r?’;),’ CRITICTOOL: Evaluating Self-Critique Capabilities of Large
Language Models in Tool-Calling Error Scenarios

Anonymous ACL submission

Abstract

The ability of large language models (LLMs)
to utilize external tools has enabled them to
tackle an increasingly diverse range of tasks.
However, as the tasks become more complex
and long-horizon, the intricate tool utilization
process may trigger various unexpected errors.
Therefore, how to effectively handle such er-
rors, including identifying, diagnosing, and re-
covering from them, has emerged as a key re-
search direction for advancing tool learning.
In this work, we first extensively analyze the
types of errors encountered during the function-
calling process on several competitive tool eval-
uation benchmarks. Based on it, we introduce
CRITICTOOL, a comprehensive critique evalu-
ation benchmark specialized for tool learning.
Building upon a novel evolutionary strategy
for dataset construction, CRITICTOOL holds
diverse tool-use errors with varying complexi-
ties, which better reflects real-world scenarios.
We conduct extensive experiments on CRITIC-
ToOL, and validate the generalization and ef-
fectiveness of our constructed benchmark strat-
egy. We also provide an in-depth analysis of
the tool reflection ability on various LLMs, of-
fering a new perspective on the field of tool
learning in LLMs. Code will be available.

1 Introduction

Large Language Models (LLMs) represent a
groundbreaking advancement in artificial intelli-
gence, demonstrating remarkable capabilities in
various tasks (Zhao et al., 2023; Jiang et al., 2024;
Chen et al., 2023; McAleese et al., 2024). The in-
teraction between LLMs and external tools empow-
ers them to address more complex tasks, as these
tool-calling systems increasingly adapt to dynamic
real-world environments (Chen et al., 2024c).
Driven by practical applications and attractive
ability, the evaluation of tool-use capabilities for
LLMs remains a topic of ongoing research. Exist-
ing works are typically confined to single-tool us-
age scenarios (Xu et al., 2023; Patil et al., 2023) or

comparing the executions with predefined golden
answers (Shen et al., 2023; Ye et al., 2024a,b; Chen
et al., 2024b). However, real-world applications
often involve complex and multi-step tool-calling
tasks, where intricate intermediate trajectories in-
troduce opportunities for errors arising either from
LLMs themselves (Yan et al., 2024; Sun et al.,
2024) or from external factors (Guo et al., 2024a).
Due to the complexity of the external environment,
combined with the inherently challenging nature of
tool-use tasks, neglecting the process status of tool
invocation may result in biased evaluation. Current
benchmarks primarily address these challenges by
either filtering out erroneous data (Liu et al., 2024)
or treating errors as suboptimal nodes to expand the
tool answer search space (Qin et al., 2023; Chen
et al., 2024a; Abdelaziz et al., 2024; Song et al.,
2024). As a result, these approaches fail to provide
insights into how LLMs detect and mitigate errors
during tool calls, leading to an insufficient evalua-
tion of their tool-use capabilities. Given the diverse
sources of errors and the various strategies required
to address them, we argue that the benchmarks
which overlook LLMSs’ error recovery cannot accu-
rately evaluate a model’s actual tool-use capability.

To address these challenges, we introduce CRIT-
ICTOOL, the first self-critique evaluation bench-
mark for tool utilization of LLMs. Distinct from
prior result-oriented evaluation methods, we cate-
gorize error patterns more finely and evaluate mod-
els from multiple perspectives, enabling a deeper
exploration of LLMs’ tool-use capabilities in error-
prone scenarios. Specifically, we categorize errors
from two main sources: internal model-driven er-
rors and external environment errors. We then di-
versify our error dataset by ensuring the errors span
a wide range of tools and design fine-grained eval-
uation protocols for two sources of errors. This
paradigm enables a granular evaluation of LLMs’
self-critique capabilities across different dimen-
sions: reflect and correct for internal model-driven

STEP 1: Data Collection

T_STEP 2: Error Diversification

STEP 3: Tool

Of= Tool-Use
£3Eg Benchmarks

= Refine
oX

API

Documentation /

\

& Correct Cases
(=)

External Errors

Filter

)

Tool-Calling
Trajectories

Error Simulator

Response Handling
@ API Calling
] Retrieval

T Succeed

’E API Cache - Q%)
l Try

‘; Succeed

ucceed, 2

More Error Data

é ‘Jﬁ

@ API € j
fffffffffffffffffff External Errors,
‘ (j d Trials \')

® —

Data Validation

W
STEP 4: Data Evolution QM
Long Context Extra Functions Noisy Query
AR [5)
“E%'* 8 FH--FB»> E GO ===
Random Gpt-4
Context Sample Refine

\ﬁ } API Document .

Harder Functions

Downgradel

s 9 .
[Decision: Access/Reject

[Evolved Part][Original Data] @
PHunIan Cl&r‘%}—l

Figure 1:

Overview of CRITICTOOL construction pipeline. The pipeline begins with collecting and testing

tool-use benchmarks to obtain a variety of correct and incorrect tool-calling trajectories. GPT-based simulators and
repeated API calls are employed to diversify internal and external error patterns. And responses to internal errors
are generated via cache retrieval, API execution, and API simulator. Finally, the error data is evolved using four
distinct strategies, followed by verification and manual review.

errors, and retry with skip or finish for external
environment errors.

By conducting extensive experiments on CRIT-
ICTooL, we perform a thorough analysis of the
results, providing valuable insights into LLMs’ be-
havior when encountering different types of errors
during tool calls. We observe that different mod-
els exhibit varying self-critique behaviors when
encountering errors from different sources.

The main contributions of our work are summa-
rized as follows:

* We observe LLMs’ performance in several
popular and high-quality tool-use benchmarks
and provide a comprehensive analysis of error
distributions.

* To the best of our knowledge, we are the first
to introduce CRITICTOOL, a tool self-critique
evaluation benchmark for LLMs, categorizing
errors from different sources and patterns.

* We propose a novel data evolution strategy to
enrich the error dataset by incorporating more
complex data scenarios, thus broadening the
scope and depth of evaluation for LLMs in
real-world applications.

* With extensive experiments, we provide a de-
tailed analysis of the self-critique ability of
various LLMs, offering a new perspective in
the field of tool learning.

2 CriTicTooL

In this section, we begin with presenting an in-
depth analysis of the key issues in current tool

Table 1: The success rates (%) of advanced LLMs in
recovering from errors across the four datasets.

| NESTFUL API-Bank T-Eval BFCL

Qwen-turbo 12.64 6.25 35.14 29.47
Qwen2.5-72B 13.87 8.69 38.71 22.73
GPT-3.5 18.10 7.69 51.11 7.14
GPT-40 22.16 17.39 54.44 28.57

learning, highlighting the pressing need for tool-
specific critique evaluation benchmarks. Building
on these observations, we introduce CRITICTOOL,
a benchmark designed to systematically explore
LLMSs’ self-critique! capabilities.

2.1 Motivation: LLMs’ Performance on

Popular Tool-Use Benchmarks

Tool utilization is a critical yet challenging task
in large language model (LLM) applications, re-
quiring sophisticated reasoning and practical adap-
tation. To identify the current limitations in
tool learning, we conduct an in-depth analysis
of LLM’s behavioral patterns across various tool-
calling benchmarks (Refer to Appendix A for more
details). As shown in Tab. 1, our investigation re-
veals a noteworthy phenomenon: most LLMs strug-
gle to recover from errors® during the tool-calling
process, resulting in eventual task failure. This is-
sue becomes particularly pronounced as tasks grow
more complex and long-horizon. Despite the sig-
nificance of this limitation, existing tool utilization

'The model identifying and correctly handling errors.
*Recover from error refers to the ability of an LLM to
successfully handle an error in a given step.

Tool-Calling Tasks

--= | am very curious about quantum computing. Help

. me search ‘quantum computing’ on Google--- | have
- an important meeting on quantum computing at 7:30
user pm tonight. Please help me book the meeting room

half an hour in advance -

n\/ Tools: Google_search, book_hotel, get_author_id,
O\ reserve_meeting_room -

Multi-step Tool Calls

i 1]

assistant environment

Ground Truth:

~(

(a) Tool Selection Error
@ My goal is to reserve the room at 19:00, |
assistant will use the tool book_hotel -+

(b) Tool Hallucination Error

IBI My goal is to reserve the meeting room,
assistant | will use the tool book_meeting_room -+

(c) Parameters Key Error

My goal is to reserve the meeting room at 19:00, |
will use the tool reserve_meeting_room, and the
proper parameters to call the tool is

assistant {time’: 19:00', ‘theme’: ‘quantum computing'}.

(d) Parameters Value Error 0

My goal is to reserve the meeting room at 19:00, |
will use the tool reserve_meeting_room, and the
proper parameters to call the tool is

{time’: ‘7:00pm’}.

assistant

Warning:Time should be in xx:xx format.

environment.

i

environment

(e) Environment Error

(‘Connection aborted.', ConnectionResetError
(104, "Connection reset by peer'))

The task is

parameters: {‘time’: ‘19:00’ }

tool: reserve_meeting_room,

unknown arguments: {‘theme'}

assistant

due to’r —

ConnectionResetError.

environment

Figure 2: Examples of Errors in multi-step tool call tasks. Multi-step tool call errors are categorized into five
patterns based on the source and characteristics of the errors: Tool Selection Errors, Tool Hallucination Errors,
Parameters Key Errors, Parameters Value Errors and Environment Errors.

benchmarks rarely directly consider the ability for
self-critique, leading to insufficient attention to-
ward improving this capability in tool learning. As
highlighted by ol (OpenAl, 2024), the ability to
self-critique is essential for executing long-horizon
tasks effectively and serves as a pathway to scal-
able oversight in LLM reasoning. In this work, we
seek to fill this gap by introducing CRITICTOOL, a
benchmark designed to systematically evaluate the
self-critique capability in tool learning.

2.2 Dataset Construction

The construction of the dataset in CRITICTOOL
consists of four main phases: tool-use data collec-
tion, error diversification, tool response handling,
and data evolution. The overview of the construc-
tion is shown in Fig. 1. More implementation de-
tails can be found in Appendix C.1 and C.2.

2.2.1 Error Patterns

From our observations of LLLMs’ tool-use perfor-
mance in § 2.1, we identify several frequently oc-
curring error patterns when LLMs function as tool-
calling assistants, as illustrated in Fig. 2. These
errors stem from two primary sources: model capa-
bility limitations often give rise to internal model-
driven errors related to both tool and parameter
handling, while external environment errors will
disrupt task completion.

e Tool Selection Errors: The assistant selects an
existing but unsuitable tool for the given task, of-
ten resulting from generating an incorrect goal, or
misunderstanding usage of the tool.

e Tool Hallucination Errors: The assistant at-
tempts to use a non-existent tool, typically caused
by task misinterpretation or failure to recognize

available tools.

e Parameter Key Errors: The assistant passes
incorrect parameter keys, either omitting required
ones or including irrelevant keys, usually due to
task miscomprehension or forgetting tool require-
ment details.

o Parameter Value Errors: The assistant provides
incorrect parameter values, usually stemming from
failure to comply with the expected input format or
overlooking task details.

¢ Environment Errors: Real-world APIs may not
always be stable (Guo et al., 2024a). Issues such
as connection timeouts or lack of user permissions
can disrupt tool interactions, and may cause the
assistant to endlessly retry failed calls.

2.2.2 Tool-Use Data Collection

To construct CRITICTOOL, our goal is developing a
tool-use dataset that spans diverse domains of tools
and captures a wide range of errors that LLMs en-
counter in tool call scenarios. Existing benchmarks
have already collected realistic APIs and gener-
ated well-designed tool-use tasks with excellent
diversity and appropriate complexity, making them
ideal sources of tool-use data. We use the datasets
from high-quality tool-use benchmarks, including
BFCL v3 (Yan et al., 2024) and T-Eval (Chen et al.,
2024b), which provide access to 203 real-world
APIs across 23 tools and a variety of multi-step
tool-use tasks that require complex agent-tool in-
teractions, perfectly aligning with our goals.

We have curated error-containing data while ob-
serving LLLMs’ behavioral patterns across these
benchmarks in § 2.1, but it is far from sufficient. To
facilitate more controlled error data generation, we

first collect the ground truth tool-calling trajectories
including tool call actions and the corresponding
tool responses across various tasks in these datasets.
Any data containing errors, such as incorrect an-
notations or failed tool calls, is carefully manually
filtered to ensure the quality and reliability of our
dataset. Next, we extract API documentation and
refine any ambiguous or inadequate descriptions to
ensure clarity and precision, minimizing potential
misunderstandings. To further enhance consistency,
we standardize all tool-calling trajectories and API
descriptions, which aligns formats across different
benchmarks, creating a coherent framework that
facilitates consistent prompts and reliable tool-use
interactions throughout our evaluation.

2.2.3 Error Diversification

We have identified five patterns of errors from two
sources in § 2.2.1. To ensure the comprehensive
coverage of potential scenarios, we systematically
diversify these errors, significantly expanding our
error repository.

e Internal Model-Driven Errors: The internal
model-driven error data collected from previous
observation has two limitations that (1) it comes
from a small subset of tools and tasks, and (2)
the tests primarily involve advanced LLMs, which
restricts the coverage of errors that less capable
models might produce. Moreover, our observation
reveals that LLMs tend to exhibit similar behaviors
within a specific error pattern, despite interacting
with different tools. This similarity allows us to ex-
pand the diversity of errors in the calling of all tools.
We prompt GPT-40 as an error simulator, simulat-
ing error-prone behaviors of tool-calling assistants.
Using examples of error patterns collected from ob-
servation as few-shot demonstrations (Brown et al.,
2020), error simulator is tasked with generating
diverse instances of errors across a wider range of
tools and tasks.

¢ External Environment Errors: During data col-
lection, we capture numerous instances of tool re-
sponses containing external environment errors and
match them with their corresponding tools. How-
ever, not all tools in the benchmark datasets include
such error examples. To fill this gap, we perform
repeated calls to the accessible APIs to collect the
error responses arising from environmental insta-
bility, and employ GPT-40 as an API simulator to
collect such errors for inaccessible APIs.

