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ABSTRACT

Large language models (LLMs) have impressive in-context learning ability. When
prompted with a few examples of the same task, LLMs can solve new questions
without task-specific training, demonstrating their ability of in-context learning.
Recent studies revealed that the selection of contexts can significantly affect the
LM’s answer quality. In this work, we propose Reward-Guided Example Selec-
tion(ReGES), a novel method that learns to iteratively select in-context examples
conditioned on the input question from feedback. Given a task and an example set,
we use the MCTS algorithm to select different in-context examples, collect the
LLM’s outputs, and evaluate their accuracies. Then, we leverage the offline RL
algorithm to train a value function to estimate the reward from in-context learning.
During inference, we iteratively select a sequence of in-context examples for the
given question based on the prediction of the value function. Our method substan-
tially improves the performance of several LLMs (Vicuna, LLaMA-2, GPT3.5)
on four benchmarks (GSM8K, Strategy QA, TREC, QNLI), and can be combined
with in-context example retrieval method to give further improvement. When
combined with BM25, ReGES achieves up to +6.6 accuracy improvement with
an average of +2.25 over strong baselines. Moreover, we observe consistent im-
provement while applying the in-context examples selected by our method to lan-
guage models that are not used during the training phase, demonstrating its gen-
eralization ability.

1 INTRODUCTION

Recent Transformer-based (Vaswani et al., 2017) large language models (LLMs) show impressive
ability in various language tasks. However, further improving off-the-shelf LLMs’ performance
on specific tasks is still required in many practical scenarios. One solution is to fine-tune LLMs
with more training data, which could substantially improve the model’s performance. However, this
approach is computationally expensive, sometimes even infeasible, since some models are not avail-
able for fine-tuning. Gathering enough annotations for fine-tuning is also expensive and sometimes
infeasible for low-resource tasks.

Another way to improve the model’s performance is in-context learning (ICL) (Wang et al., 2023;
Rubin et al., 2021; Fu et al., 2022). ICL leverages LLMs’ ability to learn from only a few examples
in the prompt to solve new problems of the same task without additional training. This method
enables fast and cheap adaptation of LLMs to new tasks. However, the number of examples that can
be put into the prompt is limited by the context lengths of the LLMs, and the performance of ICL is
usually inferior to fine-tuning approaches. Some recent works (Rubin et al., 2021; Liu et al., 2021;
Wu et al., 2022) have shown that different choices of in-context examples can significantly affect the
output quality. When given good and carefully chosen contexts, an LLM’s performance can match
the performance of an LLM that is fine-tuned with more data. On the other hand, when given bad
contexts, an LLM’s output may be almost random (Zhao et al., 2021; Lu et al., 2021; Gao et al.,
2020). Therefore, it is crucial to select useful examples to achieve a good ICL performance.

Existing work has employed a wide range of methods to select good in-context samples for ICL,
including searching, heuristic-based (Fu et al., 2022; Wu et al., 2022), retrieval (Rubin et al., 2021;
Wang et al., 2023), and so on. Specifically, Ye et al. (2023) model the correlations between the
selected examples, but the potentially complex semantic relationship between examples remains un-
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explored. Zhang et al. (2022) use offline reinforcement learning to train models that select examples
iteratively. However, they use a simple MLP for value predictions. As a result, their state represen-
tation contains no semantic information about the selected examples, which restricts their approach
to classification tasks and smaller language models.
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Figure 1: LLaMA2 13B performance signifi-
cantly improves after applying our method.

