

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST AUTOREGRESSIVE VIDEO GENERATION WITH DIAGONAL DECODING

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive Transformers demonstrate impressive performance in generation models. However, their sequential, token-by-token decoding becomes a severe bottleneck for video generation, which may require generating tens of thousands of tokens sequentially. In this paper, we introduce Diagonal Decoding (DiagD), a training-free inference acceleration algorithm that exploits spatiotemporal correlations to speed up autoregressively pre-trained models. DiagD generates tokens simultaneously along diagonal trajectories in the spatial-temporal token grid, enabling parallel decoding within frames and partial overlap across successive frames. The proposed algorithm is versatile and adaptive to various generative models and tasks and offers adjustable trade-offs between speed and visual quality. Furthermore, we propose a cost-effective fine-tuning strategy that aligns the attention patterns of the model with the new decoding order to demonstrate the potential of training with DiagD. Experiments on several autoregressive video generation models and datasets demonstrate that DiagD achieves up to 10 \times speed-up over naive sequential decoding, while preserving comparable visual fidelity.

1 INTRODUCTION

Recent advances in video generation models have achieved a significant level of performance in both diffusion (Lin et al., 2024; Yang et al., 2024; Xu et al., 2024) and autoregressive (Kondratyuk et al., 2023; Agarwal et al., 2025; Kanervisto et al., 2025) based methods. These models demonstrate impressive capabilities in learning foundational knowledge from raw videos and generating high-fidelity, controllable video outputs (Brooks et al., 2024). Consequently, video generation models have also been adopted in various domains in AI such as world modeling (Ha & Schmidhuber, 2018; Agarwal et al., 2025; Kanervisto et al., 2025) and embodied AI (Yang et al., 2023), illustrating their potential power to serve as digital twins of the real world.

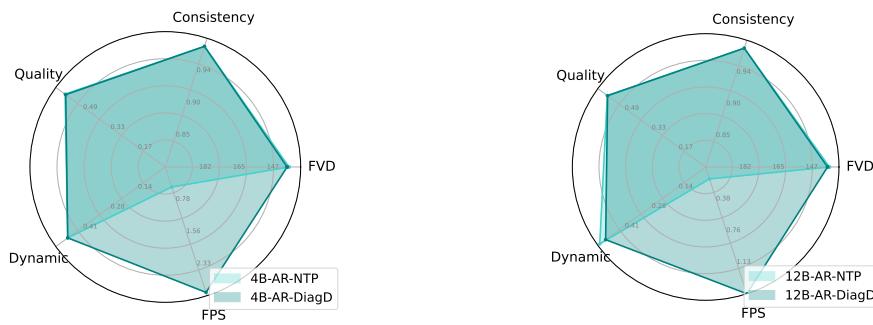


Figure 1: Comparisons between naive Next-Token Prediction (NTP) and the proposed Diagonal Decoding (DiagD) on Cosmos (Agarwal et al., 2025) autoregressive models. DiagD achieves 6 to 10 \times speedup with negligible degradation on visual quality among different scales of models.

Compared with diffusion models, autoregressive Transformers exhibit unique features as shown by the blooming of Large Language Models (LLMs) (Radford et al., 2019; Brown et al., 2020) in recent years, including zero-shot emergent in-context learning capabilities (Zhang et al., 2025), and scaling laws (Kaplan et al., 2020; Pearce et al., 2024). Leveraging architectures similar to LLMs enables

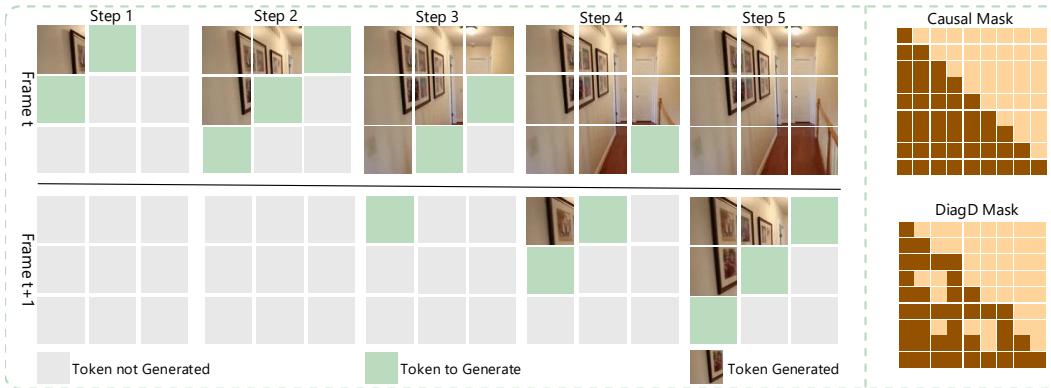


Figure 2: Left: An illustration of the proposed Diagonal Decoding algorithm with $d = 3$ and $k = 1$. Spatially, tokens along the same diagonal within each frame are generated in parallel. Temporally, our method generates the top-left tokens of the subsequent frame before completing the current frame. Right: An illustration of the causal attention mask and the DiagD mask utilized in fine-tuning.

vision models to inherit these advancements and naturally extend to multi-modal inputs. Additionally, autoregressive models can generate videos of arbitrary length in a streaming paradigm, which is challenging for most diffusion models.

However, video generation models usually utilize a visual tokenizer (Esser et al., 2021; Tang et al., 2024) to transform raw videos to tens of thousands of tokens, which poses a significant bottleneck for autoregressive models that generate tokens sequentially, especially when generating high-resolution, long-duration videos. The bottleneck can be divided into three main challenges. Firstly, the naive next-token prediction mechanism leaves computational resources underutilized and thus leads to slow and costly generation. Secondly, previous visual autoregressive models (Yu et al., 2023b; Kondratyuk et al., 2023; Bai et al., 2024) generate tokens following a fixed raster-scan order (i.e., left-to-right, top-to-bottom, frame-by-frame), which creates suboptimal generation trajectories for image and video synthesis. Thirdly, the paradigm of autoregressive video generation remains underexplored.

In this paper, we propose **Diagonal Decoding (DiagD)**, an algorithm that utilizes redundant information in video representations by generating diagonal tokens in both spatial and temporal adjacent regions simultaneously. As illustrated in Figure 2, instead of generating tokens sequentially in a raster-scan order, our method generates the diagonals of images from top left to bottom right, with tokens along the same diagonal produced in parallel at each step. By stacking frames together, diagonal decoding can be seamlessly applied to video generation. Notably, our method is training-free and functions as a plug-and-play module on autoregressively pretrained models, requiring only 5% of the generation steps and up to a $10\times$ speedup in inference latency with negligible quality degradation, compared with next token prediction. We introduce hyperparameters to control the acceleration ratio in both spatial and temporal dimensions, allowing flexible adjustments to the trade-off between speed and performance. Additionally, we also provide a fine-tuning strategy to demonstrate that training with DiagD brings further improvements in performance.

We evaluate the performance and generalizability of Diagonal Decoding across various autoregressive video generation models, tasks, and datasets. Specifically, as shown in Figure 1, on the Cosmos (Agarwal et al., 2025) world model, our method accelerates the inference by 10+ times while achieving similar visual quality to next token prediction on tasks including video continuation and text-guided video generation. On WHAM (Kanervisto et al., 2025), a world model for games that produces multi-modal outputs, our spatial-only acceleration variant achieves approximately $4\times$ speedups while preserving generation quality. In addition, we also train autoregressive Transformer models from scratch to validate the performance of our method on different scales of models.

In summary, our contributions are threefold:

- i) We propose Diagonal decoding, a plug-and-play acceleration algorithm for autoregressive video generation, achieving up to $10\times$ speedup in inference while maintaining generation quality.

108 **ii)** The proposed decoding algorithm demonstrates strong generalization capability across various
 109 autoregressive implementations including arbitrary visual tokenizers (with or without temporal
 110 compression), arbitrary resolutions, and diverse generation tasks.

