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Abstract
Although conversational AIs have demonstrated fantas-
tic performance, they often generate incorrect informa-
tion, or hallucinations. Retrieval augmented generation
has emerged as a promising solution to reduce these
hallucinations. However, these techniques still cannot
guarantee correctness. Focusing on question answer-
ing, we propose a framework that can provide statistical
guarantees for the retrieval augmented question answer-
ing system by combining conformal prediction and
global testing. In addition, we use Bayesian optimiza-
tion to choose hyperparameters of the global test to
maximize the performance of the system. Our empiri-
cal results on the Natural Questions dataset demonstrate
that our method can provide the desired coverage guar-
antee while minimizing the average prediction set size.

1. Introduction
Neural conversational AIs have recently demonstrated fan-
tastic performance. These chatbots are empowered by large
language models (LLMs), and interact with users to perform
a number of tasks; we focus on question answering. Al-
though their answers are highly accurate, a major limitation
is that these chatbots often confidently generate incorrect
responses, called hallucinations. Retrieval augmented gen-
eration (RAG) has emerged as a promising solution (Lewis
et al., 2021; Karpukhin et al., 2020). Given a prompt, these
techniques retrieve related contexts that can provide chatbots
with helpful information to generate more accurate answers.
Also, these techniques can provide timely information by
using an up-to-date knowledge base.

In this paper, we explore whether we can provide statistical
guarantees for retrieval-augmented question answering sys-
tems, to guarantee the system is trustworthy. In particular,
we build on conformal prediction (Shafer & Vovk, 2007;
Vovk & Wang, 2019), a set of tools that modify models to
predict sets of labels rather than individual labels. They
typically guarantee that the set covers the ground truth la-
bel with high probability. By predicting a set of labels
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and providing a coverage, the user can conservatively ac-
count for uncertainty in the predicted answer. We propose
a novel framework for using conformal prediction to build
retrieval augmented question answering systems with high-
probability coverage guarantees.

There are several challenges to applying conformal predic-
tion to question answering. First, conformal prediction is
usually applied to classification and regression tasks, which
are simpler than question-answering. Second, retrieval aug-
mented systems have multiple components, which need to
be composed together to form the final prediction. Thus,
we need to compose the coverage guarantees of each com-
ponent to obtain a guarantee for the overall system. Third,
conformal prediction typically optimizes a performance met-
ric such as the expected size of the predict label sets, subject
to the coverage guarantee. We need to devise reasonable
metrics for quantifying the set size for question answering.
To our best knowledge, our work is the first to apply confor-
mal prediction to retrieval augmented question answering.

Our framework first construct conformal predictors for the
retrieval model and the question answering model, and then
combines these techniques by using a multiple hypothesis
test (specifically, a global test). Given a prompt, the re-
triever retrieves a set of contexts guaranteed to include the
most relevant context with high probability. Then, given the
prompt and most relevant context, the LLM predicts a set of
answers guaranteed to include the correct answer with high
probability. We consider several metrics for evaluating the
performance of the final prediction set over answers, includ-
ing the number of generated answers, the number of unique
answers deduplicated by exact match, and the number of
generated answers deduplicated by semantic match.

In addition, a key challenge with global tests is that they
have hyperparameters that need to be tuned to maximize
performance. We propose to use Bayesian optimization to
optimize these hyperparameters based on a separate held-out
optimization set; then, we construct the conformal predictors
on a held-out calibration set as usual.

We evaluate our approach on the Natural Question
dataset (Kwiatkowski et al., 2019). Our empirical results
demonstrate that our approach can provide the desired cov-
erage guarantee, while minimizing prediction set size.
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2. Related Work
Retrieval Augmentation. Augmenting chatbots with
knowledge from a corpus has shown great effectiveness in
reducing hallucinations. Some work focuses on retrieving
relevant contexts, such as Karpukhin et al. (2020); Borgeaud
et al. (2022). This line of work usually trains a neural re-
triever to identify relevant contexts for a given question from
a knowledge base such as Wikipedia. Other approaches
combine training the retriever and the question answerer,
including RAG (Lewis et al., 2021) and Atlas (Izacard et al.,
2022). Furthermore, instead of retrieving context from an ex-
ternal knowledge base, Wang et al. (2023); Sun et al. (2023)
propose to retrieve contexts from another LLM, which
is referred to as parametric memory. Guu et al. (2020);
Lazaridou et al. (2022) focus on designing better in-context
prompts so chatbots learn when and what knowledge to
retrieve. While these approaches can reduce hallucinations,
they do not provide theoretical guarantees.

