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ABSTRACT

Autoregressive Transformers demonstrate impressive performance in generation
models. However, their sequential, token-by-token decoding becomes a severe
bottleneck for video generation, which may require generating tens of thousands
of tokens sequentially. In this paper, we introduce Diagonal Decoding (DiagD), a
training-free inference acceleration algorithm that exploits spatiotemporal corre-
lations to speed up autoregressively pre-trained models. DiagD generates tokens
simultaneously along diagonal trajectories in the spatial-temporal token grid, en-
abling parallel decoding within frames and partial overlap across successive frames.
The proposed algorithm is versatile and adaptive to various generative models
and tasks and offers adjustable trade-offs between speed and visual quality. Fur-
thermore, we propose a cost-effective fine-tuning strategy that aligns the attention
patterns of the model with the new decoding order to demonstrate the potential
of training with DiagD. Experiments on several autoregressive video generation
models and datasets demonstrate that DiagD achieves up to 10× speed-up over
naive sequential decoding, while preserving comparable visual fidelity.

1 INTRODUCTION

Recent advances in video generation models have achieved a significant level of performance in
both diffusion (Lin et al., 2024; Yang et al., 2024; Xu et al., 2024) and autoregressive (Kondratyuk
et al., 2023; Agarwal et al., 2025; Kanervisto et al., 2025) based methods. These models demonstrate
impressive capabilities in learning foundational knowledge from raw videos and generating high-
fidelity, controllable video outputs (Brooks et al., 2024). Consequently, video generation models
have also been adopted in various domains in AI such as world modeling (Ha & Schmidhuber, 2018;
Agarwal et al., 2025; Kanervisto et al., 2025) and embodied AI (Yang et al., 2023), illustrating their
potential power to serve as digital twins of the real world.
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Figure 1: Comparisons between naive Next-Token Prediction (NTP) and the proposed Diagonal
Decoding (DiagD) on Cosmos (Agarwal et al., 2025) autoregressive models. DiagD achieves 6 to
10× speedup with negligible degradation on visual quality among different scales of models.

Compared with diffusion models, autoregressive Transformers exhibit unique features as shown by
the blooming of Large Language Models (LLMs) (Radford et al., 2019; Brown et al., 2020) in recent
years, including zero-shot emergent in-context learning capabilities (Zhang et al., 2025), and scaling
laws (Kaplan et al., 2020; Pearce et al., 2024). Leveraging architectures similar to LLMs enables
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Figure 2: Left: An illustration of the proposed Diagonal Decoding algorithm with d = 3 and k = 1.
Spatially, tokens along the same diagonal within each frame are generated in parallel. Temporally,
our method generates the top-left tokens of the subsequent frame before completing the current frame.
Right: An illustration of the causal attention mask and the DiagD mask utilized in fine-tuning.

vision models to inherit these advancements and naturally extend to multi-modal inputs. Additionally,
autoregressive models can generate videos of arbitrary length in a streaming paradigm, which is
challenging for most diffusion models.

However, video generation models usually utilize a visual tokenizer (Esser et al., 2021; Tang et al.,
2024) to transform raw videos to tens of thousands of tokens, which poses a significant bottleneck for
autoregressive models that generate tokens sequentially, especially when generating high-resolution,
long-duration videos. The bottleneck can be divided into three main challenges. Firstly, the naive
next-token prediction mechanism leaves computational resources underutilized and thus leads to slow
and costly generation. Secondly, previous visual autoregressive models (Yu et al., 2023b; Kondratyuk
et al., 2023; Bai et al., 2024) generate tokens following a fixed raster-scan order (i.e., left-to-right,
top-to-bottom, frame-by-frame), which creates suboptimal generation trajectories for image and
video synthesis. Thirdly, the paradigm of autoregressive video generation remains underexplored.

