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Abstract
The ability of large language models (LLMs)001
to utilize external tools has enabled them to002
tackle an increasingly diverse range of tasks.003
However, as the tasks become more complex004
and long-horizon, the intricate tool utilization005
process may trigger various unexpected errors.006
Therefore, how to effectively handle such er-007
rors, including identifying, diagnosing, and re-008
covering from them, has emerged as a key re-009
search direction for advancing tool learning.010
In this work, we first extensively analyze the011
types of errors encountered during the function-012
calling process on several competitive tool eval-013
uation benchmarks. Based on it, we introduce014
CRITICTOOL, a comprehensive critique evalu-015
ation benchmark specialized for tool learning.016
Building upon a novel evolutionary strategy017
for dataset construction, CRITICTOOL holds018
diverse tool-use errors with varying complexi-019
ties, which better reflects real-world scenarios.020
We conduct extensive experiments on CRITIC-021
TOOL, and validate the generalization and ef-022
fectiveness of our constructed benchmark strat-023
egy. We also provide an in-depth analysis of024
the tool reflection ability on various LLMs, of-025
fering a new perspective on the field of tool026
learning in LLMs. Code will be available.027

1 Introduction028

Large Language Models (LLMs) represent a029

groundbreaking advancement in artificial intelli-030

gence, demonstrating remarkable capabilities in031

various tasks (Zhao et al., 2023; Jiang et al., 2024;032

Chen et al., 2023; McAleese et al., 2024). The in-033

teraction between LLMs and external tools empow-034

ers them to address more complex tasks, as these035

tool-calling systems increasingly adapt to dynamic036

real-world environments (Chen et al., 2024c).037

Driven by practical applications and attractive038

ability, the evaluation of tool-use capabilities for039

LLMs remains a topic of ongoing research. Exist-040

ing works are typically confined to single-tool us-041

age scenarios (Xu et al., 2023; Patil et al., 2023) or042

comparing the executions with predefined golden 043

answers (Shen et al., 2023; Ye et al., 2024a,b; Chen 044

et al., 2024b). However, real-world applications 045

often involve complex and multi-step tool-calling 046

tasks, where intricate intermediate trajectories in- 047

troduce opportunities for errors arising either from 048

LLMs themselves (Yan et al., 2024; Sun et al., 049

2024) or from external factors (Guo et al., 2024a). 050

Due to the complexity of the external environment, 051

combined with the inherently challenging nature of 052

tool-use tasks, neglecting the process status of tool 053

invocation may result in biased evaluation. Current 054

benchmarks primarily address these challenges by 055

either filtering out erroneous data (Liu et al., 2024) 056

or treating errors as suboptimal nodes to expand the 057

tool answer search space (Qin et al., 2023; Chen 058

et al., 2024a; Abdelaziz et al., 2024; Song et al., 059

2024). As a result, these approaches fail to provide 060

insights into how LLMs detect and mitigate errors 061

during tool calls, leading to an insufficient evalua- 062

tion of their tool-use capabilities. Given the diverse 063

sources of errors and the various strategies required 064

to address them, we argue that the benchmarks 065

which overlook LLMs’ error recovery cannot accu- 066

rately evaluate a model’s actual tool-use capability. 067

To address these challenges, we introduce CRIT- 068

ICTOOL, the first self-critique evaluation bench- 069

mark for tool utilization of LLMs. Distinct from 070

prior result-oriented evaluation methods, we cate- 071

gorize error patterns more finely and evaluate mod- 072

els from multiple perspectives, enabling a deeper 073

exploration of LLMs’ tool-use capabilities in error- 074

prone scenarios. Specifically, we categorize errors 075

from two main sources: internal model-driven er- 076

rors and external environment errors. We then di- 077

versify our error dataset by ensuring the errors span 078

a wide range of tools and design fine-grained eval- 079

uation protocols for two sources of errors. This 080

paradigm enables a granular evaluation of LLMs’ 081

self-critique capabilities across different dimen- 082

sions: reflect and correct for internal model-driven 083
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Figure 1: Overview of CRITICTOOL construction pipeline. The pipeline begins with collecting and testing
tool-use benchmarks to obtain a variety of correct and incorrect tool-calling trajectories. GPT-based simulators and
repeated API calls are employed to diversify internal and external error patterns. And responses to internal errors
are generated via cache retrieval, API execution, and API simulator. Finally, the error data is evolved using four
distinct strategies, followed by verification and manual review.

errors, and retry with skip or finish for external084

environment errors.085

By conducting extensive experiments on CRIT-086

ICTOOL, we perform a thorough analysis of the087

results, providing valuable insights into LLMs’ be-088

havior when encountering different types of errors089

during tool calls. We observe that different mod-090

els exhibit varying self-critique behaviors when091

encountering errors from different sources.092

The main contributions of our work are summa-093

rized as follows:094

• We observe LLMs’ performance in several095

popular and high-quality tool-use benchmarks096

and provide a comprehensive analysis of error097

distributions.098

• To the best of our knowledge, we are the first099

to introduce CRITICTOOL, a tool self-critique100

evaluation benchmark for LLMs, categorizing101

errors from different sources and patterns.102

• We propose a novel data evolution strategy to103

enrich the error dataset by incorporating more104

complex data scenarios, thus broadening the105

scope and depth of evaluation for LLMs in106

real-world applications.107

• With extensive experiments, we provide a de-108

tailed analysis of the self-critique ability of109

various LLMs, offering a new perspective in110

the field of tool learning.111

2 CRITICTOOL112

In this section, we begin with presenting an in-113

depth analysis of the key issues in current tool114

Table 1: The success rates (%) of advanced LLMs in
recovering from errors across the four datasets.

NESTFUL API-Bank T-Eval BFCL

Qwen-turbo 12.64 6.25 35.14 29.47
Qwen2.5-72B 13.87 8.69 38.71 22.73

GPT-3.5 18.10 7.69 51.11 7.14
GPT-4o 22.16 17.39 54.44 28.57

learning, highlighting the pressing need for tool- 115

specific critique evaluation benchmarks. Building 116

on these observations, we introduce CRITICTOOL, 117

a benchmark designed to systematically explore 118

LLMs’ self-critique1 capabilities. 119

2.1 Motivation: LLMs’ Performance on 120

Popular Tool-Use Benchmarks 121

Tool utilization is a critical yet challenging task 122

in large language model (LLM) applications, re- 123

quiring sophisticated reasoning and practical adap- 124

tation. To identify the current limitations in 125

tool learning, we conduct an in-depth analysis 126

of LLM’s behavioral patterns across various tool- 127

calling benchmarks (Refer to Appendix A for more 128

details). As shown in Tab. 1, our investigation re- 129

veals a noteworthy phenomenon: most LLMs strug- 130

gle to recover from errors2 during the tool-calling 131

process, resulting in eventual task failure. This is- 132

sue becomes particularly pronounced as tasks grow 133

more complex and long-horizon. Despite the sig- 134

nificance of this limitation, existing tool utilization 135

1The model identifying and correctly handling errors.
2Recover from error refers to the ability of an LLM to

successfully handle an error in a given step.
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Figure 2: Examples of Errors in multi-step tool call tasks. Multi-step tool call errors are categorized into five
patterns based on the source and characteristics of the errors: Tool Selection Errors, Tool Hallucination Errors,
Parameters Key Errors, Parameters Value Errors and Environment Errors.

benchmarks rarely directly consider the ability for136

self-critique, leading to insufficient attention to-137

ward improving this capability in tool learning. As138

highlighted by o1 (OpenAI, 2024), the ability to139

self-critique is essential for executing long-horizon140

tasks effectively and serves as a pathway to scal-141

able oversight in LLM reasoning. In this work, we142

seek to fill this gap by introducing CRITICTOOL, a143

benchmark designed to systematically evaluate the144

self-critique capability in tool learning.145

2.2 Dataset Construction146

The construction of the dataset in CRITICTOOL147

consists of four main phases: tool-use data collec-148

tion, error diversification, tool response handling,149

and data evolution. The overview of the construc-150

tion is shown in Fig. 1. More implementation de-151

tails can be found in Appendix C.1 and C.2.152

2.2.1 Error Patterns153

From our observations of LLMs’ tool-use perfor-154

mance in § 2.1, we identify several frequently oc-155

curring error patterns when LLMs function as tool-156

calling assistants, as illustrated in Fig. 2. These157

errors stem from two primary sources: model capa-158

bility limitations often give rise to internal model-159

driven errors related to both tool and parameter160

handling, while external environment errors will161

disrupt task completion.162

• Tool Selection Errors: The assistant selects an163

existing but unsuitable tool for the given task, of-164

ten resulting from generating an incorrect goal, or165

misunderstanding usage of the tool.166

• Tool Hallucination Errors: The assistant at-167

tempts to use a non-existent tool, typically caused168

by task misinterpretation or failure to recognize169

available tools. 170

• Parameter Key Errors: The assistant passes 171

incorrect parameter keys, either omitting required 172

ones or including irrelevant keys, usually due to 173

task miscomprehension or forgetting tool require- 174

ment details. 175

• Parameter Value Errors: The assistant provides 176

incorrect parameter values, usually stemming from 177

failure to comply with the expected input format or 178

overlooking task details. 179

• Environment Errors: Real-world APIs may not 180

always be stable (Guo et al., 2024a). Issues such 181

as connection timeouts or lack of user permissions 182

can disrupt tool interactions, and may cause the 183

assistant to endlessly retry failed calls. 184

2.2.2 Tool-Use Data Collection 185

To construct CRITICTOOL, our goal is developing a 186

tool-use dataset that spans diverse domains of tools 187

and captures a wide range of errors that LLMs en- 188

counter in tool call scenarios. Existing benchmarks 189

have already collected realistic APIs and gener- 190

ated well-designed tool-use tasks with excellent 191

diversity and appropriate complexity, making them 192

ideal sources of tool-use data. We use the datasets 193

from high-quality tool-use benchmarks, including 194

BFCL v3 (Yan et al., 2024) and T-Eval (Chen et al., 195

2024b), which provide access to 203 real-world 196

APIs across 23 tools and a variety of multi-step 197

tool-use tasks that require complex agent-tool in- 198

teractions, perfectly aligning with our goals. 199

We have curated error-containing data while ob- 200

serving LLMs’ behavioral patterns across these 201

benchmarks in § 2.1, but it is far from sufficient. To 202

facilitate more controlled error data generation, we 203
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first collect the ground truth tool-calling trajectories204

including tool call actions and the corresponding205

tool responses across various tasks in these datasets.206

Any data containing errors, such as incorrect an-207

notations or failed tool calls, is carefully manually208

filtered to ensure the quality and reliability of our209

dataset. Next, we extract API documentation and210

refine any ambiguous or inadequate descriptions to211

ensure clarity and precision, minimizing potential212

misunderstandings. To further enhance consistency,213

we standardize all tool-calling trajectories and API214

descriptions, which aligns formats across different215

benchmarks, creating a coherent framework that216

facilitates consistent prompts and reliable tool-use217

interactions throughout our evaluation.218

2.2.3 Error Diversification219

We have identified five patterns of errors from two220

sources in § 2.2.1. To ensure the comprehensive221

coverage of potential scenarios, we systematically222

diversify these errors, significantly expanding our223

error repository.224

• Internal Model-Driven Errors: The internal225

model-driven error data collected from previous226

observation has two limitations that (1) it comes227

from a small subset of tools and tasks, and (2)228

the tests primarily involve advanced LLMs, which229

restricts the coverage of errors that less capable230

models might produce. Moreover, our observation231

reveals that LLMs tend to exhibit similar behaviors232

within a specific error pattern, despite interacting233

with different tools. This similarity allows us to ex-234

pand the diversity of errors in the calling of all tools.235

We prompt GPT-4o as an error simulator, simulat-236

ing error-prone behaviors of tool-calling assistants.237

Using examples of error patterns collected from ob-238

servation as few-shot demonstrations (Brown et al.,239

2020), error simulator is tasked with generating240

diverse instances of errors across a wider range of241

tools and tasks.242

• External Environment Errors: During data col-243

lection, we capture numerous instances of tool re-244

sponses containing external environment errors and245

match them with their corresponding tools. How-246

ever, not all tools in the benchmark datasets include247

such error examples. To fill this gap, we perform248

repeated calls to the accessible APIs to collect the249

error responses arising from environmental insta-250

bility, and employ GPT-4o as an API simulator to251

collect such errors for inaccessible APIs.252

2.2.4 Tool Response Handling 253

The responses LLMs receive from the environ- 254

ments during tool calls are crucial for them to 255

self-criticize, making it essential to obtain tool 256

responses corresponding to internal model-driven 257

errors. However, due to permission restrictions, 258

not all collected APIs are executable. Inspired by 259

StableToolBench (Guo et al., 2024a), we adopt a 260

systematic approach for tool response collection 261

based on the availability status of each API. 262

• Cache Retrieval: We first search the cache to 263

check whether the tool and parameters used in 264

the current call have previously been cached. If 265

a match is found, the cached response is used as 266

the environment’s response for the current tool call. 267

• API Execution: If there is no match in the cache, 268

we then verify the accessibility of API. The tool 269

call is executed and the actual API response is used 270

if the API is available. 271

• Simulator Response: When neither cache nor 272

API is available, we employ GPT-4o as an API sim- 273

ulator to ensure that the tool-calling assistant still 274

receives feedback for its current action. 275

2.2.5 Data Evolution 276

Real-world tool calls typically encompass complex 277

contexts, sophisticated tools, and ambiguous user 278

queries (Wang et al., 2024b). To achieve a more re- 279

alistic evaluation of LLM performance in tool call 280

tasks, we propose a strategy termed Scalable and 281

Robust Mixed Self-Evolution (SRM) to facilitate 282

the self-evolution of data within the origin bench- 283

mark. Specifically, we focus on two critical factors 284

of tool-use tasks: scale and robustness. Based on 285

these factors, we develop four distinct evolution- 286

ary sub-strategies on these perspectives that closely 287

align LLM tool-use tasks with real-world scenarios 288

while preserving the ground truth annotations. 289

• Long Context: We introduce extended conver- 290

sations from LongBench (Bai et al., 2023), mix it 291

with tool-calling data randomly as the context, and 292

insert them prior to the user’s tool-use query. 293

• Extra Tools: Most existing benchmarks merely 294

supply the tools required for specific test tasks, 295

which contrasts sharply with the vast number of 296

APIs involved in real applications. Thus, we pro- 297

pose the Extra Tools evolution strategy, which ran- 298

domly incorporates additional tools into API lists. 299

• Noisy Query: Real user queries are often ver- 300

bose, vague, include unnecessary information, and 301

are prone to typographical errors, which challenge 302

LLMs’ ability to interpret intent. We employ GPT- 303
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4o to simulate human language habits, particular304