111 **iii)** Besides inference, fine-tuning with diagonal decoding consistently improves the model perfor-
 112 mance, which provides inspiration for training video generation models in the future work.
 113

114 2 RELATED WORK

116 **Video Generative Models** Video generative models have advanced rapidly in recent years, achiev-
 117 ing impressive results in producing long-range, high-fidelity and controllable videos (Ho et al., 2022;
 118 Kondratyuk et al., 2023; Yu et al., 2023c; Brooks et al., 2024; Liu et al., 2024b; Ma et al., 2024a;b).
 119 Most video generation models consist of two components: a visual tokenizer (Li et al., 2024; Tang
 120 et al., 2024; Wang et al., 2024) that converts raw images and videos into latent representations, and a
 121 generative model that synthesizes these latents. However, representing a video clip requires a large
 122 number of latents. For instance, a 16-frame video can produce between 40k and 160k tokens. The
 123 large number of latents creates a significant computational bottleneck for the generative model.
 124

125 For the paradigm, diffusion (Ho et al., 2020) and autoregressive generation (Vaswani et al., 2017)
 126 are the two most popular approaches in video generation. In this paper, we focus on autoregressive
 127 Transformers, as they demonstrate performance on par with diffusion models (Kondratyuk et al., 2023;
 128 Yu et al., 2023c), while inheriting key advantages from large language models, such as zero-shot
 129 in-context learning (Zhang et al., 2025), long-range generation capabilities (Liu et al., 2024a), and
 130 the ability to smoothly integrate multiple modalities (Kondratyuk et al., 2023).

131 **Parallel Decoding in Generative Models** Parallel decoding has been widely explored in
 132 Transformer-based models to accelerate inference. Inspired by masked language models (Ghazvinine-
 133 jad et al., 2019; Guo et al., 2020), MaskGIT (Chang et al., 2022) and MAGVIT (Yu et al., 2023a)
 134 introduces masked generative Transformers that generate tokens in parallel through iterative denoising.
 135 LFormer (Li et al., 2023) divides tokens into several L-shaped blocks in images, and generates tokens
 136 in each block in parallel. However, this method requires retraining the model. Recently, ZipAR (He
 137 et al., 2024) proposes a parallel decoding algorithm for image generation by exploiting local token
 138 dependencies. Different from previous works, our diagonal decoding method is training free, operates
 139 at the video level, and achieves greater speedup ratios by handling temporal dependencies directly.

140 3 METHOD

141 3.1 BACKGROUND

142 In this section, we introduce the proposed Diagonal Decoding method. We begin with an overview of
 143 the task. Given a raw video \mathbf{x} composed of a sequence of frames, a discrete VAE is used to encode
 144 the frames into a sequence of discrete tokens \mathbf{c} :

$$145 \quad \mathbf{x} = (x_1, \dots, x_T), \quad (1) \\ 146 \quad \mathbf{c} = (c_1, \dots, c_n, c_{n+1}, \dots, c_{2n}, c_{2n+1}, \dots, c_N),$$

147 where T denotes the number of frames, n denotes the number of tokens to represent each frame, and
 148 $N = T \cdot n$ denotes the total number of encoded tokens. The autoregressive Transformer processes
 149 this sequence and learns to model the spatial and temporal dynamics of the video through next-token
 150 prediction. The training objective is to maximize the joint probability of each token, where the model
 151 predicts the current token based on all previously generated tokens:

$$152 \quad \max_{\theta} \quad p_{\theta}(\mathbf{c}) = \prod_{i=1}^N p_{\theta}(c_i | c_1, c_2, \dots, c_{i-1}), \quad (2)$$

155 where p_{θ} denotes the Transformer model parameterized by θ . During inference, the model generates
 156 tokens sequentially through next-token prediction, which is identical to a raster-scan order once the
 157 sequence is reshaped back into a 2D structure. Finally, the decoder of the discrete VAE reconstructs
 158 the predicted tokens into videos in the RGB space.

159 3.2 DIAGONAL DECODING

160 The motivation of our method arises from intuitive observations on consecutive frames in a video,
 161 which can be summarized in two key insights. As shown in Figure 2, the first insight is that patches

162 exhibit stronger correlations with their spatial neighbors than with sequential ones. For example, the
 163 first patch in each row is more related to the first patch in the previous row than to the last patch in the
 164 same row, despite the latter being its sequential predecessor. Secondly, due to the temporal redundancy
 165 of videos, patches from consecutive frames that occupy similar relative positions are highly likely
 166 to be similar to each other. We empirically validate our observations in Figure 6. As a result, we
 167 find that sequential autoregressive generation is not only counterintuitive but also inefficient, and we
 168 propose leveraging these spatial and temporal correlations to accelerate the generation process.

169 Specifically, we propose Diagonal Decoding, an iterative algorithm that generates tokens along
 170 diagonal paths in the spatial-temporal token grid. Spatially, within each frame, tokens along the same
 171 diagonal are generated in parallel, leveraging the strong local dependencies between neighboring
 172 patches. And temporally, as illustrated in Figure 2, by stacking frames together, our method generates
 173 the top-left tokens of the next frame before completing the current frame, as these tokens are less
 174 likely to depend on the bottom-right tokens that have not yet been generated.

175 Formally, let h and w denote the height and width of a frame, respectively, and let $c_{t,i,j}$ represent the
 176 token corresponding to the patch in row i and column j of the t -th frame in the video. We introduce
 177 two hyperparameters to define our algorithm. The parameter k represents the number of existing
 178 spatial neighbors in the previous row available when generating the current token. In other words,
 179 $c_{t,i,j}$ is generated after all tokens satisfying $c_{t,\leq i,\leq j+k}$ have been generated. Then we can calculate
 180 the number of iterations to generate all tokens in one frame:

$$s_{\text{spa}} = (h - 1) \cdot k + w. \quad (3)$$

183 Compared to the standard next-token prediction, which requires $h \cdot w$ steps, the acceleration ratio of
 184 spatial diagonal decoding is given by:

$$r_{\text{spa}} = \frac{h \cdot w}{(h - 1) \cdot k + w} \approx \frac{\min\{h, w\}}{k + 1}. \quad (4)$$

188 From the temporal aspect, we introduce temporal delay d to represent the number of diagonal lines
 189 that must be generated in the previous frame before starting the next frame. The value of d ranges in
 190 $[1, s_{\text{spa}}]$, where $d = 1$ represents the extreme case where the next frame begins generating immediately
 191 after the first token of the previous frame is produced, and $d = s_{\text{spa}}$ corresponds to no temporal level
 192 acceleration being utilized. Equipped with both spatial and temporal diagonal decoding, the number
 193 of iterations to generate all tokens in T frames can be written as:

$$s_{\text{step}} = (T - 1) \cdot d + s_{\text{spa}}. \quad (5)$$

196 As illustrated in Figure 2, we set $k = 1$ and $d = k \cdot h$ to balance generation quality and speed in
 197 most of our experiments, while naturally aligning spatial and temporal acceleration within a unified
 198 diagonal decoding framework. The total speedup ratio compared to next-token prediction is given by:

$$r_{\text{diag}} = \frac{T \cdot h \cdot w}{(T - 1) \cdot h + h + w - 1} \approx w. \quad (6)$$

202 The derivation of Equation (4) and (6) are shown in the appendix H. This indicates that the acceleration
 203 is roughly proportional to the width of the video resolution, significantly reducing the number
 204 of decoding iterations relative to standard autoregressive methods. We provide analysis on both
 205 hyperparameters k and d in experiments.

206 **Discussion** The k and d hyperparameters, flexibly control the tradeoff between inference speed
 207 and generation quality, enhancing the versatility of DiagD. For pure video generation models (e.g.,
 208 Cosmos (Agarwal et al., 2025)), both spatial and temporal acceleration can be enabled to achieve the
 209 highest inference speed. On the other hand, for models with multimodal outputs (e.g., WHAM (Kan-
 210 erwist et al., 2025), which generates paired images and actions in games), where temporal acceleration
 211 is not applicable, setting $d = s_{\text{spa}}$ allows the model to leverage spatial diagonal decoding alone.

212 The spatial-only variant of our diagonal decoding shares insights with ZipAR (He et al., 2024), a
 213 decoding algorithm for text-to-image generation, but introduces a key innovation: leveraging temporal
 214 redundancies across frames to enhance efficiency even for the spatial-only algorithm. Specifically,
 215 implementing diagonal decoding introduces a training-inference gap, as the first token in each row is
 conditioned on the last generated token of the previous row during training, and such dependency is

216 absent during inference. Previous methods use the last token in the previous row, $c_{t,i-1,j+k}$, as the
 217 predecessor for generating token $c_{t,i,j}$. In contrast, our approach leverages temporal information by
 218 using $c_{t-1,i,j}$, the token at the same position in the previous frame, which provides additional context
 219 and enables more accurate predictions. As a result, while ZipAR requires a large $k = 16$ to maintain
 220 visual quality, our spatial-only diagonal decoding achieves higher speedups (e.g., $k = 1$ on large
 221 scale models or 2 on smaller ones) without compromising visual fidelity.