In this paper, we propose Diagonal Decoding (DiagD), an algorithm that utilizes redundant infor-
mation in video representations by generating diagonal tokens in both spatial and temporal adjacent
regions simultaneously. As illustrated in Figure 2, instead of generating tokens sequentially in a
raster-scan order, our method generates the diagonals of images from top left to bottom right, with
tokens along the same diagonal produced in parallel at each step. By stacking frames together, diago-
nal decoding can be seamlessly applied to video generation. Notably, our method is training-free and
functions as a plug-and-play module on autoregressively pretrained models, requiring only 5% of the
generation steps and up to a 10× speedup in inference latency with negligible quality degradation,
compared with next token prediction. We introduce hyperparameters to control the acceleration ratio
in both spatial and temporal dimensions, allowing flexible adjustments to the trade-off between speed
and performance. Additionally, we also provide a fine-tuning strategy to demonstrate that training
with DiagD brings further improvements in performance.

We evaluate the performance and generalizability of Diagonal Decoding across various autoregressive
video generation models, tasks, and datasets. Specifically, as shown in Figure 1, on the Cosmos (Agar-
wal et al., 2025) world model, our method accelerates the inference by 10+ times while achieving
similar visual quality to next token prediction on tasks including video continuation and text-guided
video generation. On WHAM (Kanervisto et al., 2025), a world model for games that produces
multi-modal outputs, our spatial-only acceleration variant achieves approximately 4× speedups while
preserving generation quality. In addition, we also train autoregressive Transformer models from
scratch to validate the performance of our method on different scales of models.

In summary, our contributions are threefold:

i) We propose Diagonal decoding, a plug-and-play acceleration algorithm for autoregressive video
generation, achieving up to 10× speedup in inference while maintaining generation quality.
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ii) The proposed decoding algorithm demonstrates strong generalization capability across various
autoregressive implementations including arbitrary visual tokenizers (with or without temporal
compression), arbitrary resolutions, and diverse generation tasks.

iii) Besides inference, fine-tuning with diagonal decoding consistently improves the model perfor-
mance, which provides inspiration for training video generation models in the future work.

2 RELATED WORK

Video Generative Models Video generative models have advanced rapidly in recent years, achiev-
ing impressive results in producing long-range, high-fidelity and controllable videos (Ho et al., 2022;
Kondratyuk et al., 2023; Yu et al., 2023c; Brooks et al., 2024; Liu et al., 2024b; Ma et al., 2024a;b).
Most video generation models consist of two components: a visual tokenizer (Li et al., 2024; Tang
et al., 2024; Wang et al., 2024) that converts raw images and videos into latent representations, and a
generative model that synthesizes these latents. However, representing a video clip requires a large
number of latents. For instance, a 16-frame video can produce between 40k and 160k tokens. The
large number of latents creates a significant computational bottleneck for the generative model.

For the paradigm, diffusion (Ho et al., 2020) and autoregressive generation (Vaswani et al., 2017)
are the two most popular approaches in video generation. In this paper, we focus on autoregressive
Transformers, as they demonstrate performance on par with diffusion models (Kondratyuk et al., 2023;
Yu et al., 2023c), while inheriting key advantages from large language models, such as zero-shot
in-context learning (Zhang et al., 2025), long-range generation capabilities (Liu et al., 2024a), and
the ability to smoothly integrate multiple modalities (Kondratyuk et al., 2023).

Parallel Decoding in Generative Models Parallel decoding has been widely explored in
Transformer-based models to accelerate inference. Inspired by masked language models (Ghazvinine-
jad et al., 2019; Guo et al., 2020), MaskGIT (Chang et al., 2022) and MAGVIT (Yu et al., 2023a)
introduces masked generative Transformers that generate tokens in parallel through iterative denoising.
LFormer (Li et al., 2023) divides tokens into several L-shaped blocks in images, and generates tokens
in each block in parallel. However, this method requires retraining the model. Recently, ZipAR (He
et al., 2024) proposes a parallel decoding algorithm for image generation by exploiting local token
dependencies. Different from previous works, our diagonal decoding method is training free, operates
at the video level, and achieves greater speedup ratios by handling temporal dependencies directly.

