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Abstract

Predicting stable 3D conformations from 2D molecular graphs has been a long-
standing challenge in computational chemistry. Recently, machine learning ap-
proaches have demonstrated very promising results compared to traditional experi-
mental and physics-based simulation methods. These approaches mainly focus on
modeling the local interactions between neighboring atoms on the molecular graphs
and overlook the long-range interactions between non-bonded atoms. However,
these non-bonded atoms may be proximal to each other in 3D space, and modeling
their interactions is of crucial importance to accurately determine molecular con-
formations, especially for large molecules and multi-molecular complexes. In this
paper, we propose a new approach called Dynamic Graph Score Matching (DGSM)
for molecular conformation prediction, which models both the local and long-range
interactions by dynamically constructing graph structures between atoms according
to their spatial proximity during both training and inference. Specifically, the
DGSM directly estimates the gradient fields of the logarithm density of atomic
coordinates according to the dynamically constructed graphs using score matching
methods. The whole framework can be efficiently trained in an end-to-end fashion.
Experiments across multiple tasks show that the DGSM outperforms state-of-the-
art baselines by a large margin, and it is capable of generating conformations for a
broader range of systems such as proteins and multi-molecular complexes.

1 Introduction

Graph-based representations of molecules has become prevalent in a variety of tasks such as property
prediction [[13| 31]] and molecule generation [[17, 33} i45]. However, a more natural and intrinsic
representation of a molecule is its 3D geometry or conformation, which represents a molecule as a set
of 3D coordinates. The 3D representation of molecules is central to many tasks, such as molecular
properties prediction and virtual screening. Nevertheless, determining the conformation of a molecule
remains a challenging task — both computational approaches, e.g., molecular dynamics (MD) [9],
and experimental approaches, e.g., crystallography, are expensive and time-consuming.

Recently, machine learning approaches have demonstrated promising performance for molecular
conformation generation. Pioneering methods such as GRAPHDG [36] and CGCF [43] first predict
interatomic distances between bonded atoms and then solve 3D coordinates from the predicted
distances via a post-processing algorithm. Very recently, |Shi et al.| proposed the CONFGF [34]],
which employs the score matching technique [38]] to learn pseudo-forces between bonded atoms and
iteratively applies the forces to a randomly initialized 3D structure until convergence. CONFGF gets
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Figure 1: Three molecular systems where long-range interactions are crucial for their conformations.

rid of the two-stage fashion in prior works and significantly improves the performance. Nevertheless,
these approaches have a common major limitation — they mainly focus on modeling the local inter-
actions between bonded atoms defined by the input molecular graphs but fail to capture long-range
interactions between non-bonded atomﬂ as they only model distances (or gradients) between bonded
atoms. While in molecular mechanics, the potential energy of a molecule that alters conformations
can be modeled as a sum of four parts [22]:

E = Eyona + Eangle + Erorsion + Enon-bonded (1

where Epond, Fangle> and Eigrsion model local interactions between bonded atoms, which are modeled
in previous methods [34} 136, 43]. Long-range interactions between non-bonded atoms, denoted as
Elon-bonded, are also non-trivial, which shape the molecular geometry via non-negligible electrostatic
forces or van der Waals forces, etc. For multi-molecular complexes, non-bonded interactions dominate
complexes’ geometry. An ideal solution to conformation generation should therefore capture both
the local and long-range interactions. In Figure[T] we present three typical molecular systems where
long-range interactions play a key role in determining their conformations.

To tackle the aforementioned challenge of modeling long-range interactions, in this paper, we propose
the Dynamic Graph Score Matching (DGSM) for molecular conformation generation, following the
principle of CONFGF [34] that learns the gradients of the logarithm density of atomic coordinates.
Instead of relying on the static input molecular graph as existing work, the basic idea is to dynamically
construct graph structures between atoms based on their spatial proximity during both training and
inference. This allows the model to (1) dynamically learn molecular graph representations with
evolved graph structures that take long-range interactions into consideration, and (2) dynamically
determine a set of interatomic distances that contribute to gradients of the current atomic coordinates.
Specifically, the edges in the dynamic graph consist of two parts. The first part of edges are determined
by covalent bonds, which capture local interactions between atoms (Ebond, Eangle and Eiorsion). The
second part of edges are determined dynamically by spatial proximity between atoms at each training
or sampling step, i.e., two atoms are connected as long as they are proximal, no matter whether they
are bonded. Such a strategy is able to effectively capture non-local interactions (Eyon-bonded) Since
the magnitude of long-range interactions is inversely correlated with distances between atoms [30].
It remains meanwhile scalable as we avoid connecting all the atom-pairs, which has quadratic
complexity. In addition, modeling non-bonded interactions enable the model to sample conformations
for multi-molecular complexes, which represent a broader range of problems.