Conformal Prediction. Conformal prediction (CP) (Vovk
et al., 2005; Shafer & Vovk, 2007; Angelopoulos & Bates,
2022) is an effective distribution-free uncertainty quantifi-
cation technique for providing performance guarantees on
machine learning models. These techniques construct pre-
diction sets that guarantee to contain true labels with high
probability. Split conformal prediction (SCP) (or inductive
conformal prediction) reduces the computation complexity
of CP by introducing a hold-out calibration set, but main-
tains the same performance guarantee. CP has been widely
applied to image classification (Park et al., 2020; Angelopou-
los et al., 2022a; Bates et al., 2021), regression (Lei et al.,
2017), object detection (Angelopoulos et al., 2022b).

Global testing. Global testing is a multiple hypothesis test-
ing technique that tests a global null hypothesis that consists
of all individual hypotheses. Typical tests include the Bon-
ferroni Correction (Bonferroni, 1936), Fisher’s Test (Fisher,
1992), and the Harmonic Mean p-value (Wilson, 2019b).
Some work has proposed to combine conformal prediction
and global testing (Vovk & Wang, 2019; Toccaceli & Gam-
merman, 2019; Spjuth et al., 2019; Gauraha & Spjuth, 2021;
Linusson et al., 2017; Balasubramanian et al., 2014; Toc-
caceli, 2019). However, these approaches have not been
applied to question-answering task; furthermore, they do
not use optimization process to improve performance.

3. Methods
3.1. Individual Prediction Sets

First, we describe how we construct prediction sets for the re-
trieval and question answering models separately using split
conformal prediction (SCP). In general, SCP assumes given
a nonconformity measure s : X×Y → Rmapping example-
label pairs to scores (typically a pretrained model for solving

the task), a held-out calibration set B = {(xi, yi)}Ni=1 sam-
pled i.i.d. from the data distribution D, and a user-specified
error level α, and constructs the prediction set C : X → 2Y

such that for a new test example xN+1 as

C(xN+1) = {y ∈ Y | s(xN+1, y) ≤ τ},

where τ is the ⌈(N+1)(1−α)⌉
N -th smallest score in

{s(xi, yi)}Ni=1. It guarantees coverage as follows:

Theorem 3.1. We have

Pr
B∼DN ,(x,y)∼D

(y ∈ C(x)) ≥ 1− α.

Here, the constructed prediction set C implicitly depends
on the random calibration set B. In other words, the pre-
diction set C(x) contains the ground truth label for x with
probability at least 1− α.

To apply conformal prediction to the retrieval and question
answering models, the main challenge is to design appropri-
ate nonconformity measures (NCMs) for each task. NCMs
are functions measuring how unlikely a given label y is the
true label of the observation x. For example, in a multi-
classification task, let ξk be the estimated for label k, the
NCM could be 1− ξk for class k.

For the retrieval model, we use the negative inner product
or negative cosine similarity between the prompt and con-
text embeddings as the NCM; in both cases, a lower score
indicates a higher similarity.

For the question answering model, the NCM is more chal-
lenging to design. One option would be the log probability
of the generated answer; however, semantically similar an-
swers may induce different log probabilities. To address
this limitation, we build on an idea proposed in Kuhn et al.
(2023), and propose to use negative semantic confidence as
the NCM, which we can estimate via Monte Carlo sampling
and clustering. In particular, we first request K answers
{yk}Kk=1; then, we semantically cluster them using an en-
tailment model or their rouge scores; finally, we regard each
cluster z as a semantic meaning and estimate its NCM by

sQA(x, ym; c∗) = − 1

K

K∑
k=1

1(yk ∈ z(x, ym)),

where c∗ is the most relevant context for example x. A
lower score sQA(x, ym; c∗) value indicates that the model is
more confident in the semantic meaning of cluster z(x, ym).

Next, we need to define what is the “ground truth” label, so
we can compute the NCM of the true label, which we call
the true label NCM. For retrieval, consider the true label to
be the most relevant context, which is given in the Natural
Question dataset. For question answering, given questions
and their corresponding top-1 most relevant context, we use
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rouge F1 scores (Lin, 2004) along with a standard threshold
to determine whether two answers are semantically equiva-
lent. Then, answers that are semantically equivalent to the
answer in the dataset are considered ground truth labels.