3 METHOD

3.1 BACKGROUND

In this section, we introduce the proposed Diagonal Decoding method. We begin with an overview of
the task. Given a raw video x composed of a sequence of frames, a discrete VAE is used to encode
the frames into a sequence of discrete tokens c:

x = (x1, · · · , xT ),

c = (c1, · · · , cn, cn+1, · · · , c2n, c2n+1, · · · cN ),
(1)

where T denotes the number of frames, n denotes the number of tokens to represent each frame, and
N = T · n denotes the total number of encoded tokens. The autoregressive Transformer processes
this sequence and learns to model the spatial and temporal dynamics of the video through next-token
prediction. The training objective is to maximize the joint probability of each token, where the model
predicts the current token based on all previously generated tokens:

max
θ

pθ(c) =

N∏
i=1

pθ (ci | c1, c2, · · · , ci−1) , (2)

where pθ denotes the Transformer model parameterized by θ. During inference, the model generates
tokens sequentially through next-token prediction, which is identical to a raster-scan order once the
sequence is reshaped back into a 2D structure. Finally, the decoder of the discrete VAE reconstructs
the predicted tokens into videos in the RGB space.

3.2 DIAGONAL DECODING

The motivation of our method arises from intuitive observations on consecutive frames in a video,
which can be summarized in two key insights. As shown in Figure 2, the first insight is that patches
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exhibit stronger correlations with their spatial neighbors than with sequential ones. For example, the
first patch in each row is more related to the first patch in the previous row than to the last patch in the
same row, despite the latter being its sequential predecessor. Secondly, due to the temporal redundancy
of videos, patches from consecutive frames that occupy similar relative positions are highly likely
to be similar to each other. We empirically validate our observations in Figure 6. As a result, we
find that sequential autoregressive generation is not only counterintuitive but also inefficient, and we
propose leveraging these spatial and temporal correlations to accelerate the generation process.

Specifically, we propose Diagonal Decoding, an iterative algorithm that generates tokens along
diagonal paths in the spatial-temporal token grid. Spatially, within each frame, tokens along the same
diagonal are generated in parallel, leveraging the strong local dependencies between neighboring
patches. And temporally, as illustrated in Figure 2, by stacking frames together, our method generates
the top-left tokens of the next frame before completing the current frame, as these tokens are less
likely to depend on the bottom-right tokens that have not yet been generated.

Formally, let h and w denote the height and width of a frame, respectively, and let ct,i,j represent the
token corresponding to the patch in row i and column j of the t-th frame in the video. We introduce
two hyperparameters to define our algorithm. The parameter k represents the number of existing
spatial neighbors in the previous row available when generating the current token. In other words,
ct,i,j is generated after all tokens satisfying ct,≤i,≤j+k have been generated. Then we can calculate
the number of iterations to generate all tokens in one frame:

sspa = (h− 1) · k + w. (3)

Compared to the standard next-token prediction, which requires h · w steps, the acceleration ratio of
spatial diagonal decoding is given by:

rspa =
h · w

(h− 1) · k + w
≈ min{h,w}

k + 1
. (4)

From the temporal aspect, we introduce temporal delay d to represent the number of diagonal lines
that must be generated in the previous frame before starting the next frame. The value of d ranges in
[1, sspa], where d = 1 represents the extreme case where the next frame begins generating immediately
after the first token of the previous frame is produced, and d = sspa corresponds to no temporal level
acceleration being utilized. Equipped with both spatial and temporal diagonal decoding, the number
of iterations to generate all tokens in T frames can be written as:

step = (T − 1) · d+ sspa. (5)

As illustrated in Figure 2, we set k = 1 and d = k · h to balance generation quality and speed in
most of our experiments, while naturally aligning spatial and temporal acceleration within a unified
diagonal decoding framework. The total speedup ratio compared to next-token prediction is given by:

rdiag =
T · h · w

(T − 1) · h+ h+ w − 1
≈ w. (6)

The derivation of Equation (4) and (6) are shown in the appendix H. This indicates that the acceleration
is roughly proportional to the width of the video resolution, significantly reducing the number
of decoding iterations relative to standard autoregressive methods. We provide analysis on both
hyperparameters k and d in experiments.

Discussion The k and d hyperparameters, flexibly control the tradeoff between inference speed
and generation quality, enhancing the versatility of DiagD. For pure video generation models (e.g.,
Cosmos (Agarwal et al., 2025)), both spatial and temporal acceleration can be enabled to achieve the
highest inference speed. On the other hand, for models with multimodal outputs (e.g., WHAM (Kan-
ervisto et al., 2025), which generates paired images and actions in games), where temporal acceleration
is not applicable, setting d = sspa allows the model to leverage spatial diagonal decoding alone.