2.2.4 Tool Response Handling

The responses LLMs receive from the environ-
ments during tool calls are crucial for them to
self-criticize, making it essential to obtain tool
responses corresponding to internal model-driven
errors. However, due to permission restrictions,
not all collected APIs are executable. Inspired by
StableToolBench (Guo et al., 2024a), we adopt a
systematic approach for tool response collection
based on the availability status of each API.

e Cache Retrieval: We first search the cache to
check whether the tool and parameters used in
the current call have previously been cached. If
a match is found, the cached response is used as
the environment’s response for the current tool call.
e API Execution: If there is no match in the cache,
we then verify the accessibility of API. The tool
call is executed and the actual API response is used
if the API is available.

o Simulator Response: When neither cache nor
APl is available, we employ GPT-40 as an API sim-
ulator to ensure that the tool-calling assistant still
receives feedback for its current action.

2.2.5 Data Evolution

Real-world tool calls typically encompass complex
contexts, sophisticated tools, and ambiguous user
queries (Wang et al., 2024b). To achieve a more re-
alistic evaluation of LLM performance in tool call
tasks, we propose a strategy termed Scalable and
Robust Mixed Self-Evolution (SRM) to facilitate
the self-evolution of data within the origin bench-
mark. Specifically, we focus on two critical factors
of tool-use tasks: scale and robustness. Based on
these factors, we develop four distinct evolution-
ary sub-strategies on these perspectives that closely
align LLM tool-use tasks with real-world scenarios
while preserving the ground truth annotations.

e Long Context: We introduce extended conver-
sations from LongBench (Bai et al., 2023), mix it
with tool-calling data randomly as the context, and
insert them prior to the user’s tool-use query.

o Extra Tools: Most existing benchmarks merely
supply the tools required for specific test tasks,
which contrasts sharply with the vast number of
APIs involved in real applications. Thus, we pro-
pose the Extra Tools evolution strategy, which ran-
domly incorporates additional tools into API lists.
e Noisy Query: Real user queries are often ver-
bose, vague, include unnecessary information, and
are prone to typographical errors, which challenge
LLMs’ ability to interpret intent. We employ GPT-

40 to simulate human language habits, particular
focusing on addressing irrelevant information, cum-
bersome expressions, and typographical issues.

e Harder Tools: DRAFT (Qu et al., 2024) and
BFCL v2 (Yan et al., 2024) illustrate the substantial
impact that API documentation has on LLLM tool
calls. Therefore, we deliberately degrade the API
document by prompting GPT-40, thereby making
the idealized APIs documentation more realistic.

We combine the four evolutionary sub-strategies
to increase the difficulty of LLM tool-use tasks,
involving three key components: context, queries,
and the API list, enabling the exploration of scala-
bility and robustness in self-critique.

After the SRM process, we verify the data to en-
sure that the ground truth remains unchanged. To
prevent inappropriate self-critique behavior arises
from biases by the evolutionary strategies, we intro-
duce equivalence verification, a novel data verifica-
tion approach. We use GPT-40 to check whether
the modifications or additions made during the
evolution process significantly impact the tool-use
tasks (refer to Appendix C.2).

2.2.6 Dataset Summary

We perform rigorous manual filtering on all gener-
ated error data to minimize potential biases intro-
duced by synthetic processes, resulting in a pass
rate of 18.63%. The final CRITICTOOL dataset
consists of 1,490 base examples and 1,250 evolved
examples. More detailed statistics are provided in
the Appendix B.2.

2.3 Fine-Grained Evaluation

CRITICTOOL comprehensively evaluates the self-
critique capabilities of LLMs by breaking them
down into multiple dimensions, across different
error patterns encountered during tool interaction.

2.3.1 Self-Critique Task Decomposition

In CRITICTOOL, each tool-use task is defined as
a tuple (Q,T), where @ is the task query, and T’
represents the list of APIs available for the tool-
calling assistant. We define the trajectory 7 as a se-
quence of tool-response pairs {(a;, ;) }, capturing
the interaction between the assistant’s action a and
the corresponding tool response 7 in the -th step.
The action a is regarded as either (goal, tool, args)
or (tool, args) depending on whether the chain of
thought strategy is applied.

The complex interactions between the assistant
and the environment can lead to potential errors

at any step, underscoring the importance of eval-
uating LLMs’ self-critique capabilities at the step
level (Ye et al., 2024b). Consequently, the test data
consists of the first £ steps of the tool-calling tra-
jectory for each task, where k is randomly chosen,
and any errors may be introduced at step k.

In internal model-driven errors critique tasks,
CRITICTOOL employs both error-free and error-
injected data to ensure fairness and robustness. We
evaluate the (k + 1)-th step and deconstruct the
self-critique process into two dimensions. The tool-
calling assistant should recognize whether an error
occurred during the preceding tool call first and
identify its specific category. This process of iden-
tifying and analyzing errors is defined as reflect,
a fundamental step in the model’s self-critique.
Based on the result of the reflection, the model
needs to take corrective action to recover from the
error. We define this process as correct, highlight-
ing the model’s ability to improve and adapt its
behavior effectively. Thus, the solution path is
S = (c,a) or S = (a), where c represents the
reflect of the error when the model identify it.

For tasks involving external environment errors,
the assistant is expected to properly handle the re-
sponse from the environment that contains the error
signal in the subsequent steps. We encourage the
assistant to retry the failed tool calls a limited num-
ber of times to avoid the incidental error caused
by environmental instability. If the issue persists
despite multiple retries, the assistant should skip
the problematic step and address any remaining fea-
sible subtasks or finish the tool-calling process and
inform the user that further guidance is required.
The solution path is defined as a sequence of ac-
tions S = {ay,ao,...}.

2.3.2 Evaluation Metrics

CrITICTOOL employs fine-grained evaluation met-
rics to assess each dimension of self-critique behav-
ior of LLMs across different error scenarios. The
details are provided in Appendix C.4.

e REFLECT: The reflect evaluator asks the assis-
tant to determine whether to produce a critique
cPred based on the correctness of tool call action
ap. Then, ¢?"*? is compared with the golden an-
swer ¢4 if an error exists in ay.

e CORRECT: The correct evaluator asks the as-
sistant to generate a corrected action GP"°? for a
detected error in tool call action ay, and compares
aPred with the golden answer a9t

¢ RETRY: The assistant is asked to generate a re-

Table 2: Main Results of CRITICTOOL. Bold indicates the best performance across all models, while underline
denotes the best performance within the same group and scale of models.

\ Internal Model-Driven Errors

\ External Environment Errors \

Models Reflect Correct Retry Skip/Finish Overall
Detect Category Tool Args Break Tool Args
Closed-Source Large Language Models
Claude3.5 81.59 55.70 84.89 77.63 38.22 56.27 22.06 26.48 55.83
GPT-3.5 71.18 62.90 71.36 58.09 10.37 89.45 52.23 41.27 60.93
GPT-40 78.71 69.70 86.05 80.25 20.99 92.08 53.66 42.67 69.01
Open-Source Large Language Models
LLaMA3-8B 56.39 29.24 73.81 65.17 31.81 74.67 27.11 29.95 50.84
LLaMA3.1-8B 83.77 68.09 78.26 69.11 50.94 73.58 25.00 22.10 58.04
Qwen2.5-7B 82.86 4421 77.32 69.26 28.41 83.06 42.28 24.08 58.61
GLM4 - 9B - chat 56.12 24.01 59.03 48.56 17.89 89.23 35.11 22.05 47.57
Ministral - 8B 46.15 23.45 67.23 57.12 50.11 59.03 17.02 20.11 43.77
LLaMA3-70B 56.11 29.37 69.13 62.61 32.29 73.18 27.66 27.52 49.25
LLaMA3.1 - 70B 79.52 59.78 82.34 65.47 63.12 91.23 51.58 25.89 65.21
Qwen2.5-72B 86.14 52.81 82.59 77.60 36.91 91.75 52.71 30.03 65.70
Tool-Use-Finetuned Large Language Models
ToolLLaMA?2 - 7B 0.58 0.00 3.34 0.61 0.92 1.77 0.91 0.00 0.13
ToolACE - 8B 12.98 0.95 14.23 13.22 1.25 8.23 7.67 12.21 9.43
AgentLM-7B 22.97 0.00 47.86 37.20 11.95 84.70 18.13 17.55 33.78

~pre

peated tool call a; if any error signal is found in

rx. The evaluator compares a2"*? with the golden
answer &ft, which corresponds to the action ay.

e SKIP: If the error from the environment can-
not be resolved within the retry limit, the assis-
tant should skip and proceed with the next feasible
subtask. The skip action @& “? is compared to the
golden answer &', which indicates the ground truth
action for the next subtask.

e FINISH: The evaluator checks whether the assis-
tant terminates the tool call and waits for further
instructions from the user after several unsuccess-
ful attempts to resolve the environmental error.

e OVERALL: We calculate the overall score by
weighing the self-critique dimensions based on
their importance in completing a tool-calling task.
The weight assigned to reflect is 0.2, to correct is

0.3, to retry is 0.05, and to skip/finish is 0.45.

3 Experiment

3.1 Experiment Setup

We conduct evaluations on CRITICTOOL using
a diverse set of 14 LLMs, to establish a com-
prehensive self-critique benchmark for assessing
the capabilities of current large language models.
For closed-source LLMs, we select three promi-
nent models: Claude3.5 (Anthropic, 2024) de-
veloped by Anthropic, alongside GPT-3.5 (Ope-
nAl, 2022) and GPT-40 (Hurst et al., 2024) pro-

vided by OpenAL? For open-source LLMs, we
evaluate numerous models including LLaMA3,
LLaMA3.1 (Al@Meta, 2024), Qwen2.5 (Team,
2024a,b), GLM4 (GLM et al., 2024), Ministral(Al,
2024). For tool-use-fineturned LLMs, we evalu-
ate ToolLLaMA?2 (Qin et al., 2023), ToolACE (Liu
et al., 2024) and AgentLM (Zeng et al., 2023).

3.2 Benchmarking Results on CRITICTOOL

The detailed experimental results are shown in
Tab. 2. Experiments using the chain-of-thought
strategy (Wei et al., 2022) are also conducted, lead-
ing to improvements in LLMs’ self-critique per-
formance, with the results provided in the Ap-
pendix D.2. We analyze the benchmarking results
by exploring the following four questions.

Q1: Which Model is Better at Tool Self-
Critique?

GPT-40 leads in self-critique performance for tool-
use error scenarios, achieving an impressive overall
score of 69.01. Close behind, large-scale open-
source models LLaMA3.1-70B and Qwen2.5-72B,
deliver comparable scores, showcasing strong self-
critique capabilities.

For internal model-driven errors, the closed-
source models GPT-40 and Claude3.5 deliver com-
parable top performance, though Claude3.5 slightly
underperforms in error categorization. In contrast,

3The version for GPT-40 is gpt-40-2024-08-06, for
GPT-3.5 is gpt-3.5-turbo-16k, and for Claude3.5 is
claude-3-5-sonnet-20241022.

open-source models exhibit substantial variability
in self-critique performance. While most open-
source models significantly lag behind the closed-
source models, highlighting a clear gap in their
capabilities, LLaMA3.1 and Qwen2.5 stand out as
notable exceptions. Their performance not only ap-
proaches but occasionally surpasses that of closed-
source models. However, tool-use-fineturned mod-
els show disappointing results in handling internal
errors. Except for AgentLM-8B, the other mod-
els exhibit almost no instruction-following or self-
critique capabilities, which can be attributed to the
damage to their generalization ability caused by
fine-tuning on specific data.

For external environment errors, most models
can recognize errors and avoid endless repetition,
though Claude3.5 and Ministral-8B shows weaker
performance in this regard, and some tool-use-
finetuned models entirely lack this ability. When it
comes to handling errors by either proceeding with
subsequent tasks or finish tool call action, GPT-40
outperforms other models, with some large-scale
open-source models achieving comparably strong
performance.

Q2: What is the self-critique performance of
LLMs across various scenarios?

In the internal critique task, models should proceed
with subsequent tool-calling tasks within error-
injected data. However, poor performance models
tend to exhibit over-reflection, mistakenly classify-
ing a correct step as an errors. For error-injected
cases, models are expected to accurately reflect and
correct the mistake it made in the previous step,
but many models with limited critique capabilities
fail in such task. In the tool selection error sce-
nario, LLMs may select the wrong tool while still
providing valid parameters, leading to silent errors
without explicit signals from the environment (Sun
et al., 2024), hindering models’ error reflection. In
such cases, the most frequently observed poor self-
critique behaviors are correction without reflection
or error Ignorance. In contrast, the other three in-
ternal error scenarios often trigger explicit error
signals due to invalid tool inputs or parameters,
aiding models in reflecting and achieving higher
self-critique success rates. Nonetheless, weaker
models may still display failure to detect, failure
to correct, or even experience unexpected tool call
interruptions.

In the external critique task, the model should
retry the failed operation retry within limits, exit the
loop appropriately, and either complete the remain-

Mi;(ed Long Clonfext ExTruvTooIs Noisyhuery Harde;‘ Tools

GPT-40 LLaMA3.1-8B Qwen2.5-78 6LM4-9B-chat LLaMA3-70B

Figure 3: Comparison of the performance of five mod-
els across various evolution strategies. The red cross
indicates the score corresponding to the base dataset.

ing subtasks or ask user for guidance. However,
when models fail to recognize errors, they tend to
repeat the same call more than three times, result-
ing in a significant resource drain. Some models
go further by hallucinating, offering false answers
to user questions rather than asking for guidance.