Now, to construct prediction sets, we split all collected
questions into the calibration and testing sets with equal
sizes. First, we compute thresholds τret as the ⌈(N+1)(1−α)⌉

N
quantile of the NCMs sret(x, c

∗) of the true context c∗ for
question x; and τQA as the ⌈(N+1)(1−α)⌉

N quantile of the
NCMs sQA(x, y

∗; c∗) of the correct answer y∗ for question
x and true context c∗. Then, given a new question x, we
construct the retrieval set Cret by including contexts c whose
NCMs sret(x, c) are no greater than τ ret—i.e.,

Cret(x) = {c | sret(x, c) ≤ τret}.

For the question answering model, given a new question
x and its most relevant context c∗, we construct prediction
sets by including answers y whose corresponding semantic
confidence sQA(x, y; c

∗) is no greater than τQA, i.e.,

CQA(x; c
∗) = {y | sQA(x, y; c

∗) ≤ τQA}.

Finally, we have the following standard guarantees:

Theorem 3.2. For retrieval, given a question x and its most
related context c∗, we have

Pr (c∗ ∈ Cret(x)) ≥ 1− α. (1)

For question answering, give a question x, its most related
context c∗, and the true answer y, we have

Pr (∃y′ ∈ CQA(x; c
∗) . y′ ∼ y) ≥ 1− α, (2)

where ∼ denotes semantic similarity.

Note that the randomness is in both with the calibration set
and the newly observed example.

3.2. End-to-End Prediction Sets

Next, we describe how we integrate prediction sets for re-
trieval and question answering to obtain an overall guarantee.
The overall prediction set can be obtained by a straightfor-
ward composition of the individual prediction sets:

C(x) =
⋃

c∈Cret(x)

CQA(x; c),

i.e., run the question answering prediction set on every con-
text. Intuitively, the most related context c∗ is contained
in Cret(x) with high probability, and some answer y′ se-
mantically equivalent to the true answer y is contained in
CQA(x; c

∗), we have

y′ ∈ CQA(x; c
∗) ⊆ C(x),

Figure 1. Empirical Coverage Rates with Different Levels

which is the desired guarantee. The main issue is that the
individual coverage guarantees only hold with high proba-
bility. A naı̈ve strategy is to take a union bound to get

Pr (∃y′ ∈ C(x) . y′ ∼ y) ≥ 1− 2α. (3)

More generally, we can apply global hypothesis tests, which
is a technique to efficiently combine multiple statistical tests,
to construct prediction sets ((3) corresponds to the Bonfer-
roni correction). Different global tests provide tradeoffs
in terms of the resulting assumptions and guarantees. We
focus on the Bonferroni Correction (Bonf) and Harmonic
Mean p-values (HMP), which are global tests that allow for
dependencies between individual tests.

In particular, we treat the individual conformal predictors
constructed using split conformal prediction as individual
statistical tests, and then combine them with a global test.
For Bonf, given error level α, we choose some hyperparam-
eters αret and αQA such that

αret + αQA = α.

Then, we compute threshold τret using αret and τQA using
αQA as before. We describe HMP in Appendix C.

Using Bonf, we have the following end-to-end guarantee:

Theorem 3.3. We have

Pr (∃y′ ∈ C(x) . y′ ∼ y) ≥ 1− α.

We give a proof in Appendix D. HMP gives a weaker guar-
antee since it is asymptotic rather than finite sample.

3.3. Hyperparameter Optimization

Many global tests, including Bonf have hyperparameters
that need to be tuned. In the Bonferroni Correction, these
hyperparameters are αret and αQA; in HMP, these hyperpa-
rameters are weights assigned to different individual tests.
Although these hyperparameters do not affect the correct-
ness guarantee, they can significantly affect the resulting
prediction set sizes. Thus, to maximize performance, we
propose to use Bayesian optimization to choose hyperpa-
rameters. We describe our approach in detail in Appendix E.
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Table 1. Results on Retrieval Augmented Question Answering.
We show coverage rate (“Cov”), # answers (“Ans”), # unique
answers by exact match (“Ext”) and by Rouge score (“Rou”), and
# ChatGPT requests per question (“Req”).