222 3.3 FINE-TUNING WITH DIAGD ATTENTION MASK

224 Diagonal decoding introduces a training–inference gap for autoregressively pre-trained models, as
 225 it deviates from the standard raster-scan generation order. Despite this mismatch, our experiments
 226 demonstrate that models are able to neglect the gap and achieve substantial speedups with minimal
 227 performance loss in a training-free setting. Nonetheless, we hypothesize that directly training with
 228 diagonal decoding (DiagD) can further enhance both model performance and efficiency. Here we
 229 present a fine-tuning strategy using DiagD and leave full training from scratch as future work.

230 As illustrated in Figure 2, we adapt the model by replacing the standard causal attention mask with a
 231 DiagD-aligned attention mask. This modification ensures that each token attends only to its DiagD
 232 predecessors, rather than to raster-ordered positions, thereby reducing the discrepancy between
 233 training and inference. Empirically, we find that fine-tuning the model for merely 1k steps is sufficient
 234 to close most of the performance gap, validating the practicality and effectiveness of this approach.

235 4 EXPERIMENTS

237 In this section, we present experimental results on the proposed Diagonal Decoding algorithm. We
 238 start with experimental setups described in Section 4.1, followed by the main results on various
 239 models illustrated in Section 4.2. We provide analysis and case studies in Section 4.3 and Section 4.4.

240 4.1 SETUPS

241 4.1.1 BASELINES

243 We consider three representative models as our baselines to validate the performance of Diagonal
 244 Decoding with temporal and spatial accelerations, respectively. To study the relations between model
 245 scales and the performance of DiagD, we also train autoregressive models from scratch.

246 **Cosmos** Cosmos (Agarwal et al., 2025) is a world foundation model collection that integrates
 247 multiple pre-trained models. We utilize the autoregressive models, which are equipped with a discrete
 248 video tokenizer that provides $8\times$ temporal compression and $16\times$ on spatial. As a result, for 8 frames
 249 with 640×1024 as the raw resolution, it is encoded into latent discrete tokens with size $40 \times 64 =$
 250 $2,560$, i.e., $h = 40$ and $w = 64$ following our notations. Experiments on Cosmos demonstrate the
 251 generalizability of Diagonal Decoding on representations with temporal compressions.

252 **WHAM** The World and Human Action Model (WHAM) (Kanervisto et al., 2025) is an autore-
 253 gressive generative model on the game environment, which is capable of generating accurate and
 254 coherent game scenes following instructions from users. Different from Cosmos which produces
 255 videos solely, WHAM takes interleaved concatenations of images and actions as input and output, to
 256 receive controls and generate consequences. Therefore, WHAM utilizes an image tokenizer with $10\times$
 257 spatial compression only, which transforms a raw game scene with 180×300 into $18 \times 30 = 540$
 258 tokens, with $h = 18$ and $w = 30$ as a result. We test DiagD with spatial acceleration on WHAM,
 259 considering that the action will be given by user after the previous game scene has been generated.

260 **MC-AR** To study the performance of Diagonal Decoding on different scales of models, as well as
 261 validating the proposed fine-tuning strategy, we train a series of models from scratch. Specifically,
 262 we utilize the VPT dataset (Baker et al., 2022) which consists of pairs of game scenes and actions on
 263 the game Minecraft. We transform the raw game scenes with an image VQ-VAE (Patil et al., 2024)
 264 to latent tokens with size $14 \times 24 = 336$, i.e., $h = 14$ and $w = 24$. Then, a Transformer decoder is
 265 trained with next token prediction by taking the concatenation of game scenes and actions as input.
 266 We train model scales from 300M to 1.2B parameters. We leave detailed descriptions of baselines
 267 and the training procedure in the appendix G.

268 4.1.2 EVALUATION SETUPS

269 **Metrics** For all models, we use one NVIDIA 80GB A100 GPU and batch size as 1 to obtain results.
 We propose separate metrics to assess the visual quality and inference speed. We follow common

270 Table 1: Quantitative evaluation of Cosmos on RealEstate10K (Zhou et al., 2018). "NTP" refers to
 271 the next-token prediction paradigm. DiagD $k = i$ $d = j$ denotes the Diagonal Decoding algorithm
 272 with different hyper-parameters. "STEP" refers to the number of forward passes required by the
 273 model to generate a video. "TP" represents throughput, i.e., number of tokens the autoregressive
 274 model can generate per second. Comparable numbers are underlined.

276 Model	277 Algorithm	278 FVD \downarrow	279 Subject Cons. \uparrow	280 Image. Qual. \uparrow	281 Dynamic degree \uparrow	282 FPS \uparrow	283 TP \uparrow	284 STEP (k) \downarrow
278 14B	279 Diffusion	280 129	281 0.976	282 0.677	283 0.61	284 0.08	285 /	286 /
280 4B	NTP	136	<u>0.978</u>	<u>0.604</u>	0.49	0.38	120	7.68
	DiagD $k = 4$ $d = 20$	136	0.979	<u>0.604</u>	0.50	2.66	852	0.26
	DiagD $k = 2$ $d = 40$	137	<u>0.978</u>	0.600	0.49	<u>3.02</u>	<u>966</u>	0.30
	DiagD $k = 2$ $d = 10$	137	<u>0.978</u>	0.599	0.46	3.41	1097	<u>0.15</u>
284 12B	NTP	<u>135</u>	0.978	0.602	<u>0.54</u>	0.15	49	7.68
	DiagD $k = 2$ $d = 40$	<u>136</u>	<u>0.978</u>	0.601	<u>0.50</u>	1.21	384	0.30
	DiagD $k = 2$ $d = 10$	136	<u>0.978</u>	0.600	0.51	1.50	480	0.19
	DiagD $k = 1$ $d = 40$	136	0.976	0.590	0.49	1.62	512	0.18
	DiagD $k = 1$ $d = 1$	139	0.967	0.564	0.51	1.71	549	0.11

288 practices and utilize metrics including Fréchet Video Distance (FVD) (Unterthiner et al., 2018) and
 289 VBench (Huang et al., 2024). We report Subject Consistency, Dynamic Degree, and Image Quality
 290 from VBench to comprehensively evaluate the generation performance. For the inference speed,
 291 we report three metrics. The Frames Per Second (FPS) generated by the model, calculated with the
 292 wall-clock time. Step denotes the number of forward passes for a model to generate the video. In
 293 addition, Throughput (TP) of output tokens per second is also recorded, which is a crucial metric in
 294 real-time applications.

295 In addition to automatic metrics, we also provide human evaluations, detailed in Section 4.4, to assess
 296 the generation results from various aspects including the general visual quality, object movement
 297 consistency, and the comparisons between two settings.

298 **Evaluation Dataset** For Cosmos, an open-sourced evaluation pipeline and dataset is absent. Therefore,
 299 we implement the pipeline by ourselves following details provided in their technical report (Agarwal
 300 et al., 2025). The validation dataset we selected spans autonomous driving (Yu et al., 2020),
 301 robotic manipulation (Walke et al., 2023), and camera trajectories (Zhou et al., 2018), which contains
 302 sufficiently diverse and rich dynamic motion information. For each dataset, we randomly sample 100
 303 videos with 33 frames as the test set. For WHAM, we randomly select 100 videos with 100 frames
 304 from the official evaluation set due to the limitations on time and resource. Experiments on the whole
 305 test set with 1k videos will be reported in future revisions. For MC-AR, we split 100 video clips from
 306 VPT (Baker et al., 2022), each containing 16 frames.

308 4.2 MAIN RESULTS

309 In this section, we illustrate the main results of DiagD on various baseline models and tasks.

310 **Cosmos** We apply DiagD with temporal and spatial acceleration to Cosmos autoregressive models,
 311 with various combination of d and k . We conduct experiments on different scales of Cosmos models
 312 on video continuation task. Conditioned on 9 initial frames, the model is required to generate the
 313 following 24 frames. We also show the performance of the 14B Diffusion model for reference.

314 We show representative results of DiagD variants with different k s and d s in Table 1 on RealEstate10K
 315 datasets, more results on robotic manipulation and driving scene are listed in appendix E. Compared
 316 to naive Next-Token Prediction (NTP), which requires 7.68k steps to generate 24 frames, DiagD
 317 reduces the step count to only 2% to 4%, enabling substantial parallelism in decoding. In terms of
 318 FPS measured by wall-clock time, DiagD achieves approximately 10 \times speedup over NTP across
 319 various settings and model scales.

320 For visual quality, by adjusting k and d , the variant ($k = 2, d = 10$) with 7 \times speedup introduces
 321 negligible degradation in subject consistency, image quality, and dynamic degree, even in the 4B
 322 Cosmos model. For the 12B model, setting $k = 1, d = 1$ does not harm performance. Overall, DiagD
 323 significantly accelerates inference in a training-free manner with minimal impact on visual quality.

