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Abstract

Molecular interactions underlie nearly all biologi-
cal processes. However, most machine learning
models treat molecules in isolation or specialize
in a single type of interaction, which prevents gen-
eralization across biomolecular classes and limits
the ability to systematically model interaction in-
terfaces. We introduce ATOMICA, a geometric
deep learning model that learns atomic-scale rep-
resentations of intermolecular interfaces across
diverse biomolecular modalities, including small
molecules, metal ions, amino acids, and nucleic
acids. ATOMICA uses a self-supervised denois-
ing and masking objective to train on 2,037,972 in-
teraction complexes and generate hierarchical em-
beddings at the levels of atoms, chemical blocks,
and molecular interfaces. The model learns gener-
alizable representations across molecular classes.
We apply ATOMICA to the interfaceome and
show that proteins that interact similarly with ions,
small molecules, nucleic acids, lipids, and pro-
teins tend to be involved in the same disease. We
then construct five modality-specific interfaceome
networks termed ATOMICANETSs, which con-
nect proteins based on interaction interface simi-
larity. These networks identify disease pathways
across 27 conditions. Finally, we use ATOMICA
to annotate the dark proteome—proteins lacking
known structure or function—by predicting 2,646
previously uncharacterized ligand-binding sites
for metal ions and cofactors.

1. Introduction

Molecular interactions influence all aspects of chemistry and
biology. Despite advances in structure prediction and molec-
ular modeling, prevailing machine learning approaches em-
phasize modeling molecules in isolation (Rives et al., 2021;
Luo et al., 2022) or provide limited modeling of molec-
ular interactions, typically restricted to a specific type of
interaction, such as protein-ligand and protein-protein in-
teractions (Gainza et al., 2020). These methods rely on
separate architectures for different molecular classes, pre-
venting cross-modality knowledge transfer and limiting the

generalizability of learned representations.

Current generative models, including AlphaFold (Google
DeepMind AlphaFold Team & Isomorphic Labs Team,
2023) and RosettaFold (Krishna et al., 2024), generate
molecular structures but do not explicitly learn representa-
tions of intermolecular interactions. We lack a generalizable
approach to represent and fingerprint interaction complexes
of biomolecules. A universal representation learning model
that operates at the atom scale, captures multi-modal molec-
ular interactions, and learns generalizable representations
across biomolecular modalities could address this limitation.
Existing models primarily learn molecular representations,
whereas a model that explicitly represents molecular interac-
tions could unify predictive modeling across different types
of biomolecular complexes.

Present Work. We introduce ATOMICA, an all-atom
geometric deep learning model that learns representations
of intermolecular complexes across diverse biomolecular
modalities, including small molecules, metals, amino acids,
and nucleic acids. Unlike existing models focusing on single
molecular types, ATOMICA generalizes across modalities
by leveraging a pretraining dataset of 2,037,972 interaction
complexes. These include 1,747,710 small-molecule inter-
action complexes from the Cambridge Structural Database
(CSD) (Groom et al., 2016) and 290,262 biomolecular com-
plexes from Q-BioLiP and the Protein Data Bank (PDB)
(Wei et al., 2023; Yang et al., 2012; Berman et al., 2000).
Learning from interactions spanning proteins, nucleic acids,
small molecules, and ions enables ATOMICA to generalize
across molecular modalities. This cross-domain generaliz-
ability improves representation quality in low-data modal-
ities, such as for protein-nucleic acid interactions that are
less common in the PDB.

Analysis of the interfaceome reveals that proteins with simi-
lar ATOMICA-derived interaction profiles often participate
in shared disease pathways across protein interactions with
small molecules, ions, lipids, nucleic acids, and proteins.
Moving beyond annotated proteins, we apply ATOMICA
to the dark proteome—regions of the proteome lacking func-
tional labels (Perdigao et al., 2015; Barrio-Hernandez et al.,
2023; Kulkarni & Uversky, 2018). Finetuning ATOMICA
enables the annotation of 2,646 binding sites with putative
ions and cofactors, revealing functions in ancient and un-
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characterized protein families.

2. Related Work

Representation learning for biomolecules. Despite ad-
vances in representation learning, existing models remain
constrained to specific molecular modalities, limiting their
applicability across the biochemical landscape. Protein and
nucleic acid models leverage sequence-based tokenization
(Lin et al., 2023; Rives et al., 2021; Chen et al., 2022; Boyd
et al., 2023; Celaj et al., 2023), whereas small molecules
require atomic-scale modeling due to their lack of inherent
sequential structure (Chithrananda et al., 2020; Liu et al.,
2021a; Zaidi et al., 2022; Atz et al., 2021; Wang et al.,
2022b; Fang et al., 2022).

Predictive models for molecular interactions. Current
molecular interaction models are specialized, with distinct
architectures designed for protein-ligand binding affinity
(Moesser et al., 2022; Yan et al., 2023; Moon et al., 2022;
Lietal.,, 2021; Meng & Xia, 2021), binding site prediction
(Meller et al., 2023; Krapp et al., 2023; Jiménez et al., 2017;
Kandel et al., 2021), protein-peptide interactions (Tsaban
et al., 2022; Cunningham et al., 2020; Lei et al., 2021),
protein-protein interactions (Gainza et al., 2020; Sverris-
son et al., 2021; Gainza et al., 2023; Bryant et al., 2022;
Das & Chakrabarti, 2021; Renaud et al., 2021), and protein-
RNA recognition (Lam et al., 2019; Xia et al., 2021; Ali-
panahi et al., 2015; Wei et al., 2022; Sun et al., 2021; Rube
et al., 2022). This siloed approach prevents knowledge
transfer across molecular classes, even though interactions
between proteins, nucleic acids, small molecules, and ions
obey shared physicochemical principles.

Universal generative models for biomolecular structure
prediction. Structure-based generative models have demon-
strated the feasibility of learning across all biomolecular
modalities present in the Protein Data Bank (Krishna et al.,
2024; Google DeepMind AlphaFold Team & Isomorphic
Labs Team, 2023). However, existing approaches do not
yet unify molecular representations across interaction types,
leaving open the question of whether a single model can
capture the full spectrum of biomolecular interactions.

3. ATOMICA Model

‘We model the interactions between molecules, which is
contrary to prior work focused on modeling individual
molecules or protein surfaces. By modeling intermolec-
ular interactions universally across all modalities, we instill
the inductive prior that they are all fundamentally governed
by the same chemistry principles of intermolecular bonding,
such as hydrogen bonding, hydrophobic interactions, and
Van der Waals forces.

3.1. Problem Setup: Self-Supervised Learning on
Interaction Complexes

Given is a pretraining dataset of graphs of molecular com-
plexes, D = {G' | i = 1,..., N}, and a target dataset of
labeled graphs of molecular complexes S = {(G, gets ¥i) |
i =1,...,M}, where M << N. Our goal is to pre-
train a model F on D such that it generates representations
h; = F(G?) for every intermolecular patch G* that are
chemically informative, and F can also be finetuned on S
to predict y; for every G, ;-

3.2. Overview of ATOMICA Model Architecture

Hierarchical graph input. We represent each interaction
complex using a hierarchical graph that models both the
atomic-level details and the higher-order chemical structure
(Fig. 1). At the first level, nodes represent individual atoms,
each defined by its element type and 3D spatial coordinates.
At the second level, we group atoms into chemically mean-
ingful blocks, such as amino acids in proteins, nucleotides in
nucleic acids, or functional moieties in small molecules, and
construct a block-level graph (Hermosilla et al., 2021; Wang
et al., 2022a; Kong et al., 2023). This hierarchical design
captures both local atomic interactions and broader struc-
tural organization and has theoretically higher expressive
power than purely atom-level graphs (Wollschlédger et al.,
2024). Within each level, we define two types of edges:
intramolecular edges connect nearby nodes within the same
molecule, and intermolecular edges connect nearby nodes
across the interface between two interacting molecules (de-
tails are available in Appendix A).
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Figure 1. Overview of ATOMICA architecture, interaction com-
plexes are modeled at the atom and block level. Message passing
between nodes at each level is done via intermolecular and in-
tramolecular edges.

ATOMICA equivariant all-atom graph neural network.
ATOMICA is a self-supervised geometric graph neural
network that learns multi-scale embeddings at the atom,
block, and graph level from the structure of interacting
two molecules (Fig. 1). Unlike modality-specific models,
ATOMICA is capable of generating embeddings at the in-
terface for any complex of interacting molecular modalities
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(small molecules, metals, amino acids, and nucleic acids).
We use SE(3)-equivariant tensor field networks for message
passing (Appendix B), which have been used to predict in-
teratomic potentials (Batzner et al., 2022; Musaelian et al.,
2023), molecular coupling (Corso et al., 2023), and scoring
RNA structure (Townshend et al., 2021). Message passing
is first done at the atom-level across intermolecular and in-
tramolecular edges and it is then pooled to the blocks the
nodes belong to. Message passing is completed again at the
block-level and graph-level embeddings are then produced
by pooling the block-level embeddings.