focusing on addressing irrelevant information, cum-305

bersome expressions, and typographical issues.306

• Harder Tools: DRAFT (Qu et al., 2024) and307

BFCL v2 (Yan et al., 2024) illustrate the substantial308

impact that API documentation has on LLM tool309

calls. Therefore, we deliberately degrade the API310

document by prompting GPT-4o, thereby making311

the idealized APIs documentation more realistic.312

We combine the four evolutionary sub-strategies313

to increase the difficulty of LLM tool-use tasks,314

involving three key components: context, queries,315

and the API list, enabling the exploration of scala-316

bility and robustness in self-critique.317

After the SRM process, we verify the data to en-318

sure that the ground truth remains unchanged. To319

prevent inappropriate self-critique behavior arises320

from biases by the evolutionary strategies, we intro-321

duce equivalence verification, a novel data verifica-322

tion approach. We use GPT-4o to check whether323

the modifications or additions made during the324

evolution process significantly impact the tool-use325

tasks (refer to Appendix C.2).326

2.2.6 Dataset Summary327

We perform rigorous manual filtering on all gener-328

ated error data to minimize potential biases intro-329

duced by synthetic processes, resulting in a pass330

rate of 18.63%. The final CRITICTOOL dataset331

consists of 1,490 base examples and 1,250 evolved332

examples. More detailed statistics are provided in333

the Appendix B.2.334

2.3 Fine-Grained Evaluation335

CRITICTOOL comprehensively evaluates the self-336

critique capabilities of LLMs by breaking them337

down into multiple dimensions, across different338

error patterns encountered during tool interaction.339

2.3.1 Self-Critique Task Decomposition340

In CRITICTOOL, each tool-use task is defined as341

a tuple (Q,T ), where Q is the task query, and T342

represents the list of APIs available for the tool-343

calling assistant. We define the trajectory T as a se-344

quence of tool-response pairs {(ai, ri)}, capturing345

the interaction between the assistant’s action a and346

the corresponding tool response r in the i-th step.347

The action a is regarded as either (goal, tool, args)348

or (tool, args) depending on whether the chain of349

thought strategy is applied.350

The complex interactions between the assistant351

and the environment can lead to potential errors352

at any step, underscoring the importance of eval- 353

uating LLMs’ self-critique capabilities at the step 354

level (Ye et al., 2024b). Consequently, the test data 355

consists of the first k steps of the tool-calling tra- 356

jectory for each task, where k is randomly chosen, 357

and any errors may be introduced at step k. 358

In internal model-driven errors critique tasks, 359

CRITICTOOL employs both error-free and error- 360

injected data to ensure fairness and robustness. We 361

evaluate the (k + 1)-th step and deconstruct the 362

self-critique process into two dimensions. The tool- 363

calling assistant should recognize whether an error 364

occurred during the preceding tool call first and 365

identify its specific category. This process of iden- 366

tifying and analyzing errors is defined as reflect, 367

a fundamental step in the model’s self-critique. 368

Based on the result of the reflection, the model 369

needs to take corrective action to recover from the 370

error. We define this process as correct, highlight- 371

ing the model’s ability to improve and adapt its 372

behavior effectively. Thus, the solution path is 373

S = (c, â) or S = (â), where c represents the 374

reflect of the error when the model identify it. 375

For tasks involving external environment errors, 376

the assistant is expected to properly handle the re- 377

sponse from the environment that contains the error 378

signal in the subsequent steps. We encourage the 379

assistant to retry the failed tool calls a limited num- 380

ber of times to avoid the incidental error caused 381

by environmental instability. If the issue persists 382

despite multiple retries, the assistant should skip 383

the problematic step and address any remaining fea- 384

sible subtasks or finish the tool-calling process and 385

inform the user that further guidance is required. 386

The solution path is defined as a sequence of ac- 387

tions S = {â1, â2, . . . }. 388

2.3.2 Evaluation Metrics 389

CRITICTOOL employs fine-grained evaluation met- 390

rics to assess each dimension of self-critique behav- 391

ior of LLMs across different error scenarios. The 392

details are provided in Appendix C.4. 393

• REFLECT: The reflect evaluator asks the assis- 394

tant to determine whether to produce a critique 395

cpred, based on the correctness of tool call action 396

ak. Then, cpred is compared with the golden an- 397

swer cgt if an error exists in ak. 398

• CORRECT: The correct evaluator asks the as- 399

sistant to generate a corrected action âpred for a 400

detected error in tool call action ak, and compares 401

âpred with the golden answer âgt. 402

• RETRY: The assistant is asked to generate a re- 403
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Table 2: Main Results of CRITICTOOL. Bold indicates the best performance across all models, while underline
denotes the best performance within the same group and scale of models.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 81.59 55.70 84.89 77.63 38.22 56.27 22.06 26.48 55.83
GPT-3.5 71.18 62.90 71.36 58.09 10.37 89.45 52.23 41.27 60.93
GPT-4o 78.71 69.70 86.05 80.25 20.99 92.08 53.66 42.67 69.01

Open-Source Large Language Models
LLaMA3-8B 56.39 29.24 73.81 65.17 31.81 74.67 27.11 29.95 50.84
LLaMA3.1-8B 83.77 68.09 78.26 69.11 50.94 73.58 25.00 22.10 58.04
Qwen2.5-7B 82.86 44.21 77.32 69.26 28.41 83.06 42.28 24.08 58.61
GLM4 - 9B - chat 56.12 24.01 59.03 48.56 17.89 89.23 35.11 22.05 47.57
Ministral - 8B 46.15 23.45 67.23 57.12 50.11 59.03 17.02 20.11 43.77

LLaMA3-70B 56.11 29.37 69.13 62.61 32.29 73.18 27.66 27.52 49.25
LLaMA3.1 - 70B 79.52 59.78 82.34 65.47 63.12 91.23 51.58 25.89 65.21
Qwen2.5-72B 86.14 52.81 82.59 77.60 36.91 91.75 52.71 30.03 65.70

Tool-Use-Finetuned Large Language Models
ToolLLaMA2 - 7B 0.58 0.00 3.34 0.61 0.92 1.77 0.91 0.00 0.13
ToolACE - 8B 12.98 0.95 14.23 13.22 1.25 8.23 7.67 12.21 9.43
AgentLM-7B 22.97 0.00 47.86 37.20 11.95 84.70 18.13 17.55 33.78

peated tool call âpred1 if any error signal is found in404

rk. The evaluator compares âpred1 with the golden405

answer âgt1 , which corresponds to the action ak.406

• SKIP: If the error from the environment can-407

not be resolved within the retry limit, the assis-408

tant should skip and proceed with the next feasible409

subtask. The skip action âpredn is compared to the410

golden answer âgt2 , which indicates the ground truth411

action for the next subtask.412

• FINISH: The evaluator checks whether the assis-413

tant terminates the tool call and waits for further414

instructions from the user after several unsuccess-415

ful attempts to resolve the environmental error.416

• OVERALL: We calculate the overall score by417

weighing the self-critique dimensions based on418

their importance in completing a tool-calling task.419

The weight assigned to reflect is 0.2, to correct is420

0.3, to retry is 0.05, and to skip/finish is 0.45.421

3 Experiment422

3.1 Experiment Setup423

We conduct evaluations on CRITICTOOL using424

a diverse set of 14 LLMs, to establish a com-425

prehensive self-critique benchmark for assessing426

the capabilities of current large language models.427

For closed-source LLMs, we select three promi-428

nent models: Claude3.5 (Anthropic, 2024) de-429

veloped by Anthropic, alongside GPT-3.5 (Ope-430

nAI, 2022) and GPT-4o (Hurst et al., 2024) pro-431

vided by OpenAI.3 For open-source LLMs, we 432

evaluate numerous models including LLaMA3, 433

LLaMA3.1 (AI@Meta, 2024), Qwen2.5 (Team, 434

2024a,b), GLM4 (GLM et al., 2024), Ministral(AI, 435

2024). For tool-use-fineturned LLMs, we evalu- 436

ate ToolLLaMA2 (Qin et al., 2023), ToolACE (Liu 437

et al., 2024) and AgentLM (Zeng et al., 2023). 438

3.2 Benchmarking Results on CRITICTOOL 439

The detailed experimental results are shown in 440

Tab. 2. Experiments using the chain-of-thought 441

strategy (Wei et al., 2022) are also conducted, lead- 442

ing to improvements in LLMs’ self-critique per- 443

formance, with the results provided in the Ap- 444

pendix D.2. We analyze the benchmarking results 445

by exploring the following four questions. 446

Q1: Which Model is Better at Tool Self- 447

Critique? 448

GPT-4o leads in self-critique performance for tool- 449

use error scenarios, achieving an impressive overall 450

score of 69.01. Close behind, large-scale open- 451

source models LLaMA3.1-70B and Qwen2.5-72B, 452

deliver comparable scores, showcasing strong self- 453

critique capabilities. 454

For internal model-driven errors, the closed- 455

source models GPT-4o and Claude3.5 deliver com- 456

parable top performance, though Claude3.5 slightly 457

underperforms in error categorization. In contrast, 458

3The version for GPT-4o is gpt-4o-2024-08-06, for
GPT-3.5 is gpt-3.5-turbo-16k, and for Claude3.5 is
claude-3-5-sonnet-20241022.
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open-source models exhibit substantial variability459

in self-critique performance. While most open-460

source models significantly lag behind the closed-461

source models, highlighting a clear gap in their462

capabilities, LLaMA3.1 and Qwen2.5 stand out as463

notable exceptions. Their performance not only ap-464

proaches but occasionally surpasses that of closed-465

source models. However, tool-use-fineturned mod-466

els show disappointing results in handling internal467

errors. Except for AgentLM-8B, the other mod-468

els exhibit almost no instruction-following or self-469

critique capabilities, which can be attributed to the470

damage to their generalization ability caused by471

fine-tuning on specific data.472

For external environment errors, most models473

can recognize errors and avoid endless repetition,474

though Claude3.5 and Ministral-8B shows weaker475

performance in this regard, and some tool-use-476

finetuned models entirely lack this ability. When it477

comes to handling errors by either proceeding with478

subsequent tasks or finish tool call action, GPT-4o479

outperforms other models, with some large-scale480

open-source models achieving comparably strong481

performance.482

Q2: What is the self-critique performance of483

LLMs across various scenarios?484

In the internal critique task, models should proceed485

with subsequent tool-calling tasks within error-486

injected data. However, poor performance models487

tend to exhibit over-reflection, mistakenly classify-488

ing a correct step as an errors. For error-injected489

cases, models are expected to accurately reflect and490

correct the mistake it made in the previous step,491

but many models with limited critique capabilities492

fail in such task. In the tool selection error sce-493

nario, LLMs may select the wrong tool while still494

providing valid parameters, leading to silent errors495

without explicit signals from the environment (Sun496

et al., 2024), hindering models’ error reflection. In497

such cases, the most frequently observed poor self-498

critique behaviors are correction without reflection499

or error Ignorance. In contrast, the other three in-500

ternal error scenarios often trigger explicit error501

signals due to invalid tool inputs or parameters,502

aiding models in reflecting and achieving higher503

self-critique success rates. Nonetheless, weaker504

models may still display failure to detect, failure505

to correct, or even experience unexpected tool call506

interruptions.507

In the external critique task, the model should508

retry the failed operation retry within limits, exit the509

loop appropriately, and either complete the remain-510

Figure 3: Comparison of the performance of five mod-
els across various evolution strategies. The red cross
indicates the score corresponding to the base dataset.