In this paper, we propose Reward-Guided
Example Selection (ReGES), an algorithm that
iteratively adds useful examples to the context
to achieve high-performance in-context learn-
ing. Specifically, we formulate the context se-
lection problem as a sequential decision prob-
lem, where a state is the current context, which
contains zero or more selected examples; an ac-
tion is adding an example to the context. To
solve this problem, we follow the following
three steps. 1) We first generate sequences of
in-context examples for each question, get the
LLM’s answers to the question conditioned on
the examples, and evaluate the quality of the
answers. The samples are collected using the
Monte-Carlo tree search (MCTS) algorithm to
ensure that they contain enough high-quality
example sequences that are useful for training
in the following step. 2) We then leverage
an offline RL method (Sutton & Barto, 2018;
Levine et al., 2020) and a contrastive loss (Chen
et al., 2020) to learn a value function to estimate
the expected success rate for a given question and a sequence of examples. 3) Finally, during in-
ference, given a new question, we iteratively call the value function to predict the next most useful
example and add it to the context, until the model selects a terminal action or reaches the maximum
number of examples.

To validate the effectiveness of our method, we empirically evaluate our method on four datasets
(GSM8K, Strategy QA, TREC, and QNLI) using three LLM families (Vicuna, LLaMA-2, and
GPT). Results show that our method consistently improves the LLMs’ performance on various NLP
tasks. Furthermore, our method can be further improved when combined with other retrieval-based
methods (i.e., BM25) to filter a subset of candidates from a large candidate pool and rerank with our
value function.

Our contributions are summarized as follows:

• By formulating the example selection problem for in-context learning as a sequential
decision-making problem, we propose a new method, Reward-Guided Example Selection
(ReGES), that iteratively selects examples to maximize the reward of answering the ques-
tion;

• We propose an MCTS-based sampling method to collect the LLM’s answer quality given
different in-context examples, and subsequently use an offline RL method to train the value
function to estimate the expected reward for a question and a set of in-context examples;

• We show that our method consistently improves LLM’s in-context learning performance
on different NLP tasks, from comparatively easy natural language inference to complicated
multi-step reasoning, and is generalizable to other LLMs.

2 RELATED WORK

In-Context Learning Large language models are known to have impressive in-context learning
abilities. Recent LLMs, like GPT series (Brown et al., 2020; OpenAI, 2023) and the LLaMA family
(Touvron et al., 2023a; Chiang et al., 2023), are able to solve new questions without task-specific
training when only prompted with a few examples of the same task, which has motivated the re-
search community to explore the area of in-context learning. One possible direction is to interpret
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the mechanics behind such ability, where Xie et al. (2021) consider in-context learning as implicit
Bayesian inference, while Dai et al. (2022) explain language models as meta-optimizers and under-
stand in-context learning as implicit finetuning. Another direction is to improve in-context ability,
which our work falls into by selecting a better set of in-context examples.

Example Selection There are some existing methods for selecting in-context examples. Fu et al.
(2022) design a heuristic criterion for tasks with chain-of-thought answers, by selecting the most
complex samples (the ones with the most reasoning steps) as context, and empirically confirm that
this simple heuristic can improve the quality of outputs in several reasoning datasets. Ye et al. (2023)
propose compositional exemplars for in-context learning, which leverage the determinantal point
process (DPP) algorithm to select a diverse yet relevant set of examples using a contrastive loss.
Wu et al. (2022) propose a select-then-rank framework, where in the reranking phase, they prioritize
the examples that make the LLM more confident. Rubin et al. (2021) and Wang et al. (2023) uses
different methods to train a dense retriever, and use it to retrieve examples. Zhang et al. (2022)
use offline reinforcement learning to train an MLP scoring function for examples, and iteratively
select the example with the highest score, but the simple design of its model and state restricts its
effectiveness within smaller LMs, and the performance improvement diminishes in GPT3. Wang
et al. (2023) also follows an iterative process for example selection. However, the main difference is
that they iteratively train a dense retriever that selects useful examples. In each iteration, the retriever
retrieves examples for the questions in the training set, uses them as input to the LLM, and evaluates
the outputs’ quality by their log-likelihood of generating the ground truth. This additional data is
used to further train the retriever for the next iteration.