More examples and analysis can be found in
Appendix D.3 and D.4.
Q3: How does Data Evolution Effects?
As illustrated in Fig. 3, the data evolution leads
to a decline in the scores of all LLMs. GPT-4o0
retains its SOTA results, while Qwen2.5-7B also
demonstrates impressive capabilities. In contrast,
LLaMA3-70B experiences significant performance
degradation, falling below the performance of most
small scale models. This is consistent with Crit-
icBench (Lin et al., 2024) experimental observa-
tion. We attribute this to the unstable generalizabil-
ity of the offline data, a limitation that becomes
increasingly pronounced as the number of model
parameters grows. We independently test the four
sub-strategies to investigate their impact on models’
self-critic performance. The negative impact on the
model decreases in the following order: Long Con-
text, Noisy Query, Extra Tools and Harder Tools.
Long Context and Extra Tools increase the diffi-
culty of retrieval and challenge the model’s ability
to follow instructions and Extra Tools introduce
relatively little extra data. Noisy Query presents a
significant challenge to the model’s capacity for
comprehension and parameter transfer, reminis-
cent of the disruptive influence encapsulated by
the adage ‘A loose cannon’. However, as the API
documents become more verbose and longer, some
models demonstrate improved comprehension of
the APIs, leading to slight performance enhance-
ments, such as GLM4-9B-chat.

Overall, for the model, the three key compo-
nents—the context, query, and tool list—are not

LLaMA3-8B
Claude3.5
Quwen2.5-78
LLaMA3.1-8B
LLaMA3.1-70B
GPT-35
GPT-40

3
*+HI*0

CriticTool Overall Score

[$)]
a

50 ¢
0 10 20 30 40
BFCL Overall Acc

Figure 4: Comparison between BFCL Overall Accuracy
and CRITICTOOL Overall Scores across several models.
LLMs show similar trends in tool-use and self-critique
capabilities.

merely superimposed. The interplay between scal-
able and robust levels results in a compounding
effect, causing the model’s performance to degrade
more rapidly under the hybrid strategy compared
to individual strategies. The detailed results can be
found in Appendix C.2.3.

Q4: What is the Relationship Between Tool-Use
and Self-Critique Capabilities?

We compare the fine-grained evaluations on CRIT-
ICTOOL with the results of the benchmark designed
to explore tool-use capabilities, investigating the
relationship between models’ self-critique capabili-
ties in tool-calling tasks and their tool-use capabili-
ties. We analyze the overall accuracy metric from
tool-use benchmarks to examine the relationship
between the tool-use performances of selected mod-
els and their Overall performance on CRITICTOOL.
As results shown in Fig. 4 and Appendix D.6, we
observe a general alignment between the trends
in models’ tool-use and self-critique capabilities.
This observation not only indicates a strong con-
nection between models’ ability to accurately use
tools and their self-critique capabilities, suggesting
that strengthening self-critique mechanisms could
provide a promising avenue for enhancing overall
tool-use performance, but also validates the ratio-
nale behind our benchmark.

4 Related Work

Tool Learning with LLMs There are currently
two primary technical approaches for enhancing
the tool invocation capability of LLMs (Shen et al.,
2023; Yuan et al., 2024). The first approach focuses
on constructing high-quality tool call data and im-
proving the model’s tool invocation capabilities
through fine-tuning(Kong et al., 2024; Chen et al.,

2024a; Patil et al., 2023). The second approach
involves leveraging contextual tool call demonstra-
tions to augment the model’s ability to invoke tools
through in-context learning (Wang et al., 2024a).

The evaluation of tool invocation capabilities
across different models is also an urgent issue.
Common evaluation frameworks involve compar-
ing model predictions to ground truth (Yan et al.,
2024; Guo et al., 2024b), while ToolBench (Qin
et al., 2023) contrasts model predictions with those
generated by advanced LLMs, such as GPT-4. Al-
though some studies (Yan et al., 2024; Yao et al.,
2024; Sun et al., 2024) have identified common
errors in tool invocations, they unfortunately lack
in-depth analysis and the design of targeted evalua-
tion frameworks. In contrast to the aforementioned
benchmarks, CRITICTOOL is the first to analyze
various errors and evaluate the self-critic ability in
tool invocation as far as we know.

Self-Critique of LLMs Learning from incorrect
attempts can help prevent similar errors, thereby
enabling deeper insights into the data and facili-
tating self-learning (Ke et al., 2024; Shinn et al.,
2023; An et al., 2023; Ying et al., 2024; Zhang
et al., 2024; Tian et al., 2024). CriticEval (Lan
et al., 2024) evaluate the self-critique ability of
LLMs on nine key tasks, including math and code,
across four critical dimensions. For tool calls, the
self-critic strategy is particularly well-suited for
this complex task, which integrates various impor-
tant capabilities on massive and constantly updated
tools (Gou et al., 2023). However, to the best of our
knowledge, no prior work has specifically explored
the evaluation of self-critique in tool invocations.
Recognizing the unique characteristics of tool calls
compared to other tasks, CRITICTOOL adopts a
targeted and fine-grained evaluation framework.

5 Conclusion

In this paper, we propose CRITICTOOL, the first
benchmark for tool self-critique in LLM tool eval-
uation as far as we know. CRITICTOOL explicitly
distinguishes between internal model errors and
external environment errors, classifies evaluation
methods, and employs data evolution strategies to
uncover the true capabilities of the models under
evaluation. This evaluation offers a comprehensive
analysis and identifies the primary bottlenecks in
current LL.Ms’ tool learning, providing valuable
insights for the future development of tool agents.

Limitations

While CRITICTOOL offers the first fine-grained
and comprehensive evaluation of tool invocation
self-criticism, as far as we know, it still has the
following two limitations. (1) Our dataset builds
upon and extends BFCL and T-eval. Despite re-
finement and filtering, the quality of the underlying
dataset still impacts the overall quality and discrim-
inative power of CRITICTOOL to some extent. (2)
The construction of our benchmark relies on GPT-
4o for error generation, evolution, and verification.
The synthetic data may inevitably introduce biases
inherent to GPT-40. However, CRITICTOOL has
employed multiple strategies in its data construc-
tion pipeline to mitigate these biases, ensuring high
data quality and a reliable benchmark. Moreover,
the dependence on high-performance LLM results
in significant economic costs, posing challenges to
the sustainability of large-scale benchmark devel-
opment.

Future work should tackle these challenges by
developing more rational and cost-effective data
construction methods.

References

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal,
Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse,
Chulaka Gunasekara, et al. 2024. Granite-function
calling model: Introducing function calling abilities
via multi-task learning of granular tasks. In EMNLP,
pages 1131-1139.

Mistral AL 2024. Un ministral, des ministraux.
Al@Meta. 2024. Llama 3 model card.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2023. Learn-
ing from mistakes makes llm better reasoner. arXiv
preprint arXiv:2310.20689.

Anthropic. 2024. Claude 3.5 sonnet.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Kinjal Basu, Ibrahim Abdelaziz, Kelsey Bradford,
Maxwell Crouse, Kiran Kate, Sadhana Kumaravel,
Saurabh Goyal, Asim Munawar, Yara Rizk, Xin
Wang, et al. 2024. Nestful: A benchmark for eval-
uating 1lms on nested sequences of api calls. arXiv
preprint arXiv:2409.03797.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiagi Wang, Feng Zhao, and Dahua
Lin. 2023. Sharegpt4v: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qing-Guo Chen,
Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun
Zhang. 2024a. Advancing tool-augmented large lan-
guage models: Integrating insights from errors in
inference trees. arXiv preprint arXiv:2406.07115.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng
Zhao. 2024b. T-eval: Evaluating the tool utilization
capability of large language models step by step. In
ACL, pages 9510-9529.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024c. Agent-FLAN: Designing data
and methods of effective agent tuning for large lan-
guage models. In ACL, pages 9354-9366.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct

with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024a. StableToolBench: Towards stable
large-scale benchmarking on tool learning of large
language models. In ACL, pages 11143-11156.

Zishan Guo, Yufei Huang, and Deyi Xiong. 2024b.
CToolEval: A Chinese benchmark for LLM-powered
agent evaluation in real-world API interactions. In
ACL, pages 15711-15724.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

https://mistral.ai/news/ministraux/
https://github.comf/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/claude-3-5-sonnet

Pei Ke, Bosi Wen, Andrew Feng, Xiao Liu, Xuanyu Lei,
Jiale Cheng, Shengyuan Wang, Aohan Zeng, Yuxiao
Dong, Hongning Wang, Jie Tang, and Minlie Huang.
2024. CritiqueLLM: Towards an informative critique
generation model for evaluation of large language
model generation. In ACL, pages 13034—13054.

Yilun Kong, Jingqing Ruan, YiHong Chen, Bin Zhang,
Tianpeng Bao, Shi Shiwei, du Guo Qing, Xiaoru Hu,
Hangyu Mao, Ziyue Li, Xingyu Zeng, Rui Zhao, and
Xueqgian Wang. 2024. TPTU-v2: Boosting task plan-
ning and tool usage of large language model-based
agents in real-world industry systems. In EMNLP,
pages 371-385.

Tian Lan, Wenwei Zhang, Chen Xu, Heyan Huang,
Dahua Lin, Kai Chen, and Xian-ling Mao. 2024. Crit-
iceval: Evaluating large language models as critic.
arXiv preprint arXiv:2402.13764.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LL.Ms. In EMNLP,
pages 3102-3116.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. CriticBench:
Benchmarking LL.Ms for critique-correct reasoning.
In ACL, pages 1552—-1587.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, et al. 2024. Toolace:
Winning the points of 1lm function calling. arXiv
preprint arXiv:2409.00920.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan
Leike. 2024. Llm critics help catch 1lm bugs. arXiv
preprint arXiv:2407.00215.

OpenAl. 2022. Introducing chatgpt.
OpenAl. 2024. Introducing openai ol.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. From exploration to mastery: En-
abling 1lms to master tools via self-driven interac-
tions. arXiv preprint arXiv:2410.08197.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

10

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023. Taskbench: Benchmark-
ing large language models for task automation. arXiv
preprint arXiv:2311.18760.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In NeurIPS.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization of LLM
agents. In ACL, pages 7584—7600.

Jimin Sun, So Yeon Min, Yingshan Chang, and Yonatan
Bisk. 2024. Tools fail: Detecting silent errors in
faulty tools. In EMNLP, pages 14272-14289.

Qwen Team. 2024a. Qwen2 technical report. arXiv
preprint arXiv:2407.10671.

Qwen Team. 2024b. Qwen2.5: A party of foundation
models.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of 1lms via imagination, searching, and
criticizing. arXiv preprint arXiv:2404.12253.

Boshi Wang, Hao Fang, Jason FEisner, Benjamin
Van Durme, and Yu Su. 2024a. LLMs in the imag-
inarium: Tool learning through simulated trial and
error. In ACL, pages 10583—-10604.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu
Wei, and Xuanjing Huang. 2024b. Benchmark self-
evolving: A multi-agent framework for dynamic llm
evaluation. arXiv preprint arXiv:2402.11443.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlPS.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models. arXiv preprint arXiv:2305.16504.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. 2024. Berkeley function calling leader-
board.

Jihan Yao, Wenxuan Ding, Shangbin Feng, Lucy Lu
Wang, and Yulia Tsvetkov. 2024. Varying shades
of wrong: Aligning llms with wrong answers only.
arXiv preprint arXiv:2410.11055.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, et al. 2024a. Tooleyes: Fine-
grained evaluation for tool learning capabilities of
large language models in real-world scenarios. arXiv
preprint arXiv:2401.00741.

https://openai.com/blog/chatgpt
https://openai.com/o1/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang
Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang,
Tao Gui, and Xuanjing Huang. 2024b. RoTBench:
A multi-level benchmark for evaluating the robust-
ness of large language models in tool learning. In
EMNLP, pages 313-333.

Jiahao Ying, Mingbao Lin, Yixin Cao, Wei Tang,
Bo Wang, Qianru Sun, Xuanjing Huang, and
Shuicheng Yan. 2024. LLMs-as-instructors: Learn-
ing from errors toward automating model improve-
ment. In EMNLP, pages 11185-11208.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Wengqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying
Peng, Jun Wang, Yueting Zhuang, and Weiming Lu.
2024. Self-contrast: Better reflection through incon-
sistent solving perspectives. In ACL, pages 3602—
3622.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqgian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

11

A Observation: Insight into LLLMs’
Tool-Use Performance

In § 2.1, we test BFCL v3 (Yan et al., 2024), T-
Eval (Chen et al., 2024b), API-Bank (Li et al.,
2023), and NESTFUL (Basu et al., 2024) to con-
duct an in-depth analysis of LLMs’ behavioral pat-
terns. The details of these benchmarks are provided
below.

BFCL V3 is a comprehensive benchmark for
evaluating LLMs’ performance in multi-step and
multi-turn tool calling. The benchmark includes
200 basic tool-use trajectories, along with an addi-
tional 800 trajectories that introduce various com-
plexities built upon these basic data.

T-Eval provides 553 tool-use trajectories, break-
ing down tasks into sub-processes including in-
struction following, planning, reasoning, retrieval,
understanding, and review.

API-bank has 314 tool-use trajectories to evalu-
ate LLMSs’ capabilities in planning, retrieving, and
calling APIs.

NESTFUL is designed to better evaluate LLMs
on nested sequences of tool calls. It compiles 85
executable tool-use traces and 215 non-executable
traces from the different datasets, as well as syn-
thetic data generated by LLMs.

We first observe that the prompts and tool-call
formats used in these benchmarks varied, which
could lead to discrepancies in how LLMs follow in-
structions. To address this, we standardize the test
data into a consistent format, as Fig. 10, ensuring
LLM:s execute tasks sequentially and consistently
across benchmarks. Then, we randomly select a
subset of the test data from these benchmarks and
summarize the frequently occurring error patterns
in the test results. The distribution of error patterns
is shown in Tab. 3.

In the experiment, we observe LLMs’ perfor-
mance in the presence of errors, and gain insight
into their different behavior across different errors,
as shown in Fig. 11 and 12. When LLMs continue
executing tool-use tasks after making mistakes, we
find that some of them could recognize and correct
their mistakes, while most perform poorly. In cases
where tool responses contain errors due to instabil-
ity, many LLMs become trapped in repetitive retry
loops, with few capable of recognizing the issue
and breaking free by either skipping the current
step or terminating the task.