We conduct extensive experiments and compare DGSM against previous state-of-the-art methods
on both standard conformation generation and property prediction tasks. Numerical results show
that DGSM outperforms previous methods by a clear margin, confirming the benefit of modeling
long-range interactions. Besides, to further demonstrate the advantage of DGSM, we bring attention
to two more challenging tasks — protein sidechain conformation prediction and multi-molecular
complex structure prediction. These two new tasks represent two classes of practical challenges:
predicting structures for macro-molecules and multi-molecular complexes.

2 Related Work

Prior works on conformation generation mainly rely on molecular dynamics (MD) [9], where new
conformations are sequentially generated based on an initial conformation and a physical model for
interatomic potentials [25,127]]. Although capable of accurately sampling equilibrium conformations,
these methods are computationally intensive, especially for large molecular systems [2} 35], e.g.,

"Note that the receptive field of graph neural networks is much smaller than the diameter of molecular graphs
in large systems, e.g., protein.



proteins. Another category of approaches leverage distance geometry [8]] and fix distances between
atoms to idealized values heuristically [4], which are much faster but less accurate.

Recently, a variety of deep generative models have been proposed for molecular conformation
generation, which strike a good balance between computational efficiency and accuracy. Among these
methods, Mansimov et al. [24] first propose a variational autoencoder to directly generate 3D atomic
coordinates. Albeit simple, this method fails to model the roto-translation equivariance of molecular
conformations, leading to unsatisfactory performance. To preserve roto-translation equivariance,
Simm and Hernandez-Lobato [36] and Xu et al. [43] first model the molecular distance geometry and
then reconstruct atomic coordinates from generated distances by solving an optimization problem.
The state-of-the-art method CONFGF [34] estimates pseudo-forces acting on atoms and generates
conformations via Langevin MCMC [42], which bypasses the two-stage fashion in previous works
and enhances the performance significantly. Two concurrent works [12} |44]] exist which generate
conformations in end-to-end fashion via geometry elements assembly and bilevel programming
respectively. Recently there has also been attempt to use reinforcement learning for conformation
search [14]. Such a method is incapable of modeling bond lengths explicitly, and is fundamentally
different from other approaches. To summarize, all of the previous methods focus mainly on modeling
the local interactions based on the static input molecular graphs (or augmented graphs by adding
auxiliary edges between atoms that are two- and three-hops away) and overlook the long-range
non-bonded interactions between atoms. In contrast, our DGSM explicitly models both the local and
long-range interactions via dynamic graph score matching and effectively addresses the above issue.

3 Preliminaries

3.1 Notations and Problem Formulation

Notations. Let G = (V, &) be a molecular graph, where V = {vy,v2,- - ,v)y|} is the set of nodes
representing atoms, and £ = {e;; | (¢,5) C V x V} is the set of edges representing inter-atomic
bonds in the molecule. Each node v; € V is labeled with atomic attributes, e.g., the element type Z;
and the atomic coordinate r; € R3. Each edge ¢;; € £ is labeled with a bond type. The conformation
of the molecular graph G can be represented as a matrix R € RIV!*3 The distances between all pairs
of atoms can be represented as a matrix D € RIVIXVI where D;; = d;; = ||r; — 7|2 denotes the
Euclidean distance between the positions of v; and v;. Following previous work [34, 36, 43|, we
expand the original molecular graph by adding auxiliary edges between atoms that are second and
third neighbors in G to reduce the degrees of freedom in 3D coordinates.

Problem Formulation. Given a molecular graph G = (V, £), the task of molecular conformation
generation is the conditional generation of conformations R = [r1; 72, ;7|y|] € RIVI*3 based on
G, while being able to capture long-range interactions between non-bonded atoms. Note that G may
has multiple connected components, e.g., protein-ligand complexes and multi-molecular complexes.