3 PRELIMINARY

3.1 BACKGROUND

In-Context learning In-context learning is a learning approach that enables a model to learn from
the input, without fine-tuning the model. For a given target question q that we want the LLM to
answer, we provide a context c that contains helpful information to answer q. We use E + q as
the input to the LLM, where + denotes string concatenation. The context E is comprised of zero
or more examples, E = e0 + e1 + . . . , where ei denotes an example question-answer pair. The
examples are selected from an example pool E available to the LLM, that is, ei ∈ E for all ei in E.

Reinforcement learning In this paper, we consider a sequential decision-making approach to ex-
ample selection. We formulate the example selection problem as a Markov decision process. Con-
cretely, a state is the target question that the LLM needs to answer and a set of (zero or more)
examples that we already selected from the example pool; an action is the next example to select.
The reward is defined by the quality of the LLM output using the selected examples as the context.
The goal of this sequential decision-making problem is to select examples incrementally so that
when the selected examples are used as context, the LLM generates a high-quality response.

3.2 PROBLEM FORMULATION

We are now ready to formally define the example selection problem in in-context learning that we
address in this paper. Given the target question q, we want to optimally select examples from an
example set, and use them as context in the input to the LLM in order to optimize the quality of
the output. Due to the context length of the LLM, we consider selecting up to N examples as
the context, where N is a pre-defined parameter. The output of the LLM is evaluated by a task-
dependent score function, denoted by S. The score function is the LLM’s answer accuracy in most
cases. The objective of the example selection problem is to find the best composition of examples
from the pool to maximize the score, that is,

argmax
e0,e1,...,eN∈E

S(LLM(e0 + e1 + · · ·+ eN + q)),

where LLM(e0+e1+· · ·+eN+q) denotes the LLM’s output given the corresponding input. In this
paper, we focus on a sequential decision-making approach that selects e0, e1, . . . , eN sequentially.
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Figure 2: The overall pipeline of ReGES. (Top) Training: We use MCTS to collect examples, use
them as context, and obtain feedback on the LLM’s output quality. We use the context-feedback
pairs to train the value model. (Bottom) Inference: Given a target question that the model needs
to answer, our framework uses the value model to iteratively select question-answer pairs from the
example pool and add them to the context.

4 REWARD-GUIDED EXAMPLE SELECTION

In this section, we describe our Reward-Guided Example Selection algorithm (ReGES) that solves
the context selection problem in in-context learning. The overall framework is shown in Figure 2.

4.1 OVERVIEW

As in-context learning’s performance can be affected by the complex semantic relations between the
examples and the question, we use another language model to capture the relations. Specifically, we
use a transformer encoder with an MLP head as a value model to predict the quality of the output of
an LLM using a sequence of examples as the context. We initialize our value model from FLAN-T5
large encoder since it uses relative positional embedding that supports a larger input length. For
each text input I = e0 + e1 + · · · + eM + q, the value model gives a score S = V (I), which is
the estimated quality of the model’s output given in-context examples e0 + e1 + · · · + eM and the
question q.

4.2 TRAINING

We train the model in an offline RL pipeline. We first generate the training data by collecting
trajectories {Ii} and corresponding rewards {ri}. Here, the trajectories are lists of selected examples
used as the context, and the rewards are the accuracies of the LLM’s outputs. The lengths of the
trajectories range from 1 to the maximum of the examples allowed, N . We could certainly generate
the sequences randomly. However, random examples are unlikely to help the LLM generate correct
solutions, which makes most of the training data useless. We instead use the Monta-Carlo tree
search (MCTS) algorithm to generate the trajectories, similar to Guo et al. (2014). In this way, more
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trajectories with higher rewards will be generated, and the training data will be more balanced in
terms of their rewards. Additionally, to make sure that trajectories of different lengths are generated,
the termination action is always considered by the tree search algorithm. This helps the value model
understand the effects of using different numbers of examples.