ing subtasks or ask user for guidance. However, 511

when models fail to recognize errors, they tend to 512

repeat the same call more than three times, result- 513

ing in a significant resource drain. Some models 514

go further by hallucinating, offering false answers 515

to user questions rather than asking for guidance. 516

More examples and analysis can be found in 517

Appendix D.3 and D.4. 518

Q3: How does Data Evolution Effects? 519

As illustrated in Fig. 3, the data evolution leads 520

to a decline in the scores of all LLMs. GPT-4o 521

retains its SOTA results, while Qwen2.5-7B also 522

demonstrates impressive capabilities. In contrast, 523

LLaMA3-70B experiences significant performance 524

degradation, falling below the performance of most 525

small scale models. This is consistent with Crit- 526

icBench (Lin et al., 2024) experimental observa- 527

tion. We attribute this to the unstable generalizabil- 528

ity of the offline data, a limitation that becomes 529

increasingly pronounced as the number of model 530

parameters grows. We independently test the four 531

sub-strategies to investigate their impact on models’ 532

self-critic performance. The negative impact on the 533

model decreases in the following order: Long Con- 534

text, Noisy Query, Extra Tools and Harder Tools. 535

Long Context and Extra Tools increase the diffi- 536

culty of retrieval and challenge the model’s ability 537

to follow instructions and Extra Tools introduce 538

relatively little extra data. Noisy Query presents a 539

significant challenge to the model’s capacity for 540

comprehension and parameter transfer, reminis- 541

cent of the disruptive influence encapsulated by 542

the adage ‘A loose cannon’. However, as the API 543

documents become more verbose and longer, some 544

models demonstrate improved comprehension of 545

the APIs, leading to slight performance enhance- 546

ments, such as GLM4-9B-chat. 547

Overall, for the model, the three key compo- 548

nents—the context, query, and tool list—are not 549

7



Figure 4: Comparison between BFCL Overall Accuracy
and CRITICTOOL Overall Scores across several models.
LLMs show similar trends in tool-use and self-critique
capabilities.

merely superimposed. The interplay between scal-550

able and robust levels results in a compounding551

effect, causing the model’s performance to degrade552

more rapidly under the hybrid strategy compared553

to individual strategies. The detailed results can be554

found in Appendix C.2.3.555

Q4: What is the Relationship Between Tool-Use556

and Self-Critique Capabilities?557

We compare the fine-grained evaluations on CRIT-558

ICTOOL with the results of the benchmark designed559

to explore tool-use capabilities, investigating the560

relationship between models’ self-critique capabili-561

ties in tool-calling tasks and their tool-use capabili-562

ties. We analyze the overall accuracy metric from563

tool-use benchmarks to examine the relationship564

between the tool-use performances of selected mod-565

els and their Overall performance on CRITICTOOL.566

As results shown in Fig. 4 and Appendix D.6, we567

observe a general alignment between the trends568

in models’ tool-use and self-critique capabilities.569

This observation not only indicates a strong con-570

nection between models’ ability to accurately use571

tools and their self-critique capabilities, suggesting572

that strengthening self-critique mechanisms could573

provide a promising avenue for enhancing overall574

tool-use performance, but also validates the ratio-575

nale behind our benchmark.576

4 Related Work577

Tool Learning with LLMs There are currently578

two primary technical approaches for enhancing579

the tool invocation capability of LLMs (Shen et al.,580

2023; Yuan et al., 2024). The first approach focuses581

on constructing high-quality tool call data and im-582

proving the model’s tool invocation capabilities583

through fine-tuning(Kong et al., 2024; Chen et al.,584

2024a; Patil et al., 2023). The second approach 585

involves leveraging contextual tool call demonstra- 586

tions to augment the model’s ability to invoke tools 587

through in-context learning (Wang et al., 2024a). 588

The evaluation of tool invocation capabilities 589

across different models is also an urgent issue. 590

Common evaluation frameworks involve compar- 591

ing model predictions to ground truth (Yan et al., 592

2024; Guo et al., 2024b), while ToolBench (Qin 593

et al., 2023) contrasts model predictions with those 594

generated by advanced LLMs, such as GPT-4. Al- 595

though some studies (Yan et al., 2024; Yao et al., 596

2024; Sun et al., 2024) have identified common 597

errors in tool invocations, they unfortunately lack 598

in-depth analysis and the design of targeted evalua- 599

tion frameworks. In contrast to the aforementioned 600

benchmarks, CRITICTOOL is the first to analyze 601

various errors and evaluate the self-critic ability in 602

tool invocation as far as we know. 603

Self-Critique of LLMs Learning from incorrect 604

attempts can help prevent similar errors, thereby 605

enabling deeper insights into the data and facili- 606

tating self-learning (Ke et al., 2024; Shinn et al., 607

2023; An et al., 2023; Ying et al., 2024; Zhang 608

et al., 2024; Tian et al., 2024). CriticEval (Lan 609

et al., 2024) evaluate the self-critique ability of 610

LLMs on nine key tasks, including math and code, 611

across four critical dimensions. For tool calls, the 612

self-critic strategy is particularly well-suited for 613

this complex task, which integrates various impor- 614

tant capabilities on massive and constantly updated 615

tools (Gou et al., 2023). However, to the best of our 616

knowledge, no prior work has specifically explored 617

the evaluation of self-critique in tool invocations. 618

Recognizing the unique characteristics of tool calls 619

compared to other tasks, CRITICTOOL adopts a 620

targeted and fine-grained evaluation framework. 621

5 Conclusion 622

In this paper, we propose CRITICTOOL, the first 623

benchmark for tool self-critique in LLM tool eval- 624

uation as far as we know. CRITICTOOL explicitly 625

distinguishes between internal model errors and 626

external environment errors, classifies evaluation 627

methods, and employs data evolution strategies to 628

uncover the true capabilities of the models under 629

evaluation. This evaluation offers a comprehensive 630

analysis and identifies the primary bottlenecks in 631

current LLMs’ tool learning, providing valuable 632

insights for the future development of tool agents. 633
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Limitations634

While CRITICTOOL offers the first fine-grained635

and comprehensive evaluation of tool invocation636

self-criticism, as far as we know, it still has the637

following two limitations. (1) Our dataset builds638

upon and extends BFCL and T-eval. Despite re-639

finement and filtering, the quality of the underlying640

dataset still impacts the overall quality and discrim-641

inative power of CRITICTOOL to some extent. (2)642

The construction of our benchmark relies on GPT-643

4o for error generation, evolution, and verification.644

The synthetic data may inevitably introduce biases645

inherent to GPT-4o. However, CRITICTOOL has646

employed multiple strategies in its data construc-647

tion pipeline to mitigate these biases, ensuring high648

data quality and a reliable benchmark. Moreover,649

the dependence on high-performance LLM results650

in significant economic costs, posing challenges to651

the sustainability of large-scale benchmark devel-652

opment.653

Future work should tackle these challenges by654

developing more rational and cost-effective data655

construction methods.656
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A Observation: Insight into LLMs’879

Tool-Use Performance880

In § 2.1, we test BFCL v3 (Yan et al., 2024), T-881

Eval (Chen et al., 2024b), API-Bank (Li et al.,882

2023), and NESTFUL (Basu et al., 2024) to con-883

duct an in-depth analysis of LLMs’ behavioral pat-884

terns. The details of these benchmarks are provided885

below.886

BFCL V3 is a comprehensive benchmark for887

evaluating LLMs’ performance in multi-step and888

multi-turn tool calling. The benchmark includes889

200 basic tool-use trajectories, along with an addi-890

tional 800 trajectories that introduce various com-891

plexities built upon these basic data.892

T-Eval provides 553 tool-use trajectories, break-893

ing down tasks into sub-processes including in-894

struction following, planning, reasoning, retrieval,895

understanding, and review.896

API-bank has 314 tool-use trajectories to evalu-897

ate LLMs’ capabilities in planning, retrieving, and898

calling APIs.899

NESTFUL is designed to better evaluate LLMs900

on nested sequences of tool calls. It compiles 85901

executable tool-use traces and 215 non-executable902

traces from the different datasets, as well as syn-903

thetic data generated by LLMs.904

We first observe that the prompts and tool-call905

formats used in these benchmarks varied, which906

could lead to discrepancies in how LLMs follow in-907

structions. To address this, we standardize the test908

data into a consistent format, as Fig. 10, ensuring909

LLMs execute tasks sequentially and consistently910

across benchmarks. Then, we randomly select a911

subset of the test data from these benchmarks and912

summarize the frequently occurring error patterns913

in the test results. The distribution of error patterns914

is shown in Tab. 3.915

In the experiment, we observe LLMs’ perfor-916

mance in the presence of errors, and gain insight917

into their different behavior across different errors,918

as shown in Fig. 11 and 12. When LLMs continue919

executing tool-use tasks after making mistakes, we920

find that some of them could recognize and correct921

their mistakes, while most perform poorly. In cases922

where tool responses contain errors due to instabil-923

ity, many LLMs become trapped in repetitive retry924

loops, with few capable of recognizing the issue925

and breaking free by either skipping the current926

step or terminating the task.927

Figure 5: Error distribution for Base data in CRITIC-
TOOL.

Figure 6: Length distribution for Base and Evolution
data in CRITICTOOL, measured by the number of to-
kens.

B CRITICTOOL Benchmark Details 928

B.1 Comparison 929

Tab. 4 shows how CRITICTOOL compares against 930

existing tool-use and critic benchmarks. 931

B.2 Dataset Summary 932

The base dataset of CRITICTOOL originates from 933

733 high-quality tool-call trajectories, consisting 934

of 1490 test cases in total, which contains 1316 935

internal model-driven error test cases and 174 ex- 936

ternal environment error test cases. On this basis, 937

we retain the error distribution on the base data 938

and randomly select to construct CRITICTOOL evo- 939

lution dataset (be simplified to Evol.), generating 940

1000 internal and 250 external new test cases. We 941

visualize the error distribution and length distribu- 942

tion for the base and evolved datasets. 943

Fig. 5 illustrates the error distribution of CRIT- 944

ICTOOL, which comprehensively covers the behav- 945

ior patterns of LLMs observed across mainstream 946

benchmarks. 947

Fig. 6 shows that each set of the base benchmark 948

has 1291 tokens on average, while each evolved 949

examples contains 2387 tokens on average, validat- 950

ing the generalization and discrimination for tool 951

utilization self-critic evaluation. 952
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Table 3: Error distribution among LLMs in tool-use benchmarks.

Benchmark Model Total Tool Sel. Tool Halluc. Param. Key Param. Value

BFCL V3

Qwen-turbo 184 82 1 0 13
Qwen2.5-72B 216 74 0 0 12

GPT-3.5 202 85 0 0 13
GPT-4o 213 70 0 0 6

T-Eval

Qwen-turbo 452 36 3 4 36
Qwen2.5-72B 469 29 1 1 28

GPT-3.5 466 38 13 10 29
GPT-4o 470 29 0 0 23

API-bank

Qwen-turbo 259 2 1 0 13
Qwen2.5-72B 184 82 2 0 19

GPT-3.5 275 6 1 1 18
GPT-4o 280 6 0 1 10

NESTFUL

Qwen-turbo 215 9 1 27 29
Qwen2.5-72B 212 22 3 23 26

GPT-3.5 215 13 22 20 22
GPT-4o 215 4 10 7 14

Table 4: Comparison of CRITICTOOL with other existing tool-use and critique benchmarks.