12

Correct Data
38.8%

Tool Hallucination Error

Parameters Value Errol
19.1%

Tool Select Error
20.1%

Parameters Key Error

0,
25.2% Environment Error

20.1%

Figure 5: Error distribution for Base data in CRITIC-
TooL.

[1000

Base
Evol.

3000 4000

Length

2000 5000 6000 7000 8000

Figure 6: Length distribution for Base and Evolution
data in CRITICTOOL, measured by the number of to-
kens.

B CRrITICTOOL Benchmark Details

B.1 Comparison

Tab. 4 shows how CRITICTOOL compares against
existing tool-use and critic benchmarks.

B.2 Dataset Summary

The base dataset of CRITICTOOL originates from
733 high-quality tool-call trajectories, consisting
of 1490 test cases in total, which contains 1316
internal model-driven error test cases and 174 ex-
ternal environment error test cases. On this basis,
we retain the error distribution on the base data
and randomly select to construct CRITICTOOL evo-
lution dataset (be simplified to Evol.), generating
1000 internal and 250 external new test cases. We
visualize the error distribution and length distribu-
tion for the base and evolved datasets.

Fig. 5 illustrates the error distribution of CRIT-
ICToOL, which comprehensively covers the behav-
ior patterns of LLMs observed across mainstream
benchmarks.

Fig. 6 shows that each set of the base benchmark
has 1291 tokens on average, while each evolved
examples contains 2387 tokens on average, validat-
ing the generalization and discrimination for tool
utilization self-critic evaluation.

Table 3: Error distribution among LLMs in tool-use benchmarks.

Benchmark Model Total Tool Sel. Tool Halluc. Param. Key Param. Value

Qwen-turbo 184 82 1 0 13

Qwen2.5-72B 216 74 0 0 12

BECL V3 GPT-3.5 202 85 0 0 13
GPT-40 213 70 0 0 6

Qwen-turbo 452 36 3 4 36

3 Qwen2.5-72B 469 29 1 1 28

T-Eval GPT-3.5 466 38 13 10 29

GPT-40 470 29 0 0 23

Qwen-turbo 259 2 1 0 13

X Qwen2.5-72B 184 82 2 0 19

API-bank GPT:3.5 275 6 1 1 18

GPT-40 280 6 0 1 10

Qwen-turbo 215 9 1 27 29

Qwen2.5-72B 212 22 3 23 26

NESTFUL GPT-3.5 215 13 22 20 22

GPT-40 215 4 10 7 14

Table 4: Comparison of CRITICTOOL with other existing tool-use and critique benchmarks.

Model Critic for Error Function Call API Response Multi-Step Fine-Grained Eval Data by Difficulty Levels
CriticBench (Lin et al., 2024) X X X X X
CriticEval (Lan et al., 2024) X X X X
API-Bank (Li et al., 2023) X X
BFCL (Yan et al., 2024) X X X
NestFul (Basu et al., 2024) X X X
T-Eval (Chen et al., 2024b) X X

CriTICTOOL

C Implementation Details

C.1 Data Collection

We collect 733 ground truth tool-calling trajec-
tories from high-quality tool-use benchmarks,
BFCL (Yan et al., 2024) and T-Eval (Chen et al.,
2024b). To facilitate following controlled error data
generation, we manually filter out 485 trajectories
that contain no errors and refine the API documen-
tation to ensure that all API descriptions are clear
and accurate. To bridge the gap between differ-
ent instruction formats, we standardize both the
trajectories and API documentation, as illustrated
in Fig. 13 and 14. This standardization ensures
compatibility and reduces variability in the data,
enabling a more consistent evaluation of LLMs’
performance in self-critique capabilities.

C.2 Prompts Demonstration
Refer to the corresponding prompt block for a de-

tailed demonstration.

C.2.1 Error Data Diversification

We prompt GPT-40 as error simulator, and the cor-
responding prompt is presented in Fig. 15.

13

C.2.2 Tool Responses Generation

We prompt GPT-40 as API simulator, and the cor-
responding prompt is presented in Fig. 16.

C.2.3 Data Evolution

The framework of the data evolution has been
shown in Fig. 7. And Tab. 5, presents a simpli-
fied example of our Scalable and Robust Mixed
Self-Evolution(SRM) evolution strategy.

Long Context: Real-world contexts typically con-
sist of three possibilities: purely tool calling, purely
chatting, and a mixture of both. We extract purely
conversational data from LongBench (Bai et al.,
2023) to represent the purely chatting context, com-
bine it with the original CRITICTOOL for the mixed
context, and conduct separate experiments across
these three contexts. The comparative results are
presented in Tab. 6.

Compared to having no context, all three types
of contexts resulted in a decrease in the model’s
scores. For CRITICTOOL, these three contexts ran-
domly appear as Long Context Evolution data.

Noisy Query: We prompt GPT-40 to refine
the user query, and the corresponding prompt is

Table 5: A simplified example of our data evolution strategy.

Context: None.

Original Tool Call Trajectory

Tool List: ‘name’: ‘Email.send’, ‘description’: ‘Sends an email to a specified recipient with the given subject and content.’
User Query: Compose an email to all team members at team_members@example. com detailing the features of the forthcoming
film, ‘Avengers: Endgame’. Subsequently, ascertain the availability of the first available meeting room from 2:00 PM to 4:00
PM and book it for our weekly marketing assembly.

Perspective Sub-strategy Changed Examples
Items
Long Context Context Insert Context 1: [A summary task of about 800 tokens.]
Insert Context 2: [A former Tool-Calling Task of about 400 tokens]
Scalable Extra Tools Tool List Add Tools: Email.show, Email.check, Email.read, Arx-
ivSearch.get_arxiv_information, BINGMap.search_nearby...
Noisy Query User Query Refine Query: My favourite film is Avengers: Endgame, I want to share it to my
Robust team members. Compose an emaail(typo, email) to all tam nembers(typo, team
members) at team_members@example.com detailing the features of the forthcom-
ing film Avengers: Endgame, including its plot, main characters, and key action
sequences. You can also mention how the movie fits into the Marvel Cinematic
Universe and its expected impact on upcoming releases. Following that, ascertain the
availability of the first available meeting room from 2:00 PM to 4:00 PM and book
it for our weekly marketing assembly. Additionally, weekly marketing assembly is
very important. So please confirm the booking once it’s done.
Harder Tools Tool List Refine API Document: send a email
Table 6: Comparison results under different contexts.
Model No Context Purely Tool Calling Purely Chatting Mixed
GPT-40 70.41 70.10 69.72 65.01
LLaMA3.1-8B 59.82 57.45 56.43 55.86
Qwen2.5-72B 68.81 65.93 65.42 64.31
AgentLM-7B 37.11 26.62 26.93 17.45

presented in Fig. 20.

Harder Tools: We prompt GPT-40 to downgrade
the API documentation, and the corresponding
prompt is presented in Fig. 21.

Mixed Evolution: In mixed evolution, we ran-
domly we randomly select 2-4 evolution strategies
for each case.

Data Verification: We prompt GPT-4o to verify
the evolution data, and the corresponding prompt
is presented in Fig. 22, 23, 24, 25.

C.3 Mitigating Bias in Synthetic Error Data

To scale the data and conduct comprehensive evalu-
ations, we utilize GPT-4o for data synthesis during
both the generation and evolution phases. While
synthetic data inevitably inherits bias from the
generating model, CRITICTOOL employs multi-
ple strategies to mitigate the potential bias.

e Real Errors Few-Shot Learning: To guide
GPT-40 in generating realistic error instances, we
collect real error data to serve as few-shot exam-

14

ples, enabling GPT-40 to generalize error patterns
effectively. This few-shot learning method can
help ensure that the synthetic errors are reasonably
grounded in real-world behavior.

e Error Consistency: In our observations, LLMs
tend to exhibit consistent behaviors within specific
error patterns, even when interacting with different
tools. Similarly, weaker models follow the same
tendancy but exhibit errors at a higher frequency.
By leveraging GPT-4o to diversify errors across
different patterns, we ensure that the consistency of
error distribution is preserved without introducing
significant bias.

e Diverse Data Sources: CRITICTOOL dataset
combines real-world errors and synthetic errors,
creating a balanced mix that reduces reliance on
any single source. This mixing process reduces the
influence of synthetic data bias while retaining the
scale necessary for comprehensive evaluation.

¢ Error Information Preservation: During data
evolution, GPT-40 is used in the Noisy Query and
Harder Tools strategies to enhance dataset complex-

Data Evolution

Data Evolution

Original Data =
(((" Long Context
Y Please book a ticket of the
\ / gsﬂz:zlil::mff?ifrmf iz o Help me plan a trip to HK. Help me plan a trip H Context H
user g @’ to HK.Help me plan a trip to HK. Help me plan a
 Tool: user frip fo HK. Original Data
x book_ticket get_movie_abstract
Igl OK,I can help you do that.First,..Second..Have a L. Extra Tools
ice Trip!
Action:book_ticket(movie='Big) nice Trip M T = f
(=P Fish time=20:00"cinema=Goid assistant Context ScIAERD
assistant en Cinema) E - 2 g
\ l Jl— > Random Sample
° bookin a ticket siekes called "Bi Noisy Query
epe . Y 9 9
Data Verification AL |1 (@) Fisht at the Golden Cinema
% & @’ at @
° user 20:00 is befter, if that's easier to understand,and, 1 | | | U2) ccccee=
@ [Evoluted Data] (- L] ey Gpt-4 Refine
user User Query
v.s. ground truth:
Harder Tools
Q\%) 'E' Tool:book_ticket,get_movie_abstract, O\ API Document = ?
assistant K _________ > {0}
o 0 o 4 @ Difficulty Enhance e: &
\Fmal Decision: Access Function List 5 = 3
'_ =/

7N

s

N

Figure 7: The framework of Scalable and Robust Mixed Self-Evolution (SRM).

ity. It only modifies user task descriptions and API
documentation while keeping internal and exter-
nal errors unchanged. And the consistency of the
evolved data’s solution path with the correspond-
ing base data is verified, ensuring that no additional
bias is introduced.

e Human Validation: We conduct a manual re-
view of all synthetic data to minimize any bias intro-
duced during the generation and evolution stages.
All unreliable or low-quality data is filtered out to
ensure the quality of the CRITICTOOL dataset.

C.4 Detailed Evaluation Metrics

In the CRITICTOOL, self-critique capabilities are
divided into multiple dimensions based on errors
from different sources: Reflect, Correct, Retry, and
Skip/Finish. All responses must strictly adhere to
the JSON format.

We have defined the formalization of tool calls
in § 2.3: each tool-calling task is represented as a
tuple (Q,T), where @ is the query associated with
the task, and 7" denotes the list of tools that the as-
sistant can utilize. The tool-calling trajectory 7T is
a sequence of tool-response pairs {(a;, r;)}, which
capture the interaction between the assistant’s ac-
tions a and the corresponding tool responses 7
in the ¢-th step. The action a is regarded as ei-
ther (goal, tool,args) or (tool,args) depending
on whether the chain-of-thought (CoT) strategy is
used. The test data consists of the first &k steps of
the tool-calling trajectory for each task, where k is

15

randomly selected, and errors may be introduced
at step k.

In an internal model-driven error task, given
a tool list 7', query @, a tool-calling trajectory
T = {(a1,7m1) ... (ak,7)}, and an error may be
contained in ag. The assistant is asked to gen-
erate solution SP"¢d = (cPred gpred) if it identi-
fies an error in ag, and SP"¢? = (aP"d) otherwise.
The golden solution is S9 = {ad" aJ'}, where
ad" = ay, and a3’ is the ground truth action for next
subtask.

In the case of external environment error, given
a tool list 7', query @, and a tool-calling trajec-
tory 7 = {(a1,71)...(ak, %)}, where an exter-
nal error occurs in r;. The assistant is tasked with
retrying the action a; no more than three times,
then break free from the loop and either proceed
with executing the next subtasks or finish the tool
call. If the predicted action & = aj, we return
the erroneous response 7y, to allow the assistant
to proceed. Once a # ay, is detected, or if more
than three steps are executed, we stop the assis-
tant’s reasoning and obtain a sequence of predicted
solution §7red — {aPe gFred 1 The golden
solution is S9 = {a?",aJ'}, where aJ" = aj, and
a3" is the ground truth action for next subtask. The
evaluation process is shown in the Fig. 8.

C.4.1 REFLECT

The reflect evaluator measures the model’s ability
to recognize the errors in tool call trajectories. For

error-free trajectory where solution path is S9° =
(a%%), the evaluation focuses solely on detection
accuracy. If LLM predicts SP™*? = (aP"?), the de-
tect score is 1; otherwise, it is 0. For error-injected
trajectory where solution path is S9* = (9, a9'),
the detection score is 1 if ¢”"*? in prediction SP"¢?,
and O otherwise. The evaluator then determines
whether the predicted error category ¢?"¢ matches
the ground truth ¢9¢, achieving category score 1 if
the same and O otherwise.

C.4.2 CORRECT

The correct evaluator assesses the model’s ability
to correct its actions after making a mistake. For
trajectories containing errors, the evaluator first
verifies whether the predicted toolP™*¢ matches the
golden answer tool9t. If the tool prediction is cor-
rect, the tool score is 1, and the evaluator proceeds
to evaluate the correctness of the input parame-
ters. Otherwise, both the tool and args scores are
set to 0. Then, the evaluator checks whether the
passed parameter keys are missing or redundant,
and the args score is set to 0 if any discrepancy ex-
ists. For parameters with types such as ‘string’ or
‘any’, the evaluator uses Sentence-BERT (Reimers
and Gurevych, 2019), which involves embedding
the two sentences, to compute the cosine similar-
ity between the embeddings of each predicted pa-
rameter value of args”"*? and the ground truth
value args9t as their scores. The underlying BERT
model used is all-mpnet-base-v2.* For all other
parameter types, the predicted values must match
the ground truth values exactly. Finally, the aver-
age score across all parameters is calculated as the
args score. If the CoT strategy is applied, the eval-
uator uses Sentence-BERT to embed the predicted
thought thought?"** and the ground truth thought
thought9, then calculates their cosine similarity
as the thought score.