3.2 Score-Based Generative Modeling

Score-based generative modeling [[15} 38-40] is a class of generative models that has recently proven
effective in a variety of tasks, ranging from image generation [15} [40], audio synthesis [7} 21] to
shape generation [6} 23]]. For any continuously differentiable probability density p(x), we define its
score function s(x) as V log p(x), i.e., the direction where the logarithm data density grows most
rapidly. Score-based generative modeling perturbs the data with different levels of Gaussian noise
and jointly estimates the score function of p(x) using neural networks. Samples are then generated
by sampling from a sequence of decreasing noise levels with Langevin dynamics [42].

Formally, given a data distribution pgu. (), let {o;} X, be a sequence of noise levels that satisfies
o1 > 09 > -+ > or and 0;/0;_1 = . Consider a series of noise distributions p,, (% | ) =
N (&;x,021), and denote the corresponding perturbed data distribution as py, () = [ po, (Z |
&)Pdata (€ )dx. Song and Ermon [38]] propose to jointly approximate the score function of each noise
level, denoted by sg(x, o;), with the following objective:

L
. _ . . 2
6" = argmin, 5L E O'?Epdmu(m)]Epai(j‘m) |:H89(£C70'i) — Vzlogps, (2 | CB)H2:| ()
i=1
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Figure 2: The training procedure of the proposed DGSM. To model long-range interactions, the graph
structures are dynamically determined by adding non-bonded edges based on added perturbations at
each step. The bonded edges are marked by black border.

Assuming sufficient data and model capacity, the optimal noise conditional score network sg« (x, 0;)
matches V, log p,, () almost everywhere [38]]. After training score networks, Song and Ermon [38]]
run annealed Langevin dynamics for each p,, (x) sequentially, where samples from each noise level
serve as initializations for Langevin dynamics of the next noise level. Given o, small enough, the
final samples from p,,, () approximate to samples from pga, under minor conditions.

4 Model

Our approach treats the conformation generation as sequentially moving atoms towards high-density
regions guided by pseudo-forces, i.e., gradients of atoms. Following Shi et al. [34], we leverage the
denoising score matching [38]41]] to approximate the gradients of the logarithm density of atomic
coordinates, denoted as Vg log p(R | G). To model atomic gradients that are sensitive to both the
local and long-range interactions (Eq.[I) and inspired by the fact that long-range interactions decrease
rapidly as distances increase, we propose to dynamically construct graph structures with non-bonded
edges between atom pairs within a distance based on the current spatial proximity. In this way, we
enable the model to effectively capture long-range non-bonded interactions while avoid connecting
all atoms, which is computationally expensive. To ensure that the distribution of graph structures
during training matches with that during generation, we devise a dynamic graph score matching
algorithm, where graph structures are also dynamically determined during training depending on
added perturbations. The whole framework is illustrated in Figure [2]and Figure 3] Below we describe
the framework of score estimation for Cartesian coordinates in Section 4.1} the dynamic graph score
matching algorithm in Section4.2] and the generation procedure in Section[#.3]

4.1 Score Estimation for Cartesian Coordinates

Our goal is to learn the gradients of the logarithm density (score) of atomic coordinates, i.e.,
Vrlogp(R | G). Directly parameterizing score networks on absolute Cartesian coordinates with
Graph Neural Networks (GNNs) [[11} 113} 19,29 relies on the arbitrary choice of rotation and transla-
tion [36,43]], which are non-essential degrees of freedom for effecting conformational changes in
molecular systems. Therefore, we explicitly exclude them from the model, by first estimating scores
for a set of dynamically determined interatomic distances, and then backpropagating gradients from
distances to Cartesian coordinates via differentiation.

Given a molecular graph G = (V, &), the probability p(R | G) of a conformation R is subject to the
Boltzmann distribution and is proportional to exp (—FE(R)/kpT), where E(R) is the conformational
energy, kp is the Boltzmann constant, and 7' is the temperature. We assume the logarithm density of
a conformation, i.e., the negative conformational energy up to a constant, can be parameterized as a
function of interatomic distances, conditional on molecular graph G:

logpe(R | G) = fg(e1(R), e2(R),- - ,ex(R)), 3)

where {ej : RIVI*3 — R} | is a set of functions that calculate K interatomic distances, which
are invariant under the rotation and translation of R. And fg : R — R is a graph neural
network that predicts the negative conformational energy based on distances and the 2D graph
representation G. Using interatomic distances for energy prediction is favored in existing literature [16]
20, 1311 134], as it preserves the 3D rotation and translation symmetries of molecular systems. Since