Model Critic for Error Function Call API Response Multi-Step Fine-Grained Eval Data by Difficulty Levels

CriticBench (Lin et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗

CriticEval (Lan et al., 2024) ✓ ✗ ✗ ✗ ✓ ✗

API-Bank (Li et al., 2023) ✗ ✓ ✓ ✓ ✗ ✓

BFCL (Yan et al., 2024) ✗ ✓ ✓ ✓ ✗ ✗

NestFul (Basu et al., 2024) ✗ ✗ ✗ ✓ ✓ ✓

T-Eval (Chen et al., 2024b) ✗ ✓ ✓ ✓ ✓ ✗

CRITICTOOL ✓ ✓ ✓ ✓ ✓ ✓

C Implementation Details953

C.1 Data Collection954

We collect 733 ground truth tool-calling trajec-955

tories from high-quality tool-use benchmarks,956

BFCL (Yan et al., 2024) and T-Eval (Chen et al.,957

2024b). To facilitate following controlled error data958

generation, we manually filter out 485 trajectories959

that contain no errors and refine the API documen-960

tation to ensure that all API descriptions are clear961

and accurate. To bridge the gap between differ-962

ent instruction formats, we standardize both the963

trajectories and API documentation, as illustrated964

in Fig. 13 and 14. This standardization ensures965

compatibility and reduces variability in the data,966

enabling a more consistent evaluation of LLMs’967

performance in self-critique capabilities.968

C.2 Prompts Demonstration969

Refer to the corresponding prompt block for a de-970

tailed demonstration.971

C.2.1 Error Data Diversification972

We prompt GPT-4o as error simulator, and the cor-973

responding prompt is presented in Fig. 15.974

C.2.2 Tool Responses Generation 975

We prompt GPT-4o as API simulator, and the cor- 976

responding prompt is presented in Fig. 16. 977

C.2.3 Data Evolution 978

The framework of the data evolution has been 979

shown in Fig. 7. And Tab. 5, presents a simpli- 980

fied example of our Scalable and Robust Mixed 981

Self-Evolution(SRM) evolution strategy. 982

Long Context: Real-world contexts typically con- 983

sist of three possibilities: purely tool calling, purely 984

chatting, and a mixture of both. We extract purely 985

conversational data from LongBench (Bai et al., 986

2023) to represent the purely chatting context, com- 987

bine it with the original CRITICTOOL for the mixed 988

context, and conduct separate experiments across 989

these three contexts. The comparative results are 990

presented in Tab. 6. 991

Compared to having no context, all three types 992

of contexts resulted in a decrease in the model’s 993

scores. For CRITICTOOL, these three contexts ran- 994

domly appear as Long Context Evolution data. 995

Noisy Query: We prompt GPT-4o to refine 996

the user query, and the corresponding prompt is 997
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Table 5: A simplified example of our data evolution strategy.

Original Tool Call Trajectory
Context: None.
Tool List: ‘name’: ‘Email.send’, ‘description’: ‘Sends an email to a specified recipient with the given subject and content.’
User Query: Compose an email to all team members at team_members@example.com detailing the features of the forthcoming
film, ‘Avengers: Endgame’. Subsequently, ascertain the availability of the first available meeting room from 2:00 PM to 4:00
PM and book it for our weekly marketing assembly.

Perspective Sub-strategy Changed
Items

Examples

Scalable

Long Context Context Insert Context 1: [A summary task of about 800 tokens.]
Insert Context 2: [A former Tool-Calling Task of about 400 tokens]

Extra Tools Tool List Add Tools: Email.show, Email.check, Email.read, Arx-
ivSearch.get_arxiv_information, BINGMap.search_nearby...

Robust
Noisy Query User Query Refine Query: My favourite film is Avengers: Endgame, I want to share it to my

team members. Compose an emaail(typo, email) to all tam nembers(typo, team
members) at team_members@example.com detailing the features of the forthcom-
ing film Avengers: Endgame, including its plot, main characters, and key action
sequences. You can also mention how the movie fits into the Marvel Cinematic
Universe and its expected impact on upcoming releases. Following that, ascertain the
availability of the first available meeting room from 2:00 PM to 4:00 PM and book
it for our weekly marketing assembly. Additionally, weekly marketing assembly is
very important. So please confirm the booking once it’s done.

Harder Tools Tool List Refine API Document: send a email

Table 6: Comparison results under different contexts.

Model No Context Purely Tool Calling Purely Chatting Mixed

GPT-4o 70.41 70.10 69.72 65.01
LLaMA3.1-8B 59.82 57.45 56.43 55.86
Qwen2.5-72B 68.81 65.93 65.42 64.31
AgentLM-7B 37.11 26.62 26.93 17.45

presented in Fig. 20.998

Harder Tools: We prompt GPT-4o to downgrade999

the API documentation, and the corresponding1000

prompt is presented in Fig. 21.1001

Mixed Evolution: In mixed evolution, we ran-1002

domly we randomly select 2-4 evolution strategies1003

for each case.1004

Data Verification: We prompt GPT-4o to verify1005

the evolution data, and the corresponding prompt1006

is presented in Fig. 22, 23, 24, 25.1007

1008

C.3 Mitigating Bias in Synthetic Error Data1009

To scale the data and conduct comprehensive evalu-1010

ations, we utilize GPT-4o for data synthesis during1011

both the generation and evolution phases. While1012

synthetic data inevitably inherits bias from the1013

generating model, CRITICTOOL employs multi-1014

ple strategies to mitigate the potential bias.1015

• Real Errors Few-Shot Learning: To guide1016

GPT-4o in generating realistic error instances, we1017

collect real error data to serve as few-shot exam-1018

ples, enabling GPT-4o to generalize error patterns 1019

effectively. This few-shot learning method can 1020

help ensure that the synthetic errors are reasonably 1021

grounded in real-world behavior. 1022

• Error Consistency: In our observations, LLMs 1023

tend to exhibit consistent behaviors within specific 1024

error patterns, even when interacting with different 1025

tools. Similarly, weaker models follow the same 1026

tendancy but exhibit errors at a higher frequency. 1027

By leveraging GPT-4o to diversify errors across 1028

different patterns, we ensure that the consistency of 1029

error distribution is preserved without introducing 1030

significant bias. 1031

• Diverse Data Sources: CRITICTOOL dataset 1032

combines real-world errors and synthetic errors, 1033

creating a balanced mix that reduces reliance on 1034

any single source. This mixing process reduces the 1035

influence of synthetic data bias while retaining the 1036

scale necessary for comprehensive evaluation. 1037

• Error Information Preservation: During data 1038

evolution, GPT-4o is used in the Noisy Query and 1039

Harder Tools strategies to enhance dataset complex- 1040
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Data Evolution

user

Could you possibly assist me in, um, like, making a 
booking for a ticket ticket for the, moviee called “Big 
Fish” that’s showing at the Golden Cinema, you know, 
the one tonight at, like, around 7:00 PM, no, um, at 
20:00 is better, if that‘s easier to understand, and, 
uh, I guess I just wanna make (sure)  I get it right, so, 
like, yeah, can you help?

Tool:book_ticket,get_movie_abstract,get_weather,
_arxiv_search， get_arxiv_article_information, 
get_author_id, reserve ⋯

Original Data                                                                                                                

Tool:
book_ticket,get_movie_abstract

Please book a ticket of the 
movie called “Big Fish” at the 
Golden Cinema at for me.

Action:book_ticket(movie=‘Big 
Fish’,time=’20:00’,cinema=‘Gold
en Cinema)

Help me plan a trip to HK. Help me plan a trip 
to HK.Help me plan a trip to HK. Help me plan a 
trip to HK. 

OK,I can help you do that.First,…Second…Have a 
nice Trip!

Data Verification

user

assistant

assistant

user
[Evoluted Data]

Context

User Query

Function ListFinal Decision: Access
assistant

user

v.s. ground truth：

Context

Original Data

Random Sample

Data Evolution

…
Gpt-4 Refine

Difficulty Enhance

API Document

Long Context

Extra Tools

Noisy Query

Harder Tools

1

2 34

Figure 7: The framework of Scalable and Robust Mixed Self-Evolution (SRM).

ity. It only modifies user task descriptions and API1041

documentation while keeping internal and exter-1042

nal errors unchanged. And the consistency of the1043

evolved data’s solution path with the correspond-1044

ing base data is verified, ensuring that no additional1045

bias is introduced.1046

• Human Validation: We conduct a manual re-1047

view of all synthetic data to minimize any bias intro-1048

duced during the generation and evolution stages.1049

All unreliable or low-quality data is filtered out to1050

ensure the quality of the CRITICTOOL dataset.1051

C.4 Detailed Evaluation Metrics1052

In the CRITICTOOL, self-critique capabilities are1053

divided into multiple dimensions based on errors1054

from different sources: Reflect, Correct, Retry, and1055

Skip/Finish. All responses must strictly adhere to1056

the JSON format.1057

We have defined the formalization of tool calls1058

in § 2.3: each tool-calling task is represented as a1059

tuple (Q,T ), where Q is the query associated with1060

the task, and T denotes the list of tools that the as-1061

sistant can utilize. The tool-calling trajectory T is1062

a sequence of tool-response pairs {(ai, ri)}, which1063

capture the interaction between the assistant’s ac-1064

tions a and the corresponding tool responses r1065

in the i-th step. The action a is regarded as ei-1066

ther (goal, tool, args) or (tool, args) depending1067

on whether the chain-of-thought (CoT) strategy is1068

used. The test data consists of the first k steps of1069

the tool-calling trajectory for each task, where k is1070

randomly selected, and errors may be introduced 1071

at step k. 1072

In an internal model-driven error task, given 1073

a tool list T , query Q, a tool-calling trajectory 1074

T = {(a1, r1) . . . (ak, rk)}, and an error may be 1075

contained in ak. The assistant is asked to gen- 1076

erate solution Spred = (cpred, âpred) if it identi- 1077

fies an error in ak, and Spred = (âpred) otherwise. 1078

The golden solution is Sgt = {âgt1 , âgt2 }, where 1079

âgt1 = ak and âgt2 is the ground truth action for next 1080

subtask. 1081

In the case of external environment error, given 1082

a tool list T , query Q, and a tool-calling trajec- 1083

tory T = {(a1, r1) . . . (ak, rk)}, where an exter- 1084

nal error occurs in rk. The assistant is tasked with 1085

retrying the action ak no more than three times, 1086

then break free from the loop and either proceed 1087

with executing the next subtasks or finish the tool 1088

call. If the predicted action â = ak, we return 1089

the erroneous response rk to allow the assistant 1090

to proceed. Once â ̸= ak is detected, or if more 1091

than three steps are executed, we stop the assis- 1092

tant’s reasoning and obtain a sequence of predicted 1093

solution Spred = {âpred1 , âpred2 , . . .}. The golden 1094

solution is Sgt = {âgt1 , âgt2 }, where âgt1 = ak and 1095

âgt2 is the ground truth action for next subtask. The 1096

evaluation process is shown in the Fig. 8. 1097

C.4.1 REFLECT 1098

The reflect evaluator measures the model’s ability 1099

to recognize the errors in tool call trajectories. For 1100
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error-free trajectory where solution path is Sgt =1101

(agt), the evaluation focuses solely on detection1102

accuracy. If LLM predicts Spred = (apred), the de-1103

tect score is 1; otherwise, it is 0. For error-injected1104

trajectory where solution path is Sgt = (cgt, agt),1105

the detection score is 1 if cpred in prediction Spred,1106

and 0 otherwise. The evaluator then determines1107

whether the predicted error category cpred matches1108

the ground truth cgt, achieving category score 1 if1109

the same and 0 otherwise.1110

C.4.2 CORRECT1111

The correct evaluator assesses the model’s ability1112

to correct its actions after making a mistake. For1113

trajectories containing errors, the evaluator first1114

verifies whether the predicted toolpred matches the1115

golden answer toolgt. If the tool prediction is cor-1116

rect, the tool score is 1, and the evaluator proceeds1117

to evaluate the correctness of the input parame-1118

ters. Otherwise, both the tool and args scores are1119

set to 0. Then, the evaluator checks whether the1120

passed parameter keys are missing or redundant,1121

and the args score is set to 0 if any discrepancy ex-1122

ists. For parameters with types such as ‘string’ or1123

‘any’, the evaluator uses Sentence-BERT (Reimers1124

and Gurevych, 2019), which involves embedding1125

the two sentences, to compute the cosine similar-1126

ity between the embeddings of each predicted pa-1127

rameter value of argspred and the ground truth1128

value argsgt as their scores. The underlying BERT1129

model used is all-mpnet-base-v2.4 For all other1130

parameter types, the predicted values must match1131

the ground truth values exactly. Finally, the aver-1132

age score across all parameters is calculated as the1133

args score. If the CoT strategy is applied, the eval-1134

uator uses Sentence-BERT to embed the predicted1135

thought thoughtpred and the ground truth thought1136

thoughtgt, then calculates their cosine similarity1137

as the thought score.1138

C.4.3 RETRY1139

The retry evaluator checks whether the predicted1140

action âpred1 is identical to the ground truth action1141

âgt1 , the retry score is 1 if the same and 0 otherwise.1142

C.4.4 SKIP1143

The skip evaluator first examines all predicted ac-1144

tions to check if there exists any âpred ̸= âgt1 , which1145

indicates that the model has skipped the current1146

retry step. If such a case âpredn is found, the break1147

score then set to 1. The evaluator then compares1148

4https://www.sbert.net/docs/pretrained_models.html

Table 7: The inference time between the universal set
and a 20% subset.

Model Time (Full) Time (Subset)

LLaMA3.1-8B ∼14min44s ∼2min53s
Qwen2.5-7B ∼15min31s ∼3min11s
Ministral-8B ∼16min12s ∼3min36s
AgentLM-7B ∼17min21s ∼3min52s

Table 8: Comparison of CRITICTOOL scores between
the universal set and a 20% subset.