C.4.3 RETRY

The retry evaluator checks whether the predicted
action a?"“* is identical to the ground truth action
>, the retry score is 1 if the same and 0 otherwise.

C.4.4 SKIP

The skip evaluator first examines all predicted ac-
tions to check if there exists any aP"¢? # &i’t, which
indicates that the model has skipped the current
retry step. If such a case a)"*” is found, the break

score then set to 1. The evaluator then compares

*https://www.sbert.net/docs/pretrained_models.html

16

Table 7: The inference time between the universal set
and a 20% subset.

Model Time (Full) Time (Subset)
LLaMA3.1-8B ~14min44s ~2min53s
Qwen2.5-7B ~15min31s ~3minlls
Ministral-8B ~16minl2s ~3min36s
AgentLM-7B ~17min21s ~3min52s

Table 8: Comparison of CRITICTOOL scores between
the universal set and a 20% subset.

Model Universal Set 20% Subset
GPT-40 68.50 71.12
LLaMA3.1-8B 57.94 58.33
Qwen2.5-7B 58.53 61.07
Ministral-8B 43.69 40.08
AgentLM-7B 33.71 35.12

the predicted action for next subtask a2 with

the golden answer &i’t. The tool, args and thought
score are determined using the same comparison
method as in the correct evaluation.

C.4.5 FINISH

The finish evaluator first evaluates the break score
in the same manner as the skip evaluator. It then
checks whether the break-free action a2 *? is *Fin-
ishAction’. If so, the tool score is set to 1.

C.5 Experimental Details

To evaluate the pure ability of the single model, we
do not use any optimization methods in the main
text, such as ReAct. To assess whether the model
with optimization methods exhibits a distribution
comparable to the original benchmark—including
indicator scores and the model’s relative strengths
and weaknesses—we also generated CRITICTOOL
with chain of thought (CoT). CRITICTOOL-CoT
contains 810 internal model-driven error test cases
and 126 external environment error test cases. Sim-
ilarly, we use CRITICTOOL-CoT as the base and
evolutionary dataset and obtain a total of 1,250
evolved test cases. Experimental results with CoT
will be presented in the Appendix D.2.

C.6 Cost

In the full CRITICTOOL suite (comprising 2740
cases), we deploy it using the vllm framework on
four Nvidia GeForce RTX 4090 GPUs and evaluate
the inference times of different models. To further
reduce the time, we randomly sample 20% of the
data from the full suite for testing.

We compare the results of the full suite with the
subset, and find that the subset method achieves

https://www.sbert.net/docs/pretrained_models.html

Internal Model-Driven Error Tasks (A Golden i‘:l“"““

v
(detect =1)

¥
category =1

~pred _ ~gt,
a; " =ay?
L]

;' retry=1)

Any predicted
action a%"*! = a%"2

pred i, gPred
toolP"*? in @} .
and tool?* in af

;' break =1

category = 0 No

toolPred == tool9'2 >\

Required
Parameter Keys
Exist?

No

No Unexpected
Parameter Key?

argPred matches
orresponding typg

String / Any Others

Cosine Similarity

(@rg’™*t arg®)

tool=1)

args +=
\similarity score

args/= len(argsPed))

Figure 8: The framework of Evaluation Process.

nearly identical results using only 20% of the
time. The inference times and CRITICTOOL scores
for both the full suite and the subset are shown in
Tab. 7 and 8.

D Additional Results

D.1 Full Results on CRITICTOOL

We show the full results on CRITICTOOLIn
Tab. 10, 11, 12, 13, 14 and 15.

D.2 Full Results on CRITICTOOL-CoT

‘We show the full results on CRITICTOOL-CoT in
Tab. 17, 18, 19, 20, 21 and 22.

D.3 Qualitative Examples of Self-Critique
Behavior across Different Scenarios

We show the qualitative examples in Fig. 26, 27
and 28.

D.4 Results of Self-Critique Performance
Across Internal Error Patterns

We summarize the performance of various models
across internal error patterns in our experiments, as
shown in Tab. 16.

Our experimental results reveal a surprising phe-
nomenon: even when LLMs fail to accurately iden-
tify or classify their own errors during tool calls,
they are still capable of correcting these errors,

17

which is particularly evident in tool selection er-
rors. Although this behavior diverges from the
human cognitive process, where recognizing errors
typically precedes correcting them, we can still
identify plausible explanations for this. During the
reflection phase, LLMs heavily rely on external
and explicit error signals while often overlooking
the implicit errors, such as failing to obtain neces-
sary information. This limitation stems from inade-
quacies in the models’ instruction-following capa-
bilities, particularly their ability to recognize sub-
tle or implicit errors. In contrast, current training
paradigms for tool use focus on enabling models to
interpret the discrepancy between the expected and
actual results serves as implicit feedback, allowing
models to adapt their behavior to complete tasks,
even without explicitly identifying or categorizing
the errors.

D.5 How does Noisy Query affect models’
performance?

As shown in Fig. 19, we subdivide Noisy Queries
into three subcategories: complex information,
spelling errors and expression habits. We test a set
of examples on five models: GPT-40, LLaMA3.1-
8B, Ministral-8B, Qwen2.5-72B, and AgentL.M-
7B. The average pass rates of the models on differ-
ent data are shown in Tab. 9. In queries involving
complex information, the models predominantly
exhibit two types of errors: tool hallucination er-

Table 9: Error distribution under different Noisy Queries.

Noisy Query Tool Sel. Tool Halluc. Param. Key Param. Value
Complex Information 9 33 31 12
Spelling Errors 3 8 13 22
Expression Habits 4 24 11 14
» @ Cloudess @ Llomasss @ Llomasss
S LLaMA3-88 70 %k Cloude3s 75 ¢ LLaMA3-708B
i frevici < onnotap) W o
g Mo 2o || W s p70 W P
S65 @ Lamsizos * 8 ® T35 S5 @ o135
= 6PT-35 = LLaMA3.1-708B = LLaMA3.1-708
Sy €T 860 g orrao g o« “T4o
$ $ &0
] 3555 3 L)
gon 5 5%
5 50 5% 1 G50 €
4 45
45
70 72 74 76 78 80 82 84 86 50 55 60 65 10 15 20 25 30 35 40
T-Eval Overall Acc API_Bank Overall Acc NESTFUL Overall Acc

Figure 9: Comparison of CRITICTOOL Overall Scores with tool-use benchmarks’ Overall Accuracy across several
models.

rors and parameter key errors. We believe this is
due to the models’ comprehension and planning ca-
pabilities being impaired by the complex informa-
tion in the query. Spelling errors pose a challenge
to the model’s robustness and understanding ca-
pabilities, primarily manifesting a single type of
error: parameter value errors. This indicates
that, in isolated instances, the model exhibits re-
duced sensitivity to spelling errors in user queries.
Changes in expression habits challenge the model’s
comprehension ability, with the model primarily
exhibiting a single type of error: tool hallucination
errors.

Through the above analysis, we believe that
Noisy Queries, by introducing distracting informa-
tion, altering expression forms, and adding spelling
errors, partially obscure the user’s intent. In CRIT-
ICTOOL, we mix them randomly.

D.6 Additional Results on Tool-Use and
Self-Critique Capabilities

See Fig. 9.

18

Table 10: Results of CRITICTOOL on Base and Evolutionary Datasets. Bold indicates the best performance across
all models, while underline denotes the best performance within the same group and scale of models.

| Internal Model-Driven Errors | External Environment Errors | Overall
Models Reflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args
Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol
Closed-Source Large Language Models
Claude3.5 85.0 713 60.7 50.1 87.1 81.5 80.2 749 45.7 338 57.2 55.8 227 21.0 26.7 254 579 534
GPT-3.5 733 70.1 61.3 62.9 72.0 704 58.6 55.7 12.6 8.4 92.5 86.0 54.6 51.0 46.4 353 62.7 58.9
GPT-40 80.6 | 762 | 73.0 | 653 | 87.6 | 84.0 | 823 | 77.6 | 198 | 21.8 | 948 | 886 | 537 | 532 | 46.1 | 383 | 709 | 652
Open-Source Large Language Models
LLaMA3-8B 51.0 63.5 26.5 329 75.6 71.5 67.6 62.0 35.6 29.2 73.3 75.6 28.4 26.2 313 29.0 51.0 50.7
LLaMA3.1-8B | 845 | 828 | 68.6 | 674 | 804 | 755 | 723 | 649 | 529 | 496 | 710 | 754 | 244 | 254 | 212 | 227 | 583 | 57.1
Qwen2.5-7B 85.1 79.9 43.1 45.6 79.6 74.4 72.1 65.5 342 244 87.6 79.9 46.0 39.7 19.7 27.2 60.3 56.8
GLM4 - 9B - chat 60.8 52.6 26.7 243 63.2 57.8 53.1 47.1 224 16.3 84.8 93.7 39.1 353 20.5 239 49.0 45.1
Ministral - 8B 47.0 50.2 23.8 29.7 70.6 67.2 61.4 55.8 56.0 484 58.0 64.1 204 18.3 28.1 17.2 45.7 42.0
LLaMA3-70B 61.4 49.1 337 23.6 72.6 64.6 66.5 574 37.0 29.0 58.8 83.2 30.9 254 30.2 25.7 50.2 47.0
LLaMA3.1-70B 83.6 78.2 64.3 57.6 84.4 81.6 69.3 64.6 71.8 59.9 85.6 98.1 53.7 50.1 31.0 25.1 67.0 64.7
Qwen2.572B | 89.4 | 822 | 589 | 519 | 845 | 82.6 | 779 | 763 | 388 | 412 | 951 | 87.6 | 569 | 489 | 324 | 28.1 | 688 | 63.4
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.8 0.4 0.0 0.0 4.1 23 0.6 0.7 1.0 0.8 12 0.0 0.7 1.1 0.0 0.0 1.1 0.6
ToolACE-8B 12.8 13.8 0.9 1.0 14.5 149 13.2 13.2 1.4 1.1 13.2 3.8 6.9 g 10.9 13.5 10.3 9.2
AgentLM-7B 249 | 204 | 0.0 0.0 560 | 371 | 44.1 | 28.1 | 121 | 11.8 | 85.1 | 844 | 204 | 165 | 21.0 | 152 | 37.1 | 29.8
Table 11: Results of CRITICTOOL with Only Mixed Evolution Data.
| Internal Model-Driven Errors | External Environment Errors
Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 71.00 43.15 69.86 63.55 23.00 60.00 18.00 15.88 46.66
GPT-3.5 74.00 59.59 65.75 50.20 9.00 72.00 35.00 23.75 50.81
GPT-40 81.00 70.55 74.66 67.44 15.00 100.00 44.00 33.70 63.87
Open-Source Large Language Models
LLaMA3-8B 74.50 45.21 63.70 52.60 20.00 76.00 30.00 27.35 50.42
LLaMA3.1-8B 81.00 63.70 67.81 56.69 48.00 75.00 28.00 23.51 54.52
Qwen2.5-7B 74.50 45.21 63.70 52.60 22.00 87.00 42.00 27.35 53.97
GLM4-9B-chat 37.00 17.12 41.78 32.97 10.00 82.00 25.00 26.58 37.16
Ministral-8B 60.50 43.15 59.59 50.19 61.00 46.00 12.00 14.00 40.68
LLaMA3-70B 31.50 13.01 50.68 43.48 28.27 72.90 17.16 14.60 35.69
LLaMA3.1-70B 70.50 45.89 70.55 53.61 55.00 96.00 43.00 7.10 54.93
Qwen2.5-72B 73.50 39.73 73.97 67.63 52.00 97.00 50.00 29.92 61.70
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 2.05 0.77 2.27 0.00 0.00 0.00 0.59
ToolACE-8B 12.50 0.00 7.53 6.21 1.00 10.11 12.00 19.52 9.59
AgentLM-7B 7.00 0.00 13.70 9.15 9.09 81.82 2.27 3.30 17.69

19

Table 12: Results of CRITICTOOL with Only Harder Tools Evolution Data.

Internal Model-Driven Errors

External Environment Errors

Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 85.00 60.27 84.25 78.38 42.00 53.00 18.00 23.56 55.20
GPT-3.5 78.50 64.38 69.18 50.89 8.00 92.00 53.00 49.21 61.83
GPT-40 88.00 82.19 86.30 82.15 22.00 100.00 55.00 41.85 69.91
Open-Source Large Language Models
LLaMA3-8B 83.00 45.89 77.40 70.72 30.00 77.00 25.00 23.89 55.49
LLaMA3.1-8B 87.00 71.92 80.82 68.62 50.00 79.00 29.00 26.11 57.92
Qwen2.5-7B 83.00 45.89 77.40 70.72 31.32 77.01 29.60 8.25 53.90
GLM4-9B-chat 71.00 34.25 64.38 52.06 22.00 100.00 44.00 29.04 55.05
Ministral-8B 52.50 32.88 68.49 58.84 18.00 92.00 12.00 5.15 44.91
LLaMA3-70B 67.50 35.62 73.29 65.19 36.00 87.00 31.00 22.59 53.97
LLaMA3.1-70B 88.00 67.12 83.56 70.57 71.55 94.54 44.25 4.30 63.67
Qwen2.5-72B 87.00 52.05 84.25 79.52 53.00 100.00 60.00 40.77 71.24
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 0.00 0.00 1.61 0.00 0.00 0.00 0.13
ToolACE-8B 17.50 0.00 21.23 17.84 0.29 0.00 0.00 0.00 6.63
AgentLM-7B 23.50 0.00 43.84 30.18 10.26 92.00 26.00 27.76 29.01
Table 13: Results of CRITICTOOL with With Only Noisy Query Evolution Data.
| Internal Model-Driven Errors | External Environment Errors |
Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 76.83 44.64 81.55 73.23 31.67 43.19 18.26 20.80 49.28
GPT-3.5 83.00 63.70 67.81 54.24 1.00 49.00 62.00 28.00 58.38
GPT-40 77.50 65.75 86.30 78.89 31.00 68.00 51.00 52.79 68.42
Open-Source Large Language Models
LLaMA3-8B 51.00 25.34 77.40 68.47 45.00 79.00 28.00 27.62 51.96
LLaMA3.1-8B 83.50 69.86 74.66 65.82 56.00 67.00 21.00 13.54 54.44
Qwen2.5-7B 82.50 45.21 76.71 67.83 26.00 70.00 39.00 34.98 57.35
GLM4-9B-chat 57.00 22.60 54.79 45.44 26.00 100.00 37.00 22.20 48.17
Ministral-8B 46.00 23.97 65.75 55.94 56.00 58.00 21.00 23.37 43.41
LLaMA3-70B 55.00 24.66 65.07 60.25 43.18 82.55 32.89 34.84 51.46
LLaMA3.1-70B 84.00 67.12 78.77 64.45 79.00 100.00 71.00 38.23 71.93
Qwen2.5-72B 88.50 58.90 79.45 73.76 52.00 99.00 58.00 30.16 68.40
Tool-Use-Finetuned Large Language Models
ToolLLaMA?2 - 7B 1.56 0.70 431 1.09 1.99 0.85 0.58 0.59 0.61
ToolACE - 8B 13.86 1.02 12.86 14.28 297 1.58 6.14 6.28 7.33
AgentLM - 7B 25.53 0.27 46.92 34.17 7.63 93.00 22.81 22.71 25.85

20

Table 14: Results of CRITICTOOL with Only Extra Tools Evolution Data.