Self-supervised learning with ATOMICA. To learn high-
quality representations, we employ a denoising and masked
block strategy (Appendix C). Denoising is effective as a
pretraining objective to learn representations of 3D confor-
mations of single molecules for property prediction (Luo
et al., 2022; Zaidi et al., 2023; Zhou et al., 2023; Godwin
et al., 2022), unsupervised binding affinity prediction (Jin
et al., 2023). Masking is a powerful self-supervised objec-
tive for learning representations of protein sequences (Rives
et al., 2021) and nucleic acid sequences (Dalla-Torre et al.,
2025). The ATOMICA pretraining strategy applies a rigid
SE(3) transformation as well as random rotation and torsion
angles of one of the molecular entities at the interface. The
model denoising output is optimized to minimize the dis-
tance to the score function of the global translation, global
rotation, and torsion noise distributions (Corso et al., 2023;
Jin et al., 2023). By denoising and masking one molecular
interface with respect to the other, this approach aims to
capture the chemical, structural, and geometric patterns of
intermolecular interaction.

3.3. Pretraining Dataset

We assembled a dataset of pairs of interacting molecular
entities from the Cambridge Structural Database (CSD)
v2022.3.0 (Groom et al., 2016) and Q-BioLiP (Wei et al.,
2023; Yang et al., 2012) that includes all biologically rele-
vant intermolecular interactions in all modalities available in
the Protein Data Bank. This results in 1,767,710 interacting
pairs of small molecules. From Q-BioLiP, which includes
structures of protein complexes with proteins, DNA, RNA,
peptides, ligands, and ions, as well as nucleic acid ligand
structures from the PDB, we obtain 337,993 interaction
complexes. The interaction interface between two entities
is defined by atoms within an 8 A distance to the other
molecule. For larger molecules (proteins and nucleic acids),
we cropped the molecules to keep residues only at the in-
teraction interface. Details are available in Appendix D.
4. Experiments

4.1. Pretraining on interaction complexes of multiple
modalities leads to better generalizability

Experimental Setup. To evaluate the benefits of incorpo-
rating multiple molecular modalities in pretraining ATOM-

3

Table 1. AUPRC performance of ATOMICA on masked-block
prediction: models pretrained on all interacting-modality pairs vs.
single-pair baselines.

Modality All pairs One pair
Mean Std Mean Std
SM-SM 0.958 0.006 0.958 0.003
Protein-protein ~ 0.789 0.002 0.774 0.002
D/RNA-SM 0.758 0.060 0.595 0.034
Protein-DNA 0.707 0.014 0.243 0.007
Protein-peptide  0.666 0.004 0.322 0.006
Protein-ion 0.621 0.020 0.540 0.021
Protein-RNA 0.552 0.008 0.187 0.008
Protein-SM 0.331 0.005 0.307 0.005

SM = small molecule

ICA, we compare the full ATOMICA model against iden-
tical model architectures that were each pretrained exclu-
sively on individual pairs of interacting molecular modali-
ties (Fig. 2a). We reserve a test set of interface complexes
with a maximum of 30% sequence similarity and minimal
small molecular structure similarity to structures observed
in training and validation to evaluate the models on. To
evaluate generalizability and model embedding quality, we
use the accuracy of the models on masked block identity
prediction (Appendix E.3). This task tests whether the
model can recover missing structural components based on
their context, which reflects conserved motifs and binding
site configurations.

Results. Pretraining across molecular modalities of inter-
acting molecules improves block identity recovery over pre-
training on a singular type of interacting molecules on the
test set for all pairs of modalities (Table 1). ATOMICA’s
performance gains are correlated with dataset size (Fig. 2b),
reflecting established scaling laws in LLMs where perfor-
mance improves with dataset size (Kaplan et al., 2020).
ATOMICA also demonstrates for the first time an approach
to address the limited availability of structural data for inter-
action complexes with DNA, RNA, and peptide modalities.
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Figure 2. a Schema to test generalizability of representations
learned by ATOMICA trained on all pairs of modalities com-
pared to trained on one pair of modalities. We evaluate quality
of representations based on masked block identity accuracy. b
Increase in AUPRC between models trained on all pairs v.s. one
pair.
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4.2. Proteins that share similar ATOMICA protein
interfaces tend to be involved in the same disease

Complex diseases are caused by a signaling network’s dys-
regulation rather than a single protein (Menche et al., 2015).
Proteins involved in the same disease tend to cluster in the
same network neighborhood, where network relations are
defined through protein-protein interactions and maps of
cellular pathways (Kratz et al., 2023; Zheng et al., 2021). In
this section, we test the hypothesis if relations defined by
similar interactions with other molecular modalities, given
by ATOMICA embeddings, are likely to be involved in the
same disease.

Experimental setup. To test this hypothesis, we first embed
the human interfaceome, defined as the set of human protein
interfaces that mediate interactions with other molecules, in-
cluding ions, small molecules, nucleic acids, lipids, and pro-
teins. We use PeSTo (Krapp et al., 2023) to predict modality-
specific binding sites for 23,391 protein structures predicted
by AlphaFold2. We finetune ATOMICA-Interface from
ATOMICA to support embedding of protein interfaces in-
stead of complexes (details in Appendix F). To ensure we
are working with high-quality protein structures, we remove
binding sites of protein interfaces that have low confidence
pLDDT scores < 70. For disease proteins, we select a di-
verse set of 82 diseases and their disease-associated proteins
from OpenTargets (Buniello et al., 2025).

Results. We confirm that proteins with similar interaction
profiles in the interfacome networks often participate in
the same disease pathways, as the probability of pairs of
nodes being involved in the same disease is higher if the two
nodes have higher ATOMICA similarity (Fig. 3), suggest-
ing ATOMICA similarity to be a complementary approach
compared to current approaches for disease pathway analy-
sis. We construct five modality-specific ATOMICANETs,
connecting proteins in the human proteome which share sim-
ilar ATOMICA embeddings to ion, small molecule, lipid,
nucleic acid, and protein interaction interfaces. Analyzing
the largest connected component in ATOMICANETs of
disease proteins, we find that 27 out of 82 diseases have
larger connected components than expected (Appendix G,
Fig. S1).
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Figure 3. Cosine similarity of ATOMICA embeddings of protein
interface pairs across five interacting modalities compared to the
probability of the protein pair being involved in the same disease.

4.3. Ligand annotation for binding sites in the dark
proteome

Experimental Setup. Ion and cofactor binding sites are
conserved functional features widely distributed throughout
the proteome (Cammisa et al., 2013; Harel et al., 2014). We
test the ability of ATOMICA to generalize to functionally
unannotated groups of proteins that are known collectively
as dark clusters (Barrio-Hernandez et al., 2023). Restrict-
ing our analysis to dark clusters with high-confidence Al-
phaFold2 structures, ligand binding sites are identified on
the surface of proteins with PeSTo. In total, 2,851 proteins
are identified with ion binding sites, and 969 proteins are
identified with small molecule binding sites. We fine-tune
ATOMICA to predict ion and cofactor identities given re-
spective protein pockets from structures in the PDB for 9
metal ions and 12 commonly found cofactors (Appendix H).

Results. ATOMICA annotates metal ion binding sites for
2,565 out of 2,851 proteins and ligand binding sites for 81
out of 969 proteins. Using AlphaFold3, we confirm the
quality of ATOMICA predictions with ipTM scores of the
complexes, which serve as a quantitative metric for the gen-
eration quality of complexes (Bhat et al., 2023; Abramson
et al., 2024). The results from ATOMICA are statistically
significantly higher than reference complexes for ions (KS
Statistic: 0.11, p-value < 0.001) and ligands (KS Statistic:
0.54, p-value < 0.001) (Fig. 4). Reference complexes are
determined by randomly assigning ions and ligands to the
predicted binding sites in the dark proteome.
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Figure 4. a Prediction of ligands for metal ion and small molecule
binding sites of proteins in the dark proteome. b AlphaFold3 ipTM
scores of complexes from ATOMICA-Ligand annotated small
molecule and metal ion compared to reference.

5. Conclusion

ATOMICA is a representation learning model of inter-
molecular interactions across molecular modalities. By
pretraining on over two million molecular complexes involv-
ing small molecules, metal ions, amino acids, and nucleic
acids, ATOMICA learns hierarchical, chemically grounded
embeddings that generalize across interaction types. Explor-
ing the human interfacome with ATOMICA embeddings
also shows proteins sharing similar interaction interfaces
are likely to be involved in the same disease. ATOMICA
generalizes to previously uncharacterized proteins in the
dark proteome, allowing the annotation of ion and cofactor
binding sites in structurally and functionally novel protein
families.
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Impact Statement

This work advances the field of machine learning by in-
troducing a universal representation learning framework
to model intermolecular interactions across biomolecular
modalities. By generalizing across molecular modalities, it
can accelerate biomedical research and therapeutic develop-
ment. Although the model could be applied in settings with
dual-use potential, such as compound design, we rely on
public datasets and focus on medically relevant applications.

References

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,
Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., et al. Accurate structure prediction of
biomolecular interactions with alphafold 3. Nature, pp.
1-3, 2024.