Model Universal Set 20% Subset

GPT-4o 68.50 71.12
LLaMA3.1-8B 57.94 58.33
Qwen2.5-7B 58.53 61.07
Ministral-8B 43.69 40.08
AgentLM-7B 33.71 35.12

the predicted action for next subtask âpredn with 1149

the golden answer âgt1 . The tool, args and thought 1150

score are determined using the same comparison 1151

method as in the correct evaluation. 1152

C.4.5 FINISH 1153

The finish evaluator first evaluates the break score 1154

in the same manner as the skip evaluator. It then 1155

checks whether the break-free action âpredn is ’Fin- 1156

ishAction’. If so, the tool score is set to 1. 1157

C.5 Experimental Details 1158

To evaluate the pure ability of the single model, we 1159

do not use any optimization methods in the main 1160

text, such as ReAct. To assess whether the model 1161

with optimization methods exhibits a distribution 1162

comparable to the original benchmark—including 1163

indicator scores and the model’s relative strengths 1164

and weaknesses—we also generated CRITICTOOL 1165

with chain of thought (CoT). CRITICTOOL-CoT 1166

contains 810 internal model-driven error test cases 1167

and 126 external environment error test cases. Sim- 1168

ilarly, we use CRITICTOOL-CoT as the base and 1169

evolutionary dataset and obtain a total of 1,250 1170

evolved test cases. Experimental results with CoT 1171

will be presented in the Appendix D.2. 1172

C.6 Cost 1173

In the full CRITICTOOL suite (comprising 2740 1174

cases), we deploy it using the vllm framework on 1175

four Nvidia GeForce RTX 4090 GPUs and evaluate 1176

the inference times of different models. To further 1177

reduce the time, we randomly sample 20% of the 1178

data from the full suite for testing. 1179

We compare the results of the full suite with the 1180

subset, and find that the subset method achieves 1181
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Figure 8: The framework of Evaluation Process.

nearly identical results using only 20% of the1182

time. The inference times and CRITICTOOL scores1183

for both the full suite and the subset are shown in1184

Tab. 7 and 8.1185

D Additional Results1186

D.1 Full Results on CRITICTOOL1187

We show the full results on CRITICTOOLin1188

Tab. 10, 11, 12, 13, 14 and 15.1189

D.2 Full Results on CRITICTOOL-CoT1190

We show the full results on CRITICTOOL-CoT in1191

Tab. 17, 18, 19, 20, 21 and 22.1192

D.3 Qualitative Examples of Self-Critique1193

Behavior across Different Scenarios1194

We show the qualitative examples in Fig. 26, 271195

and 28.1196

D.4 Results of Self-Critique Performance1197

Across Internal Error Patterns1198

We summarize the performance of various models1199

across internal error patterns in our experiments, as1200

shown in Tab. 16.1201

Our experimental results reveal a surprising phe-1202

nomenon: even when LLMs fail to accurately iden-1203

tify or classify their own errors during tool calls,1204

they are still capable of correcting these errors,1205

which is particularly evident in tool selection er- 1206

rors. Although this behavior diverges from the 1207

human cognitive process, where recognizing errors 1208

typically precedes correcting them, we can still 1209

identify plausible explanations for this. During the 1210

reflection phase, LLMs heavily rely on external 1211

and explicit error signals while often overlooking 1212

the implicit errors, such as failing to obtain neces- 1213

sary information. This limitation stems from inade- 1214

quacies in the models’ instruction-following capa- 1215

bilities, particularly their ability to recognize sub- 1216

tle or implicit errors. In contrast, current training 1217

paradigms for tool use focus on enabling models to 1218

interpret the discrepancy between the expected and 1219

actual results serves as implicit feedback, allowing 1220

models to adapt their behavior to complete tasks, 1221

even without explicitly identifying or categorizing 1222

the errors. 1223

D.5 How does Noisy Query affect models’ 1224

performance? 1225

As shown in Fig. 19, we subdivide Noisy Queries 1226

into three subcategories: complex information, 1227

spelling errors and expression habits. We test a set 1228

of examples on five models: GPT-4o, LLaMA3.1- 1229

8B, Ministral-8B, Qwen2.5-72B, and AgentLM- 1230

7B. The average pass rates of the models on differ- 1231

ent data are shown in Tab. 9. In queries involving 1232

complex information, the models predominantly 1233

exhibit two types of errors: tool hallucination er- 1234
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Table 9: Error distribution under different Noisy Queries.

Noisy Query Tool Sel. Tool Halluc. Param. Key Param. Value

Complex Information 9 33 31 12
Spelling Errors 3 8 13 22
Expression Habits 4 24 11 14

Figure 9: Comparison of CRITICTOOL Overall Scores with tool-use benchmarks’ Overall Accuracy across several
models.

rors and parameter key errors. We believe this is1235

due to the models’ comprehension and planning ca-1236

pabilities being impaired by the complex informa-1237

tion in the query. Spelling errors pose a challenge1238

to the model’s robustness and understanding ca-1239

pabilities, primarily manifesting a single type of1240

error: parameter value errors. This indicates1241

that, in isolated instances, the model exhibits re-1242

duced sensitivity to spelling errors in user queries.1243

Changes in expression habits challenge the model’s1244

comprehension ability, with the model primarily1245

exhibiting a single type of error: tool hallucination1246

errors.1247

Through the above analysis, we believe that1248

Noisy Queries, by introducing distracting informa-1249

tion, altering expression forms, and adding spelling1250

errors, partially obscure the user’s intent. In CRIT-1251

ICTOOL, we mix them randomly.1252

D.6 Additional Results on Tool-Use and1253

Self-Critique Capabilities1254

See Fig. 9.1255
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Table 10: Results of CRITICTOOL on Base and Evolutionary Datasets. Bold indicates the best performance across
all models, while underline denotes the best performance within the same group and scale of models.

Models

Internal Model-Driven Errors External Environment Errors Overall

Reflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol

Closed-Source Large Language Models
Claude3.5 85.0 77.3 60.7 50.1 87.1 81.5 80.2 74.9 45.7 33.8 57.2 55.8 22.7 21.0 26.7 25.4 57.9 53.4
GPT-3.5 73.3 70.1 61.3 62.9 72.0 70.4 58.6 55.7 12.6 8.4 92.5 86.0 54.6 51.0 46.4 35.3 62.7 58.9
GPT-4o 80.6 76.2 73.0 65.3 87.6 84.0 82.3 77.6 19.8 21.8 94.8 88.6 53.7 53.2 46.1 38.3 70.9 65.2

Open-Source Large Language Models
LLaMA3-8B 51.0 63.5 26.5 32.9 75.6 71.5 67.6 62.0 35.6 29.2 73.3 75.6 28.4 26.2 31.3 29.0 51.0 50.7

LLaMA3.1-8B 84.5 82.8 68.6 67.4 80.4 75.5 72.3 64.9 52.9 49.6 71.0 75.4 24.4 25.4 21.2 22.7 58.3 57.1
Qwen2.5-7B 85.1 79.9 43.1 45.6 79.6 74.4 72.1 65.5 34.2 24.4 87.6 79.9 46.0 39.7 19.7 27.2 60.3 56.8

GLM4 - 9B - chat 60.8 52.6 26.7 24.3 63.2 57.8 53.1 47.1 22.4 16.3 84.8 93.7 39.1 35.3 20.5 23.9 49.0 45.1
Ministral - 8B 47.0 50.2 23.8 29.7 70.6 67.2 61.4 55.8 56.0 48.4 58.0 64.1 20.4 18.3 28.1 17.2 45.7 42.0

LLaMA3-70B 61.4 49.1 33.7 23.6 72.6 64.6 66.5 57.4 37.0 29.0 58.8 83.2 30.9 25.4 30.2 25.7 50.2 47.0
LLaMA3.1-70B 83.6 78.2 64.3 57.6 84.4 81.6 69.3 64.6 71.8 59.9 85.6 98.1 53.7 50.1 31.0 25.1 67.0 64.7
Qwen2.5-72B 89.4 82.2 58.9 51.9 84.5 82.6 77.9 76.3 38.8 41.2 95.1 87.6 56.9 48.9 32.4 28.1 68.8 63.4

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.8 0.4 0.0 0.0 4.1 2.3 0.6 0.7 1.0 0.8 1.2 0.0 0.7 1.1 0.0 0.0 1.1 0.6

ToolACE-8B 12.8 13.8 0.9 1.0 14.5 14.9 13.2 13.2 1.4 1.1 13.2 3.8 6.9 7.4 10.9 13.5 10.3 9.2
AgentLM-7B 24.9 20.4 0.0 0.0 56.0 37.1 44.1 28.1 12.1 11.8 85.1 84.4 20.4 16.5 21.0 15.2 37.1 29.8

Table 11: Results of CRITICTOOL with Only Mixed Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 71.00 43.15 69.86 63.55 23.00 60.00 18.00 15.88 46.66
GPT-3.5 74.00 59.59 65.75 50.20 9.00 72.00 35.00 23.75 50.81
GPT-4o 81.00 70.55 74.66 67.44 15.00 100.00 44.00 33.70 63.87

Open-Source Large Language Models
LLaMA3-8B 74.50 45.21 63.70 52.60 20.00 76.00 30.00 27.35 50.42
LLaMA3.1-8B 81.00 63.70 67.81 56.69 48.00 75.00 28.00 23.51 54.52
Qwen2.5-7B 74.50 45.21 63.70 52.60 22.00 87.00 42.00 27.35 53.97
GLM4-9B-chat 37.00 17.12 41.78 32.97 10.00 82.00 25.00 26.58 37.16
Ministral-8B 60.50 43.15 59.59 50.19 61.00 46.00 12.00 14.00 40.68

LLaMA3-70B 31.50 13.01 50.68 43.48 28.27 72.90 17.16 14.60 35.69
LLaMA3.1-70B 70.50 45.89 70.55 53.61 55.00 96.00 43.00 7.10 54.93
Qwen2.5-72B 73.50 39.73 73.97 67.63 52.00 97.00 50.00 29.92 61.70

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 2.05 0.77 2.27 0.00 0.00 0.00 0.59
ToolACE-8B 12.50 0.00 7.53 6.21 1.00 10.11 12.00 19.52 9.59
AgentLM-7B 7.00 0.00 13.70 9.15 9.09 81.82 2.27 3.30 17.69

19



Table 12: Results of CRITICTOOL with Only Harder Tools Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 85.00 60.27 84.25 78.38 42.00 53.00 18.00 23.56 55.20
GPT-3.5 78.50 64.38 69.18 50.89 8.00 92.00 53.00 49.21 61.83
GPT-4o 88.00 82.19 86.30 82.15 22.00 100.00 55.00 41.85 69.91

Open-Source Large Language Models
LLaMA3-8B 83.00 45.89 77.40 70.72 30.00 77.00 25.00 23.89 55.49
LLaMA3.1-8B 87.00 71.92 80.82 68.62 50.00 79.00 29.00 26.11 57.92
Qwen2.5-7B 83.00 45.89 77.40 70.72 31.32 77.01 29.60 8.25 53.90
GLM4-9B-chat 71.00 34.25 64.38 52.06 22.00 100.00 44.00 29.04 55.05
Ministral-8B 52.50 32.88 68.49 58.84 18.00 92.00 12.00 5.15 44.91

LLaMA3-70B 67.50 35.62 73.29 65.19 36.00 87.00 31.00 22.59 53.97
LLaMA3.1-70B 88.00 67.12 83.56 70.57 71.55 94.54 44.25 4.30 63.67
Qwen2.5-72B 87.00 52.05 84.25 79.52 53.00 100.00 60.00 40.77 71.24

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 0.00 0.00 1.61 0.00 0.00 0.00 0.13
ToolACE-8B 17.50 0.00 21.23 17.84 0.29 0.00 0.00 0.00 6.63
AgentLM-7B 23.50 0.00 43.84 30.18 10.26 92.00 26.00 27.76 29.01

Table 13: Results of CRITICTOOL with With Only Noisy Query Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 76.83 44.64 81.55 73.23 31.67 43.19 18.26 20.80 49.28
GPT-3.5 83.00 63.70 67.81 54.24 1.00 49.00 62.00 28.00 58.38
GPT-4o 77.50 65.75 86.30 78.89 31.00 68.00 51.00 52.79 68.42

Open-Source Large Language Models
LLaMA3-8B 51.00 25.34 77.40 68.47 45.00 79.00 28.00 27.62 51.96
LLaMA3.1-8B 83.50 69.86 74.66 65.82 56.00 67.00 21.00 13.54 54.44
Qwen2.5-7B 82.50 45.21 76.71 67.83 26.00 70.00 39.00 34.98 57.35
GLM4-9B-chat 57.00 22.60 54.79 45.44 26.00 100.00 37.00 22.20 48.17
Ministral-8B 46.00 23.97 65.75 55.94 56.00 58.00 21.00 23.37 43.41

LLaMA3-70B 55.00 24.66 65.07 60.25 43.18 82.55 32.89 34.84 51.46
LLaMA3.1-70B 84.00 67.12 78.77 64.45 79.00 100.00 71.00 38.23 71.93
Qwen2.5-72B 88.50 58.90 79.45 73.76 52.00 99.00 58.00 30.16 68.40