\ Internal Model-Driven Errors \ External Environment Errors

Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 81.50 56.16 82.88 75.02 42.00 54.00 24.00 33.30 56.25
GPT-3.5 80.00 69.18 71.23 52.45 8.00 83.00 53.00 53.48 62.29
GPT-40 70.50 59.59 85.62 78.51 17.00 100.00 55.00 44.34 68.78
Open-Source Large Language Models
LLaMA3-8B 82.50 46.58 77.40 66.95 23.47 67.35 22.45 31.15 53.87
LLaMA3.1-8B 86.50 70.55 78.77 68.26 43.00 88.00 22.00 21.17 57.59
Qwen2.5-7B 82.00 45.89 77.40 68.58 23.56 81.32 3391 30.35 57.70
GLM4-9B-chat 53.00 25.34 63.70 52.49 12.00 90.00 39.00 27.98 49.41
Ministral-8B 49.50 26.03 69.86 57.87 57.00 57.00 17.00 14.78 42.88
LLaMA3-70B 62.00 35.62 68.49 60.04 3191 80.85 29.79 35.25 49.52
LLaMA3.1-70B 79.50 59.59 82.88 62.01 62.00 97.00 59.00 40.48 68.21
Qwen2.5-72B 87.50 54.11 86.30 76.90 32.00 97.00 57.00 34.81 68.56
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 6.85 2.40 0.00 0.00 3.03 0.00 1.89
ToolACE-8B 19.50 1.37 20.55 17.52 0.00 6.00 15.00 24.59 13.64
AgentLM-7B 26.00 0.00 42.47 34.42 17.14 88.57 14.29 13.80 32.49
Table 15: Results of CRITICTOOL with Only Long Context Evolution Data.
\ Internal Model-Driven Errors \ External Environment Errors
Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 73.56 41.12 86.23 78.11 24.23 62.11 31.11 36.56 57.12
GPT-3.5 63.50 67.81 67.12 51.31 1.00 99.00 62.00 25.67 58.95
GPT-40 64.00 48.63 86.99 80.88 24.00 75.00 48.00 38.89 66.28
Open-Source Large Language Models
LLaMA3-8B 26.50 1.37 61.64 51.23 27.29 78.88 2545 34.98 41.98
LLaMA3.1-8B 76.00 60.96 75.34 65.23 51.00 68.00 27.00 29.39 55.99
Qwen2.5-7B 77.50 45.89 76.71 67.80 19.00 84.00 54.00 34.87 60.90
GLM4-9B-chat 48.00 18.49 60.27 49.12 15.00 100.00 29.00 17.91 45.85
Ministral-8B 45.00 20.55 69.86 59.39 53.00 65.00 27.00 26.51 46.37
LLaMA3-70B 36.00 15.75 68.49 61.74 11.89 95.65 19.39 23.42 46.07
LLaMA3.1-70B 73.50 50.68 87.67 69.18 37.00 100.00 55.00 33.55 66.08
Qwen2.5-72B 80.50 48.63 85.62 79.75 21.00 99.00 48.00 30.65 65.42
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.15
ToolACE-8B 7.50 0.68 12.33 11.64 1.00 0.00 10.00 16.19 8.39
AgentLM-7B 13.50 0.00 23.29 17.64 12.50 91.67 16.67 14.54 26.54

21

Table 16: Self-Critique Evaluation on different error patterns.

Models Tool Sel. Errors Tool Halluc. Errors Param. Key Errors Param. Value Errors
Reflect Correct Reflect Correct Reflect Correct Reflect Correct
Closed-Source Large Language Models
Claude3.5 10.15 56.29 93.29 65.74 93.21 90.59 94.11 90.80
GPT-3.5 7.32 32.81 80.10 27.89 82.65 79.07 86.96 66.28
GPT-40 23.42 59.18 97.72 70.43 79.65 92.81 86.17 90.22
Open-Source Large Language Models
LLaMA3-8B 7.68 41.58 70.30 52.29 61.39 83.07 67.79 78.12
LLaMA3.1-8B 19.48 41.29 97.49 54.69 98.47 88.90 92.60 82.60
Qwen2.5-7B 28.14 37.61 96.51 57.68 97.40 85.96 93.38 85.25
GLM4-9B-chat 9.58 18.35 61.42 42.34 55.98 69.83 62.93 55.86
Ministral-8B 4.27 34.42 70.07 42.38 23.68 77.86 29.43 70.35
LLaMA3-70B 8.15 43.09 70.21 55.33 57.48 76.95 54.99 66.00
LLaMA3.1-70B 14.11 49.66 94.51 51.17 90.79 78.61 91.53 83.18
Qwen2.5-72B 36.92 55.91 94.03 59.34 95.37 91.08 97.03 93.73
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.29 0.00 0.76 0.00 0.30 0.93 1.00 1.65
ToolACE-8B 0.28 11.11 3.25 5.01 2.74 19.16 4.31 13.48
AgentLM-7B 0.56 20.70 1.26 22.83 0.30 50.62 0.68 40.53
Table 17: Results of CRITICTOOL-CoT on Base and Evolutionary Datasets.
‘ Internal Model-Driven Errors ‘ External Environment Errors Overall
Models Reflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args
Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol | Base | Evol
Closed-Source Large Language Models
Claude3.5 91.7 83.2 71.2 575 90.7 86.3 83.8 79.1 37.3 264 94.4 67.5 36.9 24.7 514 36.5 71.8 59.3
GPT-3.5 67.0 70.4 52.1 49.7 84.4 71.3 70.3 64.0 15.1 6.0 81.0 83.8 63.5 59.0 48.5 40.1 64.8 63.4
GPT-40 914 | 883 | 865 | 825 | 904 | 842 | 851 | 809 | 456 | 40.5 | 100.0 | 99.2 | 47.6 | 468 | 629 | 615 | 78.0 | 732
Open-Source Large Language Models
LLaMA3-8B 70.9 71.9 48.9 40.7 79.8 78.6 74.0 719 43.7 442 82.9 78.1 55.6 41.1 29.9 32.0 62.5 58.7
LLaMA3.1-8B | 902 | 83.5 | 777 | 716 | 853 | 804 | 791 | 717 | 520 | 540 | 893 | 89.6 | 563 | 53.6 | 283 | 300 | 70. | 67.0
Qwen2.5-7B 88.5 79.8 49.1 43.6 83.5 822 71.2 753 794 69.3 92.1 93.7 56.0 537 349 30.6 69.3 66.1
GLM4 - 9B - chat 78.4 59.3 33.0 28.8 76.5 67.2 65.2 57.8 28.2 219 86.1 90.3 49.6 43.4 42.0 37.6 60.4 52.7
Ministral - 8B 45.6 45.9 20.5 20.2 76.1 72.1 68.7 62.5 69.0 59.9 40.5 51.3 15.5 14.5 23.6 13.1 43.7 43.6
LLaMA3 - 70B 69.1 575 42.8 332 83.3 72.8 75.8 64.2 56.4 39.2 83.2 86.2 50.0 453 254 28.4 61.7 53.0
LLaMA3.1 - 70B 90.0 77.2 75.8 62.2 85.8 82.7 73.4 69.2 70.2 63.0 96.4 97.1 65.9 59.0 36.8 27.9 73.8 65.2
Qwen25-72B | 917 | 834 | 579 | 483 | 853 | 803 | 79.6 | 73.1 | 698 | 67.3 | 968 | 993 | 683 | 62.6 | 57.4 | 477 | 766 | 727
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.4 0.6 0.0 0.0 0.9 1.5 0.2 0.2 0.0 1.5 0.4 12 0.0 0.0 0.0 0.0 0.3 0.6
ToolACE-8B 14.6 9.1 1.8 1.0 20.4 16.5 18.2 14.3 4.0 22 10.7 2.4 7.1 6.2 10.5 14.8 11.9 10.3
AgentLM-7B 252 | 165 -0 0.0 48.6 | 318 | 354 | 229 | 475 | 409 | 483 59.8 | 194 | 17.6 | 164 | 21.6 | 30.1 | 26.7

22

Table 18: Results of CRITICTOOL-CoT with Only Mixed Evolution Data.

Internal Model-Driven Errors

External Environment Errors

Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 78.00 52.74 76.03 67.67 15.00 62.00 24.00 27.52 52.41
GPT-3.5 70.50 54.79 69.18 58.27 3.00 78.00 39.00 27.63 53.49
GPT-40 84.50 78.08 74.66 70.17 33.31 100.00 42.49 41.66 67.27
Open-Source Large Language Models
LLaMA3-8B 73.50 48.63 74.66 69.94 42.58 84.62 26.54 24.16 56.33
LLaMA3.1-8B 81.50 70.55 73.29 64.19 51.00 88.00 43.00 22.77 61.44
Qwen2.5-7B 73.50 48.63 74.66 69.94 57.00 93.00 39.00 24.16 60.18
GLM4-9B-chat 38.00 15.07 54.11 44.43 12.00 84.00 30.00 24.24 41.42
Ministral-8B 52.50 33.56 67.12 57.26 75.00 30.00 4.00 2.00 36.41
LLaMA3-70B 46.00 30.82 59.59 51.27 23.96 78.12 22.92 18.67 43.47
LLaMA3.1-70B 71.50 55.48 71.92 59.48 63.00 97.00 56.00 17.24 61.09
Qwen2.5-72B 77.50 47.26 76.03 69.25 66.00 97.00 49.00 30.96 64.11
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.00 0.00 0.00 0.00 4.20 3.93 0.00 0.00 0.80
ToolACE-8B 9.00 0.00 20.55 16.38 2.00 0.81 8.00 10.41 9.42
AgentLM-7B 8.00 0.00 10.27 6.44 27.45 0.84 13.64 18.34 9.60
Table 19: Results of CRITICTOOL-CoT with Only Harder Tools Evolution Data.
\ Internal Model-Driven Errors \ External Environment Errors
Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 85.50 60.96 86.99 78.54 30.00 69.00 27.00 43.80 61.94
GPT-3.5 81.50 69.18 77.40 64.30 11.00 82.00 63.00 45.71 65.48
GPT-40 90.00 85.62 89.04 82.84 39.00 100.00 45.00 68.61 77.34
Open-Source Large Language Models
LLaMA3-8B 84.50 41.78 83.56 75.80 43.00 84.00 58.00 41.22 66.17
LLaMA3.1-8B 86.50 73.97 82.88 71.60 45.00 96.00 57.00 31.97 69.21
Qwen2.5-7B 84.50 41.78 83.56 75.80 74.60 94.44 46.83 5.92 62.34
GLM4-9B-chat 69.50 34.93 79.45 65.87 31.39 83.84 46.51 34.75 58.58
Ministral-8B 46.00 23.97 73.29 62.28 36.00 96.00 9.00 13.92 46.97
LLaMA3-70B 72.50 45.21 80.82 69.43 54.00 90.00 54.00 29.69 63.06
LLaMA3.1-70B 87.00 67.81 86.30 70.90 70.63 98.02 48.02 6.38 65.45
Qwen2.5-72B 87.50 47.95 84.93 77.81 67.00 98.00 61.00 49.16 72.53
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 2.05 0.50 1.02 3.38 0.00 0.00 0.99
ToolACE-8B 14.50 2.05 21.23 17.59 0.00 0.08 10.00 18.65 11.79
AgentLM-7B 21.50 0.00 50.68 36.03 50.00 3.07 13.27 15.06 22.37

23

Table 20: Results of CRITICTOOL-CoT with With Only Noisy Query Evolution Data.

