Alignment training stage,478

Grounded-VideoLLM is highly effective in iden-479

tifying the multi-event structure of the video and480

capturing complete storylines. The highest ME-481

TEOR score (6.8) also indicates that Grounded-482

VideoLLM provides more detailed event descrip-483

tions compared with other Video-LLMs.484

NExT-GQA (Xiao et al., 2024) requires the485

model to both correctly answer questions and pro-486

vide timestamps that support the answers, high-487

lighting the temporal reasoning capability. Ac-488

cording to Table 2, Grounded-VideoLLM achieves489

the highest Acc@GQA (26.7, +2.4) and delivers490

comparable IoU and IoP scores to models such491

as SeViLA (Yu et al., 2023) and LLoVi (Zhang492

et al., 2023a), which use specialized grounding493

modules or rely on proprietary large language mod-494

els (Achiam et al., 2023). The highest Acc@GQA495

score further demonstrates Grounded-VideoLLM’s496

capability in both fine-grained temporal grounding497

and high-level reasoning.498

Open-Ended VideoQA. As shown in Table499

3, Grounded-VideoLLM achieves state-of-the-art500

or comparative performance across MSVD-QA,501

MSRVTT-QA (Xu et al., 2017), and ActivityNet-502

QA (Yu et al., 2019), highlighting its advancements503

in general video question answering.504

General Video-LLM Benchmarks. While505

Grounded-VideoLLM excels in fine-grained tem-506

poral grounding, we should ensure that it main-507

tains performance in general video understanding.508

Therefore, we conducted a comprehensive evalu-509

ation using VCG-Bench (Maaz et al., 2024b) and510

MVBench (Li et al., 2024). As shown in Table 3,511

Grounded-VideoLLM achieves promising results512

in VCG-Bench, with an average score of 3.24,513

outperforming other Video-LLMs with temporal514

grounding capabilities (e.g., LITA, VTimeLLM).515

Notably, Grounded-VideoLLM surpasses all other516

Video-LLMs on the TU (Temporal Understanding)517

task (see Appendix Table 8), with a score of 3.12518

(+7%), demonstrating its superior temporal under-519

standing, which can be attributed to the two-stream520

architecture that can capture motion dynamics. For521

MVBench which provides 4,000 QA pairs span-522

ning a wide range of scenes categorized into 20523

fine-grained tasks, the results, presented in Table 3,524

Model
MSVD-QA MSRVTT-QA ANet-QA VCG-Bench MVBench

Acc. Score Acc. Score Acc. Score Avg. Avg.

Video-LLMs w/o temporal grounding capability.
Video-LLaMA (Zhang et al., 2023b) 51.6 2.5 29.6 1.8 12.4 1.1 1.98 34.1
Video-ChatGPT (Maaz et al., 2024b) 64.9 3.3 49.3 2.8 35.2 2.7 2.42 32.7
Video-LLaVA (Lin et al., 2023) 70.7 3.9 59.2 3.5 45.3 3.3 - 43.0
Vista-LLaMA (Ma et al., 2024) 65.3 3.6 60.5 3.3 48.3 3.3 2.57 -
MovieChat (Song et al., 2024) 75.2 3.8 52.7 2.6 45.7 3.4 2.67 -
LongVLM (Weng et al., 2024) 70.0 3.8 59.8 3.3 47.6 3.3 2.89 -
VideoChat2 (Li et al., 2024) 70.0 3.9 54.1 3.3 49.1 3.3 2.98 51.1
Chat-UniVi (Jin et al., 2024) 65.0 3.6 54.6 3.1 45.8 3.2 2.99 -
P-LLaVA-7B (Xu et al., 2024a) 76.6 4.1 62.0 3.5 56.3 3.5 3.12 46.6
ST-LLM (Liu et al., 2024b) 74.6 3.9 63.2 3.4 50.9 3.3 3.15 54.9
VideoGPT+ (Maaz et al., 2024a) - - - - - - 3.28 58.7
Video-LLMs w/ temporal grounding capability.
TimeChat (Huang et al., 2024b) - - - - - - - 38.5
Momentor (Qian et al., 2024a) 68.9 3.6 55.6 3.0 40.8 3.2 -
VTimeLLM (Huang et al., 2024a) - - - - - - 2.85
LITA (Huang et al., 2024b) - - - - - - 3.04