324
 325 Table 2: Quantitative evaluation on WHAM. Each evaluation video has a duration of 10 seconds and
 326 a frame rate of 10 fps. For every video in this dataset, the initial ten frames along with the complete
 327 action sequence serve as prompts for generation. Second best results are underlined.

328 WHAM	329 Algorithm	330 FVD \downarrow	331 Subject Cons. \uparrow	332 Image. Qual. \uparrow	333 Dynamic degree \uparrow	334 FPS \uparrow	335 TP \uparrow	336 STEP (k) \downarrow
331 200M	NTP	367	<u>0.747</u>	0.628	0.983	0.23	124	54
	DiagD $k = 2$	462	0.723	0.613	0.967	<u>0.75</u>	<u>405</u>	<u>6.4</u>
	DiagD $k = 1$	472	0.727	0.624	0.902	0.97	524	4.7
334 1.6B	NTP	336	<u>0.747</u>	0.628	<u>0.975</u>	0.12	65	54
	DiagD $k = 2$	378	0.749	<u>0.627</u>	<u>0.975</u>	0.34	184	<u>6.4</u>
	DiagD $k = 1$	<u>365</u>	0.739	0.625	<u>0.975</u>	0.40	216	4.7

337
 338 **WHAM** On WHAM models, we validate the performance of DiagD with spatial acceleration solely.
 339 Specifically, we set $d = s_{spa}$ and k to 1 or 2 in this setting. The generation task is challenging as the
 340 model is required to generate 100 frames conditioned on one initial frame and a sequence of actions,
 341 and slight errors in previous frames will cause huge performance drop due to error accumulation.

342 The results are shown in Table 2. The spatial only DiagD requires 10% steps to generate a video
 343 compared to NTP, and brings 4 times speedups regarding FPS. This aligns with derivations in
 344 Equations (4) and (6), where temporal acceleration introduces an additional speedup of roughly
 345 $k + 1$ times. In terms of visual quality, the larger 1.6B model exhibits less performance degradation
 346 compared to the 200M model, suggesting that larger models can better tolerate the training-inference
 347 gap introduced by diagonal decoding. Overall, these results demonstrate the effectiveness of the
 348 spatial variant of DiagD in balancing inference speed and visual fidelity across different model scales.

349
 350 Table 3: Quantitative evaluation on 700M MC-AR. Fine-tuning with DiagD attention mask helps
 351 bridge the training-inference gap and improve performance. Second best numbers are underlined.

354 Algorithm	355 FVD \downarrow	356 Subject Cons. \uparrow	357 Image. Qual. \uparrow	358 Dynamic degree \uparrow	359 FPS \uparrow	360 TP \uparrow	361 STEP (k) \downarrow
NTP	210	0.864	0.677	<u>0.985</u>	1.08	363	5.04
DiagD w/o FT	247	0.844	0.628	<u>0.985</u>	2.09	702	0.75
DiagD w/ FT	<u>231</u>	<u>0.859</u>	<u>0.673</u>	1.000	2.09	702	0.75

362 **MC-AR** We validate the proposed fine-
 363 tuning strategy on MC-AR models and ana-
 364 lyze its scaling behavior in the appendix G.
 365 Specifically, we replace the standard causal
 366 attention mask in the pre-trained auto-
 367 regressive Transformer with one aligned to
 368 DiagD, then fine-tune models for another
 369 1k steps. As shown in Table 3, fine-tuning
 370 mitigates the training-inference gap, en-
 371 hancing generation quality while preserv-
 372 ing the fast inference speed of DiagD.

373 **Human Evaluation** We conduct human
 374 evaluations as a complement to automatic
 375 evaluations. For Cosmos-12B, we provide
 376 10 videos generated by next-token predic-
 377 tion and DiagD, and ask participants to
 378 evaluate which one performs better in terms of the visual quality and camera consistency. For
 379 MC-AR, we ask participants to compare generation results from DiagD with or without fine-tuning,
 380 in terms of the visual quality and controllability. As shown in Figure 5, we find that: 1) DiagD and



381 Figure 3: Qualitative comparison of results on MC-AR.
 382 Frames generated by models without fine-tuning may appear
 383 blurry, which can be mitigated with 1k-step fine-tuning.

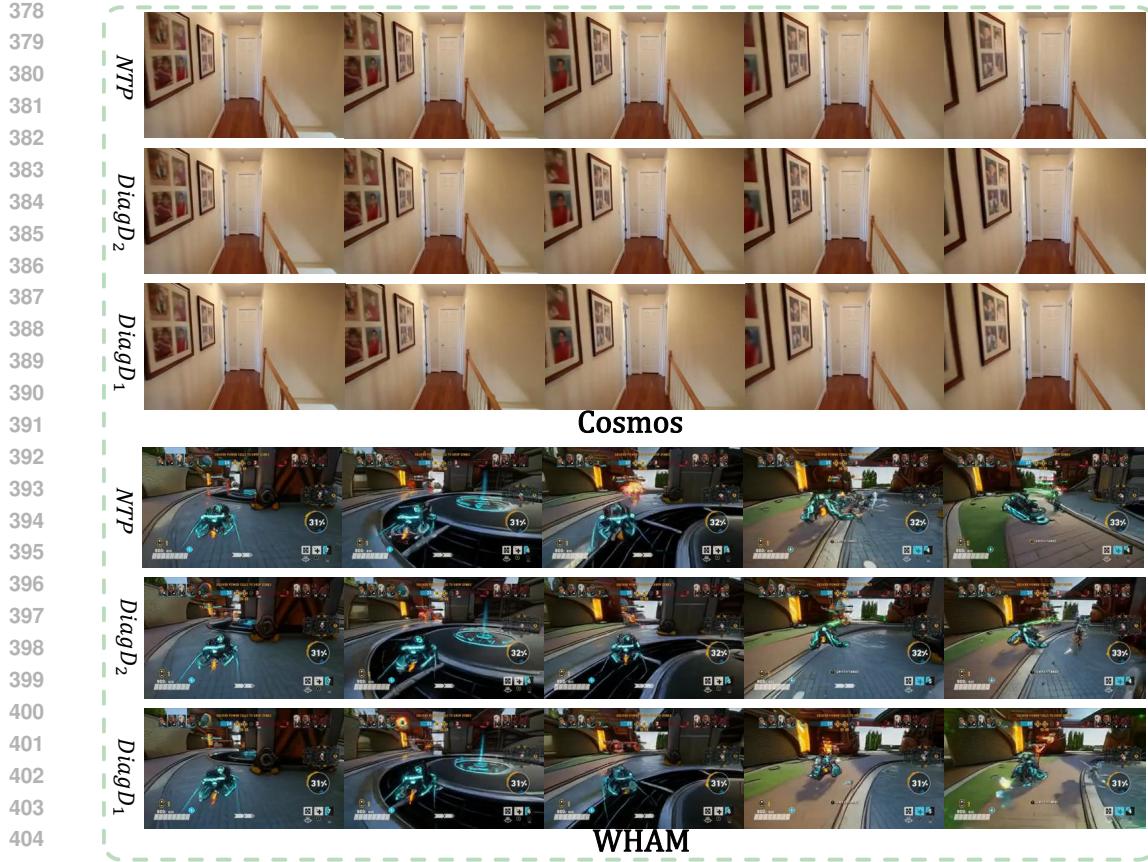


Figure 4: Qualitative analysis of Cosmos and WHAM. Videos generated by Cosmos-12B and 1.6B WHAM models using the next-token prediction paradigm (first row) and Diagonal Decoding under different configurations (bottom two rows) We uniformly sample 5 frames from 33-frames videos in Cosmos and 40-frames videos from those in WHAM.

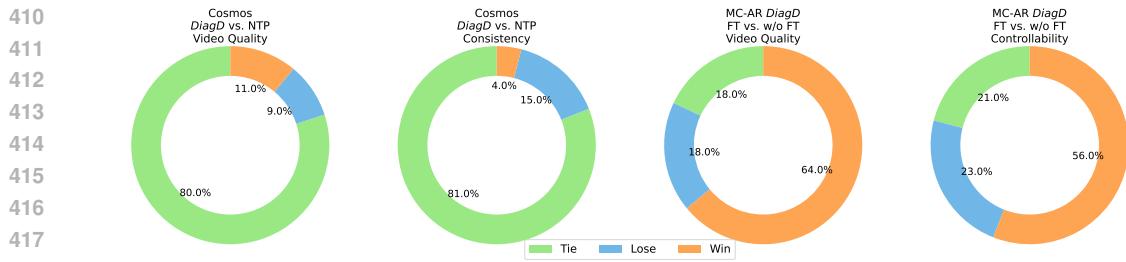


Figure 5: Human evaluation results for Cosmos-12B with DiagD and MC-AR 700M with or without DiagD fine-tuning. “Win” indicates the left setting outperforms the right one, while “Lose” represents the opposite. The results indicate that DiagD achieves similar performance to NTP, and fine-tuning helps it perform even better.