Tool-Use-Finetuned Large Language Models
ToolLLaMA2 - 7B 1.56 0.70 4.31 1.09 1.99 0.85 0.58 0.59 0.61
ToolACE - 8B 13.86 1.02 12.86 14.28 2.97 1.58 6.14 6.28 7.33
AgentLM - 7B 25.53 0.27 46.92 34.17 7.63 93.00 22.81 22.71 25.85
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Table 14: Results of CRITICTOOL with Only Extra Tools Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 81.50 56.16 82.88 75.02 42.00 54.00 24.00 33.30 56.25
GPT-3.5 80.00 69.18 71.23 52.45 8.00 83.00 53.00 53.48 62.29
GPT-4o 70.50 59.59 85.62 78.51 17.00 100.00 55.00 44.34 68.78

Open-Source Large Language Models
LLaMA3-8B 82.50 46.58 77.40 66.95 23.47 67.35 22.45 31.15 53.87
LLaMA3.1-8B 86.50 70.55 78.77 68.26 43.00 88.00 22.00 21.17 57.59
Qwen2.5-7B 82.00 45.89 77.40 68.58 23.56 81.32 33.91 30.35 57.70
GLM4-9B-chat 53.00 25.34 63.70 52.49 12.00 90.00 39.00 27.98 49.41
Ministral-8B 49.50 26.03 69.86 57.87 57.00 57.00 17.00 14.78 42.88

LLaMA3-70B 62.00 35.62 68.49 60.04 31.91 80.85 29.79 35.25 49.52
LLaMA3.1-70B 79.50 59.59 82.88 62.01 62.00 97.00 59.00 40.48 68.21
Qwen2.5-72B 87.50 54.11 86.30 76.90 32.00 97.00 57.00 34.81 68.56

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 6.85 2.40 0.00 0.00 3.03 0.00 1.89
ToolACE-8B 19.50 1.37 20.55 17.52 0.00 6.00 15.00 24.59 13.64
AgentLM-7B 26.00 0.00 42.47 34.42 17.14 88.57 14.29 13.80 32.49

Table 15: Results of CRITICTOOL with Only Long Context Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 73.56 41.12 86.23 78.11 24.23 62.11 31.11 36.56 57.12
GPT-3.5 63.50 67.81 67.12 51.31 1.00 99.00 62.00 25.67 58.95
GPT-4o 64.00 48.63 86.99 80.88 24.00 75.00 48.00 38.89 66.28

Open-Source Large Language Models
LLaMA3-8B 26.50 1.37 61.64 51.23 27.29 78.88 25.45 34.98 41.98
LLaMA3.1-8B 76.00 60.96 75.34 65.23 51.00 68.00 27.00 29.39 55.99
Qwen2.5-7B 77.50 45.89 76.71 67.80 19.00 84.00 54.00 34.87 60.90
GLM4-9B-chat 48.00 18.49 60.27 49.12 15.00 100.00 29.00 17.91 45.85
Ministral-8B 45.00 20.55 69.86 59.39 53.00 65.00 27.00 26.51 46.37

LLaMA3-70B 36.00 15.75 68.49 61.74 11.89 95.65 19.39 23.42 46.07
LLaMA3.1-70B 73.50 50.68 87.67 69.18 37.00 100.00 55.00 33.55 66.08
Qwen2.5-72B 80.50 48.63 85.62 79.75 21.00 99.00 48.00 30.65 65.42

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.15
ToolACE-8B 7.50 0.68 12.33 11.64 1.00 0.00 10.00 16.19 8.39
AgentLM-7B 13.50 0.00 23.29 17.64 12.50 91.67 16.67 14.54 26.54
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Table 16: Self-Critique Evaluation on different error patterns.

Models Tool Sel. Errors Tool Halluc. Errors Param. Key Errors Param. Value Errors
Reflect Correct Reflect Correct Reflect Correct Reflect Correct

Closed-Source Large Language Models
Claude3.5 10.15 56.29 93.29 65.74 93.21 90.59 94.11 90.80
GPT-3.5 7.32 32.81 80.10 27.89 82.65 79.07 86.96 66.28
GPT-4o 23.42 59.18 97.72 70.43 79.65 92.81 86.17 90.22

Open-Source Large Language Models
LLaMA3-8B 7.68 41.58 70.30 52.29 61.39 83.07 67.79 78.12
LLaMA3.1-8B 19.48 41.29 97.49 54.69 98.47 88.90 92.60 82.60
Qwen2.5-7B 28.14 37.61 96.51 57.68 97.40 85.96 93.38 85.25
GLM4-9B-chat 9.58 18.35 61.42 42.34 55.98 69.83 62.93 55.86
Ministral-8B 4.27 34.42 70.07 42.38 23.68 77.86 29.43 70.35

LLaMA3-70B 8.15 43.09 70.21 55.33 57.48 76.95 54.99 66.00
LLaMA3.1-70B 14.11 49.66 94.51 51.17 90.79 78.61 91.53 83.18
Qwen2.5-72B 36.92 55.91 94.03 59.34 95.37 91.08 97.03 93.73

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.29 0.00 0.76 0.00 0.30 0.93 1.00 1.65
ToolACE-8B 0.28 11.11 3.25 5.01 2.74 19.16 4.31 13.48
AgentLM-7B 0.56 20.70 1.26 22.83 0.30 50.62 0.68 40.53

Table 17: Results of CRITICTOOL-CoT on Base and Evolutionary Datasets.

Models

Internal Model-Driven Errors External Environment Errors Overall

Reflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol Base Evol

Closed-Source Large Language Models
Claude3.5 91.7 83.2 71.2 57.5 90.7 86.3 83.8 79.1 37.3 26.4 94.4 67.5 36.9 24.7 51.4 36.5 71.8 59.3
GPT-3.5 67.0 70.4 52.1 49.7 84.4 77.3 70.3 64.0 15.1 6.0 81.0 83.8 63.5 59.0 48.5 40.1 64.8 63.4
GPT-4o 91.4 88.3 86.5 82.5 90.4 84.2 85.1 80.9 45.6 40.5 100.0 99.2 47.6 46.8 62.9 61.5 78.0 73.2

Open-Source Large Language Models
LLaMA3-8B 70.9 71.9 48.9 40.7 79.8 78.6 74.0 71.9 43.7 44.2 82.9 78.1 55.6 41.1 29.9 32.0 62.5 58.7

LLaMA3.1-8B 90.2 83.5 77.7 71.6 85.3 80.4 79.1 71.7 52.0 54.0 89.3 89.6 56.3 53.6 28.3 30.0 70.1 67.0
Qwen2.5-7B 88.5 79.8 49.1 43.6 83.5 82.2 77.2 75.3 79.4 69.3 92.1 93.7 56.0 53.7 34.9 30.6 69.3 66.1

GLM4 - 9B - chat 78.4 59.3 33.0 28.8 76.5 67.2 65.2 57.8 28.2 21.9 86.1 90.3 49.6 43.4 42.0 37.6 60.4 52.7
Ministral - 8B 45.6 45.9 20.5 20.2 76.1 72.1 68.7 62.5 69.0 59.9 40.5 51.3 15.5 14.5 23.6 13.1 43.7 43.6

LLaMA3 - 70B 69.1 57.5 42.8 33.2 83.3 72.8 75.8 64.2 56.4 39.2 83.2 86.2 50.0 45.3 25.4 28.4 61.7 53.0
LLaMA3.1 - 70B 90.0 77.2 75.8 62.2 85.8 82.7 73.4 69.2 70.2 63.0 96.4 97.1 65.9 59.0 36.8 27.9 73.8 65.2
Qwen2.5 - 72B 91.7 83.4 57.9 48.3 85.3 80.3 79.6 73.1 69.8 67.3 96.8 99.3 68.3 62.6 57.4 47.7 76.6 72.7

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.4 0.6 0.0 0.0 0.9 1.5 0.2 0.2 0.0 1.5 0.4 1.2 0.0 0.0 0.0 0.0 0.3 0.6

ToolACE-8B 14.6 9.1 1.8 1.0 20.4 16.5 18.2 14.3 4.0 2.2 10.7 2.4 7.1 6.2 10.5 14.8 11.9 10.3
AgentLM-7B 25.2 16.5 0.0 0.0 48.6 31.8 35.4 22.9 47.5 40.9 48.3 59.8 19.4 17.6 16.4 21.6 30.1 26.7
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Table 18: Results of CRITICTOOL-CoT with Only Mixed Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 78.00 52.74 76.03 67.67 15.00 62.00 24.00 27.52 52.41
GPT-3.5 70.50 54.79 69.18 58.27 3.00 78.00 39.00 27.63 53.49
GPT-4o 84.50 78.08 74.66 70.17 33.31 100.00 42.49 41.66 67.27

Open-Source Large Language Models
LLaMA3-8B 73.50 48.63 74.66 69.94 42.58 84.62 26.54 24.16 56.33
LLaMA3.1-8B 81.50 70.55 73.29 64.19 51.00 88.00 43.00 22.77 61.44
Qwen2.5-7B 73.50 48.63 74.66 69.94 57.00 93.00 39.00 24.16 60.18
GLM4-9B-chat 38.00 15.07 54.11 44.43 12.00 84.00 30.00 24.24 41.42
Ministral-8B 52.50 33.56 67.12 57.26 75.00 30.00 4.00 2.00 36.41

LLaMA3-70B 46.00 30.82 59.59 51.27 23.96 78.12 22.92 18.67 43.47
LLaMA3.1-70B 71.50 55.48 71.92 59.48 63.00 97.00 56.00 17.24 61.09
Qwen2.5-72B 77.50 47.26 76.03 69.25 66.00 97.00 49.00 30.96 64.11

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.00 0.00 0.00 0.00 4.20 3.93 0.00 0.00 0.80
ToolACE-8B 9.00 0.00 20.55 16.38 2.00 0.81 8.00 10.41 9.42
AgentLM-7B 8.00 0.00 10.27 6.44 27.45 0.84 13.64 18.34 9.60

Table 19: Results of CRITICTOOL-CoT with Only Harder Tools Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 85.50 60.96 86.99 78.54 30.00 69.00 27.00 43.80 61.94
GPT-3.5 81.50 69.18 77.40 64.30 11.00 82.00 63.00 45.71 65.48
GPT-4o 90.00 85.62 89.04 82.84 39.00 100.00 45.00 68.61 77.34

Open-Source Large Language Models
LLaMA3-8B 84.50 41.78 83.56 75.80 43.00 84.00 58.00 41.22 66.17
LLaMA3.1-8B 86.50 73.97 82.88 71.60 45.00 96.00 57.00 31.97 69.21
Qwen2.5-7B 84.50 41.78 83.56 75.80 74.60 94.44 46.83 5.92 62.34
GLM4-9B-chat 69.50 34.93 79.45 65.87 31.39 83.84 46.51 34.75 58.58
Ministral-8B 46.00 23.97 73.29 62.28 36.00 96.00 9.00 13.92 46.97

LLaMA3-70B 72.50 45.21 80.82 69.43 54.00 90.00 54.00 29.69 63.06
LLaMA3.1-70B 87.00 67.81 86.30 70.90 70.63 98.02 48.02 6.38 65.45
Qwen2.5-72B 87.50 47.95 84.93 77.81 67.00 98.00 61.00 49.16 72.53

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.50 0.00 2.05 0.50 1.02 3.38 0.00 0.00 0.99
ToolACE-8B 14.50 2.05 21.23 17.59 0.00 0.08 10.00 18.65 11.79
AgentLM-7B 21.50 0.00 50.68 36.03 50.00 3.07 13.27 15.06 22.37
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Table 20: Results of CRITICTOOL-CoT with With Only Noisy Query Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 86.50 60.27 88.36 81.74 21.00 70.00 21.00 33.91 59.98
GPT-3.5 81.50 74.66 90.41 86.94 59.00 41.00 17.00 24.67 57.57
GPT-4o 86.00 67.12 82.19 70.62 8.00 92.00 64.00 37.10 67.60

Open-Source Large Language Models
LLaMA3-8B 70.00 45.89 84.93 77.76 58.00 85.00 51.00 36.84 64.82
LLaMA3.1-8B 87.00 73.29 84.93 79.29 65.00 88.00 59.00 33.00 70.91
Qwen2.5-7B 86.00 44.52 88.36 82.91 82.00 94.00 64.00 41.58 72.78
GLM4-9B-chat 61.50 32.19 73.08 66.10 24.00 100.00 45.00 40.57 60.83
Ministral-8B 37.50 14.38 77.40 69.18 59.00 50.00 13.00 20.00 42.58

LLaMA3-70B 65.50 38.36 75.34 67.55 61.00 89.00 57.00 33.24 61.76
LLaMA3.1-70B 86.00 73.29 83.56 71.29 79.00 100.00 61.00 30.15 71.78
Qwen2.5-72B 85.00 50.00 86.99 81.75 77.00 99.00 66.00 52.21 75.24