Grounded-VideoLLM (Vicuna) 74.7 3.9 61.9 3.6 55.7 3.4 3.26 58.1
Grounded-VideoLLM (Phi3.5) 76.3 4.1 60.3 3.6 56.8 3.5 3.24 60.0

Table 3: Results on VideoQA, VCG-Bench and
MVBench. Refer to Appendix Table 9, 8 for details.

Model
# of video C-STA ANet-G ANet-Cap MVBench

tokens mIoU mIoU SODA_c Avg.

Grounded-VideoLLM 3264 36.8 36.1 6.0 60.0

w/o temporal-stream (sparse) 3456 30.4 28.0 4.9 58.5
w/o temporal-stream (dense) 3456 34.3 29.2 5.4 53.2
w/o spatial-stream 3584 33.5 28.7 5.5 57.7
w/o temporal token alignment 3264 27.5 23.1 4.7 58.9

Table 4: Impact of two-stream and token alignment.

show that Grounded-VideoLLM achieves an aver- 525

age score of 60.0, surpassing other Video-LLMs. 526

6.2 In-Depth Analysis 527

Two-stream Encoding. We conduct ablations to 528

our two-stream encoding. Specifically, we set three 529

variants by removing the temporal stream or spa- 530

tial stream respectively: (1) w/o temporal-stream 531

(dense) feeds T = 96 frames with a pooling size 532

σS = 4 (36 tokens per frame). (2) w/o temporal- 533

stream (sparse) feeds T = 24 frames with a pool- 534

ing size σS = 2 (144 tokens per frame). (3) w/o 535

spatial-stream feeds T = 14 frames without pool- 536

ing (256 tokens per frame). All these variants have 537

a close number of video tokens compared to our 538

two-stream encoding (12×(144+ 96
12×16) = 3264 539

tokens for FV id ∈ RK·(NS+
T
K
·NT )×D) for a fair 540

comparison. Table 4 shows that, interestingly, the 541

dense frame variant performs slightly better in tem- 542

poral grounding tasks while worse in general bench- 543

marks than the sparse frame variant. This can be 544

attributed to that the videos in MVBench are much 545

shorter and emphasize spatial details more. Our 546

two-stream architecture strikes a balance by cap- 547

turing dense motion dynamics while maintaining 548

essential appearance details. 549

Temporal Tokens. We conducted ablations on 550

the temporal tokens to study how they will affect 551

the grounding performance. The models in Table 5 552

were trained using only the first two stages and eval- 553

uated on grounding tasks. Specifically, ’w/o tem- 554
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(a) Attention weights w/ temporal token alignment focus on specific moments 

(b) Attention weights w/o temporal token alignment scattered at different moments

When does the event ‘the lady talks and 
shows a bottle of olive’ occur in the video? 76.3s

From <241> to <271>.
85.8s

(c) 3D-PCA visualization 
of temporal tokens

Figure 3: Attention weights of the LLM when generating the temporal tokens and 3D-PCA of embeddings.