NTP generate videos with similar visual quality and semantic meaning; 2) fine-tuning help improve the visual quality significantly for a smaller 700M model.

4.3 ANALYSIS

Attention Pattern We visualize the attention map of the second frame generated by the Cosmos-Autoregressive-4B, as depicted in Figure 6. The diagonal patterns indicate that significant attention scores are allocated to tokens at fixed intervals, corresponding to tokens located in the same column of previous rows and the preceding frame. Spatially, tokens along the same diagonal exhibit notably high attention scores, indicating strong spatial relevance, as shown in the right square highlighted in the attention map. Temporally, tokens primarily attend to adjacent positions in the previous frame,

432 emphasizing temporal correlation, as illustrated by the left square in the attention map. The results of
 433 the attention map provide empirical support for the intuitive motivation introduced in Section 3.2.
 434

435 **Scaling Effects** We also observe that
 436 DiagD achieves better performance and
 437 greater speedup on larger models, confirming
 438 that larger models capture more spatial
 439 and temporal properties in videos than
 440 smaller ones. Although Cosmos-4B and
 441 Cosmos-12B exhibit nearly identical FVD
 442 scores with next-token prediction, they
 443 demonstrate significantly different scores
 444 when using DiagD ($k = 1$). Additionally,
 445 we observed that both Cosmos-12B and
 446 WHAM-1.6B achieve higher FPS and su-
 447 perior visual quality with DiagD compared to
 448 their smaller counterparts employing next-
 449 token prediction. Therefore, DiagD may serve as an effective benchmark for evaluating whether
 models accurately capture spatial and temporal redundancies.

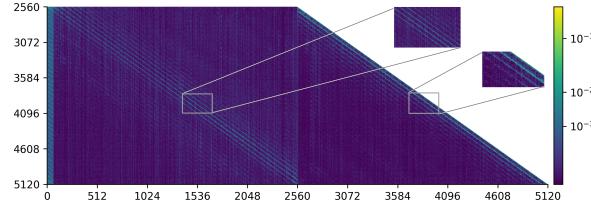


Figure 6: The attention scores of the second frame in the Cosmos-4B model are shown. The bright slash lines indicate that substantial attention scores are assigned to tokens at regular intervals, corresponding to those in temporally and spatially adjacent positions. The shown attention map is the mean value of all self-attention layers in the model.

450 **Study on Hyperparameters** In Table 7 in the appendix, we present the results of various hyper-
 451 parameter combinations for Cosmos-4B and Cosmos-12B. We found that k has a more significant
 452 impact on controlling the speedup ratio than d . When k values are similar, the FPS remains compara-
 453 ble. Additionally, increasing d can enhance visual quality. By adjusting the values of d and k , we can
 454 precisely balance visual quality and inference speed. This finding suggests that DiagD can be flexibly
 455 leveraged, eliminating the necessity of training smaller models solely for computational efficiency,
 456 decoupling the strong correlation between model size and inference speed.

457 4.4 CASE STUDY

458 In this section, we present case studies on the generation results of DiagD on different models. In the
 459 top half of Figure 4, we show results using DiagD on the Cosmos-12B model. Compared to results
 460 obtained by next-token prediction, DiagD provides consistent camera movements and comprehensive
 461 image details. The lower half of Figure shows results produced by the spatial variant DiagD with the
 462 1.6B WHAM model. For game footage that features large motion and frequent scene changes, DiagD
 463 consistently delivers high-fidelity frames; in a 10-second, 100-frame sequence with pronounced
 464 motion, we observed very few error accumulation. Moreover, videos generated by standard next-token
 465 prediction and by DiagD exhibit almost identical object trajectories, demonstrating that the proposed
 466 algorithm preserves both controllability and visual quality over long-range generation.

467 In addition, we present cases to demonstrate the effectiveness of our fine-tuning method. As shown in
 468 Figure 3, fine-tuning for only 1k steps helps alleviate blurry areas, and provides videos with similar
 469 quality to that generated by NTP.

470 5 CONCLUSION

471 In this paper, we introduce Diagonal Decoding (DiagD), a training-free algorithm that significantly
 472 accelerates the inference speed of autoregressive video generation models. By leveraging spatial and
 473 temporal correlations in consecutive frames, DiagD generates tokens along diagonal paths, achieving
 474 substantial speedups while preserving visual fidelity. Through extensive experiments across diverse
 475 models, tasks, and datasets, we demonstrate the efficiency and generality of our approach, reducing
 476 the inference latency of Cosmos models by $10\times$ while maintaining their performance. Additionally,
 477 we propose a lightweight fine-tuning strategy to close the training-inference gap, further improving
 478 generation quality with minimal computational cost. As a result, DiagD provides a practical and
 479 scalable solution for real-time video generation, pushing the boundaries of what is achievable with
 480 autoregressive Transformers in downstream tasks and related applications.

481 Future research could focus on optimizing the training process to better adapt Diagonal Decoding for
 482 smaller models, enabling them to achieve higher acceleration ratios without sacrificing performance.

486 REPRODUCIBILITY
487488 We provide comprehensive implementation details, including model architectures, configurations,
489 and codes in Appendix and Supplementary materials to ensure reproducibility.490 REFERENCES
491492 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
493 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
494 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.495 Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L Yuille, Trevor Darrell, Jitendra
496 Malik, and Alexei A Efros. Sequential modeling enables scalable learning for large vision models.
497 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
498 22861–22872, 2024.499 Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
500 Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
501 unlabeled online videos. *Advances in Neural Information Processing Systems*, 35:24639–24654,
502 2022.503 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
504 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
505 generation models as world simulators. 2024. URL [https://openai.com/research/
506 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).507 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
508 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
509 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.510 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
511 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
512 recognition*, pp. 11315–11325, 2022.513 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
514 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
515 pp. 12873–12883, 2021.516 Marjan Ghazvininejad, Omer Levy, Yinhua Liu, and Luke Zettlemoyer. Mask-predict: Parallel
517 decoding of conditional masked language models. In *Proceedings of the 2019 Conference on
518 Empirical Methods in Natural Language Processing*, 2019.519 Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence model for non-
520 autoregressive neural machine translation. In *Proceedings of the 58th Annual Meeting of the
521 Association for Computational Linguistics*, pp. 376–385, Online, July 2020. Association for
522 Computational Linguistics. doi: 10.18653/v1/2020.acl-main.36.523 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.524 Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
525 Zipar: Accelerating autoregressive image generation through spatial locality. *arXiv preprint
526 arXiv:2412.04062*, 2024.527 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
528 neural information processing systems*, 33:6840–6851, 2020.529 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
530 Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
531 video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022.532 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
533 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
534 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
535 Recognition*, pp. 21807–21818, 2024.

540 Anssi Kanervisto, Dave Bignell, Linda Yilin Wen, Martin Grayson, Raluca Georgescu, Sergio
 541 Valcarcel Macua, Shan Zheng Tan, Tabish Rashid, Tim Pearce, Yuhan Cao, et al. World and human
 542 action models towards gameplay ideation. *Nature*, 638(8051):656–663, 2025.

543

544 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 545 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 546 *arXiv preprint arXiv:2001.08361*, 2020.

547 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 548 Conference on Learning Representations*, 2015.

549

550 Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel
 551 Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language
 552 model for zero-shot video generation. *arXiv preprint arXiv:2312.14125*, 2023.

553 Jiacheng Li, Longhui Wei, ZongYuan Zhan, Xin He, Siliang Tang, Qi Tian, and Yueting Zhuang.
 554 Lfformer: Text-to-image generation with l-shape block parallel decoding. *arXiv preprint
 555 arXiv:2303.03800*, 2023.

556 Zongjian Li, Bin Lin, Yang Ye, Liuhan Chen, Xinhua Cheng, Shenghai Yuan, and Li Yuan. Wf-vae:
 557 Enhancing video vae by wavelet-driven energy flow for latent video diffusion model. *arXiv preprint
 558 arXiv:2411.17459*, 2024.

559

560 Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
 561 Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
 562 *arXiv preprint arXiv:2412.00131*, 2024.

563 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
 564 language with ringattention. *arXiv preprint arXiv:2402.08268*, 2024a.

565

566 Runtao Liu, Haoyu Wu, Zheng Ziqiang, Chen Wei, Yingqing He, Renjie Pi, and Qifeng
 567 Chen. Videodpo: Omni-preference alignment for video diffusion generation. *arXiv preprint
 568 arXiv:2412.14167*, 2024b.