Size
Method Cov Ans Ext Rou Req
CCPS-H 0.91 567.9 21.5 6.1 18.6
CCPS-B 0.90 523.6 20.4 5.9 17.3
HMP 0.92 581.2 23.3 6.5 18.3
Bonf 0.91 530.0 22.3 6.2 16.7

We call our method as Combining Conformal Prediction
Sets via Optimized Multiple Hypothesis Testing as CCPS.

Finally, we measure prediction set size in several ways,
namely: (i) expected number of answers, (ii) expected num-
ber of unique answers deduplicated by exact match, (iii)
and expected number of unique answers deduplicated by
semantic equivalence based on Rouge score.

4. Experiments
4.1. Experiment Setup

We use Dense Passage Retriever (DPR) as our retriever, and
gpt-3.5-turbo (ChatGPT) as our question answerer. Our
method is agnostic to the retriever and question answerer,
and can be straightforwardly adapted to other models.

We evaluate our approach on the Natural Questions
dataset (Kwiatkowski et al., 2019). For each question, we
retrieve contexts using DPR, and then query ChatGPT on
each question-context pair, asking it to return 40 potential
answers. One challenge is that querying ChatGPT is costly;
thus, we restrict to querying it on the top 20 retrieved con-
texts per question. We filter out questions for which the
most relevant retrieval does not occur in the top 20; this
assumption can easily be relaxed by performing additional
queries to ChatGPT. While it may increase the overall sizes
of the prediction sets, we expect the relative performance of
different approaches to be preserved.

We collect 516 examples as the calibration set, 811 data
examples as the optimization set, and 812 examples as the
test set. We run each experiment with ten random seeds.

We denote CCPS with Bonferroni correction as CCPS-B
and with Harmonic mean p-value as CCPS-H. We compare
methods (CCPS-B and CCPS-H) to their counterparts (Bonf
and HMP) with αret = αQA = α

2 .

4.2. Prompt design

To reduce the API cost, we used a prompt that includes
both the question and context, but no in-context few-shot
demonstrations. To encourage ChatGPT to answer ques-
tions based on the retrieved context, we used the following

Figure 2. Sizes of Different Methods

prompt, where <question>is substituted with the question,
and <context>with the context:

Answer the following question based on the given con-
text;
Answer ”I don’t know” if you don’t know the answer;
Answer the question using only one keyword.
Question: <question>
Context: <context>
Answer:

4.3. Individual Prediction Sets

We first validate the performance guarantee on retrieval and
question answerer prediction sets separately using coverage
levels 1−α ∈ {0.9, 0.925, 0.95, 0.975}. We plot the empir-
ical coverage rate together with the desired coverage level
(“Baseline”, in dotted green) in Figure 1. As can be seen,
the coverage rates are centered around the desired level,
which is consistent with (1) & (2).

4.4. End-to-End Guarantee and Performance

We show our results with α = 0.1 in Table 1, and results
with α = 0.2 in Table 2. All approaches satisfied the desired
coverage. For number of answers by exact match (“Ext”),
CCPS-H and CCPS-B decreased the prediction set sizes of
HMP and Bonf by approximately 8%, respectively, demon-
strating the benefit of optimization. Furthermore, CCPS-B
and Bonf outperformed CCPS-H and HMP, indicating that
Bonferroni Correction is more effective for our task. In Fig-
ure 2, we plot the distribution of unique answers by exact
match (across examples for one random seed). As can be
seen, all approaches have similar variation, with CCPS-H
and HMP having slightly higher variability. We show some
examples of prediction sets in Appendix G.

5. Conclusion
We have proposed a novel strategy applying conformal pre-
diction to retrieval augmented question answering. Our
approach ensures an answer semantically equivalent to the
true answer is contained in the prediction set, which en-
ables users to act conservatively with respect to the qustion
answering system. Our empirical results on the Natural
Questions dataset demonstrate that we can obtain coverage
guarantees with reasonable prediction set sizes.
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Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp tasks,
2021.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013.