Setting C-STA (mIoU) ANet-G (mIoU) ANet-Cap (SODA_c)

w/o temporal tokens 32.3 29.6 5.6
w/ 100 temporal tokens 32.2 29.1 5.2
w/ 200 temporal tokens 32.9 30.1 5.5
w/ 300 temporal tokens 33.8 33.1 5.7

Table 5: Impact of temporal tokens.

poral tokens’ refers to directly using plain text to555

represent absolute timestamps. The results in Table556

5 show that while the performance of plain text and557

100 temporal tokens is comparable, both are out-558

performed by 300 tokens. Furthermore, the results559

reveal a consistent improvement in performance560

with an increasing number of temporal tokens, es-561

pecially for longer videos (ANet), highlighting the562

benefit of finer-grained time representations.563

Alignment Training Stage. We investigate tem-564

poral tokens’ role by ablating the 2nd training stage565

of Temporal Token Alignment. Quantitative results566

in Table 4 reveal a performance drop across all567

tasks, particularly in temporal sentence ground-568

ing. Upon analyzing the outputs, we found that569

the model often produces time intervals spanning570

nearly the entire video (e.g., from <0> to <300>),571

neglecting the alignment between specific moments572

and temporal tokens. Qualitatively, we visualize573

the attention weights of the LLM to demonstrate574

how temporal tokens attend to corresponding video575

moments. Details of generating visualizations are576

provided in Appendix A.5. As shown in Figure577

3 (a), when generating the temporal token, e.g.578

<241> or <271>, the attention weights are higher579

and more focused on their corresponding video580

moments. Conversely, in Figure 3 (b), when the581

model is trained without the alignment stage, the582

attention weights of temporal tokens become signif-583

icantly dispersed across irrelevant moments. This584

illustrates the necessity of our multi-stage training585

strategy for temporal alignment. We also visual-586

ize the embedding distribution of temporal tokens587

with PCA in Figure 3 (c), revealing that temporal588

Model NExT-GQA

Acc@GQA mIoP mIoU

Grounded-VideoLLM 26.7 34.5 21.1

w/o grounded VideoQA 18.1 (↓ 8.6) 22.2 (↓ 12.3) 12.9 (↓ 8.2)

Table 6: Impact of grounded VideoQA dataset.

tokens with similar indices tend to cluster together, 589

exhibiting a continuous transition from tokens with 590

smaller indices to larger ones. 591

Grounded VideoQA Dataset. We validate the 592

role of our constructed grounded-VideoQA by re- 593

moving it from the stage-3 data. Since the model 594

without training on our dataset usually generates 595

free-form texts when asked to output the times- 596

tamps supporting the answer, we reformulate it 597

as a temporal sentence grounding task, where we 598

combine the predicted answer and question into 599

a single sentence and ask the model to localize 600

its timestamps. Table 6 suggests that there is a 601

significant performance decrease with regard to 602

Acc@GQA (↓ 8.6), mIoP (↓ 12.3), and mIoU 603

(↓ 8.2), from which we can conclude that our 604

Grounded VideoQA dataset is essential for the 605

model’s temporal reasoning capability. 606

7 Conclusion 607

We present Grounded-VideoLLM, a novel Video- 608

LLM that incorporates a two-stream encoding for 609

temporal modeling, along with the temporal to- 610

kens for timestamp representation. We employ a 611

multi-stage training scheme, starting with an image- 612

based MLLM and progressively equipping it with 613

fine-grained temporal grounding capabilities. Ad- 614

ditionally, we curate a grounded-VideoQA dataset 615

to further enhance the model’s temporal reasoning 616

ability. Extensive experiments demonstrate that 617

Grounded-VideoLLM not only excels in video tem- 618

poral grounding tasks but also performs strongly 619

on general video understanding benchmarks. 620
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8 Limitations621

While Grounded-VideoLLM demonstrates supe-622

riority in handling fine-grained temporal ground-623

ing, but it still has some inherent limitations for624

future works. (1) Timestamp Quantization Error:625

Although discrete temporal tokens are introduced626

to represent timestamps and accuracy is improved627

by increasing the number of tokens, minor quantiza-628

tion errors may still be introduced when converting629

continuous time into discrete tokens. (2) Computa-630

tional Resource Requirements: The training and in-631

ference processes of the model, especially the parts632

involving two-stream encoding and large-scale lan-633

guage models, may require more computational634

resources than single-stream.635
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A Appendix938