Agrawal, M., Zitnik, M., and Leskovec, J. Large-scale anal-
ysis of disease pathways in the human interactome. In
PACIFIC SYMPOSIUM on BIOCOMPUTING 2018: Pro-
ceedings of the Pacific Symposium, pp. 111-122. World
Scientific, 2018.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey,
B. J. Predicting the sequence specificities of dna-and
rna-binding proteins by deep learning. Nature biotechnol-
0gy, 33(8):831-838, 2015.

Atz, K., Grisoni, F., and Schneider, G. Geometric deep
learning on molecular representations. Nature Machine
Intelligence, pp. 1-10, 2021.

Bajusz, D., Ricz, A., and Héberger, K. Why is tanimoto
index an appropriate choice for fingerprint-based similar-
ity calculations? Journal of cheminformatics, 7(1):1-13,
2015.

Barrio-Hernandez, 1., Yeo, J., Janes, J., Mirdita, M.,
Gilchrist, C. L., Wein, T., Varadi, M., Velankar, S., Bel-
trao, P., and Steinegger, M. Clustering predicted struc-
tures at the scale of the known protein universe. Nature,
622(7983):637-645, 2023.

Bastian, M., Heymann, S., and Jacomy, M. Gephi: An open
source software for exploring and manipulating networks,

2009. URL http://www.aaai.org/ocs/index.

php/ICWSM/09/paper/view/154.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and

Kozinsky, B. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature
communications, 13(1):2453, 2022.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E.
The protein data bank. Nucleic acids research, 28(1):
235-242, 2000.

Bhat, S., Palepu, K., Hong, L., Mao, J., Ye, T., Iyer, R., Zhao,
L., Chen, T., Vincoff, S., Watson, R., et al. De novo
design of peptide binders to conformationally diverse

targets with contrastive language modeling. bioRxiv, pp.
2023-06, 2023.

Biewald, L. Experiment tracking with weights and biases,
2020. URL https://www.wandb.com/. Software
available from wandb.com.

Boyd, N., Anderson, B. M., Townshend, B., Chow, R.,
Stephens, C. J., Rangan, R., Kaplan, M., Corley, M.,
Tambe, A., Ido, Y., et al. Atom-1: A foundation model
for rna structure and function built on chemical mapping
data. bioRxiv, pp. 2023-12, 2023.

Bryant, P., Pozzati, G., and Elofsson, A. Improved pre-
diction of protein-protein interactions using alphafold?2.
Nature communications, 13(1):1265, 2022.

Buniello, A., Suveges, D., Cruz-Castillo, C., Llinares, M. B.,
Cornu, H., Lopez, 1., Tsukanov, K., Roldan-Romero,
J. M., Mehta, C., Fumis, L., et al. Open targets platform:
facilitating therapeutic hypotheses building in drug dis-
covery. Nucleic Acids Research, 53(D1):D1467-D1475,
2025.

Cammisa, M., Correra, A., Andreotti, G., and Cubellis,
M. V. Identification and analysis of conserved pockets on
protein surfaces. BMC bioinformatics, 14:1-9, 2013.

Celaj, A., Gao, A. J., Lau, T. T,, Holgersen, E. M., Lo, A.,
Lodaya, V., Cole, C. B., Denroche, R. E., Spickett, C.,
Wagih, O., et al. An rna foundation model enables dis-
covery of disease mechanisms and candidate therapeutics.
bioRxiv, pp. 2023-09, 2023.

Chen, J., Hu, Z., Sun, S., Tan, Q., Wang, Y., Yu, Q., Zong,
L., Hong, L., Xiao, J., Shen, T., et al. Interpretable
rna foundation model from unannotated data for highly
accurate rna structure and function predictions. arXiv
preprint arXiv:2204.00300, 2022.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, pp. 1597-1607. PMLR, 2020.

Chithrananda, S., Grand, G., and Ramsundar, B.
ChemBERTa: Large-scale self-supervised pretraining


http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://www.wandb.com/

ATOMICA: Learning Universal Representations of Intermolecular Interactions

for molecular property prediction.
arXiv:2010.09885, 2020.

arXiv preprint

Corso, G., Stirk, H., Jing, B., Barzilay, R., and Jaakkola, T.
Diffdock: Diffusion steps, twists, and turns for molecular
docking. 2023.

Cunningham, J. M., Koytiger, G., Sorger, P. K., and
AlQuraishi, M. Biophysical prediction of protein—peptide
interactions and signaling networks using machine learn-
ing. Nature methods, 17(2):175-183, 2020.

Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J.,
Lopez Carranza, N., Grzywaczewski, A. H., Oteri, F,,
Dallago, C., Trop, E., de Almeida, B. P., Sirelkhatim, H.,
et al. Nucleotide transformer: building and evaluating

robust foundation models for human genomics. Nature
Methods, 22(2):287-297, 2025.

Das, S. and Chakrabarti, S. Classification and prediction
of protein—protein interaction interface using machine
learning algorithm. Scientific reports, 11(1):1761, 2021.

Despond, E. A. and Dawson, J. F. Classifying cardiac actin
mutations associated with hypertrophic cardiomyopathy.
Frontiers in Physiology, 9:405, 2018.

Fang, X., Liu, L., Lei, J., He, D., Zhang, S., Zhou, J., Wang,
F., Wu, H., and Wang, H. Geometry-enhanced molecular
representation learning for property prediction. Nature
Machine Intelligence, 4(2):127-134, 2022.

Feng, S., Ni, Y., Lan, Y., Ma, Z.-M., and Ma, W.-Y. Frac-
tional denoising for 3d molecular pre-training. In Interna-
tional Conference on Machine Learning, pp. 9938-9961.
PMLR, 2023.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gainza, P., Sverrisson, F., Monti, F., Rodola, E., Boscaini,
D., Bronstein, M., and Correia, B. Deciphering interac-
tion fingerprints from protein molecular surfaces using
geometric deep learning. Nature Methods, 17(2):184—
192, 2020.

Gainza, P., Wehrle, S., Van Hall-Beauvais, A., Marchand,
A., Scheck, A., Harteveld, Z., Buckley, S., Ni, D., Tan, S.,
Sverrisson, F., et al. De novo design of protein interac-
tions with learned surface fingerprints. Nature, pp. 1-9,
2023.

Gane, A., Bileschi, M. L., Dohan, D., Speretta, E.,
Héliou, A., Meng-Papaxanthos, L., Zellner, H.,
Brevdo, E., Parikh, A., Martin, M. J., Orchard, S.,
UniProt Collaborators, and Colwell, L. J. Protnlm:
Model-based natural language protein annotation.

2022. URL https://storage.googleapis.
com/brain-genomics-public/research/
proteins/protnlm/uniprot_2022_04/
protnlm_preprint_draft.pdf.

Geiger, M. and Smidt, T. e3nn: Euclidean neural networks.
arXiv preprint arXiv:2207.09453, 2022.

Godwin, J., Schaarschmidt, M., Gaunt, A., Sanchez-
Gonzalez, A., Rubanova, Y., Velickovié, P., Kirkpatrick,
J., and Battaglia, P. Simple gnn regularisation for 3d
molecular property prediction & beyond. arXiv preprint
arXiv:2106.07971, 2021.

Godwin, J., Schaarschmidt, M., Gaunt, A. L., Sanchez-
Gonzalez, A., Rubanova, Y., Velickovié, P., Kirkpatrick,
J., and Battaglia, P. Simple GNN regularisation for
3d molecular property prediction and beyond. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=1wVvweK3o0Ib.

Google DeepMind AlphaFold Team and Isomorphic
Labs Team. Performance and structural coverage
of the latest, in-development alphafold model, oct
2023. URL https://storage.googleapis.
com/deepmind-media/DeepMind.com/Blog/

a-glimpse-of-the-next-generation-of-alphafold/

alphafold_latest_oct2023.pdf. Accessed:

2023-04-16.

Groom, C. R., Bruno, L. J., Lightfoot, M. P., and Ward, S. C.
The cambridge structural database. Acta Crystallograph-
ica Section B: Structural Science, Crystal Engineering
and Materials, 72(2):171-179, 2016.

Hagberg, A. A, Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.
In Varoquaux, G., Vaught, T., and Millman, J. (eds.),
Proceedings of the 7th Python in Science Conference
(SciPy2008), pp. 11-15, Pasadena, CA, USA, August
2008.

Harel, A., Bromberg, Y., Falkowski, P. G., and Bhattacharya,
D. Evolutionary history of redox metal-binding domains
across the tree of life. Proceedings of the National
Academy of Sciences, 111(19):7042-7047, 2014.

Hermosilla, P., Schifer, M., Lang, M., Fackelmann, G.,
Vazquez, P. P, Kozlikova, B., Krone, M., Ritschel, T.,
and Ropinski, T. Intrinsic-extrinsic convolution and pool-
ing for learning on 3d protein structures. International
Conference on Learning Representations, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. arXiv preprint arXiv:2006.11239, 2020.


https://storage.googleapis.com/brain-genomics-public/research/proteins/protnlm/uniprot_2022_04/protnlm_preprint_draft.pdf
https://storage.googleapis.com/brain-genomics-public/research/proteins/protnlm/uniprot_2022_04/protnlm_preprint_draft.pdf
https://storage.googleapis.com/brain-genomics-public/research/proteins/protnlm/uniprot_2022_04/protnlm_preprint_draft.pdf
https://storage.googleapis.com/brain-genomics-public/research/proteins/protnlm/uniprot_2022_04/protnlm_preprint_draft.pdf
https://openreview.net/forum?id=1wVvweK3oIb
https://openreview.net/forum?id=1wVvweK3oIb
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf

ATOMICA: Learning Universal Representations of Intermolecular Interactions

Jiang, J., Wakimoto, H., Seidman, J., and Seidman, C. E.
Allele-specific silencing of mutant myh6 transcripts in
mice suppresses hypertrophic cardiomyopathy. Science,
342(6154):111-114, 2013.