Tool-Use-Finetuned Large Language Models
ToolLLaMA2 - 7B -1.23 -1.12 1.21 1.34 -0.23 1.12 1 0.12 0.78
ToolACE - 8B 10.12 0.98 20.12 17.89 3.12 2.12 11 15.89 11.87
AgentLM - 7B 20.12 -1.23 43.23 31.12 41.12 1.12 13 12.98 19.87

Table 21: Results of CRITICTOOL-CoT with Only Extra Tools Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 85.50 62.33 89.73 82.50 30.00 63.00 20.00 32.64 59.46
GPT-3.5 80.00 67.81 76.71 57.88 6.00 71.00 62.00 47.31 62.32
GPT-4o 86.50 80.82 87.67 80.69 41.00 100.00 46.00 62.99 75.38

Open-Source Large Language Models
LLaMA3-8B 82.50 40.41 80.14 72.61 35.71 68.37 31.63 28.72 56.30
LLaMA3.1-8B 84.50 73.97 81.51 70.50 44.00 94.00 55.00 30.33 67.75
Qwen2.5-7B 83.50 41.10 82.19 71.53 67.06 98.02 56.75 37.07 67.65
GLM4-9B-chat 67.00 32.19 66.44 52.22 20.00 92.00 51.00 49.14 57.54
Ministral-8B 44.00 21.23 75.34 65.33 68.00 38.00 16.00 17.75 41.79

LLaMA3-70B 61.50 37.67 78.77 68.47 43.88 88.78 52.04 33.85 60.40
LLaMA3.1-70B 83.00 64.38 83.56 66.37 62.00 97.00 63.00 34.60 69.52
Qwen2.5-72B 85.50 52.05 83.56 75.42 62.00 98.00 68.00 61.86 74.88

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 1.00 0.00 2.05 0.00 1.09 4.08 0.00 0.00 1.07
ToolACE-8B 10.00 0.00 20.55 19.57 3.00 3.17 12.00 15.61 11.79
AgentLM-7B 22.00 0.00 43.84 31.44 40.22 1.23 20.65 27.16 22.86
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Table 22: Results of CRITICTOOL-CoT with Only Long Context Evolution Data.

Models
Internal Model-Driven Errors External Environment Errors

OverallReflect Correct Retry Skip/Finish
Detect Category Tool Args Break Tool Args

Closed-Source Large Language Models
Claude3.5 77.00 43.15 86.30 77.29 30.00 68.00 26.00 39.37 58.06
GPT-3.5 65.50 50.00 90.41 84.77 53.00 47.00 24.00 38.25 56.87
GPT-4o 84.00 64.38 80.82 68.95 2.00 96.00 67.00 42.77 68.27

Open-Source Large Language Models
LLaMA3-8B 49.00 26.71 69.86 63.16 41.67 68.75 38.54 29.21 50.08
LLaMA3.1-8B 78.00 66.44 79.45 72.81 65.00 82.00 54.00 31.95 65.73
Qwen2.5-7B 71.50 41.78 82.19 76.55 66.00 89.00 62.00 44.05 67.70
GLM4-9B-chat 46.00 20.55 64.38 55.09 15.00 100.00 38.00 32.87 50.96
Ministral-8B 40.50 15.07 73.29 65.85 54.00 52.00 23.00 17.95 43.07

LLaMA3 - 70B 34.23 18.01 59.87 55.12 16.11 92.00 30.00 17.56 44.34
LLaMA3.1 - 70B 65.12 41.23 78.11 68.98 46.34 99.00 56.00 40.11 63.27
Qwen2.5 - 72B 71.34 35.01 76.23 70.01 54.23 99.00 60.00 49.34 66.78

Tool-Use-Finetuned Large Language Models
ToolLLaMA2-7B 0.00 0.00 0.68 0.00 0.00 3.00 0.00 0.00 0.60
ToolACE-8B 9.50 0.00 13.01 12.13 1.00 1.00 9.00 12.25 8.00
AgentLM-7B 3.50 0.00 5.48 1.03 32.58 76.84 23.00 31.88 22.83
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Standardization of Test Data

System Prompt:
You are a assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (//) in
the response.
{

"name": string , // tool name to call
"args": Record <string , any > // input params required by current tool in JSON format

}

If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{

"name": "FinishAction",
"args": "string" // your final response to the query

}

Remember: only generate ONE step each time.

User: Help me maintain a social media presence by crafting a tweet that states, ’Managed to
archive important data files!’ using the hashtags #DataManagement and #Efficiency.
Assistant:
{

"name": "TwitterAPI.authenticate_twitter",
"args": {" username ": "dr_smith", "password ": "securePass123 "}

}

Function:
{

"authentication_status ": true
}

Prediction: The assistant’s tool-calling action for the next step.
Ground True:
{

"name": "TwitterAPI.post_tweet",
"args": {" content ": "Managed to archive important data files!", "tags": ["# DataManagement",
"# Efficiency "]}

}

Figure 10: An example of standardized test data.

26



Insight into Internal Model-Driven Error

User: Retrieve information about author John Smith.
Ground True:
{

"name": "GoogleScholar.get_author_id",
"args": {" mauthors ": "John Smith"}

}

Error Prediction:
{

"name":
"GoogleScholar.get_author_information",
"args": {" author_id ": "John Smith"}

}

Assistant

×
{

"text": "Fully empty",
"error": "GoogleScholar hasn ’t returned
any results for this author_id ."

}

Function
Calls API

Continue Prediction:
{

"name": "GoogleScholar.get_author_id",
"args": {" mauthors ": "John Smith"}

}

Assistant

Correct
{

"name":
"GoogleScholar.get_author_information",
"args": {" author_id ": "0 juNTSgAAAAJ "}

}

Assistant

✓

{" author_id ": "0 juNTSgAAAAJ "}
FunctionCalls API

{
"name": "FinishAction",
"args": "I am unable to find any information
about author John Smith in GoogleScholar ."

}

Assistant

×
Figure 11: Examples of LLMs’ performance in the presence of internal errors.

Insight into External Environment Error

User: Read the content of "/home/user/Documents/file.txt", then find the upcoming action movies
in China.
Prediction:

{
"name": "FileOperation.read_file",
"args": {" file_path ":
"/home/user/Documents/file.txt"}

}

Assistant

✓
{

"text": "Error: [Errno 13] Permission
denied: ’/home/user/Documents/file.txt ’"

}

Function

×
Calls API

Continue Prediction:
{

"name": "FileOperation.read_file",
"args": {" file_path ":
"/home/user/Documents/file.txt"}

}

Assistant

{
"text": "Error: [Errno 13] Permission
denied: ’/home/user/Documents/file.txt ’"

}

Function

Calls API

{
"name": "FilmDouban.coming_out_filter",
"args": {}

}

Assistant

✓

{
"name": "FileOperation.read_file",
"args": {" file_path ":
"/home/user/Documents/file.txt"}

}

Assistant

{
"text": "Error: [Errno 13] Permission
denied: ’/home/user/Documents/file.txt ’"

}

Function

Calls API

... (Endlessly Retry)

{
"name": "FileOperation.read_file",
"args": {" file_path ":
"/home/user/Documents/file.txt"}

}

Assistant

×
Figure 12: Examples of LLMs’ performance in the presence of external errors.
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Collected Tool-Calling Trajectory

System Prompt:
Same as standardized test data.

User: Tool-use task.
Assistant:
{

"name": Golden answer API1 ,
"args": Golden answer parameters1

}

Function:
{Response from API1 to the input parameters1}

Assistant:
{

"name": Golden answer API2 ,
"args": Golden answer parameters2

}

Function:
{Response from API2 to the input parameters2}

...

Assistant:
{

"name": "FinishAction",
"args": "The answer of the task is ..."

}

Figure 13: An example of collected tool-calling trajectories.

Refined API Documentation

{
"name": "TravelAPI.cancel_booking",
"description ": "Cancel a booking",
"required_parameters ": [

{
"name": "access_token",
"type": "string",
"description ": "[ Required] The access token obtained from the authenticate"

},
{

"name": "booking_id",
"type": "string",
"description ": "[ Required] The ID of the booking"

}
],
"optional_parameters ": [],
"return_data ": [

{
"name": "cancel_status",
"description ": "The status of the cancellation , True if successful , False if failed"

},
{

"name": "error",
"description ": "The error message if the cancellation failed"

}
]

}

Figure 14: An example refined API documentation: TravelAPI.
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Error Simulator

System Prompt:
Character Introduction
You are a large language modeling engineer, and your current task is to modify some conversation
datas of large language model interacting with some external tool APIs. Your goal is to modify the
content of the last reply of assistant in the correct dialog so that an error occurs and matches the
error category I have given.
Description of the Dialogues Structure
- User presents the task and describes the problems to be solved.
- Assistant replies to solve the problems, may call the tool API or give the answer directly.
- Function is a tool API return that provides actual datas or the results of performing a specific
action.
- The interaction consists of several steps, and the assistant solves the problems step-by-step by
calling functions.
Your Task
- Find the dialog to be modified: identify the last assistant response in each dialog that is the target
of the message you need to modify.
- Understanding error categories: I will provide you with a specific error category, and you need to
analyze the original dialog according to the error category and find out what needs to be modified,
making sure that each step of your analysis is clear and reasonable.
- Conduct modifications: make the appropriate modifications based on the error category so that
the dialog contains errors that match that error category.
Response Format
Follow the JSON format to output only the modified dialog without redundancy, and do not add
comments (//) in the response.
{
"role": "assistant",
"content ":"{(’ thought ’: string , // goal at current step)

’name ’: string , // tool name to call
’args ’: Record <string , any >} // input params required by current tool in JSON
format"

}

Notes
- Accuracy of JSON format: Please strictly follow the reply format, and output only the modified
wrong tool call action of assistant.
- Reasonability of tool call: even if the error is generated, the called tool and its argument settings
should be within a reasonable range, and the error should have some relevance to the correct dialog.
- Keep the chain of thought clear: although it is a simulation of the dialog and errors, assistant’s
thought process still needs to be clear and reasonable. Even if an error occurs, the logic of the
assistant’s reasoning when calling the tool should be complete.
Modification Example
[Randomly select 3 instances of a specific pattern of error from benchmark tests as few -shot.]

User:
Now I’ll provide you with the error type and the correct dialog trajectory, please modify the last
assistant’s response to correspond to the error type.
Error Type: Tool Select Error/Tool Hallucination Error/Parameters Key Error/Parameters Value Error
Correct Dialog Trajectory: [randomly select the first k steps of tool call trajectory]

Figure 15: An example prompt of Error Diversification.
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API Simulator

System Prompt:
Imagine you are an API Server operating within a specialized tool, which contains a collection of
distinct APIs. Your role is to deeply understand the function of each API based on their descriptions
in the API documentation. As you receive specific inputs for individual API calls within this tool,
analyze these inputs to determine their intended purpose. Your task is to craft a response that aligns
with the expected output of the API, guided by the provided examples.
Please note that your answer should not contain anything other than a json format object, which
should be parsable directly to json, which is as follows:
{

"error": "",
"response ": "<Your_Response >"

}

The error field should returns an explicit error message describing the cause of the error if
there are any errors in the API Input. The response field must adhere strictly JSON format.
<Your_Response> should contain the return_data you formulate based on the API’s functionality
and the input provided. Ensure that your responses are meaningful, directly addressing the API’s
intended functionality.
API calls may fail for various reasons, such as invalid input parameters, authentication issues,
or server errors. Your goal is to generate a response that accurately reflects the API’s intended
functionality, even if the input parameters are incorrect. Your response should be informative
and relevant to the API’s purpose, providing a clear and concise explanation of the expected
output based on the input provided. If the user explicitly requests messages about failed api calls,
and most of the examples provided get an error response despite passing in correct and valid
parameters, please generate a failed tool call response containing some external environment errors.
The external environment errors include rate limit exceeded, permission denied, maximum quota
exceeded, timeout, connection error and so on. Please randomly select one kind of error above, the
error message should match the corresponding api as much as possible, and don’t show the words
"external environment error".
Note that:
- You should strictly validate the parameters of the API Input to ensure all required_parameters
are provided, the value of each parameter strictly conforms to the type specified in the api
documentation, and there are no redundant parameter keys passed in. Be careful to identify the
types of incoming parameters, even if they are the same as those specified by required_parameters
when converted to strings, a different type can cause an error.
- If there is no error in the API Input and no explicit require by user, you should fill in the response
field according to the rules, and the error field should remain empty. Otherwise, you should fill in
the error field according to the rules, and the response field should remain empty.
- The response and error fields are not allowed to be filled in at the same time, you are only allowed
to fill in one depending on the situation.
- Your response should be around 100 to 200 words, containing rich information given the api input
parameters. Keep Your answer short and simple.