{ex(R)}<_, are continuously differentiable with respect to the Cartesian coordinates R, the gradients
of logarithm density of interest, i.e., Vg logpe(R | G), is interrelated with the logarithm density of
each interatomic distance via chain rule:

Vi, so(R); = o1 c2(R), - exc(R))

3m
i%(el( ).ea(R), - ,ex(R)) Oex(R)
= Oer(R) or; “4)
K
= so(en(m)) - 220,
k=1 v

where sg(R); denotes V., logpe(R | G), se(ex(R)) denotes V., (r)logpe(R | G), and ‘%577@
can be calculated efficiently in closed form (see supplementary material for the full derivation).

Motivated by the above equation, we first train a noise conditional score network to jointly predict the
score of interatomic distances, i.e., {sg(ex(R), o)} |. After training the noise conditional score
network, the gradients of the logarithm density of atomic coordinates, i.e., sg (R, o), can be estimated
via Eq.[d] We have the following proposition (proof in supplementary material):

Proposition 1 (Roto-Translation Equivariance). With the assumption that we can parameterize
logpe(R | G) as a function of interatomic distances, conditional on molecular graph G (Eq. , the
score function sg¢(R) defined in Eq.4|is roto-translation equivariant.

Remarkably, the choice of {e,(R)}5_, is flexible under this framework and can be carefully designed
for specific goals. An ideal set of interatomic distances should capture both the local and long-range
interactions between atoms (Eq. [I).

Proposition 2 (Connection with CONFGF). The recent proposed CONFGF [34)] is a special case of
our approach, where they only model local distances between the first-order, the second-order, and
the third-order neighbors, i.e., {ek}ff:l map the conformation to a set of distances between bonded
atoms. Therefore, CONFGEF fails to capture long-range interactions between non-bonded atoms.

4.2 Dynamic Graph Score Matching with Noise Conditional Score Networks

In this section, we describe the proposed dynamic graph score matching for interatomic distances,
with the goal of modeling both the local and long-range interactions. To ensure that the learned score
functions cover all regions with different graph structures, we dynamically construct graph structures
with non-bonded edges between atoms during training, based on added perturbations. Following Song
and Ermon [38]], we train a noise conditional score network to jointly estimate scores for perturbed
distributions of a set of dynamically-determined interatomic distances, i.e., {sg(ex(R), o)}, and
parameterize the score network with the message passing neural network (MPNN) [13]].

Dynamic Score Matching. To capture long-range interactions between non-bonded atoms in a
molecular system, a naive way is to treat the molecular graph as a fully-connected graph and model
the gradients of logarithm density of distances between all pairs of atoms. However, such a practice is
computationally expensive especially for large systems, e.g., proteins, and is sometimes unnecessary,
e.g., van der Waals interactions decay rapidly as distances increase. As a remedy, we set a cutoff
distance and assume each atom only interacts with all atoms within the cutoff distance, ignoring all
interactions out of the considered sphere. This is a very popular strategy in computational chemistry
that strikes a good balance between efficiency and accuracy [26} 31]].

Formally, consider a molecular graph G = (V, £) with distances between all pairs of atoms D €
RIVIXIVI computed from its conformation R € RIVI*3, For a given noise level o, we perturb the
distances D with Gaussian noise at each training step on the fly, and then augment the original graph
structure with non-bonded edges between atom pairs within a certain threshold distance:

V(i,§), Dij ~ N(Dij,0%), &, =& U{e;; | Dij <6},

do— = {Dij | €;j S gg}, do = {D” | €;j S 80'}7
where &, is the constructed graph structure for noise level o, and ¢ is a hyper-parameter that controls
the radius of long-range interactions. We empirically verify that a 10 A cutoff is sufficient for systems

(&)
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Figure 3: The generation procedure of the proposed DGSM via Langevin dynamics. The graph struc-
ture is dynamically constructed at each step of stochastic update based on the current conformation.

we are studying, which is consistent with some experimental results in molecular dynamics [26].
d, and d, denote the original and perturbed interatomic distances in augmented graph structure

respectively. Hereafter, we omit the subscript for simplicity and use £, d, and d instead, assuming all
graphs are dynamically constructed during training and sampling.