The MCTS algorithm keeps the average return starting from the Ii by either continuing to select
examples or terminating immediately. We denote the return by Ri. We want the value function to
estimate Ri accurately. To train the value model, we use a combination of two loss functions. First,
to estimate the return accurately, we employ a binary cross-entropy (BCE) loss function as follows,

LBCE = −
[
Ri log

(
σ(V (Ii))

)
+ (1−Ri) log

(
1− σ(V (Ii))

)]
.

Second, when we use the value model, it is crucial that the model makes the right decision on pre-
dicting the next useful example correctly given a prefix of examples. In light of this observation,
we use an InfoNCE-based contrastive loss (Chen et al., 2020) to make sure the value function dis-
tinguishes good examples from bad ones. Specifically, we sort all the trajectories in lexicographical
order so that adjacent trajectories share a common prefix. We then split all the trajectories into
batches. Within a batch, we denote the trajectories and their rewards by (I, r). We regard the k
examples with the highest returns in this batch as positive examples {(I+i , r+i )}ki=1, and others as
negative examples. Here, k is a predefined hyperparameter. We train the value function using the
following contrastive loss:

Lcont = − log

∑k
i=1 e

V (I+
i )∑N

i=1 e
V (Ii)

.

Finally, the loss function L we use to train the value model is a weighted sum of the BCE loss and
the contrastive loss:

L = αLcont + LBCE .

4.3 INFERENCE

Given a question q and a LLM, we iteratively call our value model V to get the final selection.
At each step during selection, suppose we have already selected k examples e0, e1, · · · , ek in the
previous iterations, and candidate examples for this iteration are c1 · · · cm, the value model V will
take Ii = e0+e1+· · ·+ek+ci+q as input for each candidate ci, and outputs a score Si = V (Ii) on
the success rate prediction of selecting ci as the next example. Then, we simply choose the example
with the largest score as the next example in the context, ek+1, and continue to the next iteration
until we select the terminal action [TERM] or reach the maximum number of examples allowed. In
this way, the model can have full access to the question and the examples already selected, allowing
it to give scores to the candidate examples conditioning on the current information.

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of ReGES with different LLMs and on
various datasets, ranging from comparatively easy question-answering tasks to difficult multi-step
reasoning tasks. We show that ReGES outperforms the state-of-the-art in-context learning algo-
rithms in most settings.

5.1 EVALUATION SETUP

Datasets We consider four different datasets (GSM8K, StrategyQA, TREC, QNLI) on four differ-
ent tasks. Specifically, GSM8K (Cobbe et al., 2021) is a math reasoning dataset with step-by-step
answers required for chain-of-thought prompting (Wei et al., 2022). StrategyQA (Geva et al., 2021)
is a commonsense reasoning dataset with supporting facts as annotations provided for each reason-
ing step, where we concatenate these facts with the final answer as a CoT answer. TREC (Voorhees
& Tice, 2000) is a text classification dataset that classifies text questions into 6 types according to
the topics. QNLI (Wang et al., 2018) is a natural language inference dataset where each example
asks whether the text is the correct answer to the given question.

For GSM8K and StrategyQA, we test our method with chain-of-thought by adding “Let’s think
step by step.” at the beginning of the output (Kojima et al., 2022). For TREC and QNLI,
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since there are no chain-of-thought answers provided, we simply concatenate the question and the
final answer as an example. Given that there is no official validation set for the first three datasets,
we randomly select a subset of examples from the training set to form a validation split: 500 for
GSM8K and TREC, and 250 for StrategyQA.

Language Models We tested our ReGES algorithm on three LLM families: Vicuna (Chiang et al.,
2023), LLaMA-2 (Touvron et al., 2023b), and GPT (Brown et al., 2020; OpenAI, 2023), with several
sizes and versions. More specifically, for Vicuna models, we use 7B and 13B on v1.1 and 33B on
v1.3; for LLaMA-2, we tested over all three released sizes (7B, 13B, 70B); and for GPT models,
gpt-3.5-turbo-0613 is applied. For all experiments, the value model is initialized from the Flan-T5
large’s encoder (Chung et al., 2022), an instruction fine-tuned encoder with 340M parameters.