A.1 More Implementation Details939

Phi3.5-Vison-Instruct (Microsoft, 2024) consists940

of a CLIP style ViT image encoder (Radford et al.,941

2021), an MLP projector f(·), and the large lan-942

guage model Phi3.5-mini-3.8B (Abdin et al., 2024).943

Each video is sampled as a sequence of T = 96944

frames, which are evenly divided into K = 12 seg-945

ments. For the spatial stream encoded by the ViT946

in Phi3.5-V, we adopt a higher resolution 336×336,947

but a lower resolution 224×224 for the tempo-948

ral stream encoded by InternVideo-2. We set the949

pooling size σS to be 2 while σT to be 4 respec-950

tively. For the spatial stream, each frame takes up951

24× 24 = 576 tokens before while 12× 12 = 144952

tokens after pooling. For the temporal stream, each953

frame takes up 16× 16 = 256 tokens before while954

4 × 4 = 16 tokens after pooling. Therefore, we955

have an overall of K× (144+ T
K ×16) = 3264 to-956

kens in total. During training, we use the AdamW957

optimizer with a cosine learning rate decay and set958

the learning rate as 2e-5 and 1e-3 for projector f(·)959

and g(·) in stage-1. During stage-2 and stage-3, we960

set the learning rate for both projectors and word961

embeddings as 2e-5, while 2e-4 for LoRA param-962

eters (r = 128 and α = 256). All experiments are963

conducted on NVIDIA A100/H800 GPUs.964

A.2 Instructions for Each Task965

The quality and diversity of instructions are essen-966

tial in the training process. We manually write967

well-designed instructions for some tasks, com-968

bined with some templates in Time-IT (Ren et al.,969

2024). Table 13 lists the prompts for different tasks.970

A.3 Grouned-VideoQA Dataset Generation971

Specifically, we input event descriptions along with972

their timestamps into GPT-4 and prompted it to973

generate corresponding question-answer pairs, as974

shown in Table 12. To create distractor options for975

the multiple-choice questions, we retrieved the top976

50 questions most similar to the generated ques-977

tion, based on cosine similarity using an embedding978

model (Reimers, 2019). The answers to these 50979

retrieved questions served as candidates for distrac-980

tors. From this pool, we randomly sampled four981

distractors with cosine similarities to the correct an-982

swer ranging from 0.2 to 0.9, ensuring that the dis-983

tractors were contextually relevant but not overly984

similar to the correct answer. The ground-truth985

timestamps for answering each question were de-986

rived from the timestamps of the associated event 987

descriptions. The constructed dataset comprises 988

17K samples, which have been incorporated into 989

the training sets for Stage 3, further enhancing the 990

model’s temporal reasoning performance. 991

A.4 Evaluation Process 992

For temporal sentence grounding, we report the 993

metric of Intersection over Union (IoU) (Gao et al., 994

2017) between the timestamps predicted by the 995

model and the ground truth, including Recall at 996

IoU thresholds of {0.3, 0.5, 0.7} and their mean 997

IoU. For dense video captioning, we use metrics 998

including SODA_c (Fujita et al., 2020) which 999

is specifically tailored for the video’s storyline, 1000

and METEOR score (Banerjee and Lavie, 2005), 1001

which is the average of traditional METEOR scores 1002

that are calculated based on matched pairs between 1003

generated events and the ground truth across IoU 1004

thresholds of {0.3, 0.5, 0.7, 0.9}. For Visually- 1005

grounded VideoQA, we calculate both the Inter- 1006

section of Prediction (IoP) (Xiao et al., 2024) and 1007