Jiménez, J., Doerr, S., Martinez-Rosell, G., Rose, A. S., and
De Fabritiis, G. Deepsite: protein-binding site predictor
using 3d-convolutional neural networks. Bioinformatics,
33(19):3036-3042, 2017.

Jin, W., Chen, X., Vetticaden, A., Sarzikova, S., Raychowd-
hury, R., Uhler, C., and Hacohen, N. Dsmbind: Se (3) de-
noising score matching for unsupervised binding energy
prediction and nanobody design. bioRxiv, pp. 2023-12,
2023.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zl’dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583-589,
2021.

Kandel, J., Tayara, H., and Chong, K. T. Puresnet: predic-
tion of protein-ligand binding sites using deep residual
neural network. Journal of cheminformatics, 13(1):1-14,
2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Klicpera, J., Becker, F., and Giinnemann, S. GemNet: Uni-
versal directional graph neural networks for molecules.
In Conference on Neural Information Processing Systems
(NeurlPS), 2021.

Kong, X., Huang, W., and Liu, Y. Generalist equivariant
transformer towards 3d molecular interaction learning.
arXiv preprint arXiv:2306.01474, 2023.

Krapp, L. F., Abriata, L. A., Cortés Rodriguez, F., and
Dal Peraro, M. Pesto: parameter-free geometric deep
learning for accurate prediction of protein binding inter-
faces. Nature Communications, 14(1):2175, 2023.

Kratz, A., Kim, M., Kelly, M. R., Zheng, F., Koczor, C. A.,
Li, J., Ono, K., Qin, Y., Churas, C., Chen, J., et al. A
multi-scale map of protein assemblies in the dna damage
response. Cell Systems, 14(6):447-463, 2023.

Krishna, R., Wang, J., Ahern, W., Sturmfels, P., Venkatesh,
P., Kalvet, 1., Lee, G. R., Morey-Burrows, F. S., An-
ishchenko, I., Humphreys, I. R., et al. Generalized
biomolecular modeling and design with rosettafold all-
atom. Science, pp. eadl2528, 2024.

Kulkarni, P. and Uversky, V. N. Intrinsically disordered
proteins: the dark horse of the dark proteome. Proteomics,
18(21-22):1800061, 2018.

Lam, J. H., Li, Y., Zhu, L., Umarov, R., Jiang, H., Héliou,
A., Sheong, F. K., Liu, T., Long, Y., Li, Y., et al. A deep
learning framework to predict binding preference of rna

constituents on protein surface. Nature communications,
10(1):4941, 2019.

Leal, S. S., Botelho, H. M., and Gomes, C. M. Metal ions
as modulators of protein conformation and misfolding
in neurodegeneration. Coordination Chemistry Reviews,
256(19-20):2253-2270, 2012.

Lei, Y., Li, S., Liu, Z., Wan, F., Tian, T., Li, S., Zhao, D.,
and Zeng, J. A deep-learning framework for multi-level
peptide—protein interaction prediction. Nature communi-
cations, 12(1):5465, 2021.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-
Tzur, J., Hardt, M., Recht, B., and Talwalkar, A. A system
for massively parallel hyperparameter tuning. Proceed-
ings of Machine Learning and Systems, 2:230-246, 2020.

Li, S., Zhou, J., Xu, T., Huang, L., Wang, F., Xiong, H.,
Huang, W., Dou, D., and Xiong, H. Structure-aware
interactive graph neural networks for the prediction of
protein-ligand binding affinity. KDD *21, New York, NY,
USA, 2021. Association for Computing Machinery. doi:
10.1145/3447548.3467311.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez,
J. E., and Stoica, I. Tune: A research platform for dis-
tributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W,
Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.
Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science, 379(6637):
1123-1130, 2023.

Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang,
J. Pre-training molecular graph representation with 3D
geometry. International Conference on Learning Repre-
sentations, 2021a.

Liu, Y., Wang, L., Liu, M., Zhang, X., Oztekin, B., and Ji, S.
Spherical message passing for 3d graph networks. arXiv
preprint arXiv:2102.05013, 2021b.

Luo, S., Chen, T., Xu, Y., Zheng, S., Liu, T.-Y., Wang, L.,
and He, D. One transformer can understand both 2d & 3d
molecular data. In The Eleventh International Conference
on Learning Representations, 2022.



ATOMICA: Learning Universal Representations of Intermolecular Interactions

Matsuda, T., Jeong, J. L., Ikeda, S., Yamamoto, T., Gao, S.,
Babu, G. J., Zhai, P, and Del Re, D. P. H-ras isoform
mediates protection against pressure overload—induced
cardiac dysfunction in part through activation of akt. Cir-
culation: Heart Failure, 10(2):¢003658, 2017.

McNally, E. M. [5-myosin heavy chain gene mutations in
familial hypertrophic cardiomyopathy: The usual sus-
pect?  Circulation Research, 90(3):246-248, Febru-
ary 2002. doi: 10.1161/res.90.3.246. URL https:
//doi.org/10.1161/res.90.3.246. Originally
Published 22 February 2002, Free Access.

Meller, A., Ward, M. D., Borowsky, J. H., Lotthammer,
J. M., Kshirsagar, M., Oviedo, F., Ferres, J. L., and Bow-
man, G. Predicting the locations of cryptic pockets from
single protein structures using the pocketminer graph
neural network. Nature Communications, 2023.

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal,
M., Loscalzo, J., and Barabasi, A.-L. Uncovering disease-
disease relationships through the incomplete interactome.
Science, 347(6224):1257601, 2015.

Meng, Z. and Xia, K. Persistent spectral-based machine
learning (perspect ml) for protein-ligand binding affinity
prediction. Science advances, 7(19):eabc5329, 2021.

Moesser, M. A., Klein, D., Boyles, F., Deane, C. M., Baxter,
A., and Morris, G. M. Protein-ligand interaction graphs:
Learning from ligand-shaped 3d interaction graphs to
improve binding affinity prediction. bioRxiv, pp. 2022—
03, 2022.

Moon, S., Zhung, W., Yang, S., Lim, J., and Kim, W. Y.
Pignet: a physics-informed deep learning model toward
generalized drug—target interaction predictions. Chemical
Science, 13(13):3661-3673, 2022.

Musaelian, A., Batzner, S., Johansson, A., Sun, L., Owen,
C. J., Kornbluth, M., and Kozinsky, B. Learning local
equivariant representations for large-scale atomistic dy-
namics. Nature Communications, 14(1):579, 2023.

Ochoa, D., Hercules, A., Carmona, M., Suveges, D.,
Gonzalez-Uriarte, A., Malangone, C., Miranda, A., Fu-
mis, L., Carvalho-Silva, D., Spitzer, M., et al. Open
targets platform: supporting systematic drug—target iden-
tification and prioritisation. Nucleic acids research, 49
(D1):D1302-D1310, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Perdigao, N., Heinrich, J., Stolte, C., Sabir, K. S., Buckley,
M. J., Tabor, B., Signal, B., Gloss, B. S., Hammang, C.J.,
Rost, B, et al. Unexpected features of the dark proteome.

Proceedings of the National Academy of Sciences, 112
(52):15898-15903, 2015.

Renaud, N., Geng, C., Georgievska, S., Ambrosetti, F.,
Ridder, L., Marzella, D. F.,, Réau, M. F., Bonvin, A. M.,
and Xue, L. C. Deeprank: a deep learning framework
for data mining 3d protein-protein interfaces. Nature
communications, 12(1):7068, 2021.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J.,
Guo, D., Ott, M., Zitnick, C. L., Ma, J., et al. Biological
structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of
the National Academy of Sciences, 118(15):¢2016239118,
2021.

Rube, H. T., Rastogi, C., Feng, S., Kribelbauer, J. F., Li,
A., Becerra, B., Melo, L. A., Do, B. V., Li, X., Adam,
H. H,, et al. Prediction of protein—ligand binding affinity
from sequencing data with interpretable machine learning.
Nature Biotechnology, 40(10):1520-1527, 2022.

Saliba, A.-E., Vonkova, 1., and Gavin, A.-C. The system-
atic analysis of protein—lipid interactions comes of age.
Nature Reviews Molecular Cell Biology, 16(12):753-761,
2015.

Sawicki, K. T., Chang, H.-C., and Ardehali, H. Role of
heme in cardiovascular physiology and disease. Journal
of the American Heart Association, 4(1):e001138, 2015.

Schiitt, K. T., Sauceda, H. E., Kindermans, P.-J.,
Tkatchenko, A., and Miiller, K.-R. Schnet—a deep learn-
ing architecture for molecules and materials. The Journal
of Chemical Physics, 148(24):241722, 2018.