\ Internal Model-Driven Errors

External Environment Errors

Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 86.50 60.27 88.36 81.74 21.00 70.00 21.00 33.91 59.98
GPT-3.5 81.50 74.66 90.41 86.94 59.00 41.00 17.00 24.67 57.57
GPT-40 86.00 67.12 82.19 70.62 8.00 92.00 64.00 37.10 67.60
Open-Source Large Language Models
LLaMA3-8B 70.00 45.89 84.93 77.76 58.00 85.00 51.00 36.84 64.82
LLaMA3.1-8B 87.00 73.29 84.93 79.29 65.00 88.00 59.00 33.00 70.91
Qwen2.5-7B 86.00 44.52 88.36 8291 82.00 94.00 64.00 41.58 72.78
GLM4-9B-chat 61.50 32.19 73.08 66.10 24.00 100.00 45.00 40.57 60.83
Ministral-8B 37.50 14.38 77.40 69.18 59.00 50.00 13.00 20.00 42.58
LLaMA3-70B 65.50 38.36 75.34 67.55 61.00 89.00 57.00 33.24 61.76
LLaMA3.1-70B 86.00 73.29 83.56 71.29 79.00 100.00 61.00 30.15 71.78
Qwen2.5-72B 85.00 50.00 86.99 81.75 77.00 99.00 66.00 52.21 75.24
Tool-Use-Finetuned Large Language Models
ToolLLaMA?2 - 7B -1.23 -1.12 1.21 1.34 -0.23 1.12 1 0.12 0.78
ToolACE - 8B 10.12 0.98 20.12 17.89 3.12 2.12 11 15.89 11.87
AgentLM - 7B 20.12 -1.23 43.23 31.12 41.12 1.12 13 12.98 19.87
Table 21: Results of CRITICTOOL-CoT with Only Extra Tools Evolution Data.
\ Internal Model-Driven Errors \ External Environment Errors
Models Reflect Correct Retr Skip/Finish Overall
Detect Category Tool Args y Break Tool Args
Closed-Source Large Language Models
Claude3.5 85.50 62.33 89.73 82.50 30.00 63.00 20.00 32.64 59.46
GPT-3.5 80.00 67.81 76.71 57.88 6.00 71.00 62.00 47.31 62.32
GPT-40 86.50 80.82 87.67 80.69 41.00 100.00 46.00 62.99 75.38
Open-Source Large Language Models
LLaMA3-8B 82.50 40.41 80.14 72.61 35.71 68.37 31.63 28.72 56.30
LLaMA3.1-8B 84.50 73.97 81.51 70.50 44.00 94.00 55.00 30.33 67.75
Qwen2.5-7B 83.50 41.10 82.19 71.53 67.06 98.02 56.75 37.07 67.65
GLM4-9B-chat 67.00 32.19 66.44 52.22 20.00 92.00 51.00 49.14 57.54
Ministral-8B 44.00 21.23 75.34 65.33 68.00 38.00 16.00 17.75 41.79
LLaMA3-70B 61.50 37.67 78.77 68.47 43.88 88.78 52.04 33.85 60.40
LLaMA3.1-70B 83.00 64.38 83.56 66.37 62.00 97.00 63.00 34.60 69.52
Qwen2.5-72B 85.50 52.05 83.56 75.42 62.00 98.00 68.00 61.86 74.88
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 1.00 0.00 2.05 0.00 1.09 4.08 0.00 0.00 1.07
ToolACE-8B 10.00 0.00 20.55 19.57 3.00 3.17 12.00 15.61 11.79
AgentLM-7B 22.00 0.00 43.84 31.44 40.22 1.23 20.65 27.16 22.86

24

Table 22: Results of CRITICTOOL-CoT with Only Long Context Evolution Data.

Internal Model-Driven Errors

External Environment Errors

Models Reflect Correct Retry Skip/Finish Overall
Detect Category Tool Args Break Tool Args
Closed-Source Large Language Models
Claude3.5 77.00 43.15 86.30 77.29 30.00 68.00 26.00 39.37 58.06
GPT-3.5 65.50 50.00 90.41 84.77 53.00 47.00 24.00 38.25 56.87
GPT-40 84.00 64.38 80.82 68.95 2.00 96.00 67.00 42.77 68.27
Open-Source Large Language Models
LLaMA3-8B 49.00 26.71 69.86 63.16 41.67 68.75 38.54 29.21 50.08
LLaMA3.1-8B 78.00 66.44 79.45 72.81 65.00 82.00 54.00 31.95 65.73
Qwen2.5-7B 71.50 41.78 82.19 76.55 66.00 89.00 62.00 44.05 67.70
GLM4-9B-chat 46.00 20.55 64.38 55.09 15.00 100.00 38.00 32.87 50.96
Ministral-8B 40.50 15.07 73.29 65.85 54.00 52.00 23.00 17.95 43.07
LLaMA3 - 70B 34.23 18.01 59.87 55.12 16.11 92.00 30.00 17.56 44.34
LLaMA3.1 - 70B 65.12 41.23 78.11 68.98 46.34 99.00 56.00 40.11 63.27
Qwen2.5 - 72B 71.34 35.01 76.23 70.01 54.23 99.00 60.00 49.34 66.78
Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.00 0.00 0.68 0.00 0.00 3.00 0.00 0.00 0.60
ToolACE-8B 9.50 0.00 13.01 12.13 1.00 1.00 9.00 12.25 8.00
AgentLM-7B 3.50 0.00 5.48 1.03 32.58 76.84 23.00 31.88 22.83

25

Standardization of Test Data

System Prompt:

You are a assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (/) in
the response.

{
"name": string, // tool name to call
"args": Record<string, any> // input params required by current tool in JSON format
3
If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{
"name": "FinishAction”,
"args": "string" // your final response to the query
3

Remember: only generate ONE step each time.

User: Help me maintain a social media presence by crafting a tweet that states, ’Managed to
archive important data files!” using the hashtags #DataManagement and #Efficiency.

{
"name”: "TwitterAPI.authenticate_twitter”,
"args": {"username”: "dr_smith"”, "password”: "securePass123"}
3
{
"authentication_status”: true
}

Prediction: The assistant’s tool-calling action for the next step.
Ground True:

{
"name"”: "TwitterAPI.post_tweet”,
"args": {"content”: "Managed to archive important data files!”, "tags": ["#DataManagement”,
"#Efficiency”1}

3

Figure 10: An example of standardized test data.

26

Insight into Internal Model-Driven Error

User: Retrieve information about author John Smith.
Ground True:

{
"name"”: "GoogleScholar.get_author_id",
"args": {"mauthors”: "John Smith"}

}

Error Prediction:

Asgsistant ¥
"name" : Calls API "text": "Fully empty”,
"GoogleScholar.get_author_information", —r—0—n- "error": "GoogleScholar hasn’t returned
"args": {"author_id": "John Smith"} any results for this author_id."

) X)

Continue Prediction:

Agsistant
"name”: "GoogleScholar.get_author_id", Calls APL & 1/ c o wp s N
"args”: {"mauthors”: "John Smith"} ("author_id": "0JuNTSEAAAAT"]

3 .

sistant 4 Correct Agsistant

A{”S'S ,‘,“1 ., "name"”: "FinishAction”,
”name 8 . o "args": "I am unable to find any information
GoogleScholar.get_author_information”, about author John Smith in GoogleScholar.”

"args": {"author_id": ”OjuNTSgAAAAJ“V }

Figure 11: Examples of LLMs’ performance in the presence of internal errors.

Insight into External Environment Error

User: Read the content of "/home/user/Documents/file.txt", then find the upcoming action movies

in China.

Prediction:

Assistant
ngimznf {f;ﬁgpegiﬁi?n.read_hle ! Calls APL "text”: "Error: [Errno 13] Permission
”/hime}user/DoEﬁment:;,/file txt”} denied: ’/home/user/Documents/file.tx%”

) v ’

Continue Prediction:

Assistant Assistant
"name": "FileOperation.read_file", "name"”: "FileOperation.read_file",
"args": {"file_path": "args": {"file_path":
"/home/user/Documents/file.txt"} "/home/user/Documents/file.txt"}

3 3
CalllAPI CalllAP[
T ¢
"text": "Error: [Errno 13] Permission "text": "Error: [Errno 13] Permission
denied: ’/home/user/Documents/file.txt’” denied: ’/home/user/Documents/file.txt’"
} }
l . (Endlessly Retry)

Assistant "\fsmf}"t v wEiL) 4 File
"name": "FilmDouban.coming_out_filter"”, ”name". fl'eOperat}Ion.rea =TaLE™s
args”: {} args": {"file_path":

3 gs™: J "/home/user/Documents/file.txt"}
y X

Figure 12: Examples of LLMs’ performance in the presence of external errors.

27

Collected Tool-Calling Traject

System Prompt:
Same as standardized test data.

User: Tool-use task.

"name"”: Golden answer APIT,
"args": Golden answer parametersl

{Response from API1 to the input parametersi}

"name"”: Golden answer API2,
"args": Golden answer parameters?2

{Response from API2 to the input parameters2}

"name”: "FinishAction”,
"args": "The answer of the task is

"

Figure 13: An example of collected tool-calling trajectories.

Refined API Documentation

{
"name": "TravelAPI.cancel_booking",
"description”: "Cancel a booking",
"required_parameters”: [
{
"name"”: "access_token",
"type": "string"”,
"description”: "[Required] The access token obtained from the authenticate”
3,
{
"name": "booking_id",
"type": "string”,
"description”: "[Required] The ID of the booking"”
3
P
"optional_parameters”: [],
"return_data"”: [
{
"name": "cancel_status"”,
"description”: "The status of the cancellation, True if successful, False if failed”
3,
{
"name"”: "error”,
"description”: "The error message if the cancellation failed"”
3
]
3
\

Figure 14: An example refined API documentation: Travel API.

28

Error Simulator

System Prompt:

Character Introduction

You are a large language modeling engineer, and your current task is to modify some conversation
datas of large language model interacting with some external tool APIs. Your goal is to modify the
content of the last reply of assistant in the correct dialog so that an error occurs and matches the
error category I have given.

Description of the Dialogues Structure

- User presents the task and describes the problems to be solved.

- Assistant replies to solve the problems, may call the tool API or give the answer directly.

- Function is a tool API return that provides actual datas or the results of performing a specific
action.

- The interaction consists of several steps, and the assistant solves the problems step-by-step by
calling functions.

Your Task

- Find the dialog to be modified: identify the last assistant response in each dialog that is the target
of the message you need to modify.

- Understanding error categories: I will provide you with a specific error category, and you need to
analyze the original dialog according to the error category and find out what needs to be modified,
making sure that each step of your analysis is clear and reasonable.

- Conduct modifications: make the appropriate modifications based on the error category so that
the dialog contains errors that match that error category.

Response Format

Follow the JSON format to output only the modified dialog without redundancy, and do not add

comments (//) in the response.
{

"role": "assistant”,
"content":"{(’thought’: string, // goal at current step)
’name’: string, // tool name to call
’args’: Record<string, any>} // input params required by current tool in JSON
format”
3
Notes

- Accuracy of JSON format: Please strictly follow the reply format, and output only the modified
wrong tool call action of assistant.

- Reasonability of tool call: even if the error is generated, the called tool and its argument settings
should be within a reasonable range, and the error should have some relevance to the correct dialog.
- Keep the chain of thought clear: although it is a simulation of the dialog and errors, assistant’s
thought process still needs to be clear and reasonable. Even if an error occurs, the logic of the
assistant’s reasoning when calling the tool should be complete.

Modification Example

[Randomly select 3 instances of a specific pattern of error from benchmark tests as few-shot.]

User:
Now I'll provide you with the error type and the correct dialog trajectory, please modify the last
assistant’s response to correspond to the error type.

Error Type: Tool Select Error/Tool Hallucination Error/Parameters Key Error/Parameters Value Error
Correct Dialog Trajectory: [randomly select the first k steps of tool call trajectory]

Figure 15: An example prompt of Error Diversification.

29

API Simulator

System Prompt:

Imagine you are an API Server operating within a specialized tool, which contains a collection of
distinct APIs. Your role is to deeply understand the function of each API based on their descriptions
in the API documentation. As you receive specific inputs for individual API calls within this tool,
analyze these inputs to determine their intended purpose. Your task is to craft a response that aligns
with the expected output of the API, guided by the provided examples.

Please note that your answer should not contain anything other than a json format object, which

should be parsable directly to json, which is as follows:
{

"error": "",
"response”: "<Your_Response>"

}
The error field should returns an explicit error message describing the cause of the error if
there are any errors in the API Input. The response field must adhere strictly JSON format.
<Your_Response> should contain the return_data you formulate based on the API’s functionality
and the input provided. Ensure that your responses are meaningful, directly addressing the API’s
intended functionality.
API calls may fail for various reasons, such as invalid input parameters, authentication issues,
or server errors. Your goal is to generate a response that accurately reflects the API’s intended
functionality, even if the input parameters are incorrect. Your response should be informative
and relevant to the API’s purpose, providing a clear and concise explanation of the expected
output based on the input provided. If the user explicitly requests messages about failed api calls,
and most of the examples provided get an error response despite passing in correct and valid
parameters, please generate a failed tool call response containing some external environment errors.
The external environment errors include rate limit exceeded, permission denied, maximum quota
exceeded, timeout, connection error and so on. Please randomly select one kind of error above, the
error message should match the corresponding api as much as possible, and don’t show the words
"external environment error".
Note that:
- You should strictly validate the parameters of the API Input to ensure all required_parameters
are provided, the value of each parameter strictly conforms to the type specified in the api
documentation, and there are no redundant parameter keys passed in. Be careful to identify the
types of incoming parameters, even if they are the same as those specified by required_parameters
when converted to strings, a different type can cause an error.
- If there is no error in the API Input and no explicit require by user, you should fill in the response
field according to the rules, and the error field should remain empty. Otherwise, you should fill in
the error field according to the rules, and the response field should remain empty.
- The response and error fields are not allowed to be filled in at the same time, you are only allowed
to fill in one depending on the situation.
- Your response should be around 100 to 200 words, containing rich information given the api input
parameters. Keep Your answer short and simple.
User:

API Documentation:
{api_doc}

API Examples:

{api_cache}

API Input:

{input args}

Figure 16: Prompt of API simulator.

30

CRITICTOOL Data Examplel: Internal Error Critique Task

You are a assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (/) in
the response.