569 Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran Chen, Xiu Li, and Qifeng Chen. Follow
 570 your pose: Pose-guided text-to-video generation using pose-free videos. In *Proceedings of the
 571 AAAI Conference on Artificial Intelligence*, volume 38, pp. 4117–4125, 2024a.

572

573 Yue Ma, Yingqing He, Hongfa Wang, Andong Wang, Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng Li,
 574 Heung-Yeung Shum, Wei Liu, et al. Follow-your-click: Open-domain regional image animation
 575 via short prompts. *arXiv preprint arXiv:2403.08268*, 2024b.

576 Suraj Patil, William Berman, Robin Rombach, and Patrick von Platen. amused: An open muse
 577 reproduction. *arXiv preprint arXiv:2401.01808*, 2024.

578

579 Tim Pearce, Tabish Rashid, Dave Bignell, Raluca Georgescu, Sam Devlin, and Katja Hofmann.
 580 Scaling laws for pre-training agents and world models. *arXiv preprint arXiv:2411.04434*, 2024.

581 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 582 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

583 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 584 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

585

586 Anni Tang, Tianyu He, Junliang Guo, Xinle Cheng, Li Song, and Jiang Bian. Vidtok: A versatile and
 587 open-source video tokenizer. *arXiv preprint arXiv:2412.13061*, 2024.

588

589 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 590 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambr, Faisal Azhar, et al. Llama: Open and
 591 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

592

593 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
 594 Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. *arXiv
 595 preprint arXiv:1812.01717*, 2018.

594 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 595 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 596 *systems*, 30, 2017.

597 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
 598 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
 599 robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

600 Yuchi Wang, Junliang Guo, Xinyi Xie, Tianyu He, Xu Sun, and Jiang Bian. Vidtwin: Video vae with
 601 decoupled structure and dynamics. *arXiv preprint arXiv:2412.17726*, 2024.

602 Jiaqi Xu, Xinyi Zou, Kunzhe Huang, Yunkuo Chen, Bo Liu, MengLi Cheng, Xing Shi, and Jun
 603 Huang. Easyanimate: A high-performance long video generation method based on transformer
 604 architecture. *arXiv preprint arXiv:2405.18991*, 2024.

605 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
 606 Abbeel. Learning interactive real-world simulators. *arXiv preprint arXiv:2310.06114*, 1(2):6,
 607 2023.

608 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 609 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 610 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

611 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan,
 612 and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning.
 613 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 614 2636–2645, 2020.

615 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
 616 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
 617 transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 618 Recognition*, pp. 10459–10469, 2023a.

619 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 620 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 621 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023b.

622 Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
 623 Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats
 624 diffusion-tokenizer is key to visual generation. In *The Twelfth International Conference on
 625 Learning Representations*, 2023c.

626 Wentao Zhang, Junliang Guo, Tianyu He, Li Zhao, Linli Xu, and Jiang Bian. Video in-context
 627 learning: Autoregressive transformers are zero-shot video imitators. In *The Thirteenth International
 628 Conference on Learning Representations*, 2025.

629 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 630 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

**ICLR PAPER APPENDIX FOR FAST AUTOREGRESSIVE VIDEO GENERATION
WITH DIAGONAL DECODING**

648	A Declaration of LLM Usage	1
-----	-----------------------------------	---

651

652	B Limitation	1
-----	---------------------	---

653

654	C Direct Comparison with ZipAR	2
-----	---------------------------------------	---

655

656	D Detailed Explanation of Algorithm	2
-----	--	---

659	D.1 Diagonal Decoding Algorithm	2
-----	---	---

660	D.2 Fine-tuning Algorithm	3
-----	-------------------------------------	---

661

664	E Cosmos	3
-----	-----------------	---

665	E.1 Results on Robotic Manipulation and Driving	3
-----	---	---

666	E.2 Details of Cosmos Models	3
-----	--	---

667	E.3 Extra Experiments on Hyper-parameters	4
-----	---	---

668	E.4 More Cases	4
-----	--------------------------	---

669	F WHAM	4
-----	---------------	---

670	F.1 Details of WHAM	4
-----	-------------------------------	---

671	F.2 More Cases	5
-----	--------------------------	---

672	G MC-AR	5
-----	----------------	---

673	G.1 Details of MC-AR Models	5
-----	---------------------------------------	---

674	G.2 Model Configurations	6
-----	------------------------------------	---

675	G.3 Extra Experiments	6
-----	---------------------------------	---

676	G.4 More Cases	6
-----	--------------------------	---

677	H Derivations	7
-----	----------------------	---

678	A DECLARATION OF LLM USAGE	7
-----	-----------------------------------	---

679		7
-----	--	---

680 We used large language models (LLMs), including ChatGPT, to support manuscript preparation.

681 Their use was limited to language editing (grammar, spelling, and word choice), code formatting

682 (e.g., adding comments to the code), and drafting figures to aid the creation of final visualizations. All

683 scientific ideas, analyses, and conclusions were conceived, validated, and interpreted independently

684 by the authors. We gratefully acknowledge the assistance of large language models in our work.

685	B LIMITATION	7
-----	---------------------	---

686 The Diagonal Decoding method introduced in this paper is heavily dependent on the capabilities

687 of pre-trained models. Empirical observations and extensive experiments indicate that larger, more

688 thoroughly trained models produce higher visual quality and exhibit lower cumulative errors. As

689 noted in the main paper, smaller or less well-trained models often require larger values of d and k to

690 maintain visual quality. For simpler inference tasks, such as video continuation, these smaller models

691 tend to perform better compared to more complex tasks like conditional video generation.

702 C DIRECT COMPARISON WITH ZIPAR 703

704 We provide a straightforward implementation of ZipAR as a baseline on Cosmos, which means
705 we only leverage spatial-level acceleration. Our experimental setup is consistent with the results
706 shown in Table 4. The experimental results are as follows (ws stands for window size, which is a
707 hyperparameter in ZipAR):

708 Table 4: Comparison between ZipAR (He et al., 2024) and DiagD.
709

710 Model	711 Algorithm	712 FVD↓	713 Subject 714 Cons.↑	715 Image. 716 Qual.↑	717 Dynamic 718 degree ↑	719 FPS↑	720 STEP (k)↓
721 4B	NTP	136	0.978	0.604	0.49	0.38	7.68
	ZipAR $ws = 1$	349	0.823	0.379	0.53	3.42	0.30
	DiagD $k = 2 d = 10$	137	0.978	0.599	0.46	3.41	0.15
722 12B	NTP	135	0.978	0.602	0.54	0.15	7.68
	ZipAR $ws = 1$	137	0.974	0.569	0.49	1.04	0.30
	DiagD $k = 1 d = 1$	139	0.967	0.564	0.51	1.71	0.11

723 Two interesting findings further distinguish the superiority of Diagonal Decoding in video acceleration
724 compared to the standard ZipAR approach.

- 725 • In the 4B model, by balancing spatial and temporal redundancy, DiagD are able to configure
726 parameters such that the number of forward steps is much less than the ZipAR window size of 1
727 (which corresponds to the maximum acceleration ratio in ZipAR), while still achieving much
728 better generation quality. In contrast, the ZipAR implementation shows severe image degradation
729 under these conditions.
- 730 • In the 12B model, by fully exploiting temporal redundancy, we achieve a higher acceleration
731 ratio than ZipAR(1.71 fps v.s. 1.04 fps) at comparable quality levels.

732 Our motivation incorporates both temporal(inter-frame) and spatial(intra-frame) redundancy (while
733 ZipAR focuses only on spatial redundancy). For video tasks, temporal redundancy is clearly very
734 important. By adjusting two hyperparameters, we can effectively balance spatial and temporal
735 redundancy, achieving higher acceleration and better performance. Our analysis of the model’s
736 attention maps also supports this distinction, revealing that temporal redundancy plays a crucial role
737 in accelerating video generation.