Intersection of Union (IoU), and use Acc@GQA 1008

(Xiao et al., 2024) to measure the percentage of 1009

questions that are both correctly answered and vi- 1010

sually grounded with IoP ≥ 0.5. The responses of 1011

Open-Ended VideoQA and VCG-Bench are eval- 1012

uated by GPT-3.5 with the prompts introduced by 1013

Video-ChatGPT (Maaz et al., 2024b). 1014

For the evaluation of the temporal sentence 1015

grounding task, we directly input the prompt [”At 1016

which time interval in the video can we 1017

see < query > occurring?”] in Table 13 to get 1018

the response ["From < start > to < end >"], 1019

and then calculate the predicted timestamps with 1020

the Equation (2) to get the IoU metrics. 1021

For the evaluation of the dense video caption- 1022

ing task, we directly input the prompt [”Detect 1023

and report the start and end timestamps 1024

of activity events in the video, along 1025

with descriptions.”] in Table 13 to get the 1026

response ["From < start1 > to < end1 >, 1027

< caption1 >. From < start2 > to < end2 >, 1028

< caption2 >. · · · "], and then calculate the 1029

SODA_c (Fujita et al., 2020) and Meteor scores 1030

(Banerjee and Lavie, 2005). 1031

For the evaluation of the visually-grounded 1032

VideoQA task, we adopt a two-round conversation 1033

evaluation: 1034
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Training Stage Task # of Samples Datasets

Video-Caption Alignment Video Captioning 1.28M WebVid-10M, Panda-70M, InternVid-10M

Temporal Token Alignment
Temporal Sentence Grounding 149K VTimeLLM-Stage2

Dense Video Captioning 92K VTimeLLM-Stage2, Moment-10M, InternVid-G
Temporal Referring 95K VTimeLLM-Stage2, InternVid-G

Multi-Task Instruction Tuning

Grounded Conversation 442K RTL, Moment-10M
Temporal Sentence Grounding 84K DiDeMo, HiREST, QuerYD, VTG-IT

Dense Video Caption 41K COIN, ViTT, YouCook2, VTG-IT
Grounded VideoQA 17K Self Collected

Converstation 233K VCG-Plus-112K, Videochatgpt-100K, Videochat2-Conv
VideoQA 282K EgoQA, NExT-QA, Intent-QA, STAR, CLEVRER, WebVid-QA

Classification 66K SthSthV2, Kinetics
Video Captioning 136K TextVR, YouCook2, WebVid, ShareGPT4Video

Table 7: Datasets at three training stages. Tasks with gray consist of datasets regarding temporal grounding.

People dive into the pool 
and start swimming. 

A girl reaches the end and 
takes her goggles off. 

She waves at the camera and smiles. 
(79.3-103.7s)(0-9.3s) (68.9-72.0s) (74.6-79.3s)

The other swimmers get to the finish line.

prompt for question-
answer generation

Q: What does the girl do after 
taking off goggles?  
A: wave at the camera and smile
T: (74.6-79.3s)

Q-A pairs of 
other videos

cos sim
retrieve and sample 
4 distractors 

(-) start swimming again 
(-) get out of the pool 
(-) dive back in                 
(-) hold the breath

Figure 4: Examples of annotation pipeline and generated data for Grounded VideoQA.

Model VCG-Bench

CI DO CU TU CO Avg.

Video-LLaMA (Zhang et al., 2023b) 1.96 2.18 2.16 1.82 1.79 1.98
Video-ChatGPT (Maaz et al., 2024b) 2.50 2.57 2.69 2.16 2.20 2.42
Vista-LLaMA (Ma et al., 2024) 2.44 2.64 3.18 2.26 2.31 2.57
MovieChat (Song et al., 2024) 2.76 2.93 3.01 2.24 2.42 2.67
LongVLM (Weng et al., 2024) 2.76 2.86 3.34 2.39 3.11 2.89
VideoChat2 (Li et al., 2024) 3.02 2.88 3.51 2.66 2.81 2.98
Chat-UniVi (Jin et al., 2024) 2.89 2.91 3.46 2.89 2.81 2.99
P-LLaVA-7B (Xu et al., 2024a) 3.21 2.86 3.62 2.33 2.93 3.12
ST-LLM (Liu et al., 2024b) 3.23 3.05 3.74 2.93 2.81 3.15
VideoGPT+ (Maaz et al., 2024a) 3.27 3.18 3.74 2.83 3.39 3.28
VTimeLLM (Huang et al., 2024a) 2.78 3.10 3.40 2.49 2.47 2.85
LITA (Huang et al., 2024b) 2.94 2.98 3.43 2.68 3.19 3.04