With the above strategy, the graph structure of a specific molecular graph G is variadic depending
on added perturbation, and all graph structures are possible as long as we sample sufficient enough
noise. This will result in (1) a dynamically-determined graph structure for message passing and
representation learning, which takes long-range interactions into consideration, and (2) a dynamically-
determined set of interatomic distances, i.e., {e k(R)}szl, for score estimation, which contributes to
gradients of atomic coordinates according to Eq.[d] Note that the vanilla implementation of Eq.[3]
requires computing all distances between atom pairs. In practice, to avoid quadratic complexity, we
pre-filter distant neighbors before adding perturbations for each atom by constructing radius graph
with 24 threshold, and empirically verify that it performs efficiently and effectively.

Parameterizing with MPNNs. Let {0;}1 ;| be a sequence of noise levels. Our goal is to learn a
noise conditional score network to jointly estimate the scores of all perturbed distance distributions,
ie, Vo € {o;}, : so(d,0) = Vlogp,(d | G), where p,(d | G) = [p(d | G)N(d | d,0?I).
Following suggestions of Song and Ermon [38]], we parameterize the score network with a MPNN as
follows (see supplementary material for the full architecture):

hi% — MPNN(G,&,D);, Vv, €V
h5E = Concat(h}*® h®),  Ve;; € &, (6)
Sg(d, O’)ij = Se((i)ij/a = MLP(h:?ge)/O', Veij S go'

‘121 are node embeddings computed by the MPNN based on the dynamically constructed
molecular graph and the perturbed distances, {h:?ge} are embeddings for each edge in &, and

where {hnode} V!

so(ci, O')ij is the predicted score for interatomic distance bij (e;j € &). The noise conditional
network can be jointly optimized with the following objective [38]:

o2

gi

L
0* = argmin, oL Z Uz‘QEp(d\g)Epai((ildvg) {H v
i=1

where all expectations can be efficiently estimated using empirical averages.

4.3 Generation

After training the noise conditional score network, molecular conformations can be generated via
annealed Langevin dynamics [38]], guided by the gradients of atomic coordinates. The gradients can
be computed via Eq. f]based on dynamically constructed graph structures at each step of stochastic
update, which allows model to effectively capture both the local and long-range interactions that
contribute to the atomic gradients. Formally, given a molecular graph G, we first sample an initial
conformation Ry from a fixed prior distribution. We here take the prior distribution as a standard



Gaussian N'(Ry | 0, I). Then, we update the conformation by running 7" steps of Langevin dynamic
to get a sample from each noise conditional score network sg(R, ;) sequentially with a special
step size schedule a; = ¢ - 07 /0. Samples from each noise level are used to initialize Langevin
dynamics for the next noise level. At each sampling step ¢, we first construct graph structures with
non-bonded edges within a given distance  based on the current pairwise distances D;_; computed
from R,_1, and then get a set of interatomic distances d,_; for score estimation:

Ei1=EU{eij | Dy—vij <0}, din ={Dy_145 | eij € &1} (8)

The conformation is then updated using the gradient information from the score network (Eq.[4). We
provide the pseudo-code in Algorithm|[T]

S Experiments

. . Algorithm 1 Annealed Langevin dynamics [38]
Following previous works [34) 36 143]

on conformation generation, we evaluate Require: G = (V,£), {.Ui}szl’ o, ¢ T.

the proposed DGSM using the following 1 Initialize conformation Ry

two standard tasks: Conformation Gen- 2 fori<«1to g d(; _ ,
eration (Section [5.1), and Property Pre- 3 Qi< &-0; /oL, > is the step size.
diction (Section [5.2). To further demon- fort < 1to T do

strate DGSM’s capability of modeling long- E—1,di—1 = aug(&, Ry_1,0) >Eq.[8
range interactions, we evaluate it on two se(Ri—1,0;) < get(se(di—1,0;)) > Eq.
more challenging benchmark tasks: Protein Draw z; ~ N(0,1)

Sidechain Conformation Generation and R, < Ri1 + aisg(Ri—1,0:) + V2052
Multi-molecular Complex Conformation - end for

Generation (Section[5.3). We describe ex- 100 I < Rr

perimental setups in task-specific sections. 11: end for '
Return: Generated conformation Ry.