738 D DETAILED EXPLANATION OF ALGORITHM

739 In this section, we clarify our algorithms with examples and more detailed explanation.

740 D.1 DIAGONAL DECODING ALGORITHM

741 In the next token prediction algorithm, the Transformer receives one input token and produces the
742 probabilities for the next token ($[t_1]\beta[t_1, t_2]\beta[t_1, t_2, t_3], \dots$). However, this is just a conventional way
743 of thinking; the Transformer is not limited to receiving only one token at a time. Consider the
744 training phase of the Transformer, where it is actually fed a sequence of n tokens and learns to
745 predict the probability of the next token for each token in the sequence. Therefore, moving from
746 single-token generation to multi-token generation is not inherently difficult—in fact, this transition
747 directly addresses the generation problem illustrated in the figure below. This explains how diagonal
748 generation is performed.

$$\begin{bmatrix} t_1 & t_2 & \cdot \\ t_3 & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \implies \begin{bmatrix} t_1 & t_2 & t_3 \\ t_4 & t_5 & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$

751 Next, we discuss how to generate tokens correctly. The content of the tokens to be generated is
752 actually controlled by the position embedding. In a Transformer model, each input token is assigned
753 a position embedding to indicate its position in the sequence. The token to be generated corresponds
754 to the next position for each input token. Therefore, by adding different position embeddings to the
755 input token, we can predict the next token at different positions. For example, to predict t_5 , we
simply use t_4 along with the position embedding corresponding to t_5 .

Finally, we need to address how to generate the first token of each row, since the last token of the previous row has not yet been generated. By leveraging the spatiotemporal redundancy described in the paper, we select the preceding token as the input. Specifically, to predict t_7 , we use token t_4 and the position embedding corresponding to t_6 .

D.2 FINE-TUNING ALGORITHM

The purpose of the attention mask is to address the inconsistency between visible tokens during training and inference. For example, in the case of t_7 shown above, causal attention masks in autoregressive training allow t_7 to attend to all tokens from t_1 to t_6 . However, in diagonal decoding during inference, t_6 has not yet been generated when t_7 is produced. This creates some inconsistency, so the newly proposed attention mask ensures that t_7 cannot see t_6 during training either. Therefore, we only need to modify the traditional causal attention mask during Transformer training to achieve this, and finetuning can be performed in parallel. It is important to emphasize that, unless otherwise stated in the paper, all test results were obtained without finetuning.

E COSMOS

E.1 RESULTS ON ROBOTIC MANIPULATION AND DRIVING

Open-ended scenarios indeed involve more complex motion dynamics, but there are few open-sourced autoregressive models performs well on open-ended data. We test DiagD on two more challenging datasets in Cosmos to demonstrate the generalization ability of Diagonal Decoding to open-ended scenarios: the Bridges (Walke et al., 2023) dataset, which focuses on robotic manipulation, and the BDD100K (Yu et al., 2020) dataset, which encompasses diverse driving environments. Both datasets feature highly significant, unpredictable, and pronounced motion as well as complex environments. We randomly selected 100 videos from the test set and randomly extracted 33 continuous frames from each video (no downsampling or frame interpolation was performed). We obtained the following results, Table 5 and 6. It is worth noting that the Cosmos model we used has not been post-trained on robotic or autonomous driving datasets, which limited the capabilities of both next-token prediction and Diagonal Decoding.

Table 5: Quantitative evaluation of Cosmos on BridgeV2 (Walke et al., 2023). "NTP" refers to the next-token prediction paradigm. DiagD $k = i$ $d = j$ denotes the Diagonal Decoding algorithm with different hyper-parameters. "STEP" refers to the number of forward passes required by the model to generate a video.

Model	Algorithm	FVD \downarrow	Subject Cons. \uparrow	Image. Qual. \uparrow	Dynamic degree	FPS \uparrow	STEP (k) \downarrow
4B	NTP	602	0.926	0.594	0.86	0.38	7.68
	DiagD $k = 4$ $d = 20$	615	0.928	0.592	0.87	2.66	0.26
	DiagD $k = 2$ $d = 40$	625	0.921	0.585	0.65	3.02	0.30
	DiagD $k = 2$ $d = 10$	626	0.921	0.580	0.69	3.41	0.15
12B	NTP	585	0.926	0.590	0.80	0.15	7.68
	DiagD $k = 2$ $d = 40$	599	0.930	0.597	0.70	1.21	0.30
	DiagD $k = 2$ $d = 10$	608	0.930	0.598	0.76	1.50	0.19
	DiagD $k = 1$ $d = 1$	609	0.923	0.590	0.69	1.71	0.11

E.2 DETAILS OF COSMOS MODELS

Cosmos(Agarwal et al., 2025), a World Foundation Model (WFM) Platform for developing Physical AI systems, integrates multiple pre-trained models, including autoregressive and diffusion-based methods, as well as discrete and continuous tokenizers. Specifically, the autoregressive model employs a discrete video tokenizer that leverages a codebook containing 16,000 entries, achieving spatial compression of 16 \times and temporal compression of 8 \times . This tokenizer is capable of compressing a video of 33 frames at a resolution of 640 \times 1024 into 12,800 discrete tokens. In our study, We implements the spatial and temporal diagonal decoding algorithm on Cosmos autoregressive-based world foundation models. We provided an initial sequence of 5,120 tokens (equivalent to 9 frames),

810
 811 Table 6: Quantitative evaluation of Cosmos on BDD100k (Yu et al., 2020). "NTP" refers to the
 812 next-token prediction paradigm. DiagD $k = i$ $d = j$ denotes the Diagonal Decoding algorithm with
 813 different hyper-parameters. "STEP" refers to the number of forward passes required by the model to
 814 generate a video.

815 Model	816 Algorithm	817 FVD \downarrow	818 Subject Cons. \uparrow	819 Image. Qual. \uparrow	820 Dynamic degree	821 FPS \uparrow	822 STEP (k) \downarrow
817 4B	NTP	567	0.946	0.500	0.99	0.38	7.68
	DiagD $k = 4$ $d = 20$	575	0.947	0.501	0.98	2.66	0.26
	DiagD $k = 2$ $d = 40$	579	0.945	0.498	0.97	3.02	0.30
	DiagD $k = 2$ $d = 10$	585	0.940	0.492	0.99	3.41	0.15
821 12B	NTP	569	0.946	0.501	0.99	0.15	7.68
	DiagD $k = 2$ $d = 40$	568	0.947	0.499	0.99	1.21	0.30
	DiagD $k = 2$ $d = 10$	568	0.943	0.494	0.99	1.50	0.19
	DiagD $k = 1$ $d = 1$	581	0.926	0.462	0.99	1.71	0.11

823 optionally accompanied by text depending on the task, to evaluate text-guided video generation and
 824 video continuation tasks. This initial sequence was used to generate the subsequent 7,680 tokens,
 825 extending the remaining frames to reach the 33-frame length.

826 Due to the lack of an open-source evaluation pipeline and datasets, we replicated a comparable
 827 setup based on details provided in its technical report. Specifically, we selected 100 videos, each
 828 comprising 33 frames, randomly sampled from the RealEstate10K dataset (Zhou et al., 2018). To
 829 quantitatively assess visual quality, we employed standard metrics, including Fréchet Video Distance
 830 (FVD)(Unterthiner et al., 2018) and Subject Consistency, Dynamic Degree, and Image Quality from
 831 VBench (Huang et al., 2024). Furthermore, we conducted a human evaluation, detailed in Section 4.3,
 832 to compare visual quality and object movement between videos generated by next-token prediction
 833 and DiagD. Unlike Cosmos, our evaluation metrics exclude the use of diffusion decoder for post-
 834 processing videos generated by autoregressive models, as this would not fairly reflect the visual
 835 quality.

836 E.3 EXTRA EXPERIMENTS ON HYPER-PARAMETERS

837 We report more combination of k and d in Table 7. The FPS values show minimal variation across
 838 some settings. This is because the implementation of the diagonal decoding algorithm introduces
 839 a small amount of overhead. When the speedup ratio is significantly high, the time lost due to this
 840 overhead becomes non-negligible.

841 E.4 MORE CASES

842 We randomly choose ten cases from 100 evaluation sets in supplementary material.

843 F WHAM

844 F.1 DETAILS OF WHAM

845 The World and Human Action Model (WHAM) (Kanervisto et al., 2025) is a recently proposed state-
 846 of-the-art autoregressive generative model trained on gameplay data from *Bleeding Edge*, capable
 847 of generating coherent and diverse gameplay sequences based on user instructions. Unlike Cosmos,
 848 WHAM employs an image-level Vector Quantized (VQ) tokenizer that concentrates exclusively on
 849 spatial compression. This tokenizer independently converts each game state, with a resolution of $180 \times$
 850 300, into 540 discrete tokens, which are subsequently concatenated with their corresponding in-game
 851 actions. To preserve the inherent relationship between actions and game states, our approach employs
 852 spatial diagonal decoding algorithm alone instead of processing the entire video simultaneously. That
 853 is to say, we sequentially generate subsequent game states from previous states and their associated
 854 actions, alternating between state generation and action concatenation.