The spatial-only variant of our diagonal decoding shares insights with ZipAR (He et al., 2024), a
decoding algorithm for text-to-image generation, but introduces a key innovation: leveraging temporal
redundancies across frames to enhance efficiency even for the spatial-only algorithm. Specifically,
implementing diagonal decoding introduces a training-inference gap, as the first token in each row is
conditioned on the last generated token of the previous row during training, and such dependency is
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absent during inference. Previous methods use the last token in the previous row, ct,i−1,j+k, as the
predecessor for generating token ct,i,j . In contrast, our approach leverages temporal information by
using ct−1,i,j , the token at the same position in the previous frame, which provides additional context
and enables more accurate predictions. As a result, while ZipAR requires a large k = 16 to maintain
visual quality, our spatial-only diagonal decoding achieves higher speedups (e.g., k = 1 on large
scale models or 2 on smaller ones) without compromising visual fidelity.

3.3 FINE-TUNING WITH DIAGD ATTENTION MASK

Diagonal decoding introduces a training–inference gap for autoregressively pre-trained models, as
it deviates from the standard raster-scan generation order. Despite this mismatch, our experiments
demonstrate that models are able to neglect the gap and achieve substantial speedups with minimal
performance loss in a training-free setting. Nonetheless, we hypothesize that directly training with
diagonal decoding (DiagD) can further enhance both model performance and efficiency. Here we
present a fine-tuning strategy using DiagD and leave full training from scratch as future work.

As illustrated in Figure 2, we adapt the model by replacing the standard causal attention mask with a
DiagD-aligned attention mask. This modification ensures that each token attends only to its DiagD
predecessors, rather than to raster-ordered positions, thereby reducing the discrepancy between
training and inference. Empirically, we find that fine-tuning the model for merely 1k steps is sufficient
to close most of the performance gap, validating the practicality and effectiveness of this approach.

4 EXPERIMENTS

In this section, we present experimental results on the proposed Diagonal Decoding algorithm. We
start with experimental setups described in Section 4.1, followed by the main results on various
models illustrated in Section 4.2. We provide analysis and case studies in Section 4.3 and Section 4.4.

4.1 SETUPS

4.1.1 BASELINES

We consider three representative models as our baselines to validate the performance of Diagonal
Decoding with temporal and spatial accelerations, respectively. To study the relations between model
scales and the performance of DiagD, we also train autoregressive models from scratch.

Cosmos Cosmos (Agarwal et al., 2025) is a world foundation model collection that integrates
multiple pre-trained models. We utilize the autoregressive models, which are equipped with a discrete
video tokenizer that provides 8× temporal compression and 16× on spatial. As a result, for 8 frames
with 640× 1024 as the raw resolution, it is encoded into latent discrete tokens with size 40× 64 =
2, 560, i.e., h = 40 and w = 64 following our notations. Experiments on Cosmos demonstrate the
generalizability of Diagonal Decoding on representations with temporal compressions.

WHAM The World and Human Action Model (WHAM) (Kanervisto et al., 2025) is an autore-
gressive generative model on the game environment, which is capable of generating accurate and
coherent game scenes following instructions from users. Different from Cosmos which produces
videos solely, WHAM takes interleaved concatenations of images and actions as input and output, to
receive controls and generate consequences. Therefore, WHAM utilizes an image tokenizer with 10×
spatial compression only, which transforms a raw game scene with 180× 300 into 18× 30 = 540
tokens, with h = 18 and w = 30 as a result. We test DiagD with spatial acceleration on WHAM,
considering that the action will be given by user after the previous game scene has been generated.

MC-AR To study the performance of Diagonal Decoding on different scales of models, as well as
validating the proposed fine-tuning strategy, we train a series of models from scratch. Specifically,
we utilize the VPT dataset (Baker et al., 2022) which consists of pairs of game scenes and actions on
the game Minecraft. We transform the raw game scenes with an image VQ-VAE (Patil et al., 2024)
to latent tokens with size 14× 24 = 336, i.e., h = 14 and w = 24. Then, a Transformer decoder is
trained with next token prediction by taking the concatenation of game scenes and actions as input.
We train model scales from 300M to 1.2B parameters. We leave detailed descriptions of baselines
and the training procedure in the appendix G.