A A

5.1 Conformation Generation

Setup. This task evaluates the model’s capability to generate stable molecular conformations by
measuring both accuracy and diversity of generated conformations. Following previous works
[34,!43], we use the GEOM-QMY9 and GEOM-Drugs [[1] datasets for this task. We use the train-test
split provided by [34]]. The train splits of GEOM-QM9 and GEOM-Drugs both contain 40,000
molecules, each with 5 conformations for training, or 200,000 conformations in total. The test split of
GEOM-QM? contains 200 molecules with 22,408 conformations, and the test split of GEOM-Drugs
contains 200 molecules with 14,324 conformations.

We compare DGSM against 5 state-of-the-art baselines: RDKIT [28]], CVGAE [24], GRAPHDG
[36]], CGCF [43]] and CONFGF [34]. For each molecule in the test set, we sample twice as many
conformations as its reference conformations. We use the matching score (MAT) to measure the
accuracy of generated conformations, and coverage score (COV) to measure the diversity following
[34. 143]]. Both metrics are based on Root Mean Squared Deviations (RMSD) between molecules,
taking symmetries into account (see supplementary material for the details of metrics).

Results. We report the mean and median COV and MAT scores over all the molecules in the test split
on GEOM-QM9 and GEOM-Drugs datasets. As shown in Table [T} DGSM consistently outperforms

Table 1: COV and MAT scores on GEOM-QM9 and GEOM-Drugs datasets. The threshold é of COV
score is 0.5A for GEOM-QM?9 and 1.25A for GEOM-Drugs following Xu et al.|[43]. (1): the higher
the better. (J): the lower the better.

GEOM-QM9 GEOM-Drugs
COV (%, 1) MAT (A, |) COV (%, 1) MAT (A, |)
Method Mean Median Mean Median | Mean Median Mean Median
RDKIT [28] 83.26  90.78  0.3447 0.2935 | 60.91 6570  1.2026 1.1252

CVGAE [24] 0.09 0.00 1.6713  1.6088 | 0.00 0.00 3.0702  2.9937
GRAPHDG [36] | 73.33  84.21  0.4245 0.3973 | 8.27 0.00 1.9722  1.9845
CGCEF [43] 7752  80.40 0.4206 0.3903 | 54.19 5635 12575 1.2356
CONFGF [34] 88.49 9413 02673 0.2685 | 62.15 7093 1.1629 1.1596

DGSM 91.49 9592 02139 0.2137 | 78.73 9439  1.0154 0.9980
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Figure 4: Examples of conformations generated by different models based on four random molecular
graphs from the test set of GEOM-Drugs. We present three reference conformations for each molecule,
and visualize the best-aligned conformations generated by each method. Areas where long-range
interactions should be modeled are highlighted in green.

all the baselines. Notably, both DGSM and CONFGF are score-based models, but DGSM achieves
better performance. The difference between them is that DGSM successfully takes long-range
interactions into consideration via dynamic graph score matching. This confirms the significant
benefit of modeling long-range interactions. We present several conformations generated by different
approaches in Figure[d] which shows that DGSM successfully captures the long-range interactions in
highlighted areas while the other baselines fail, resulting in distorted structures in those areas.

5.2 Property Prediction

Setup. This task demonstrates how genera- Table 2: Mean absolute errors (MAE) of predicted
tive models for molecular conformations can  epsemble properties in eV.

be applied to property prediction as a down-

stream task. It also provides an assessment ~ _Method E Bnin B¢ Afmin A
on the quality of generated conformations in ~ RDKIT 09233 06585 03698 058021 02359

. A . GRAPHDG | 9.1027 0.8882 1.7973 4.1743  0.4776
a different llght We estimate the ensemble CGCF 289661 2.8410 2.8356 10.6361 0.5954
properties [1] of a molecular graph by aggre- ~ CoNrGF | 2.7886  0.1765 0.4688 2.1843  0.1433
gating its conformational properties follow- DGSM | 10313 00761 01963 11811 0.1271

ing [34]). In specific, we first use the models
to generate 50 conformations for each molecular graph in a subset of GEOM-QM?9 [34], and use
Ps14 [37], a quantum chemical toolkit, to calculate each conformation’s energy and HOMO-LUMO
gap. Then, we calculate average energy I, lowest energy Eiiy, average gap Ae, minimum gap Aepin,
and maximum gap Aep,x from the conformational energy and gap. We evaluate the accuracy of
estimated ensemble property by measuring their mean absolute errors (MAE) to the ground truth
values. CVGAE is excluded in this task as its performance is poor, which is also reported in [36} 34].