855 For WHAM, we randomly selected 100 videos from its evaluation set to assess video consistency
 856 according to WHAM's evaluation protocol. The generation of each video was conditioned on one
 857 second of gameplay, which included both video and controller actions, and then proceeded to be

864
 865 Table 7: Quantitative evaluation on Cosmos. 4B and 12B refer to models used for video continuation.
 866 "NTP" refers to the next-token prediction paradigm. *DiagD* $d = m$ $k = n$ denotes the Diagonal
 867 Decoding algorithm where $d = m$ and $k = n$. "Step" refers to the number of forward passes required
 868 by the model to generate a video. "TP" is the number of tokens that model can generate per second.

869 Model	870 Algorithm	871 FVD \downarrow	872 Subject 873 Cons. \uparrow	874 Image. 875 Qual. \uparrow	876 Dynamic 877 degree \uparrow	878 FPS \uparrow	879 TP \uparrow	880 STEP (k) \downarrow
871 4B	$d = 2, k = 1$	348	0.844	0.393	0.52	3.42	1280	0.11
	$d = 3, k = 1$	350	0.846	0.397	0.54	3.41	1097	0.11
	$d = 5, k = 1$	352	0.859	0.402	0.51	3.41	1097	0.11
	$d = 9, k = 1$	342	0.863	0.408	0.52	3.41	1097	0.12
	$d = 4, k = 2$	171	0.936	0.515	0.55	3.41	1097	0.15
	$d = 6, k = 2$	145	0.966	0.574	0.49	3.41	1097	0.15
	$d = 10, k = 2$	137	0.978	0.599	0.46	3.41	1097	0.16
	$d = 18, k = 2$	136	0.979	0.601	0.48	3.00	960	0.24
	$d = 8, k = 4$	154	0.959	0.552	0.54	2.67	853	0.24
	$d = 12, k = 4$	139	0.976	0.595	0.49	2.67	853	0.24
881 12B	$d = 20, k = 4$	136	0.979	0.604	0.50	2.66	852	0.26
	$d = 36, k = 4$	136	0.979	0.603	0.48	2.40	768	0.29
	$d = 2, k = 1$	139	0.967	0.564	0.51	1.71	549	0.11
	$d = 3, k = 1$	152	0.955	0.546	0.53	1.71	549	0.11
	$d = 5, k = 1$	143	0.970	0.576	0.49	1.71	549	0.11
	$d = 9, k = 1$	136	0.863	0.408	0.52	1.61	515	0.12
	$d = 4, k = 2$	152	0.968	0.563	0.52	1.60	512	0.15
	$d = 6, k = 2$	143	0.973	0.585	0.50	1.60	512	0.15
	$d = 10, k = 2$	143	0.978	0.600	0.51	1.60	512	0.16
	$d = 18, k = 2$	136	0.979	0.601	0.48	1.50	480	0.18

894
 895 conditioned on the controller actions performed by a human player during the subsequent 10 seconds
 896 of gameplay. In addition to reporting Fréchet Video Distance (FVD) and Subject Consistency,
 897 Dynamic Degree, and Image Quality from VBench (Huang et al., 2024). Following WHAM's
 898 protocol, we conducted a human evaluation to assess the visual quality of generated gameplay and
 899 object motion, comparing our results with those obtained using the next-token prediction algorithm.
 900

901 F.2 MORE CASES

902 We randomly choose ten cases of 10 senconds videos from 100 evaluation sets in supplementary
 903 material.

904 G MC-AR

905 G.1 DETAILS OF MC-AR MODELS

906 We conducted a series of experiments by training models from scratch on the VPT dataset (Baker et al.,
 907 2022). The VPT dataset is a domain-specific dataset comprising gameplay videos from *Minecraft*. We
 908 employed a pre-trained image VQ-VAE (Patil et al., 2024), an image-level tokenizer with a codebook
 909 containing 8,192 entries, achieving a spatial compression ratio of 16 \times . To enhance visual quality,
 910 we subsequently fine-tuned the VQ-VAE on the VPT dataset. Our Transformer model was based on
 911 the LLaMA architecture (Touvron et al., 2023) and augmented with 3D Rotary Embeddings (Su et al.,
 912 2024). We combine each game state tokens with the corresponding actions just like WHAM, so for
 913 each pair of game state and actions in the original input (x_i, a_i) , the tokenizers will transfer them
 914 into a flat sequence of discrete ids as:
 915

$$(t_{i*c+1}, \dots, t_{(i+1)*c}, t_1^{a_i}, \dots, t_n^{a_i}). \quad (7)$$

918 and c is the number of ids to represent each state, n is the number of actions. We trained our model
 919 on next token prediction tasks, enabling the model to predict future states based on previous game
 920 states and current action. We use the Adam optimizer(Kingma & Ba, 2015) with a cosine decay
 921 learning rate scheduler to train the model. Additionally, fine-tuning was performed for an extra 1,000
 922 steps on the same dataset.

923 For MC-AR, we selected 100 video clips from an unused subset of the evaluation set, each containing
 924 16 frames, with the last 15 frames corresponding to actions in the gameplay. Each model generated
 925 15 subsequent frames conditioned on the first frame of each clip and the 15 actions. These generated
 926 frames were then compared against the ground truth using the FVD, Subject Consistency, Dynamic
 927 Degree, and Image Quality metrics.

929 G.2 MODEL CONFIGURATIONS

930 We train three different sizes of the model within the LLaMA architecture: 300M, 700M, and 1.2B.
 931 We tune the hidden dimension, intermediate dimension, and the number of layers to achieve different
 932 model sizes. The configuration of these models are listed in Table 8. The hyperparameters of the
 933 optimizer used to train the model are listed in Table 9.

935 Table 8: The configuration of different size of models.

	Hidden dim	MLP dim	Num. Heads	Num. Layers
300M	1024	4096	16	20
700M	2048	4096	32	20
1.2B	2048	8192	32	20

944 Table 9: Optimization hyperparameters.

Hyperparameter	Value
Learning rate scheduler	cosine
Learning rate	$3e^{-4}$
Warm up steps	10000
Weight decay	0.1
Optimizer	AdamW
AdamW betas	(0.9, 0.95)
Maximum Positions	5376

956 Table 10: Quantitative evaluation on 300M MC-AR. We use DiagD ($k = 2$) in experiment.

Algorithm	FVD \downarrow	Subject Cons. \uparrow	Image. Qual. \uparrow	Dynamic degree \uparrow	FPS \uparrow	STEP (k) \downarrow
NTP	223	0.869	0.676	0.98	1.08	5.04
DiagD $k = 2$ w/o FT	246	0.854	0.650	0.99	3.98	0.75
DiagD $k = 2$ w/ FT	233	0.845	0.648	0.98	3.98	0.75

966 G.3 EXTRA EXPERIMENTS

967 We provide models of three scales (300M Table 10, and 1.2B Table 11) to present additional results
 968 on MC-AR.

970 G.4 MORE CASES

971 We randomly choose ten cases from 100 evaluation sets in supplementary material.

Table 11: Quantitative evaluation on 1.2B MC-AR. We use DiagD ($k = 2, 4$) in experiment.

Algorithm	FVD↓	Subject Cons.↑	Image. Qual.↑	Dynamic degree ↑	FPS↑	STEP (k)↓
NTP	203	0.866	0.677	0.97	0.89	5.04
DiagD $k = 4$ w/o FT	246	0.857	0.645	0.98	1.42	1.14
DiagD $k = 2$ w/o FT	246	0.841	0.606	0.97	1.98	0.75
DiagD $k = 2$ w/ FT	227	0.853	0.661	0.98	1.98	0.75

H DERIVATIONS

We derive Equation (4) and (6) here. First, for Equation (4), assume $\min\{h, w\} = h$, we have:

$$\begin{aligned}
r_{\text{spa}} &= \frac{h \cdot w}{(h-1) \cdot k + w} \\
&= \frac{h}{\frac{h}{w} \cdot k - \frac{k}{w} + 1} \\
&\approx \frac{h}{\frac{h}{w} \cdot k + 1}.
\end{aligned} \tag{8}$$

Where we assume $\frac{k}{w} \approx 0$ which is applicable for most of our cases. And as a result, the approximation in Equation (4) achieves if $h \approx w$.

Similarly, for Equation (6), we have:

$$\begin{aligned}
r_{\text{diag}} &= \frac{T \cdot h \cdot w}{(T-1) \cdot h + h + w - 1} \\
&= \frac{T \cdot h \cdot w}{T \cdot h + w - 1} \\
&\approx \frac{w}{1 + \frac{w}{T \cdot h}} \\
&\approx w
\end{aligned} \tag{9}$$

Where the approximation stands when $T * h \gg w$, which is applicable for most of video generation cases.