Baselines We compare ReGES with three baseline algorithms: Random, BM25, and Dense Re-
trieval. For the Random baseline, we select examples uniformly randomly from the example pool.
We also run experiments with 5 random seeds and compute the average results to reduce variance.
For Dense Retrieval baseline, we use the off-the-shelf sentence transformer (all-MiniLM-L12-v2)
(Reimers & Gurevych, 2019) to compute the vector representation for text, and then retrieve the
closest examples. For all the baselines, the number of examples we select for each question is set to
be the same as the maximum number of examples allowed for our method.

ReGES We tested our method under two settings, one randomly selects examples as the example
pool (denoted as ReGES). We also consider filtering the example pool that is more relevant to the
target question using BM25 (denoted as BM25 + ReGES). For all the datasets and the two settings,
our value model is trained from the outputs of one LLM and then tested over all the other LLMs,
demonstrating that the value function can be model-agnostic and used to help in-context learning on
other LLMs. The LLM used to collect training data is slightly different: for GSM8K and Strategy
QA, we use LLaMA-2 13B to collect the training data, since these datasets are more challenging
and require chain-of-thought reasoning. For the rest of the datasets, we use Vicuna 13B. Also,
the reward for the trajectories is the mean accuracy of 8 generated answers for the GSM8K and
Strategy QA since there could be multiple correct answers. For the other three datasets, we directly
use the log-likelihood of generating the uniquely correct answer. More implementation details and
hyperparameters are provided in Appendix A.1.

Model Method GSM8K StrategyQA
LLaMA2 7B Random Examples 26.6 65.4

BM25 28.4 66.4
Dense Retrieval 30.2 68.8
ReGES 28.4 68
BM25 + ReGES 28.4 66.4

LLaMA2 13B Random Examples 40.1 71.2
BM25 40.2 69.6
Dense Retrieval 42.2 72.0
ReGES 41.4 68.0
BM25 + ReGES 43.2 73.6

LLaMA2 70B Random Examples 59.0 74.7
BM25 63.4 78.0
Dense Retrieval 60.4 78.0
ReGES 60.8 78.0
BM25 + ReGES 63.4 79.6

Table 1: Performance on LLaMA2 models For GSM8K and StrategyQA when using greedy de-
coding. The best result in each set of experiments is bolded.

5.2 MAIN RESULTS

Table 1, 2 show the evaluation results on the series of LLMs where we collected feedback from. We
observe that BM25 serves as an overall stronger baseline than Random, while still unable to show
improvements in some cases. Dense Retrieval, though retrieves examples according to representative
sentence embeddings, does not show a consistent improvement over BM25. As for our method, we
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can see that our ReGES consistently improves the performance compared with the corresponding
baseline, sometimes by a large margin. For all reported methods, GSM8K and StrategyQA give
smaller improvements than TREC and QNLI in general, potentially because these two tasks are
hard reasoning tasks that rely more on LLMs’ intrinsic reasoning ability and are hard to improve
through in-context learning. To get examples demonstrating the hardness of GSM8K, see Appendix
A.2.

Model Method TREC QNLI
Vicuna 7B Random Examples 50.6 59.1

BM25 74 63.2
Dense Retrieval 71.4 62.6
ReGES 63 61.1
BM25 + ReGES 77.6 69.4

Vicuna 13B Random Examples 65.08 70.28
BM25 81.8 71.4
Dense Retrieval 79.4 70
ReGES 78.8 75.2
BM25 + ReGES 88.4 74.6

Vicuna 33B Random Examples 72.48 70.62
BM25 87.8 74.2
Dense Retrieval 84 72.4
ReGES 78 73.8
BM25 + ReGES 86.6 77.7

Table 2: Performance on Vicuna models For TREC and QNLI when using greedy decoding.