Results. Table[2]shows that DGSM outperforms other machine learning-based methods by a clear
margin. DGSM’s estimation of average energy E and minimum gap Aep, is close to RDKIT but still
outperforms the most competitive ML-based method CONFGF. The calculation of conformational
energy is highly sensitive to changes in geometry — even a subtle deviation in bond lengths leads
to significant energy change [36]]. Therefore, the superior performance of DGSM indicates that it
generates much more accurate conformations than other methods, leading to more accurate property
estimation. This validates again the effectiveness of modeling long-range interactions.

5.3 Large Molecule and Multi-molecular Modeling

Protein Sidechain Conformation This task is to pre- Tyble 3: RMSD of different approaches on
dict protein sidechain conformations based on its back-  gidechain conformation generation.

bone structures. Compared to conventional molecular
conformations generation in previous sections, the main Method ‘
challenge of this task is two-fold: (1) large number of
atoms, which prohibits constructing complete graphs
that grow quadratically to model long-range interactions.
(2) covalent bonds are sparse, which limits the power of the edge augmentation techniques in previous
work. DGSM tackles these two challenges via dynamic graph score matching as introduced.

RMSD
Mean (A) Min (A)

CONFGF 3.38 3.11
DGSM | 2.85(1 15.7%) 2.61 (| 16.1%)
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Figure 5: (a) An example of the generated protein sidechain conformation with atomic-level coor-
dinates. The ground-truth sidechain (blue) and the generated sidechain (red) are highlighted. (b)
Conformations of two multi-molecular complexes generated by DGSM.

We use the SidechainNet [18]] dataset for this task and follow the official train-test splits. We compare
DGSM with the state-of-the-art conformation generation model CONFGF. Despite that there are
some machine learning-based methods specialized in protein sidechain structure prediction [10],
they are built upon rotamer libraries [5], which incorporates a lot of domain knowledge. Thus, our
method is not comparable with them. The main purpose of this task is to justify the effectiveness of
DGSM for large molecules. For each protein, we generate 5 sidechain conformations with different
initialization, and calculate the mean and min RMSD between the ground-truth conformation and the
generated conformations. We report the overall mean and min RMSD scores by averaging scores of
each protein in the test set in in Table[3] which shows that DGSM achieves better performance than
previous state-of-the-art model. We also present an example in Figure[5a), and we can see that the
predicted conformation is consistent with the ground truth in major parts.

Multi-molecular Complex Conformation This task is to predict 1 ucomen o Reference
conformations for multi-molecular complexes. A multi-molecular \;{ﬂ?\
complex is made up of multiple molecules and there is no covalent

bonds between them. Long-range interactions dominate the structure T T T T T
of multi-molecular complexes. The purpose of this task is to demon- fj Hycrogen =1 DGSM
strate DGSM’s potential application to a broader range of problems
and provide a novel benchmark for conformation generation. We

use the quantum chemical software xtb [3] to construct adatasetcon- o ;1 5, 3 4 5 6 7 8 9 @&
sisting of 24 water-organic complexes each with several hundreds
of conformations, and leave out 4 complexes for testing (see supple-
mentary material for details). We do not report RMSD-based metrics
such as COV and MAT because the structures of multi-molecular
complexes are highly flexible. Two set of generated examples are
presented in Figure[5|b). We observe that water molecules are placed
regularly around the solute organic molecule. Notably, hydrogen bonds (between water and the solute,
and between water and water) are formed correctly. This can also be evidenced in the histogram of
Hydrogen-Oxygen distances (Figure @), where there is a peak between 1.5A and 2.5A, i.e., the range
of hydrogen bond length between Hydrogen and Oxygen.

Figure 6: The distribution of
Hydrogen-Oxygen distances.
The first peak from the left is
covalent bonds and the second
peak is hydrogen bonds.

6 Conclusion and Future Work

We propose DGSM, a novel score-based approach for generating equilibrium molecular confor-
mations. DGSM is capable of modeling both the local and long-range interactions in molecular
systems, by dynamically constructing graph structures based on spatial proximity between atoms
during both training and inference. We also devise a dynamic graph score matching algorithm to
effectively estimate atomic gradients, where graph structures are dynamically determined depending
on added perturbations. Extensive experiments over two standard tasks and two original tasks show
that DGSM outperforms the state-of-the-art method by a large margin, confirming the significant
benefit of modeling long-range interactions. In the future, we plan to apply our approach to the more
challenging problem of protein structure prediction.
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