Shan, L., Dauvilliers, Y., and Siegel, J. M. Interactions of
the histamine and hypocretin systems in cns disorders.
Nature reviews Neurology, 11(7):401-413, 2015.

Steinegger, M. and S6ding, J. Mmseqs2 enables sensi-
tive protein sequence searching for the analysis of mas-
sive data sets. Nature biotechnology, 35(11):1026-1028,
2017.

Sun, L., Xu, K., Huang, W., Yang, Y. T., Li, P, Tang, L.,
Xiong, T., and Zhang, Q. C. Predicting dynamic cellular
protein—rna interactions by deep learning using in vivo
rna structures. Cell research, 31(5):495-516, 2021.

Sverrisson, F., Feydy, J., Correia, B. E., and Bronstein,
M. M. Fast end-to-end learning on protein surfaces. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15272-15281, 2021.


https://doi.org/10.1161/res.90.3.246
https://doi.org/10.1161/res.90.3.246

ATOMICA: Learning Universal Representations of Intermolecular Interactions

Tateishi-Karimata, H. and Sugimoto, N. Roles of non-
canonical structures of nucleic acids in cancer and neu-
rodegenerative diseases. Nucleic Acids Research, 49(14):
7839-7855, 2021.

Townshend, R. J., Eismann, S., Watkins, A. M., Ran-
gan, R., Karelina, M., Das, R., and Dror, R. O.
Geometric deep learning of rna structure. Science,
373(6558):1047-1051, 2021. doi: 10.1126/science.
abe5650. URL https://www.science.org/
doi/abs/10.1126/science.abe5650.

Tsaban, T., Varga, J. K., Avraham, O., Ben-Aharon, Z.,
Khramushin, A., and Schueler-Furman, O. Harnessing
protein folding neural networks for peptide—protein dock-
ing. Nature communications, 13(1):176, 2022.

Varadi, M., Bertoni, D., Magana, P., Paramval, U.,
Pidruchna, I., Radhakrishnan, M., Tsenkov, M., Nair,
S., Mirdita, M., Yeo, J., et al. Alphafold protein structure
database in 2024: providing structure coverage for over
214 million protein sequences. Nucleic acids research,
52(D1):D368-D375, 2024.

Wang, L., Liu, H., Liu, Y., Kurtin, J., and Ji, S. Learning
protein representations via complete 3d graph networks.
arXiv preprint arXiv:2207.12600, 2022a.

Wang, Y., Wang, J., Cao, Z., and Barati Farimani, A. Molec-
ular contrastive learning of representations via graph neu-
ral networks. Nature Machine Intelligence, 4(3):279-287,
2022b.

Wei, H., Wang, W., Peng, Z., and Yang, J. Q-biolip: A
comprehensive resource for quaternary structure-based
protein—ligand interactions. bioRxiv, pp. 2023-06, 2023.

Wei, J., Chen, S., Zong, L., Gao, X., and Li, Y. Protein—rna
interaction prediction with deep learning: structure mat-
ters. Briefings in bioinformatics, 23(1):bbab540, 2022.

Wollschldger, T., Kemper, N., Hetzel, L., Sommer, J.,
and Giinnemann, S. Expressivity and generalization:
Fragment-biases for molecular gnns. arXiv preprint
arXiv:2406.08210, 2024.

Xia, Y., Xia, C.-Q., Pan, X., and Shen, H.-B. Graphbind:
protein structural context embedded rules learned by hier-
archical graph neural networks for recognizing nucleic-

acid-binding residues. Nucleic acids research, 49(9):
e51-e51, 2021.

Yan, J., Ye, Z., Yang, Z., Lu, C., Zhang, S., Liu, Q., and Qiu,
J. Multi-task bioassay pre-training for protein-ligand bind-
ing affinity prediction. arXiv preprint arXiv:2306.04886,
2023.

Yang, J., Roy, A., and Zhang, Y. Biolip: a semi-manually
curated database for biologically relevant ligand—protein
interactions. Nucleic acids research, 41(D1):D1096—
D1103, 2012.

Yen, H.-Y., Hoi, K. K., Liko, I., Hedger, G., Horrell, M. R.,
Song, W., Wu, D., Heine, P., Warne, T., Lee, Y., Carpen-
ter, B., Pliickthun, A., Tate, C. G., Sansom, M. S. P,,
and Robinson, C. V. Pip2 stabilises active states of
gpcrs and enhances the selectivity of g-protein coupling.
Nature, 559(7714):423-427, Jul 2018a. doi: 10.1038/
s41586-018-0325-6. URL https://www.nature.
com/articles/s41586-018-0325-6. Author
manuscript; available in PMC: 2019 Jan 11. Published in
final edited form as: Nature. 2018 Jul 11.

Yen, H.-Y., Hoi, K. K., Liko, I., Hedger, G., Horrell, M. R.,
Song, W., Wu, D., Heine, P., Warne, T., Lee, Y., et al.
Ptdins (4, 5) p2 stabilizes active states of gpcrs and en-
hances selectivity of g-protein coupling. Nature, 559
(7714):423-427, 2018b.

Zaidi, S., Schaarschmidt, M., Martens, J., Kim, H., Teh,
Y. W., Sanchez-Gonzalez, A., Battaglia, P., Pascanu, R.,
and Godwin, J. Pre-training via denoising for molecu-
lar property prediction. In The Eleventh International
Conference on Learning Representations, 2022.

Zaidi, S., Schaarschmidt, M., Martens, J., Kim, H., Teh,
Y. W., Sanchez-Gonzalez, A., Battaglia, P., Pascanu, R.,
and Godwin, J. Pre-training via denoising for molecular
property prediction. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tYIMtogyee.

Zheng, F., Kelly, M. R., Ramms, D. J., Heintschel, M. L.,
Tao, K., Tutuncuoglu, B., Lee, J. J., Ono, K., Foussard,
H., Chen, M., et al. Interpretation of cancer mutations

using a multiscale map of protein systems. Science, 374
(6563):eabf3067, 2021.

Zhou, G., Gao, Z., Ding, Q., Zheng, H., Xu, H., Wei, Z.,
Zhang, L., and Ke, G. Uni-mol: A universal 3d molecu-
lar representation learning framework. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
1d=6K2RM6WVgKu.


https://www.science.org/doi/abs/10.1126/science.abe5650
https://www.science.org/doi/abs/10.1126/science.abe5650
https://www.nature.com/articles/s41586-018-0325-6
https://www.nature.com/articles/s41586-018-0325-6
https://openreview.net/forum?id=tYIMtogyee
https://openreview.net/forum?id=tYIMtogyee
https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu

ATOMICA: Learning Universal Representations of Intermolecular Interactions

A. Construction of hierarchical graphs of interacting molecules

Given the atomic structure of two molecules interacting, an atom-level graph is then constructed. Each atom in the complex
maps to an atom node in the graph with the features: element and 3D coordinates of the atom. Intramolecular atom edges
are defined for each atom to the k nearest atoms in the same molecule. Intermolecular atom edges are defined for each atom
to the k£ nearest atoms in the other molecule. In total, there are 118 atom types based on the elements of the periodic table.

Atom nodes are connected to the next level of nodes, block nodes. Block nodes have the features: block type and 3D
coordinates of the block given by the mean of the atomic coordinates of atoms in the block. Each atom is connected to one
block node. For proteins, peptides, DNA, and RNA, we define the atoms that belong to a given block by the amino acid
and nucleotide residues. For small-molecule ligands, blocks are defined by a vocabulary of 290 common chemical motifs.
Atoms of sections of the molecule that cannot be fragmented into these motifs become blocks comprised of one atom. We
use the vocabulary and fragmentation of the molecule to blocks from (Kong et al., 2023). Intramolecular block edges are
defined for each atom to the k nearest blocks in the same molecule. Intramolecular block edges are defined for each atom to
the k nearest blocks in the other molecule. In total, there are the following block types: 20 for canonical amino acids, 4 for
DNA nucleotides, 4 for RNA nucleotides, 290 for small molecule fragments, and 118 for elemental blocks.

In addition, there are three special block types: mask, unknown, and global. The mask node is applied at pretraining for
masked identity prediction of blocks. Unknown nodes are used for nodes that do not fall into the defined vocabulary, such as
non-canonical amino acids and nucleotides. There are also two atom global-type nodes at the atom and block level. The two
global nodes are connected to all nodes in each molecule at their respective level.

B. All-atom graph neural network

ATOMICA uses a SE(3)-equivariant 3D message passing network on graphs of molecular complexes to learn representations
that are informative of the intermolecular interactions between molecules.

B.1. Atom-level representation learning

Here we outline the SE(3)-equivariant 3D message passing network for ATOMICA on the nodes of the graph G*. Several
rotational equivariant neural networks have been introduced for modeling molecules (Schiitt et al., 2018; Klicpera et al., 2021;
Liu et al., 2021b; Batzner et al., 2022). We build on the E(3)-equivariant neural network layers presented by Tensor-Field
Networks implemented in e3nn (Geiger & Smidt, 2022) and DiffDock (Corso et al., 2023). Message passing for the
intermolecular edges and intramolecular edges is done separately, but the message passing framework for the two edge types
is the same.