{
"name"”: string, // tool name to call
"args": Record<string, any> // input params required by current tool in JSON format
}
If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{
"name": "FinishAction”,
"args": "string" // your final response to the query
}

If you realize that an error occurred in the last step, then please analyze the error in the last step and
regenerate the step to ensure that you get the correct response. Indicate the error type and select
one of the following categories: tool select error(an exists but incorrect tool was chosen), tool
hallucination error(a nonexistent tool was selected), parameters value error(the input parameter
format or content is incorrect), parameters key error(incoming parameter keys are unrecognizable
or required parameters are missing). And please using the following format to reply:

{

"error": string, //description about the type of error in the last step (tool select
error, tool hallucination error, parameters value error, parameters key
error)

"name": string, //tool name to call

"args": Record<string, any> // input params required by current tool in JSON format

3
Remember: only generate ONE step each time.
User:

Send an email to the team members(team_members @example.com) with the title "Project Update’,
... After sending the email, check for unread messages in the inbox.

Error-Injected Data (parameters key error, ’content’ should be "body’):

{
"name"”: "Email.send”,
"args": "{’address’: ’team_members@example.com’, ’title’: ’Project Update’, ’content’: ’Dear
team members...’}"

3

Invalid parameter key: ’content’. Please provide all required parameters as defined in the API
documentation.

Error-Free Data (interaction data without any errors):

{
"name"”: "Email.send”,
"args": "{’address’: ’team_members@example.com’, ’title’: ’Project Update’, ’body’: ’Dear team
members...’}"
3
{
"state”: "Send mail successfully.”
}

Figure 17: An example of internal error critique task in CRITICTOOL.

31

CRITICTOOL Data Example2: External Error Critique Task

You are a assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (/) in
the response.

{
"name"”: string, // tool name to call
"args": Record<string, any> // input params required by current tool in JSON format
}
If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{
"name": "FinishAction”,
"args": "string" // your final response to the query
3

(Continue) If you meet environment error from tool call, please retry to call it NO MORE THAN
THREE TIMES, and if it still fails, you should skip the current step and perform the next task.
Please using the following format to reply:

{
"name": string, // tool name to call
"args": Record<string, any> // input params required by current tool in JSON format
3
or
{
"name": "FinishAction”,
"args": "string" // your final response to the query
3

(Finish) If you meet environment error from tool call, please retry to call it NO MORE THAN
THREE TIMES, and if it still fails, you should report the error to the user and ask the user for next

action. Please using the following format to reply:
(

"name"”: "FinishAction”,
"args": "string” // ask user for guidance

User:
Could you fetch the meta information from the first three articles about ’data analysis’? After that,
I would like to know what movies are currently showing in theaters.

(correct tool call)
{

"name": "ArxivSearch.get_arxiv_article_information”,
"args": "{’query’: ’data analysis’}"

}

ERROR: Permission denied, unable to reach Arxiv.org at the moment. Please try again later.

Figure 18: An example of external error critique task in CRITICTOOL.

32

CRrITICTOOL Data Example 3: Noisy Query Evolution Task

You are an assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (/) in

the response.
{

"name": string, // tool name to call
"args": Record<string, any> // input params required by current tool in JSON format

}
If you already know the answer, or you do not need to use tools, please using the following format

to reply:
{
"name": "FinishAction”,
"args": "string"” // your final response to the query
}//Some prompts are simplified

Remember: only generate ONE step each time.

User:

Compose an email to all team members at team_members@example . com detailing the features of
the forthcoming film, ‘Avengers: Endgame’. Subsequently, ascertain the availability of the first
available meeting room from 2:00 PM to 4:00 PM and book it for our weekly marketing assembly.

[Wrong Response]

[Wrong Function Feedback]

Complex Information:
User:
My favourite film is Avengers: Endgame, I want to share it to my team members. Compose an email
to all team members at team_members@example. com detailing the features of the forthcoming
film Avengers: Endgame, including its plot, main characters, and key action sequences. You can
also mention how the movie fits into the Marvel Cinematic Universe and its expected impact on
upcoming releases. Following that, ascertain the availability of the first available meeting room
from 2:00 PM to 4:00 PM and book it for our weekly marketing assembly. Additionally, weekly
marketing assembly is very important. So please confirm the booking once it’s done.
Spelling Errors:
User:
Compose an email to all tem nembers(typo, should be team members) at
team_members@example.com detailing the features of the forthcomeing(typo, forthcom-
ing) film, Avengers: Endgame. Subsequently, ascertain the availability of the first available
meeting room form(typo, from) 2:00 PM to 4:00 PM and book it for our weekly marketig(typo,
marketing) assembly.
Expression Habits:
User:
Please draft an email to all team members at team_members@example.com, highlighting the key
features of the upcoming film Avengers: Endgame. Afterward, could you check if the first available
meeting room is free from 2:00 PM to 4:00 PM and reserve it for our weekly marketing meeting?

Figure 19: An example of Noisy Query Evolution task in CRITICTOOL.

33

Noisy Query Evolution

System Prompt:

Your Task

- You are a helpful assistant and will receive a request from a user. This request is sent to a task
related to the LLM model.

- Your task is to make this request as human-like as possible, such as adding irrelevant information,
adjusting the expression habits that are irrelevant to the final task, adding spelling errors that do
not affect the task, etc.

Example

Here is an example:

{

"Original Query”: string, // the original query
"Query": string, // the example refined query

}

Response Format

Please follow the JSON format and output according to the following structure

{
"Query": string, // the refined query
"Explanation”: string, // the reason why you refine the query

}
Remember: be careful NOT to affect the completion of the task.

User: Here is the user query to be refined: Copy the txt contents of the ‘Quarterl_Reports’
directory and place it in a new directory naming it ‘Archived_Quarterl.

Figure 20: An example prompt of Noisy Query Evolution.

34

Harder Tools Evolution

System Prompt:

Your Task

- You are a helpful expert. You will receive an API document. You need to change the description
of this api but do not change other parts, especially parameters, etc.

- You can change the expression to make it more verbose. Do not change the original meaning of
the description.

Example
Here is an example:
{
{
"Original Document”: dict, // the original document
"API Document”: dict, // the refined API document
3
}

Response Format

Please follow the JSON format and output according to the following structure

{
"API Document”: dict, // the refined API document
"Explanation”: string, // the reason why you refine the API document

)
Remember: be careful NOT to affect the completion of the APIL.

User: Here is the API document to be refined:

{
"name"”: "TimeTool.get_curr_time”,
"description”: "Retrieve the current date and time”,
"required_parameters”: [1],
"optional_parameters”: [],
"return_data”: [
{
"name”: "time",
"description”: "The current date and time in the format YYYY-MM-DD HH:MM"
3
]
},

Figure 21: An example prompt of Harder Tools Evolution.

35

The verification of Long Context

System Prompt:

Your Task

- You are a helpful expert. You will receive a context from LLM and a user query task. Please
judge whether the context will affect the task.

- Please be strict on this question. If it will affect, please reply Yes. If it will not affect, please reply
No.

Response Format

Please follow the JSON format and output according to the following structure
{

"Result": string, // Yes or No
"Reason”: string, // the reason why you think the context will or will not affect the task

User: Here is the context:

{

"role": "user”,

"content”:"..."

3,

{

"role”: "assistant”,

"content”:"..." the context extracted from LongBench
3}

and the user task is:

I am planning a trip from Times Square to Central Park in New York City. I’d like to know the best
path to take, such as walking, biking, or taking public transportation.

Figure 22: An example prompt of the verification of Long Context.

The verification of Noisy Query

System Prompt:

Your Task

- You are a helpful expert. You will receive two user queries: A and B. You need to determine
whether B completely contains the tasks in A and whether there is no ambiguity and typo in the
important expression parts.

- If there is no ambiguity, output Yes, and if there is ambiguity, output No.

Response Format

Please follow the JSON format and output according to the following structure
{
"Result”: string, // Yes or No
"Reason”: string, // the reason why there is or is not ambiguity

User: Here is the user query A:

I am planning a trip from Times Square to Central Park in New York City. I’d like to know the best
path to take, such as walking, biking, or taking public transportation. // the origin user query

Here is the user query B:

I am in the process of meticulously planning an excursion from the bustling Times Square to the
serene Central Park in the heart of New York City. I am quite curious to discover the most optimal
route to embark upon for this journey, whether it be the leisurely stroll of walking, the
environmentally friendly and energetic biking, or the efficient and convenient public
transportation system. Each option presents its own unique set of advantages and challenges, and I
am eager to weigh them all carefully. // the new evolved user query

Figure 23: An example prompt of the verification of Noisy Query.

36

The verification of Extral Tools

System Prompt:

Your Task

- You are a helpful expert. You will receive two tool lists: tool list A and B. Your task is to
determine whether there are particularly similar functions in these two function lists.

- If they are particularly similar, reply yes, otherwise reply no. Please be strict on this question.
Response Format

Please follow the JSON format and output according to the following structure
{

"Result”: string, // Yes or No
"Reason"”: string, // the reason why the two tool lists are similar or different

User: Here is the tool list A:
{

"name”: "Tool 1",
"description”: "...",
"required_parameters”: [],
"optional_parameters”: [],
"return_data”: [

]
{

"name”: "Tool 2",
"description”: "...",
"required_parameters”: [],
"optional_parameters”: [],
"return_data"”: [
]

},// the original tool list

Here is the tool list B:
{

"name"”: "Tool 3",
"description”: "...",
"required_parameters”: [],
"optional_parameters”: [],
"return_data”: [

]
{

"name"”: "Tool 4",
"description”: "...",
"required_parameters”: [1],
"optional_parameters”: [1],
"return_data”: [
]

},// the new added tool list

Figure 24: An example prompt of the verification of Extra Tools.

37

The verification of Harder Tools

System Prompt:

Your Task
- You will receive two API documents: API A and B. Your task is to determine whether the two

APIs are equivalent, that is, whether the corresponding functions have the same parameters and
whether the descriptions have the same meaning.

- The expressions may be slightly different, ignore typos).

- If they are equivalent, answer Yes, otherwise answer No.

Response Format
Please follow the JSON format and output according to the following structure
{

"Result”: string, // Yes or No
"Reason": string, // the reason why the two APIs are equivalent or different

User: Here is the API A:
{

"name”: "Tool 1",
"description”: "...",
"required_parameters”: [],
"optional_parameters”: [],
"return_data": [
]

}, //the origin API document

Here is the API B:
{

"name”: "Tool 2",
"description”: "...",
"required_parameters”: [],
"optional_parameters”: [],
"return_data”: [

" "

]
}, //the new evoluted API document

Figure 25: An example prompt of the verification of Harder Tools.

38

Self-Critique Performance in Internal Error-Injected Task

Task:
Error-injected data from internal critique task in Fig. 17.
Prediction (Ground True):
{
"error": "parameters_key_error”,
"name"”: "Email.send”,
"args": "{’address’: ’team_members@example.com’, ’title’: ’Project Update’, ’body’: ’Dear team
members ...’ }"
3
Prediction (Error Ignorance):
{
"name"”: "Email.show",
"args": "{’only_unread’: True}"
}
Prediction (Correction Without Reflection):
{
"name"”: "Email.send”,
"args": "{’address’: ’team_members@example.com’, ’title’: ’'Project Update’, ’body’: ’Dear team
members...’}"
3
Prediction (Failure to Detect):
{
"error": "parameters_value_error”,
//(Error correction is uncertain)
}
Prediction (Failure to Correct):
{
"error”: "parameters_key_error”,
//(Does not match groundtruth answer)
}
Prediction (Tool Call Interruption):
{
"name"”: "FinishAction”,
"args": "Cannot send email successfully.”
}

Figure 26: Qualitative examples of self-critique performance in internal error-injected task.

Self-Critique Performance in Internal Error-Free Task

Task:
Error-free data from internal critique task in Fig. 17.

Prediction (Ground True):

{
"name”: "Email.show",
"args": "{’only_unread’: True}"
3
Prediction (Over-Reflection):
{
"error”: ...,
3

Figure 27: Qualitative examples of self-critique performance in internal error-free task.

39

Self-Critique Performance in External Error Task

Task:
External critique task in Fig. 18.
Prediction (Continue Ground True):
{
"name"”: "ArxivSearch.get_arxiv_article_information”,
"args": "{’query’: ’data analysis’}"
3
...(Repeat no more than three times)
{
"name”: "FilmTMDB.get_now_playing"”,
"args”: "{}"
3
Prediction (Finish Ground True):
{
"name": "ArxivSearch.get_arxiv_article_information”,
"args": "{’query’: ’data analysis’}"
3
...(Repeat no more than three times)
{
"name”: "FinishAction”,
"args": "I am unable to access ’ArxivSearch.get_arxiv_article_information’ to get articles on
data analysis, could you provide further guidance on what to do?”
3
Prediction (Endless Retry):
{
"name": "ArxivSearch.get_arxiv_article_information”,
"args": "{’query’: ’data analysis’}"
3
...(Repeat more than three times)
Prediction (Hallucination):
{
"name"”: "FinishAction”,
"args": "I have fetched the meta information from the first three articles about ’data
analysis’.”
3}

Figure 28: Qualitative examples of self-critique performance in external error task.

40

	Introduction
	CriticTool
	Motivation: LLMs' Performance on Popular Tool-Use Benchmarks
	Dataset Construction
	Error Patterns
	Tool-Use Data Collection
	Error Diversification
	Tool Response Handling
	Data Evolution
	Dataset Summary

	Fine-Grained Evaluation
	Self-Critique Task Decomposition
	Evaluation Metrics

	Experiment
	Experiment Setup
	Benchmarking Results on CriticTool

	Related Work
	Conclusion
	Observation: Insight into LLMs' Tool-Use Performance
	CriticTool Benchmark Details
	Comparison
	Dataset Summary

	Implementation Details
	Data Collection
	Prompts Demonstration
	Error Data Diversification
	Tool Responses Generation
	Data Evolution

	Mitigating Bias in Synthetic Error Data
	Detailed Evaluation Metrics
	Reflect
	Correct
	Retry
	Skip
	Finish

	Experimental Details
	Cost

	Additional Results
	Full Results on CriticTool
	Full Results on CriticTool-CoT
	Qualitative Examples of Self-Critique Behavior across Different Scenarios
	Results of Self-Critique Performance Across Internal Error Patterns
	How does Noisy Query affect models’ performance?
	Additional Results on Tool-Use and Self-Critique Capabilities