Linusson, H., Norinder, U., Boström, H., Johansson, U.,
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A. Conformal Prediction and Hypothesis Testing
Conformal prediction is a distribution-free uncertainty quantification technique that constructs provable prediction sets
for black-box models. Specifically, let X and Y be the input and label spaces, respectively, and (x, y) be an input-label
pair. Conformal prediction assumes given a calibration set B = {xn, yn}Nn=1 with N input-label pairs, along with a
nonconformity measure s(B, x, y) ∈ R that measures how different a pair (x, y) is from the examples in B. Given a
new input xN+1, conformal prediction constructs a prediction set C(xN+1) ⊆ Y using Algorithm (Shafer & Vovk, 2008).
Intuitively, for every label y ∈ Y , this algorithm checks whether (xN+1, y) is similar to examples in the B according to the
nonconformity measure s(B, xN+1, y). If they are similar, then y is included in the prediction set C(xN+1); otherwise, y is
excluded from C(xN+1). To connect these ideas with multiple hypothesis testing, we note that conformal prediction can be
framed as an application of the Neyman-Pearson theory for hypothesis testing (Shafer & Vovk, 2008).

Algorithm 1 The Conformal Algorithm
Input: Nonconformity measure s, significance level α, examples B = {xn, yn}Nn=1, a new input xN+1, label space Y
for y ∈ Y do

for i = 1 to N + 1 do
set

αi := s({(x1, y1), . . . , (xN+1, y)} \ (xn, yn), (xn, yn))

end for
end for
Set py :=

∑N+1
n=1 I{αi≥αN+1}

N+1 .
Include y in C(xN+1) if and only if py > α.

A variant of conformal prediction is inductive conformal prediction (ICP), which holds out a fixed calibration set and
compares the nonconformity score of new inputs to the calibration set. Since the calibration set is fixed, we omit B in the
nonconformity score function. Since we do not need to compute nonconformity scores for the calibration set repeatedly, ICP
is more computationally efficient. Papadopoulos (2008) gives a detailed introduction to ICP.

B. Global Testing
Global testing is a technique for combining multiple statistical tests. Individually, each test potentially rejects the null
hypothesis, which is referred to as producing a “discovery”. The goal of global testing is to minimize false discoveries (i.e.,
incorrectly rejecting the null hypothesis) by controlling some error rate while maximizing the efficiency of each test (i.e.,
correctly rejecting the null hypothesis).

Suppose we have a number M of null hypotheses H1, . . . ,HM . In a single statistical test, we accept the null hypothesis if
the test is significant (p-value is sufficiently large) and reject otherwise. After taking these M tests, the possible outcomes
are shown in the following table:

Hm not rejected Hm rejected Total
Hm True N0|0 N1|0 M0

Hm False N0|1 N1|1 M1

Total M − R R M

Here, R is the number of rejections, N0|1 and N1|0 are the exact (unknown) number of errors made after testing; N1|1 and
N0|0 are the number of correctly rejected and correctly retained null hypotheses. Then, global testing typically controls the
Family-wise error rate (FWER), which is defined as the probability of falsely rejecting at least one null hypothesis:

FWER = Pr(N1|0 ≥ 1).

We say an global testing satisfying this bound is valid. Common global testing techniques include Bonferroni correction
(Bonferroni, 1936), Fisher’s method (Fisher, 1992), Brown’s method (Brown, 1975), and Harmonic mean p-value (Wilson,
2019a).
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C. Global Testing via the Harmonic Mean p-Value
HMP is motivated by Bayesian model averaging, and can control of the weak and strong Famility-wise Error Rate (FWER).
The control is achieved by combining dependent tests using the generalized central limit theorem.

Specifically, given valid p-values1 from M statistical tests, denoted as (p1, . . . , pM ), and weights for each hypothesis
(w1, . . . , wM ) satisfying

∑M
m=1 w

m = 1, HMP combines the p-values to form

p̄ =

∑M
m=1 w

m∑M
m=1 w

m/pm
. (4)

Next, to control the weak FWER at level α, HMP uses the following policy: given the combined p-value p̄,

If p̄ < αM : Reject {H1, . . . ,HM} (5)

Otherwise: Accept {H1, . . . ,HM},

where αM is an adjusted significance level based on α and the number of test M . In our case (α = 0.1, M = 2),
αM = 0.079. Using this policy, HMP can control of the weak FWER to be under α (Wilson, 2019a). Note that weak FWER
equals Type-I error of the global testing when all individual null hypotheses are true (Roquain, 2011).

In the retrieval augmented question answering task, given a question X and a retrieved context c, parameters wret and wQA,
we first compute the p-value for the retrieval task by

pret =

∑N
n=1 I (sret,n ≤ sret(X, c))

N ret .