The feature vector of atom (h°™) node a in G* is a geometric object comprised of a direct sum of irreducible representations
of the O(3) symmetry group. The feature vectors hf;"’('ﬁ’p) are indexed with A, p, where A = 0,1, 2, ... is a non-negative
integer denoting the rotation order and p € {o,e} indicates odd or even parity, which together index the irreducible
representations (irreps) of O(3). In our model, we set Apax = 1 for h2°™, and we denote the number of scalar (Oe) and
pseudoscalar (0o) irrep features in h2°™ with ns, and the number of vector (1o) and pseudovector (1e) irrep features in hao™

with nv.

The atom-type of node a, determined by the element of the atom, is embedded with a normal distribution and trainable
weights as a scalar ns x Oe. There are Loy layers of message passing between atom nodes. At each layer [, the node
updates for node a in the graph of interaction complex G* are given by:

1
atom atom w atom
h;*" « h;"" + LN (|Na ng Y (Tap) ®uy,, b} ) 1)
With Yy = ¥ (€aps bap, B, BT ) @)

After each layer [ of message passing, h2°™ is filtered down to irreps with A\jax = 2. After L layers the h3°™ embedding is
projected with a 2-layer MLP to a d,,,4e-dimension vector.
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B.2. Block-level representation learning

The feature vector of block (hgl‘mk) node b in G* is also a geometric object defined in the same way as (h*°™). We initialize
block nodes using a scalar, ns x Oe, trainable embedding of block types.

Let d,oq. be the dimension of h'gl“k and 7ipeags be the number of attention heads. We define dj, = dpode/Mheads as the
dimension per head. The multi-head cross-attention operation can be expressed as:

hp* < hy°* + MultiHead (hp**, {h&*"},c 4,) ©)
where A is the set of atoms in block b, and MultiHead is defined as:
MultiHead (h°* {h#°™} , 4,) = Concat(heady, ..., head,, , Wo )

and each head computed as:

atom,(8) exp (o0 1 1)
headi = Z XbaVa with Qba = block, () atom,(z) ; 7 (5)
a€Ay ZveAb exp (qb - ky / dh)

where qZIOCka(i) _ h[t;lockvvg)7 k';lom,(i) — hglomw([?’ vgtom,(i) — hztomwg/i)’ and Wg)’ Wg?; Wg}) c Rdmdexdh and
W € Réwaexdoee Message passing between the block nodes follows the same architecture as the atom nodes described in
Equation 1 with separate model parameters.

B.3. Graph-level representation learning

To pool h{"*f € R? for b € G' for a graph-level representation h‘fraph € R?, we use multi-head self-attention for Ly
layers and sum the output h?'* for all b € G for h&™",

C. Self-supervised learning on interaction complexes
C.1. Geometric Denoising

Node-level denoising as an objective function has been useful for pretraining on 3D coordinate molecular datasets from
DFT generated molecules to prevent over-smoothing of GNNs (Godwin et al., 2021), and it has proven that it is related
to learning a force field of per-atom forces (Zaidi et al., 2022; Feng et al., 2023). In addition, denoising is linked to
score-matching which has also been popular in training generative models (Ho et al., 2020; Corso et al., 2023) as well as
unsupervised binding affinity prediction (Jin et al., 2023). Thus, this motivates the application of denoising as an objective
for self-supervised training.

Given G* € D, which is comprised of atom and block nodes from two interacting molecules. Giisa perturbed graph created

by applying two transformations to a molecule in G* which is selected at uniform random:

* Rigid rotation and translation: A rotation vector is sampled w ~ p(w) = Ngo(s) and we apply the rotation of all atom
and block coordinates about the center of the selected molecule. A translation vector is sampled t ~ p(t) = N (0, 071)
and we apply this translation to all atom and block coordinates of the selected molecule.

* Torsion angle noising: Torsion angles are sampled 6 ~ p(0) = N, s0(2)m Where m is the number of rotatable bonds in

the molecule. For peptides, proteins, RNA and DNA we only perturb rotatable bonds in the side chain.

To predict the rotation score s, € R? and the translation score sy € R? from G', the node representations at the atom and
block level are convolved with the center of the graph using a tensor field network (Corso et al., 2023):

1 ~ .
S < LN <|-A/| a;/ Y (Tca) ®¢m h2t0m> Wlth ¢ca = (I) (ecaa 3?(%1@)) 9 (6)

where node a € A’ are the atom nodes in the perturbed molecule and c is the center of the perturbed molecule. This
is a weighted tensor product, with the weights given by a 2-layer MLP, ®, which takes as input the Gaussian smearing
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deqge-embedding of the Euclidean distance between coordinates of the center ¢ and node a, and the scalar component of

atom
haom,

Finally, the rotation score is given by the pseudovector irrep component s, = I‘w(hfmph) * S(1¢) and the translation score
is given by the vector irrep component s, = 'y (h&*") x S(10)> Where I, and Iy are 2-layer MLPs that project the graph
representation of G* to a single scalar.

To predict the torsion score sg € R the atom nodes are convolved with the center of the rotatable bonds connecting atoms
a0, az1. Let z denote the center of one of the rotatable bonds. We connect N, = {a|a € A’,||T,q|| < 5A} which is all
atoms in the perturbed molecule within 5 A to the center of the bond.

1 -~ -~ atom __ : atom atom atom
hZ B |Nz‘ zj\:[ (Y2(rz) ® Y(rza)) Orza hat with 724 = H(t) (eza, "’t’(oe)’ hatzov(oe) + hatﬂ’(oe)) ’ @)
ac/N;

The first tensor product is between the second order irreps of the unit direction vector along the two atoms a,q, @, of
the bond z, Y2(T.), and the unit direction vector between the center of the bond and atom a, Y (T.,). This is followed
by a weighted tensor product with the weights given by a 2-layer MLP, II, which takes as input the Gaussian smearing
deqge-embedding of the Euclidean distance between coordinates of the bond center z and node a, the scalar component
of h2°™ and the sum of the scalar component of the two atoms in the bond h,_,, h,_,. Finally, we sum the scalar and
pseudoscalar components of h, and project it to a single scalar sg_ using a 2-layer MLP.

We calculate the loss components with:

lo = |0 — Ve log p(w)]|? 8)
I = ||st — Vi log p(t)||? )
lo=>_|lse. — Vo, logp(6.)||* (10)

where Vi logp(t) = —t/o?. The values of V¢ logp(t), Vg. logp(6.) can be calculated by pre-computing a truncated
infinite series following (Corso et al., 2023; Jin et al., 2023).

C.2. Masking Blocks

In addition to denoising, we also pretrain the model by masking out block identities and predicting the masked block
identities. For each graph G?, 10% of blocks are randomly sampled and their block identities are replaced with the special
‘mask’ block and we denote these blocks as B. For a masked block b € B, the probability vector of the block identity is
predicted with y;, = Softmax (Y (h}'*)), where Y is a 2-layer MLP. We calculate the masked loss using a cross-entropy
loss:

1 )
T > i - log(3s) (11)
beB

C.3. Loss Function

The pretraining loss is then calculated by a weighted sum of the above loss functions:

L= Bwlw + Btlt + /8919 + Bmlm

D. Curation of pretraining dataset
D.1. Small molecule structures

We extract structures of small molecule interactions from the Cambridge Structural Database (CSD) v2023.2.0. The database
was filtered for all CSD entries that satisfied the following criteria: organic, not polymeric, has 3D coordinates, no disorder,
no errors, no metals, had only one SMILES string describing the crystal entry (in other words, each crystal is comprised of
only one chemical compound), and molecules with 6-50 heavy atoms. CSD entries are unit cells of infinitely repeating
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crystal lattices. For our purposes of learning intermolecular interactions, we sampled many patches of intermolecular
interactions to represent all examples of intermolecular interactions in a given unit cell. Given an entry of the CSD, we iterate
through each unique conformer in the unit cell and extract all pairs of interactions with neighboring peripheral conformers
that are within 4 A to the central conformer using the CSD Python API. In total, there are 1,767,710 structures of molecular
pairs from 375,941 CSD entries. Inspired by fingerprint-based similarity measures used in chemistry (Bajusz et al., 2015),
we use a one-hot encoding of the molecular complex from a vocabulary of 290 common chemical motifs (Kong et al., 2023)
and Manhattan distance between the embeddings to sample 1,000 molecular complexes and their 100 nearest neighbors,
giving a total of 10,000 molecular complexes for validation and test splits respectively, that are distinct from the training set.