Grounded-VideoLLM 3.34 2.94 3.66 3.12 3.14 3.24

Table 8: Results on VCG-Bench. VCG-Bench contains
five aspects: Correctness of Information (CI), Detail Ori-
entation (DO), Contextual Understanding (CU), Tempo-
ral Understanding (TU), and Consistency (CO).

Round-1:
USER: < question >. < options >.
ASSISTANT: Answer: < answer >.
Round-2:
USER: Provide the timestamps that corre-
spond to your answer.
ASSISTANT: From < start > to <
end >.

1035

In the first round, we input the question and op-1036

tions into the model and get the answer. In the1037

second round, we input the question, options, and1038

predicted answer as the contexts, together with 1039

the prompt ["Provide the timestamps that 1040

correspond to your answer."], into the model 1041

to get the predicted timestamps. With both the pre- 1042

dicted answers and timestamps, we can calculate 1043

the metrics including IoU, IoP, and Acc@GQA 1044

(Xiao et al., 2024). 1045

For the evaluation of the Open-ended VideoQA 1046

and VCG-Bench, we employed GPT-3.5 turbo to 1047

juxtapose model outputs with ground truth data 1048

as introduced by Video-ChatGPT (Maaz et al., 1049

2024b), subsequently computing both accuracy and 1050

a score. To ensure a fair and consistent comparison 1051

with the results presented in Video-ChatGPT, we 1052

adopted the same prompt for our evaluations. For 1053

MVBench, we directly compute the accuracy of 1054

multiple-choice questions. 1055

A.5 Visualization Process 1056

We visualize the attention weights from the last 1057

layer of the LLM during the generation of a new 1058

temporal token. Since the full video representa- 1059

tion consists of a total of K × (NS + T
K × NT ) 1060

tokens—where T , K, NS , and NT denote the num- 1061

ber of frames, number of segments, number of 1062

tokens per frame for the spatial stream, and num- 1063

ber of tokens per frame for the temporal stream, 1064
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Model Avg. AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI

Otter-V (Li et al., 2023a) 26.8 23.0 23.0 27.5 27.0 29.5 53.0 28.0 33.0 24.5 23.5 27.5 26.0 28.5 18.0 38.5 22.0 22.0 23.5 19.0 19.5
mPLUG-Owl-V (Ye et al., 2023) 29.7 22.0 28.0 34.0 29.0 29.0 40.5 27.0 31.5 27.0 23.0 29.0 31.5 27.0 40.0 44.0 24.0 31.0 26.0 20.5 29.5
VideoChatGPT (Maaz et al., 2024b) 32.7 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5
VideoLLaMA (Zhang et al., 2023b) 34.1 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0
VideoChat (Li et al., 2023c) 35.5 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0
TimeChat (Ren et al., 2024) 38.5 40.5 36.0 61.0 32.5 53.0 53.5 41.5 29.0 19.5 26.5 66.5 34.0 20.0 43.5 42.0 36.5 36.0 29.0 35.0 35.0
Video-LLaVA (Lin et al., 2023) 43.0 46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5
P-LLaVA-7B (Xu et al., 2024a) 46.6 58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0
VideoChat2 (Li et al., 2024) 51.1 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5
ShareGPT4Video (Chen et al., 2024a) 51.2 49.5 39.5 79.5 40.0 54.5 82.5 54.5 32.5 50.5 41.5 84.5 35.5 62.5 75.0 51.0 25.5 46.5 28.5 39.0 51.5
ST-LLM (Liu et al., 2024b) 54.9 66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5
VideoGPT+ (Maaz et al., 2024a) 58.7 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0