We then compare this value to λ = wret
1

0.079−wQA
, which is the minimum p-value for HMP to accept context c. If pret < λ,

we reject c; otherwise, we submit the question x together with the context c to ChatGPT, and request answers. Given a
generated answer y from ChatGPT, chatbot p-values are computed as

pQA =

∑N
n=1 I (sQA,n ≤ sQA(X, y; c))

N
.

Then, Harmonic Mean p-value (HMP) combines these p-values by

p̄ =
1

wret/pret + wQA/pQA
.

To decide whether to include the answer y, HMP uses the following policy: given the combined p-value p̄,

If p̄ < αM : exclude y from C(x) (6)
Otherwise: include y in C(x).

D. End-to-End Performance Guarantee
Proof. First, we define the individual null hypothesis in retrieval and chatbot tasks. Given a question X , the null hypothesis
for a context ctx is defined as

H ret
c := c is the most relevant context for X;

given a question X and its top-1 relevant context c∗, the null hypothesis for a generated answer y from the chatbot is defined
as

HQA
y := y is semantically correct for X and c∗.

1A p-value p for a null hypothesis Hm is valid if it satisfies Pr[p ≤ α | Hm] ≤ α for all α ∈ [0, 1], which implies that valid p-values
should be subject to a uniform distribution.
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Then, we define the global null hypothesis for c and y as the intersection between the two individual hypothesis, i.e.,

Hc,y = H ret
c

∧
HQA

y ,

which means that the global null hypothesis is true if both individual hypotheses are true. Using global testing, given a
user-specified error level α, we can guarantee that the Type-I error, which is the rate that the true global null hypotheses are
rejected, is at most α. In other words, the rate that the true global hypothesis is accepted is at least 1− α.

By our null hypothesis definition, a global null hypothesis Hc,y is true only if c is the top-1 relevant context and y is a
semantically correct meaning. By our algorithm, if the global null hypothesis is true, we will include y into the prediction
set. Therefore, the rate that semantically correct meanings ys are included in the prediction set is no less than the rate that
the global null hypothesis is accepted, which is at least 1− α. Therefore, for the end-to-end prediction set, the semantically
correct meanings are included in the set with probability at least 1− α, i.e., given a question X and its semantically correct
meaning y, we have

Pr (y ∈ C(x)) ≥ 1− α.

Remark D.1. Note that the true meaning coverage rate could be more than the global null hypothesis acceptance rate because
semantic meanings based on other relevant contexts could also be correct.

E. Bayesian Optimization
Many global tests have hyperparameters w ∈ W—e.g., HMP assigns a weight wret and wQA to each null hypothesis,
respectively; and the Bonferroni Correction assigns a significance level αret and αQA to each hypothesis. While these
parameters do not affect the Type-I error rate of the global test, they can affect the Type-II error rate and therefore the
resulting cost of CB,w.

Our method uses Bayesian Optimization (BO) to optimize these hyperparameters w ∈ W to minimize the given cost g.
In particular, BO first initializes a Gaussian Process (GP) model of the cost function. Then, based on the GP, BO selects
parameters potentially minimizing the cost function and evaluates the prediction set cost on the selected parameters. Finally,
BO refines the GP model based on the evaluated cost. BO iteratively optimizes the objective function across T iterations.

To preserve the validity of the global test, we separate global testing from BO. In particular, we split the available data into a
calibration set and an optimization set (we also use a separate training set to train the nonconformity scores sm, but this step
occurs prior to applying CCPS). The parameters w are first optimized by running a global test on the optimization set, and
evaluating the resulting cost. Once we have chosen hyperparameters w, CCPS runs the global test one final time, but now in
conjunction with the held-out calibration set B, to obtain CB,w. The pseudo-code can be found in Algorithm 2.

Algorithm 2 Trustworthy Retrieval Augmented Chatbot (TRAC)
Input: global test with hyperparameters w ∈ W , dataset B = {xn, cn, yn}2Nn=1, desired error rate α,
Split B into optimization set Bopt = {(xn, cn, yn)}Nn=1 and calibration set Bcal = {(xn, cn, yn)}2Nn=N+1

Initialize Gaussian process G
Compute nonconformity scores sret,n(xn, cn) and sQA,n(xn, yn; cn) for each (xn, cn, yn) ∈ B
for t ∈ {1, ..., T} do

Choose hyperparameters wt ∈ W using Bayesian optimization on G
Construct prediction set CBopt,wt

using the given global test
Compute the empirical prediction set cost ct ← 1

K

∑
x∈Bopt

g(CBopt,wt
(xi))

Update G using (wt, ct)
end for
Let w∗ to be the hyperparameters wt with the smallest cost ct (over t ∈ {1, ..., T})
Return prediction set CBcal,w∗ constructed using the given global test
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F. Results with α = 0.2

Table 2. Results on Retrieval Augmented Question Answering. We show coverage rate (“Cov”), # answers (“Ans”), # unique answers by
exact match (“Ext”) and by Rouge score (“Rou”), and # ChatGPT requests per question (“Req”).