5.3 GENERALIZATION OVER LLMS

Our method is trained from feedback of only one LLM for each dataset. In Table 3, we report the
performance of ReGES for all series LLMs and all datasets. Even if trained from the feedback of
one LLM, then tested on other series of LLMs, ReGES still shows a general improvement with an
average of +2.25 over BM25, suggesting that ReGES learns a general strategy for selecting good
in-context examples, which can be transferred to other LLMs without additional training.

6 ANALYSIS

6.1 EFFECT OF THE LOSS FUNCTION

Our loss function is the combination of two separate losses: an InfoNCE loss designed for con-
trastive learning, and a BCE regression loss for predicting the reward. We design such a combined
loss function since we need our model to identify the best examples as positive examples, while
still being able to rank negative examples. We found that when only one loss is applied, the model
cannot learn properly and returns outputs close to the baseline. Such ablation results, as shown in
Table 4, indicate that both losses are necessary in order to learn from LLM’s feedback.

6.2 SCALING EXAMPLE POOL SIZE

In our main results, we use an example pool size of 32 for GSM8K and StrategyQA, and 64 for
TREC and QNLI. To see how the example pool size affects the performance of our method, we
evaluated our method under different example pool sizes on QNLI: 16, 64 (our main result), and
256, shown in Figure 3 (left). Despite some fluctuations, a larger pool size yields better results at the
cost of more computation during inference. One can choose a proper pool size to strike a balance
between performance and inference cost.

6.3 NECESSITY OF ITERATIVE SELECTION

To validate the effectiveness of the iterative design, we also evaluated our method with the iterative
part removed. More specifically, for each example, we take the average accuracy of collected trajec-
tories containing the example as its score to the question. Then, we similarly train the value model
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Model Method GSM8K StrategyQA TREC QNLI Avg
Vicuna 7B Random Examples 15.8 63.4 50.6 59.1 47.2

BM25 19.4 62.4 74.0 63.2 54.8
Dense Retrieval 19.2 62.8 71.4 62.6 54
ReGES 18.2 63.6 63.0 61.1 51.5
BM25 + ReGES 17.2 62 77.6 69.4 56.6

Vicuna 13B Random Examples 26.88 64.7 65.1 70.3 56.7
BM25 30.8 64.8 81.8 71.4 62.2
Dense Retrieval 30.4 64.4 79.4 70.0 61.2
ReGES 30.2 68.8 78.8 75.2 63.3
BM25 + ReGES 30.2 70.0 88.4 74.6 65.8

Vicuna 33B Random Examples 44.96 71.6 72.5 70.6 64.9
BM25 48.2 71.2 87.8 74.2 70.4
Dense Retrieval 48.0 71.6 84.0 72.4 69
ReGES 49.0 69.6 78.0 73.8 67.6
BM25 + ReGES 49.2 73.6 86.6 77.7 71.8

LLaMA2 7B Random Examples 26.6 65.4 60.5 71.3 55.9
BM25 28.4 66.4 72.4 71.5 59.7
Dense Retrieval 30.2 68.8 73.2 71.4 60.9
ReGES 28.4 68.0 72.6 77.8 61.7
BM25 + ReGES 28.4 66.4 76.8 77.6 62.3

LLaMA2 13B Random Examples 40.1 71.2 62.9 73.6 62.0
BM25 40.2 69.6 76.4 68.9 63.8
Dense Retrieval 42.2 72.0 75.6 70.8 65.2
ReGES 41.4 68.0 72.0 75.1 64.1
BM25 + ReGES 43.2 73.6 79.0 72.5 67.1