Grounded-VideoLLM 60.0 75.0 75.5 83.0 50.0 63.0 88.0 77.0 37.0 41.5 50.0 91.5 45.0 57.5 82.0 49.5 55.0 45.5 32.0 42.0 59.0

Table 9: Results on MVBench. MVBench contains 20 aspects: Action Sequence (AS), Action Prediction (AP),
Action Antonym (AA), Fine-grained Action (FA), Unexpected Action (UA), Object Existence (OE), Object
Interaction (OI), Object Shuffle (OS), Moving Direction (MD), Action Localization (AL), Scene Transition (ST),
Action Count (AC), Moving Count (MC), Moving Attribute (MA), State Change (SC), Fine-grained Pose (FP),
Character Order (CO), Egocentric Navigation (EN), Episodic Reasoning (ER), Counterfactual Inference (CI), and
the average of all 20 metrics (Avg).

Model
LLM Charades-STA ActivityNet-Grounding ActivityNet-Captions

Scale R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU SODA_c METEOR

Grounded-VideoLLM 4B 70.2 55.9 33.2 49.4 64.9 47.8 30.4 47.2 6.6 6.5

Table 10: More results on temporal sentence grounding and dense video captioning tasks. We incorporate a subset
of Charades-STA and ActivityNet-Captions into the 3rd training stage and achieve better performance.

respectively—we obtain an attention weight vector1065

with the shape [K × (NS + T
K ×NT ), 1]. First, we1066

discard the spatial stream portion, focusing only on1067

the temporal information, which results in a new1068

vector with the shape [K × T
K ×NT , 1]. We then1069

reshape this vector to the form [T,NT , 1] and aver-1070

age it along the spatial dimension, yielding [T, 1],1071

which represents the final attention weights cor-1072

responding to each frame when generating a new1073

token.1074

A.6 Distribution of Temporal Tokens1075

We visualize the embeddings of M = 300 tempo-1076

ral tokens to investigate their distribution in embed-1077

ding space. We employ PCA (Abdi and Williams,1078

2010) to reduce the dimensionality of the tempo-1079

ral tokens to 1D, 2D, and 3D representations. For1080

all reductions, we use the reduced values as co-1081

ordinates, incorporating a gradient color scheme1082

in which the color of the data points changes pro-1083

gressively with the token index, as illustrated in1084

Figure 5. Our observations reveal that temporal1085

tokens with similar indices tend to cluster together,1086

exhibiting a continuous transition from tokens with1087

smaller indices (light colors) to those with larger1088

indices (darker colors).1089

A.7 More experiment results 1090

As shown in Table 10, we incorporate a subset of 1091

the training sets of Charades-STA and ActivityNet- 1092

Captions into the 3rd training stage and re-train 1093

the model from the checkpoint of the 2nd training 1094

stage, which achieves better performance. This also 1095

greatly improves the performance on NExT-GQA 1096

as illustrated in Table 11. 1097
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Model Acc@GQA mIoP IoP@0.3 IoP@0.5 mIoU IoU@0.3 IoU@0.5

Grounded-VideoLLM 29.4 37.4 48.0 36.5 27.0 41.0 25.8

Table 11: Results on NExT-GQA. We incorporate a subset of Charades-STA and ActivityNet-Captions into the 3rd
training stage and achieve better performance.

(a) Attention weights w/ temporal token alignment focus on specific moments 

(b) Attention weights w/o temporal token alignment scattered at different moments

When does the event ‘the lady talks and shows a bottle of olive’ 
occur in the video? 76.3s

From <241> to <271>.
85.8s

Figure 5: Visualization of temporal tokens with PCA.