4.1.2 EVALUATION SETUPS

Metrics For all models, we use one NVIDIA 80GB A100 GPU and batch size as 1 to obtain results.
We propose separate metrics to assess the visual quality and inference speed. We follow common
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Table 1: Quantitative evaluation of Cosmos on RealEstate10K (Zhou et al., 2018). ”NTP” refers to
the next-token prediction paradigm. DiagD k = i d = j denotes the Diagonal Decoding algorithm
with different hyper-parameters. ”STEP” refers to the number of forward passes required by the
model to generate a video. ”TP” represents throughput, i.e., number of tokens the autoregressive
model can generate per second. Comparable numbers are underlined.

Model Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ TP↑ STEP (k)↓

14B Diffusion 129 0.976 0.677 0.61 0.08 / /

4B

NTP 136 0.978 0.604 0.49 0.38 120 7.68
DiagD k = 4 d = 20 136 0.979 0.604 0.50 2.66 852 0.26
DiagD k = 2 d = 40 137 0.978 0.600 0.49 3.02 966 0.30
DiagD k = 2 d = 10 137 0.978 0.599 0.46 3.41 1097 0.15

12B

NTP 135 0.978 0.602 0.54 0.15 49 7.68
DiagD k = 2 d = 40 136 0.978 0.601 0.50 1.21 384 0.30
DiagD k = 2 d = 10 136 0.978 0.600 0.51 1.50 480 0.19
DiagD k = 1 d = 40 136 0.976 0.590 0.49 1.62 512 0.18
DiagD k = 1 d = 1 139 0.967 0.564 0.51 1.71 549 0.11

practices and utilize metrics including Fréchet Video Distance (FVD) (Unterthiner et al., 2018) and
VBench (Huang et al., 2024). We report Subject Consistency, Dynamic Degree, and Image Quality
from VBench to comprehensively evaluate the generation performance. For the inference speed,
we report three metrics. The Frames Per Second (FPS) generated by the model, calculated with the
wall-clock time. Step denotes the number of forward passes for a model to generate the video. In
addition, Throughput (TP) of output tokens per second is also recorded, which is a crucial metric in
real-time applications.

In addition to automatic metrics, we also provide human evaluations, detailed in Section 4.4, to assess
the generation results from various aspects including the general visual quality, object movement
consistency, and the comparisons between two settings.

Evaluation Dataset For Cosmos, an open-sourced evaluation pipeline and dataset is absent. There-
fore, we implement the pipeline by ourselves following details provided in their technical report (Agar-
wal et al., 2025). The validation dataset we selected spans autonomous driving (Yu et al., 2020),
robotic manipulation (Walke et al., 2023), and camera trajectories (Zhou et al., 2018), which contains
sufficiently diverse and rich dynamic motion information. For each dataset, we randomly sample 100
videos with 33 frames as the test set. For WHAM, we randomly select 100 videos with 100 frames
from the official evaluation set due to the limitations on time and resource. Experiments on the whole
test set with 1k videos will be reported in future revisions. For MC-AR, we split 100 video clips from
VPT (Baker et al., 2022), each containing 16 frames.

4.2 MAIN RESULTS

In this section, we illustrate the main results of DiagD on various baseline models and tasks.

Cosmos We apply DiagD with temporal and spatial acceleration to Cosmos autoregressive models,
with various combination of d and k. We conduct experiments on different scales of Cosmos models
on video continuation task. Conditioned on 9 initial frames, the model is required to generate the
following 24 frames. We also show the performance of the 14B Diffusion model for reference.

We show representative results of DiagD variants with different ks and ds in Table 1 on RealEstate10K
datasets, more results on robotic manipulation and driving scene are listed in appendix E. Compared
to naive Next-Token Prediction (NTP), which requires 7.68k steps to generate 24 frames, DiagD
reduces the step count to only 2% to 4%, enabling substantial parallelism in decoding. In terms of
FPS measured by wall-clock time, DiagD achieves approximately 10× speedup over NTP across
various settings and model scales.