D.2. Biomolecular structures

We extract structures of interacting molecules from QBioLiP (June 2024), this includes structures of proteins interacting
with ions, ligands, DNA, RNA, peptides, and proteins, and nucleic acids interacting with ions and ligands from the Protein
Databank (PDB). For proteins, peptides, DNA, and RNA, we crop the complex to keep all residues within 8 A to any atom,
amino acid, or nucleic acid residue in the other molecule. In total, there are 124,541 protein-protein interaction complexes,
119,017 protein-small molecule interaction complexes, 74,514 pro-tein-ion interaction complexes, 8,475 protein-peptide
interaction complexes, 5,185 nucleic acid-ligand interaction complexes, 3,511 protein-RNA interaction complexes, and
2,750 protein-DNA interaction complexes. For protein-ion, protein-small molecule, protein-peptide, and protein-protein
molecular complexes, we cluster each modality with 30% protein sequence similarity using MMseqs2 with a coverage
of 80%, sensitivity of 8, and cluster mode 1(Steinegger & Soding, 2017). For protein-protein complexes, we also ensure
that for any two complexes in different clusters there is a maximum of 30% sequence similarity between all chains in the
two complexes. For protein-RNA and protein-DNA complexes, we cluster by 30% protein sequence similarity and 30%
nucleotide similarity using MMseqs2 with the same settings as above, this ensures that complexes in different clusters have
a maximum of 30% protein sequence similarity and 30% nucleotide sequence similarity. For nucleic acid-ligand structures,
we cluster based on 30% nucleotide sequence similarity. Finally, we split clusters into train, validation, and test splits using
an 8:1:1 ratio.

E. Training details for ATOMICA

We pretrain ATOMICA on the training split of biomolecular structures and small molecule structures to generate embeddings
of molecular complexes at the atom, block, and graph scale. To learn representations in a self-supervised manner, during
training, we apply noise to the atomic coordinates and mask block identities of the input graphs of the molecular complex.
At inference time, embeddings from the graphs are generated without noise or masked blocks.

E.1. Hyperparameter tuning

We employed a hyperparameter optimization strategy utilizing Ray Tune (Liaw et al., 2018) in conjunction with Optuna
(Akiba et al., 2019) and the Asynchronous Successive Halving Algorithm (ASHA) scheduler (Li et al., 2020). The
hyperparameter space we search on includes: the number of nearest neighbors to define edges to in the graph k € [4, 8, 16],
dropout in the tensor field network € [0.00,0.01,0.05,0.10], edge dimension deqee € [16,24,32], node dimension
dnode € [16, 24, 32], and the number of tensor field network layers L € [4, 6, 8]. The best hyperparameters are shown in
bold and chosen based on the lowest validation loss when trained on a random 10% subsample of the training set. Then
for determining the level of noise to apply to the interaction complexes, we conducted a second hyperparameter search
on rotation o, € [0.25,0.5,1], wmax € [0.25,0.5, 1], translation o; € [0.5,1, 1.5], and torsion oy € [0.25,0.5,1]. The
best hyperparameters are shown in bold and chosen based on the highest masked block identity prediction accuracy when
trained on a random 10% subsample of the training set. For the loss function, we set 5, = 1, 8; = 1, 8,, = 0.1, and the
block identities are randomly masked at 10% probability. ATOMICA is trained on the full training set with the above
hyperparameters, the learning rate cycles between le-4 and le-6 using Cosine Annealing Warm Restarts, with a cycle length
of 400,000 steps, and the model is trained for 150 epochs.

E.2. Implementation

ATOMICA is implemented with PyTorch (Version 2.1.1) (Paszke et al., 2019) and PyTorch Geometric (Version 2.1.1)
(Fey & Lenssen, 2019). Training runs were monitored with Weights and Biases (Biewald, 2020). Models are trained on 4
NVIDIA H100 Tensor Core GPUs in parallel.

13



ATOMICA: Learning Universal Representations of Intermolecular Interactions

E.3. Training ATOMICA on a single pair of interacting modalities

To demonstrate representations learned by ATOMICA are generalizable across multiple modalities, we train models with
identical architecture and hyperparameters on only single pairs of interacting modalities (small molecules, protein-ion,
protein-small molecule, protein-DNA, protein-RNA, protein-peptide, protein-protein, nucleic acid-small molecule). Using
the same training set-up as ATOMICA, these models are trained on the same training data as ATOMICA but filtered for
only one pair of interacting modalities. The models are trained for 150 epochs on 4 NVIDIA H100 Tensor Core GPUs in
parallel. The model checkpoint with the lowest validation loss is then used for further finetuning on masked block identity
prediction on the same training data for 50 epochs with a learning rate of le-4. We also finetune ATOMICA for 50 epochs
on block identity prediction for each pair of interacting modalities. To compare the quality of embeddings generated by
ATOMICA and versions of it trained on single modalities, we evaluate the accuracy of masked block identity prediction on
a test set. This test set was not seen by any of the models and has 30% sequence similarity and minimal small molecule
fingerprint similarity to any training and validation data.

F. Interfaceome

F.1. Training ATOMICA -Interface

To support the embedding of protein binding interfaces, we finetune ATOMICA with structures of interfaces rather than
complexes. For our finetuning dataset, we adapt the biomolecular structures from the training set. For each graph G* we
crop the graph to only the protein interface of one protein in the complex G/, Let h¥™" = F(G?) where F is pretrained

and frozen ATOMICA. Our goal is to train G initialized with F such that h‘fraph' = G(G"") for every intermolecular patch
G such that h¥™" and h&™"” are aligned. Then for a randomly sampled mini-batch of Nyae, examples, the loss function is:

Nbatch exp (Sim (hgraph hgraph/) /7_)
(3 E)
Cinertace = = Z log Noaen . graph y graph/
i=1 ijaic 1pj2q) €xp (51m (hi b ) /T>
exp (sim (h%raph/, hfraph> /7-)

S Uy oxp (sim (RS BE) /7

+log (12)

where sim is cosine similarity and 7 is the temperature factor. This contrastive loss is adapted from the normalized
temperature-scaled cross-entropy loss (Chen et al., 2020). We finetune the model for 50 epochs with a cyclic learning rate
ranging from le-3 to le-5 over 50000 steps. Three replicates of the model are trained. The models were finetuned on 4
NVIDIA H100 Tensor Core GPUs in parallel.

F.2. Detection of binding sites across the human proteome with PeSTo

We employ PeSTo (Version 4.1) (Krapp et al., 2023), which for a given protein structure, PeSTo predicts the probability
of each amino acid as a binding site for an ion, ligand, nucleic acid, protein, and lipid binder. PeSTo is run across all
human proteins from the AlphaFold Protein Structure Database (Varadi et al., 2024; Jumper et al., 2021). For each protein
and binding modality, we extract binding sites as all amino acids with PeSTo confidence > 0.7 and AlphaFold2 pLDDT
> 70 with at least 5 amino acids at the binding site to keep only high-confidence binding sites. This gives us a total of
6,458 protein-ion binding interfaces, 5,856 protein-ligand binding interfaces, 6,649 protein-nucleic acid binding sites, 6,766
protein-lipid binding sites, and 17,158 protein-protein binding interfaces.

F.3. Therapeutic targets dataset

We extract targets for diseases from Open Targets (2024-09) (Ochoa et al., 2021). Genes are associated with diseases using
multiple lines of evidence (genetic association, somatic mutations, known drug, affected pathway) and we use the overall
score, which is an aggregated sum of all evidence sources. For all diseases, we keep all targets with overall evidence scores
> 0.5.
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G. Disease pathways in interfaceome-based ATOMICANET networks

Complex diseases are caused by a signaling network’s dysregulation rather than a single protein (Menche et al., 2015) and
often involve dysfunctional interactions with ions (Leal et al., 2012), small molecules (Sawicki et al., 2015; Shan et al.,
2015), lipids (Saliba et al., 2015), or nucleic acids (Tateishi-Karimata & Sugimoto, 2021). Formally, for disease d with
associated proteins Vy, the disease pathway Hy; = (Vy, Ey) is a subnetwork of the network of proteins. Since interactions of
proteins with other molecular modalities are often implicated in diseases, relying on protein-protein interactions and maps
of cellular pathways may fail to capture this information. We study disease pathways from a new angle with ATOMICA to
show proteins implicated in the same disease are more likely to share similar ion, small molecule, nucleic acid, and lipid
Interactions.

G.1. Construction of ATOMICANET

All binding sites for each modality extracted with PeSTo are embedded with ATOMIC A-Interface. We compute pairwise
cosine similarity matrices from the embeddings for each of the three ATOMICA-Interface replicates and then average them
to produce a single, consolidated cosine similarity matrix. Using the resultant cosine similarity matrix, we then construct a
network for each modality based on a cosine similarity threshold and enforce that each node in the network has a maximum
degree of 50. Cutoffs are defined such that 90% of the proteins in each modality are in the largest connected component.
We construct these networks using NetworkX (Hagberg et al., 2008). In total, for the largest connected component in each
network, we have 5,831 nodes in ATOMICANET-Ion, 5,246 nodes in ATOMICANET-Small-Molecule, 5,974 nodes in
ATOMICANET-Nucleic-Acid, 6,055 nodes in ATOMICANET-Lipid, and 15,450 nodes in ATOMICANET-Protein (Fig.
Sla). Visualisations of the networks are constructed with Gephi (Bastian et al., 2009).