User:
API Documentation:
{api_doc}

API Examples:
{api_cache}

API Input:
{input args}

Figure 16: Prompt of API simulator.
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CRITICTOOL Data Example1: Internal Error Critique Task

You are a assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (//) in
the response.
{

"name": string , // tool name to call
"args": Record <string , any > // input params required by current tool in JSON format

}

If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{

"name": "FinishAction",
"args": "string" // your final response to the query

}

If you realize that an error occurred in the last step, then please analyze the error in the last step and
regenerate the step to ensure that you get the correct response. Indicate the error type and select
one of the following categories: tool select error(an exists but incorrect tool was chosen), tool
hallucination error(a nonexistent tool was selected), parameters value error(the input parameter
format or content is incorrect), parameters key error(incoming parameter keys are unrecognizable
or required parameters are missing). And please using the following format to reply:
{

"error": string , // description about the type of error in the last step (tool select
error , tool hallucination error , parameters value error , parameters key
error)

"name": string , //tool name to call
"args": Record <string , any > // input params required by current tool in JSON format

}

Remember: only generate ONE step each time.
User:
Send an email to the team members(team_members@example.com) with the title ’Project Update’,
... After sending the email, check for unread messages in the inbox.

Error-Injected Data (parameters key error, ’content’ should be ’body’):
Assistant:
{

"name": "Email.send",
"args": "{’address ’: ’team_members@example.com ’, ’title ’: ’Project Update ’, ’content ’: ’Dear
team members ...’}"

}

Function:
Invalid parameter key: ’content’. Please provide all required parameters as defined in the API
documentation.

Error-Free Data (interaction data without any errors):
Assistant:
{

"name": "Email.send",
"args": "{’address ’: ’team_members@example.com ’, ’title ’: ’Project Update ’, ’body ’: ’Dear team
members ...’}"

}

Function:
{

"state ": "Send mail successfully ."
}

Figure 17: An example of internal error critique task in CRITICTOOL.
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CRITICTOOL Data Example2: External Error Critique Task

You are a assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (//) in
the response.
{

"name": string , // tool name to call
"args": Record <string , any > // input params required by current tool in JSON format

}

If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{

"name": "FinishAction",
"args": "string" // your final response to the query

}

(Continue) If you meet environment error from tool call, please retry to call it NO MORE THAN
THREE TIMES, and if it still fails, you should skip the current step and perform the next task.
Please using the following format to reply:
{

"name": string , // tool name to call
"args": Record <string , any > // input params required by current tool in JSON format

}
or
{

"name": "FinishAction",
"args": "string" // your final response to the query

}

(Finish) If you meet environment error from tool call, please retry to call it NO MORE THAN
THREE TIMES, and if it still fails, you should report the error to the user and ask the user for next
action. Please using the following format to reply:
{

"name": "FinishAction",
"args": "string" // ask user for guidance

}

User:
Could you fetch the meta information from the first three articles about ’data analysis’? After that,
I would like to know what movies are currently showing in theaters.
Assistant: (correct tool call)
{

"name": "ArxivSearch.get_arxiv_article_information",
"args": "{’query ’: ’data analysis ’}"

}

Function:
ERROR: Permission denied, unable to reach Arxiv.org at the moment. Please try again later.

Figure 18: An example of external error critique task in CRITICTOOL.
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CRITICTOOL Data Example 3: Noisy Query Evolution Task

You are an assistant who can utilize external tools. You can call the following tools:
[API List]

To use a tool, please directly generate the response in JSON format. Do NOT add comments (//) in
the response.
{

"name": string , // tool name to call
"args": Record <string , any > // input params required by current tool in JSON format

}

If you already know the answer, or you do not need to use tools, please using the following format
to reply:
{

"name": "FinishAction",
"args": "string" // your final response to the query

}// Some prompts are simplified

Remember: only generate ONE step each time.
User:
Compose an email to all team members at team_members@example.com detailing the features of
the forthcoming film, ‘Avengers: Endgame’. Subsequently, ascertain the availability of the first
available meeting room from 2:00 PM to 4:00 PM and book it for our weekly marketing assembly.
Assistant:
[Wrong Response]

Function:
[Wrong Function Feedback]

Complex Information:
User:
My favourite film is Avengers: Endgame, I want to share it to my team members. Compose an email
to all team members at team_members@example.com detailing the features of the forthcoming
film Avengers: Endgame, including its plot, main characters, and key action sequences. You can
also mention how the movie fits into the Marvel Cinematic Universe and its expected impact on
upcoming releases. Following that, ascertain the availability of the first available meeting room
from 2:00 PM to 4:00 PM and book it for our weekly marketing assembly. Additionally, weekly
marketing assembly is very important. So please confirm the booking once it’s done.

Spelling Errors:
User:
Compose an email to all tem nembers(typo, should be team members) at
team_members@example.com detailing the features of the forthcomeing(typo, forthcom-
ing) film, Avengers: Endgame. Subsequently, ascertain the availability of the first available
meeting room form(typo, from) 2:00 PM to 4:00 PM and book it for our weekly marketig(typo,
marketing) assembly.

Expression Habits:
User:
Please draft an email to all team members at team_members@example.com, highlighting the key
features of the upcoming film Avengers: Endgame. Afterward, could you check if the first available
meeting room is free from 2:00 PM to 4:00 PM and reserve it for our weekly marketing meeting?

Figure 19: An example of Noisy Query Evolution task in CRITICTOOL.
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Noisy Query Evolution

System Prompt:
Your Task
- You are a helpful assistant and will receive a request from a user. This request is sent to a task
related to the LLM model.
- Your task is to make this request as human-like as possible, such as adding irrelevant information,
adjusting the expression habits that are irrelevant to the final task, adding spelling errors that do
not affect the task, etc.
Example
Here is an example:
{
"Original Query": string , // the original query

"Query": string , // the example refined query
}

Response Format
Please follow the JSON format and output according to the following structure
{

"Query": string , // the refined query
"Explanation ": string , // the reason why you refine the query

}

Remember: be careful NOT to affect the completion of the task.

User: Here is the user query to be refined: Copy the txt contents of the ‘Quarter1_Reports’
directory and place it in a new directory naming it ‘Archived_Quarter1.

Figure 20: An example prompt of Noisy Query Evolution.
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Harder Tools Evolution

System Prompt:
Your Task
- You are a helpful expert. You will receive an API document. You need to change the description
of this api but do not change other parts, especially parameters, etc.
- You can change the expression to make it more verbose. Do not change the original meaning of
the description.
Example
Here is an example:
{
{

"Original Document ": dict , // the original document
"API Document ": dict , // the refined API document

}
}

Response Format
Please follow the JSON format and output according to the following structure
{

"API Document ": dict , // the refined API document
"Explanation ": string , // the reason why you refine the API document

}

Remember: be careful NOT to affect the completion of the API.

User: Here is the API document to be refined:
{

"name": "TimeTool.get_curr_time",
"description ": "Retrieve the current date and time",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

{
"name": "time",
"description ": "The current date and time in the format YYYY -MM-DD HH:MM"

}
]

},

Figure 21: An example prompt of Harder Tools Evolution.
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The verification of Long Context

System Prompt:
Your Task
- You are a helpful expert. You will receive a context from LLM and a user query task. Please
judge whether the context will affect the task.
- Please be strict on this question. If it will affect, please reply Yes. If it will not affect, please reply
No.
Response Format
Please follow the JSON format and output according to the following structure
{

"Result ": string , // Yes or No
"Reason ": string , // the reason why you think the context will or will not affect the task

}

User: Here is the context:
{
"role": "user",
"content ":"..."
},
{
"role": "assistant",
"content ":"..." the context extracted from LongBench
}

and the user task is:
I am planning a trip from Times Square to Central Park in New York City. I’d like to know the best
path to take , such as walking , biking , or taking public transportation.

Figure 22: An example prompt of the verification of Long Context.

The verification of Noisy Query

System Prompt:
Your Task
- You are a helpful expert. You will receive two user queries: A and B. You need to determine
whether B completely contains the tasks in A and whether there is no ambiguity and typo in the
important expression parts.
- If there is no ambiguity, output Yes, and if there is ambiguity, output No.
Response Format
Please follow the JSON format and output according to the following structure
{

"Result ": string , // Yes or No
"Reason ": string , // the reason why there is or is not ambiguity

}

User: Here is the user query A:
I am planning a trip from Times Square to Central Park in New York City. I’d like to know the best
path to take , such as walking , biking , or taking public transportation. // the origin user query

Here is the user query B:
I am in the process of meticulously planning an excursion from the bustling Times Square to the
serene Central Park in the heart of New York City. I am quite curious to discover the most optimal
route to embark upon for this journey , whether it be the leisurely stroll of walking , the
environmentally friendly and energetic biking , or the efficient and convenient public
transportation system. Each option presents its own unique set of advantages and challenges , and I
am eager to weigh them all carefully. // the new evolved user query

Figure 23: An example prompt of the verification of Noisy Query.
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The verification of Extral Tools

System Prompt:
Your Task
- You are a helpful expert. You will receive two tool lists: tool list A and B. Your task is to
determine whether there are particularly similar functions in these two function lists.
- If they are particularly similar, reply yes, otherwise reply no. Please be strict on this question.
Response Format
Please follow the JSON format and output according to the following structure
{

"Result ": string , // Yes or No
"Reason ": string , // the reason why the two tool lists are similar or different

}

User: Here is the tool list A:
{

"name": "Tool 1",
"description ": "...",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

"..."
]

},
{
"name": "Tool 2",
"description ": "...",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

"..."
]

},// the original tool list

Here is the tool list B:
{

"name": "Tool 3",
"description ": "...",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

"..."
]

},
{
"name": "Tool 4",
"description ": "...",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

"..."
]

},// the new added tool list

Figure 24: An example prompt of the verification of Extra Tools.
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The verification of Harder Tools

System Prompt:
Your Task
- You will receive two API documents: API A and B. Your task is to determine whether the two
APIs are equivalent, that is, whether the corresponding functions have the same parameters and
whether the descriptions have the same meaning.
- The expressions may be slightly different, ignore typos).
- If they are equivalent, answer Yes, otherwise answer No.
Response Format
Please follow the JSON format and output according to the following structure
{

"Result ": string , // Yes or No
"Reason ": string , // the reason why the two APIs are equivalent or different

}

User: Here is the API A:
{

"name": "Tool 1",
"description ": "...",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

"..."
]

}, //the origin API document

Here is the API B:
{

"name": "Tool 2",
"description ": "...",
"required_parameters ": [],
"optional_parameters ": [],
"return_data ": [

"..."
]

}, //the new evoluted API document

Figure 25: An example prompt of the verification of Harder Tools.
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Self-Critique Performance in Internal Error-Injected Task

Task:
Error-injected data from internal critique task in Fig. 17.

Prediction (Ground True):
{

"error": "parameters_key_error",
"name": "Email.send",
"args": "{’address ’: ’team_members@example.com ’, ’title ’: ’Project Update ’, ’body ’: ’Dear team
members ...’}"

}

Prediction (Error Ignorance):
{

"name": "Email.show",
"args": "{’only_unread ’: True}"

}

Prediction (Correction Without Reflection):
{

"name": "Email.send",
"args": "{’address ’: ’team_members@example.com ’, ’title ’: ’Project Update ’, ’body ’: ’Dear team
members ...’}"

}

Prediction (Failure to Detect):
{

"error": "parameters_value_error",
... //( Error correction is uncertain)

}

Prediction (Failure to Correct):
{

"error": "parameters_key_error",
... //( Does not match groundtruth answer)

}

Prediction (Tool Call Interruption):
{

"name": "FinishAction",
"args": "Cannot send email successfully ."

}

Figure 26: Qualitative examples of self-critique performance in internal error-injected task.

Self-Critique Performance in Internal Error-Free Task

Task:
Error-free data from internal critique task in Fig. 17.

Prediction (Ground True):
{

"name": "Email.show",
"args": "{’only_unread ’: True}"

}

Prediction (Over-Reflection):
{

"error": ...,
...

}

Figure 27: Qualitative examples of self-critique performance in internal error-free task.
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Self-Critique Performance in External Error Task

Task:
External critique task in Fig. 18.

Prediction (Continue Ground True):
{

"name": "ArxivSearch.get_arxiv_article_information",
"args": "{’query ’: ’data analysis ’}"

}
...( Repeat no more than three times)
{

"name": "FilmTMDB.get_now_playing",
"args": "{}"

}

Prediction (Finish Ground True):
{

"name": "ArxivSearch.get_arxiv_article_information",
"args": "{’query ’: ’data analysis ’}"

}
...( Repeat no more than three times)
{

"name": "FinishAction",
"args": "I am unable to access ’ArxivSearch.get_arxiv_article_information ’ to get articles on
data analysis , could you provide further guidance on what to do?"

}

Prediction (Endless Retry):
{

"name": "ArxivSearch.get_arxiv_article_information",
"args": "{’query ’: ’data analysis ’}"

}
...( Repeat more than three times)

Prediction (Hallucination):
{

"name": "FinishAction",
"args": "I have fetched the meta information from the first three articles about ’data
analysis ’."

}

Figure 28: Qualitative examples of self-critique performance in external error task.
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