LLaMA2 70B Random Examples 59.0 74.7 67.4 82.1 70.8
BM25 63.4 78.0 82.8 77.8 75.5
Dense Retrieval 60.4 78.0 81.0 77.4 74.2
ReGES 60.8 78.0 77.0 83.8 74.9
BM25 + ReGES 63.4 79.6 85.6 82.3 77.7

GPT-3.5-turbo Random Examples 79.8 72.1 70.4 79.8 75.5
BM25 80.0 72.4 83.2 80.0 78.9
Dense Retrieval 79.0 73.2 79.6 80.4 78.1
ReGES 81.0 69.2 71.6 82.6 76.1
BM25 + ReGES 78.8 74.0 81.0 84.9 79.7

Table 3: Performance on transferred to different series of LLMs. ReGES improves over random
and BM25 baselines under most cases, regardless of the evaluated LLM. The best result in each set
of experiments is bolded.

Model BM25 BCE loss InfoNCE loss ReGES (both)
Vicuna 7B 63.2 60.9 59.7 69.4
Vicuna 13B 71.4 68.33 70.9 74.6
Vicuna 33B 74.2 72.7 69.8 77.7
LLaMA2 7B 71.5 69.9 70.4 77.6
LLaMA2 13B 68.9 70.4 67 72.5
LLaMA2 70B 77.8 78.7 78.7 82.3
GPT-3.5-turbo 80 78.6 79.2 84.9

Table 4: QNLI Validation accuracy when trained under different losses.

to learn from these scores for each example-question pair. Finally, during inference, we select those
examples with the highest predicted score from the trained model as the context of the problem. As
shown in Figure 3 (right), the non-iterative variation is generally inferior to ReGES, indicating that
the impacts of examples on the model’s output are not independent, therefore requiring considering
selected examples jointly. Our iterative design exactly models such joint influences. Therefore it
outperforms baseline algorithms that consider examples independently.

6.4 PERFORMANCE CHANGE AFTER RANDOMLY REORDERING THE EXAMPLES

To examine the effect of the order of the examples that our method selected, we additionally tested
a Shuffled setting of ReGES. Under this setting, we randomly permute the examples selected by
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Figure 3: Left: QNLI validation accuracy under different example pool sizes. Vicuna results are
the mean of 3 vicuna models, and LLaMA2 results are similarly the mean of 3 LLaMA2 models.
Right: QNLI with and without iterative selection.

Model BM25 BM25 + ReGES ReGES Shuffled
Vicuna 7B 63.2 69.4 65.8
Vicuna 13B 71.4 74.6 72.8
Vicuna 33B 74.2 77.7 73.75
LLaMA2 7B 71.5 77.6 76.5
LLaMA2 13B 68.9 72.5 74.4
LLaMA2 70B 77.8 82.3 82.4
GPT-3.5-turbo 80 84.9 83.9

Table 5: Accuracy after random shuffling selected examples, compared with BM25 baseline and
ReGES on QNLI. Performance drops on Vicuna models, indicating that our method learns the
model-specific order preferences.

ReGES before formatting these examples as context. The results are presented in Table 5. Although
still better than the BM25 baseline overall, the performance improvement was reduced by a large
margin for Vicuna models, while for other models the performance is still on par with our main
method. This indicates that ReGES learns a model-specific good ordering, which is consistent with
findings of Lu et al. (2021), that LLMs have non-transferable preferences over the order of in-context
examples, allowing us to have additional advantages compared with other methods due to the order
awareness nature of our iterative design.

7 CONCLUSION

In this paper, we introduced a neural-based method to select examples iteratively for in-context learn-
ing. This framework collects training data by calling a frozen LLM and then learns a transformer
value model to give a score on current candidate examples conditioning on the target question and
the selected examples in the context. During inference, we iteratively call the value model to se-
lect the next example. We conduct comprehensive evaluations of our method with multiple LLMs
and on various datasets, showing that our method consistently outperforms strong baselines. Our
method generalizes to other LLMs not used for collecting train data, without the need to re-train
value models for different LLMs.