G.2. Observation of disease pathways in ATOMICANETS

For the target-disease associations, we study their disease pathways across the five ATOMICANETs. A disease pathway is
one or more connected subgraphs comprised of disease proteins (Menche et al., 2015), with a minimum requirement of 25
associated genes for a disease for there to be an observable disease pathway. We refer to a disease d with associated proteins

modality modality modality
V) 1% B} :

in a modality network and the disease pathway is the undirected subgraph H?Odamy = ( f

Following (Agrawal et al., 2018), we use their definition of the size of the largest pathway component as the fraction of
disease proteins that lie in H'}**""s largest connected component. For all modalities with [V"**"¥| > 25, we analyze the
size of the largest pathway component. To assess the statistical significance of the observed pathway size, we compared
it against a distribution derived from 1,000 randomized sets of disease proteins. These randomized sets were constructed
to match the degree distribution of the original disease proteins, thereby accounting for the heterogeneous connectivity
patterns in ATOMICANETs. For each network, we applied the Benjamini-Hochberg procedure to correct for multiple
hypothesis testing, considering results with adjusted p-values < 0.05 as statistically significant. Across the five networks,
the average size of the largest pathway component for ATOMICANET-Ion is 11%, for ATOMICANET-Small-Molecule is
11%, for ATOMICANET-Lipid is 16%, for ATOMICANET-Nucleic-Acid is 10%, and for ATOMICANET-Protein is 6%
Fig. Slc). In the following section, we highlight some of the largest pathway components observed for diseases across the
ATOMICANET-Ion, Small-Molecule, and Lipid.

G.3. Examining disease pathways in interfaceome-based ATOMICANET networks

First we look at disease pathways analyzed in ATOMICANET-Lipid, of the 40 diseases with sufficient disease proteins
we found that 22 diseases exhibited significantly larger largest pathway components than expected, and 11 diseases had
significantly fewer disconnected pathway components than expected. Asthma has 43 disease proteins in ATOMICANET-
Lipid (Fig S1b), and has a well-observed disease pathway (p-value < 0.001 for size of largest pathway component and
p-value < 0.001 for number of pathway components) with 10 proteins in the largest pathway component, which is comprised
of sodium channel family proteins (OpenTargets mean strength of evidence = 0.54, mean evidence sources = 5.2). In the
second and third largest pathway component, we observe 8 and 5 proteins, respectively, both involving G protein-coupled
receptors (adenosine, «/S-adrenergic, muscarinic, and histamine receptors). These clusters have a mean strength of evidence
of 0.61 and 0.56 with on average 66 and 245 sources of evidence (Ochoa et al., 2021). Proteins in these two components
form key interactions with PIP2, a minority lipid component of the cell membrane (Yen et al., 2018a).

Next in ATOMICANET-Ion, 10 diseases had significantly larger pathway components than expected and 11 diseases had
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fewer disconnected pathway components than expected of the 35 diseases with sufficient disease proteins. Myeloid leukemia
has 53 disease proteins in ATOMICANET-Ion (Fig S1b), with 12 proteins in the largest pathway component (p-value
< 0.001) with a mean strength of evidence of 0.60 and on average 401 sources of evidence per disease protein (Ochoa
et al., 2021). This component includes TET2, a Fe?* binder, which plays a key role in active DNA demethylation and is
frequently mutated in acute myeloid leukemia (Yen et al., 2018b). Four DNA binding proteins with zinc finger domains
are also observed (DNMT1, POLE, WT1, PHF6) in the largest pathway component on ATOMICANET-Ion, showing the
ability of ATOMICANET to capture disease-relevant similar interaction patterns. Other proteins in this cluster include
isoforms of protein kinase C and serine/threonine-protein kinase D proteins.

In ATOMICANET-Small-Molecule, one disease had a significantly larger pathway component than expected of the 37
diseases with sufficient disease proteins. Hypertrophic cardiomyopathy has 45 associated proteins in ATOMICANET-Small-
Molecule (Fig S1b), and the largest pathway component is of size 7 (p-value = 0.037) with a mean strength of evidence
of 0.70 and on average 630 sources of evidence per disease protein (Ochoa et al., 2021). Since ATOMICANET-Small-
Molecule connects proteins that share similar binding sites, we find that the proteins in this component share nucleotide
(GTP/GDP, ATP/ADP) binding sites. These proteins include: myosin heavy chain proteins (MYH6, MYH7B) — which are
responsible for force generation in cardiac muscle and are frequently mutated in patients with hypertrophic cardiomyopathy
(Jiang et al., 2013; McNally, 2002), cardiac actin (ACTC1) — a crucial sarcomeric protein which is also strongly associated
with the disease (Despond & Dawson, 2018), and HRAS — a GTPase regulating a host of signaling pathways and cellular
responses (Matsuda et al., 2017).

For ATOMICANET-Nucleic-Acid and ATOMICANET-Protein we do not observe any statistically significant pathway
components. These networks also have relatively smaller largest pathway components with a mean size of 3.4 members for
ATOMICANET-Nucleic-Acid and 6.0 for ATOMICANET-Protein, compared to 7.3 for ATOMICANET-Small-Molecule,
8.3 for ATOMICANET-Ion, and 8.9 for ATOMICANET-Lipid. Thus, disease pathways are likely currently unobservable
in ATOMICANET-Nucleic-Acid and ATOMICANET-Protein (Menche et al., 2015).

H. Dark proteome binding site characterization with ATOMICA-Ligand

We demonstrate versatility in ATOMICA and finetune the model for annotating ions and ligands to binding sites. The
finetuned version of the model is applied to putative binding sites in the dark proteome.

H.1. Training ATOMICA-Ligand

The objective is to predict the probability of a specific ion or ligand binding to a given protein interface pocket. We frame this
as a binary prediction task and finetune a separate model for each ion and small molecule. A predictive head is a Lijgang-layer
MLP. For each ion and small molecule, we use RayTune with Optuna and ASHA to finetune ATOMICA-Ligand from
ATOMICA and find the optimal hyperparameters among Liigand € [3,4, 5], learning rate € [10~°,1073], non-linearity €
[relu, gelu, elu], hidden dimension of MLP € [16, 32, 64], gradient clipping € [None, 1], and the number of nearest
neighbors to define edges to in the graph k € [4, 6, 8]. To address class imbalances in our dataset, we apply a weighted
sampling strategy during training, where each protein pocket receives a sampling weight inversely proportional to the total
count of its label class. For each ion and small molecule, we finetune ATOMICA-Ligand for 50 epochs on 1 NVIDIA H100
Tensor Core GPU. Three replicate models are trained for each ion and small molecule. For binary classification of binding
sites, we set thresholds that maximize the F1 score, constraining these values to fall within the range of 0.05 to 0.95.

H.2. Dataset curation

Given an ion or small molecule, we separate all graphs in the pretraining set containing this ion bound to a protein. We cluster
protein binders with a 30% protein sequence similarity cutoff, coverage of 80%, sensitivity of 8, and cluster mode 1 using
MMseqs?2 (Steinegger & Soding, 2017). The clusters are then divided into training, validation, and test sets in an 8:1:1 ratio.
We set up this split for the following metal ions: Ca, Co, Cu, Fe, K, Mg, Mn, Na, Zn, and the following small molecules
with these PDB chemical codes: ADP (adenosine diphosphate), ATP (adenosine triphosphate), CIT (citric acid), CLA
(chlorophyll A), FAD (flavin adenine dinucleotide), GDP (guanosine diphosphate), GTP (guanosine triphosphate), HEC
(heme C), HEM (heme B), NAD (nicotinamide adenine dinucleotide), NAP (NADP+, nicotinamide adenine dinucleotide
phosphate, oxidized form), NDP (NADPH, nicotinamide adenine dinucleotide phosphate, reduced form).
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H.3. Dark proteome annotation

The dark proteome is comprised of proteins that are dissimilar in sequence and structure from all currently annotated
proteins. We use the clusters of the dark proteome from FoldSeek cluster on the AlphaFold Protein Structure Database
(Barrio-Hernandez et al., 2023). We limit our analysis to the 33,482 clusters with an average pLDDT > 90. For each cluster,
we take the representative protein and run PeSTo on the protein structure to predict ion and small molecule binding sites.
We keep residues with PeSTo confidence > 0.8 as the putative binding site, with a minimum of 5 residues required. In total,
we extract 2,851 ion binding proteins and 969 small molecule binding proteins from the 33,482 representative proteins.
Given these binding interfaces, we run ATOMICA-Ligand for all finetuned ion and small molecules to annotate chemical
identities to the binding sites. We evaluated the quality of our predicted protein-ligand complexes by folding them with
AlphaFold3 and evaluating their ipTM scores. For comparison, we established a reference baseline using randomly sampled
proteins from the dark proteome with predicted ion and small molecule binding capabilities. These reference proteins were
selected and paired with ligands to match both the number and identity of annotated ligands in our predicted complexes. For
sequence-based annotation we run the Google Colab notebook with ProtNLM (Gane et al., 2022).
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Figure S1. Interfaceome disease pathways on ATOMICANETs. a Set up of the modality specific networks based on ATOMICA
embedding similarity of protein interfaces with ions, small molecules, lipids, nucleic acids, and proteins. b The three largest pathway
components for: asthma in ATOMICANET-Lipid, myeloid leukemia in ATOMICANET-Ion, hypertrophic cardiomyopathy in ATOMI-
CANET-Small-Molecule. ¢ Relative size of largest pathway component across diseases for each modality network. We display only the
diseases which have statistically larger pathway components than expected in at least one ATOMICANET modality.
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