Size
Method Cov Ans Ext Rou Req
CCPS-H 0.84 485.3 16.5 5.0 18.1
CCPS-B 0.83 409.9 14.2 4.4 16.2
HMP 0.85 502.8 17.9 5.3 17.7
Bonf 0.86 428.1 15.9 5.7 15.4

G. Examples of Prediction Sets

Quesiton: ’what is the second movie of the pirates of the caribbean’

Reference Answer: ”Dead Man ’s Chest”

Answer Set: ”Dead Man’s Chest.”, ’Dead Men Tell No Tales’, ”Don’t know.”, ’Pitch Black’, ”Dead Men Tell
No Tales or Salazar’s Revenge”, ”I”Don’t know””, ”don’t know”, ”Unknown/ I don’t know.”, ”Dead Men Tell No
Tales/Salazar’s Revenge”, ”Dead Men Tell No Tales (or Salazar’s Revenge)”, ’”On Stranger Tides”.’, ”I Don’t Know”,
’Unknown.’, ’”I dont́ know”’, ’fourth.’, ’Pirates’, ’Pirates.’, ”Don’t know”, ’”Unknown”’, ”Don’t remember/I don’t
know”, ’fourth’, ”I don’t know”, ”dead man’s chest”, ’Dead Men Tell No Tales.’, ’On Stranger Tides.’, ’”fourth”’, ”I
Don’t know.”, ’”Dont́ know”’, ’unknown’, ’”Dead Manś Chest”’, ”Dead Man’s Chest (keyword: Chest)”, ”Dead
Man’s Chest”, ”Dead Men’s Chest”, ”Dead Man’s Chest”, ’”On Stranger Tides”’, ’”Pirates”’, ”I don’t know.”,
’Unknown’, ’Dead Men Tell No Tales (or fifth film)’, ’Fourth’, ’”Fourth”’, ’unknown.’, ’Pitch Black.’, ’”Dead Men
Tell No Tales”’, ’”Pirates.”’, ’On Stranger Tides’

Quesiton: ”when did spanish town become jamaica ’s capital”

Reference Answer: ”1534”

Answer Set: ’1680’, ”Don’t know.”, ’1534.’, ’1873.’, ’1655’, ’1845’, ”don’t know”, ’1872.’, ’1534’, ’Eighteenth
Century’, ’Eighteenth century.’, ’1670.’, ’1845.’, ’Eighteenth century’, ”Don’t know”, ’eighteenth century’, ”I don’t
know”, ’1873’, ’1847’, ”Not mentioned/ I don’t know”, ”I don’t know.”, ’1670’, ’1680.’, ’eighteenth century.’,
’1962’, ’1962.’, ’1847.’, ’1872’, ’1655.’

Quesiton: ’who presented in parliament the separate rail budget in india’

Reference Answer: ”’the Minister of Railways’”

Answer Set: ’Lalu Yadav.’, ’Minister of Railways.’, ’D. V. Sadananda Gowda’, ”Don’t know.”, ’Ms. Mamata
Banerjee’, ’parliament’, ’D. V. Sadananda Gowda.’, ’Sir William Acworth’, ’Lalu Prasad Yadav.’, ’John Mathai.’,
’John Mathai’, ’”I dont́ know”’, ’Minister.’, ’Minister of Railways’, ’Minister’, ’Suresh Prabhu’, ’”I dont́ know”.’,
”I don’t know”, ’RLDA’, ’Parliament.’, ’Sir William Acworth.’, ’RLDA.’, ’Mamata Banerjee’, ”I Don’t Know.”,
’Lalu Yadav’, ”I don’t Know.”, ’Lalu Prasad Yadav’, ’D.V. Sadananda Gowda.’, ”I don’t know.”, ’Suresh Prabhu.’,
’Mamata Banerjee.’, ’D.V. Sadananda Gowda’, ’Parliament’
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