Currently, our method still requires a training set for collecting feedback and splitting the example
pool. One possible future work is to explore the effectiveness of our method under low-resource
conditions, where there are only limited labeled data and requires a generalizable model trained
from other tasks.
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A APPENDIX

A.1 INPLEMENTATION DETAILS

The hyperparameter used for our main results is presented in Figure 6. Due to hardware limitations,
we may not collect trajectories for all training samples, but we will still start training if the collecting
process is almost complete. To ensure there are enough examples in the context, we force our method
to select at least 5 examples during inference, while results show that this may be suboptimal since
selecting fewer examples is better in some cases.

A.2 GSM8K FAILURE CASES

Here we provide some examples that LLaMA2 13B fails to answer correctly in GSM8K. In the first
example, LLaMA2 goes wrong in arithmetic involving fractions. In the second and third examples,
LLaMA2 fails to figure out the correct process of solving the problem. We can see that, correctly
answering GSM8K questions requires strong arithmetic ability and mathematical reasoning ability,
which are hard to improve through in-context learning.
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GSM8K StrategyQA TREC QNLI
max #examples selected 5 6 8 8
example pool size 32 32 64 64
model used to collect feedback LLaMA2 13B LLaMA2 13B Vicuna 13B Vicuna 13B
#trajectories sampled 128 128 160 128
#answers generated for each trajectory 8 8
temperature used to collect feedback 0.5 0.5
MCTS exploration constant 0.25

√
2 0.25

√
2 0.25

√
2 0.25

√
2

value model MLP layer size 1024 1024 1024 1024
k in contrastive loss 4 4 4 4
batch size 64 64 64 64
max train steps 18000 18000 18000 18000
weight decay 0.004 0.004 0.004 0.004

Table 6: Detailed hyperparameters used in our experiment.

Question Generated Answer
TreQuan is throwing rocks in the river
and he notices that the bigger the rock,
the wider the splash. Pebbles make a
splash that is a 1/4 meter wide. Rocks
make a splash that is 1/2 a meter wide,
and boulders create a splash that is 2
meters wide. If he tosses 6 pebbles, 3
rocks, and 2 boulders, what is the total
width of the splashes he makes?

The pebbles make a splash that is 6 * 1/4
= 1 1/2 meters wide. The rocks make a
splash that is 3 * 1/2 = 3 meters wide. The
boulders make a splash that is 2 * 2 = 4 me-
ters wide. The total width of the splashes
is 1 1/2 + 3 + 4 = 9 meters. The answer is
9

Julie, Letitia and Anton decided to have
dinner together at a nearby restaurant.
Julie orders $10 worth of food, Letitia
orders $20 worth of food, and Anton
orders $30 worth of food. How much
should each pay in tips if they want
to split a 20% tip for the whole meal
evenly?

First, we find the total cost of the meal by
adding the amounts that each person or-
dered: 10+20+30=60. Then we divide this
total by 3, as there are three people eat-
ing, finding a per-person cost of 60/3=20.
Then we find the total tip amount for a 20%
tip, by multiplying the per-person cost by
20/100, finding 20*20/100=4 per person.
Finally, we divide the total tip amount by
3, as they want to split it evenly, finding a
per-person tip of 4/3=1.33. So each person
should pay 1.33 in tips. The answer is 1.33

Frankie’s parents let him have many
pets. He has six more snakes than he
has cats. He has one less parrot than
cats. Six of his pets have four legs. He
has 2 dogs. How many pets does he
have in total?

Let x be the number of cats he has. He has
x + 6 snakes. He has x - 1 parrot. The total
number of pets is x + 6 + x - 1 = 2x + 5. He
has 2 dogs. The total number of pets is 2x
+ 5 + 2 = 2(x+5) + 2. The answer is 2x + 7

Table 7: LLaMA2 13B failure cases on GSM8K.
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