System:
You are a good question generator. I need your help in generating question-answer pairs pertaining to the
visual event descriptions. I have a video and I will provide you with descriptions of certain segments and
their corresponding timestamps within this video. You need to consider these segments comprehensively
based on the given description and timestamps and select one segment which you think can provide a
HIGH-QUALITY QUESTION. Based on the description of that segment, ask a question related to that
segment, as well as one correct answer. Both the proposed answer and question should be consistent with
the content of the give description. BE CAREFUL! Your proposed questions and answers should follow
these rules:
(0) Avoid choosing the segment spanning across the whole video.
(1) The question you raised should include causal and temporal relationships as much as possible.
Question types should be diverse including WHY, HOW, WHAT, WHERE, etc.
(2) NEVER involve anything that is not covered in the given descriptions.
(3) The answer should NEVER appear in your question.
(4) Your answer should be a phrase no more than 7 words. Keep your answers concise and accurate.

Demonstrations:

User:
video duration: 82.73 seconds
segment-1: [0.83, 19.86] A young woman is seen standing in a room and leads into her dancing.
segment-2: [17.37, 60.81] The girl dances around the room while the camera captures her movements.
segment-3: [56.26, 79.42] She continues dancing around the room and ends by laying on the floor.
Response:
chosen segment: segment-3
segment timestamps: [56.26, 79.42]
question: What did the girl do after she ended dancing?
answer: lay on the floor

· · ·
(other in context demonstrations)
· · ·

Table 12: Prompts used to generate visually-grounded VideoQA samples with GPT-4.
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Prompts for Video-Caption Alignment:
(1) "Describe the following video concisely.",
(2) "Provide a brief description of the given video clip.",
(3) "Offer a succinct explanation of the footage presented.",
(4) "Summarize the visual content of the following video.",
(5) "Give a short and clear explanation of the subsequent video clip.",
(6) "Share a concise interpretation of the video provided.",
(7) "Present a compact description of the clip’s key features.",
(8) "Relay a brief, clear account of the video shown.",
(9) "Render a clear and concise summary of the video below.",
(10) "Write a terse but informative summary of the following video clip."

Prompts for Temporal Sentence Grounding:
(1) "When does < query > happen in the video?",
(2) "At what time does the occurrence < query > take place in the video?",
(3) "During which part of the video does < query > occur?",
(4) "When in the video does the < query > incident occur?",
(5) "At which moment does < query > take place in the video?",
(6) "During which phase of the video does < query > happen?",
(7) "When does the < query > event occur in the video?",
(8) "At what time does < query > occur in the video sequence?",
(9) "When does the < query > situation take place in the video?",
(10) "At which time interval in the video can we see < query > occurring?"

Prompts for Dense Video Captioning:
(1) "Localize a series of activity events in the video, output the start and end timestamp for each event,
and describe each event with sentences.",
(2) "Detect and report the start and end timestamps of activity events in the video, along with
descriptions.",
(3) "Pinpoint the time intervals of activity events in the video, and provide descriptions for each event.",
(4) "Can you compile a list of the activities and their timestamps featured in the video?",
(5) "I need you to scrutinize the video and catalog every event it contains, along with the timestamps."

Prompts for Temporal Referring:
(1) "What is happening from < start > to < end >?",
(2) "What is taking place between < start > and < end >?",
(3) "What events unfold between < start > and < end >?",
(4) "What is happening during the period from < start > to < end >?",
(5) "What occurs between < start > and < end >?",
(6) "What is going on from < start > to < end >?",
(7) "How do things progress from < start > to < end >?",
(8) "Can you describe what happens from < start > to < end >?",
(9) "Describe the events occurring between < start > and < end >.",
(10) "Narrate the actions that unfold from < start > to < end >."

Table 13: Prompts used for different tasks.
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