For visual quality, by adjusting k and d, the variant (k = 2, d = 10) with 7× speedup introduces
negligible degradation in subject consistency, image quality, and dynamic degree, even in the 4B
Cosmos model. For the 12B model, setting k = 1, d = 1 does not harm performance. Overall, DiagD
significantly accelerates inference in a training-free manner with minimal impact on visual quality.
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Table 2: Quantitative evaluation on WHAM. Each evaluation video has a duration of 10 seconds and
a frame rate of 10 fps. For every video in this dataset, the initial ten frames along with the complete
action sequence serve as prompts for generation. Second best results are underlined.

WHAM Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ TP↑ STEP (k)↓

200M
NTP 367 0.747 0.628 0.983 0.23 124 54
DiagD k = 2 462 0.723 0.613 0.967 0.75 405 6.4
DiagD k = 1 472 0.727 0.624 0.902 0.97 524 4.7

1.6B
NTP 336 0.747 0.628 0.975 0.12 65 54
DiagD k = 2 378 0.749 0.627 0.975 0.34 184 6.4
DiagD k = 1 365 0.739 0.625 0.975 0.40 216 4.7

WHAM On WHAM models, we validate the performance of DiagD with spatial acceleration solely.
Specifically, we set d = sspa and k to 1 or 2 in this setting. The generation task is challenging as the
model is required to generate 100 frames conditioned on one initial frame and a sequence of actions,
and slight errors in previous frames will cause huge performance drop due to error accumulation.

The results are shown in Table 2. The spatial only DiagD requires 10% steps to generate a video
compared to NTP, and brings 4 times speedups regarding FPS. This aligns with derivations in
Equations (4) and (6), where temporal acceleration introduces an additional speedup of roughly
k + 1 times. In terms of visual quality, the larger 1.6B model exhibits less performance degradation
compared to the 200M model, suggesting that larger models can better tolerate the training-inference
gap introduced by diagonal decoding. Overall, these results demonstrate the effectiveness of the
spatial variant of DiagD in balancing inference speed and visual fidelity across different model scales.

Table 3: Quantitative evaluation on 700M MC-AR. Fine-tuning with DiagD attention mask helps
bridge the training-inference gap and improve performance. Second best numbers are underlined.

Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ TP↑ STEP (k)↓

NTP 210 0.864 0.677 0.985 1.08 363 5.04
DiagD w/o FT 247 0.844 0.628 0.985 2.09 702 0.75
DiagD w/ FT 231 0.859 0.673 1.000 2.09 702 0.75

NTP

w/ FT

𝐷𝑖𝑎𝑔𝐷2

w/o FT

𝐷𝑖𝑎𝑔𝐷2

Figure 3: Qualitative comparison of results on MC-AR.
Frames generated by models without fine-tuning may appear
blurry, which can be mitigated with 1k-step fine-tuning.

MC-AR We validate the proposed fine-
tuning strategy on MC-AR models and ana-
lyze its scaling behavior in the appendix G.
Specifically, we replace the standard causal
attention mask in the pre-trained autore-
gressive Transformer with one aligned to
DiagD, then fine-tune models for another
1k steps. As shown in Table 3, fine-tuning
mitigates the training-inference gap, en-
hancing generation quality while preserv-
ing the fast inference speed of DiagD.

Human Evaluation We conduct human
evaluations as a complement to automatic
evaluations. For Cosmos-12B, we provide
10 videos generated by next-token predic-
tion and DiagD, and ask participants to
evaluate which one performs better in terms of the visual quality and camera consistency. For
MC-AR, we ask participants to compare generation results from DiagD with or without fine-tuning,
in terms of the visual quality and controllability. As shown in Figure 5, we find that: 1) DiagD and
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Figure 4: Qualitative analysis of Cosmos and WHAM. Videos generated by Cosmos-12B and 1.6B
WHAM models using the next-token prediction paradigm (first row) and Diagonal Decoding under
different configurations (bottom two rows) We uniformly sample 5 frames from 33-frames videos in
Cosmos and 40-frames videos from those in WHAM.

80.0%

9.0%

11.0%

Cosmos
DiagD vs. NTP
Video Quality

81.0%

15.0%
4.0%

Cosmos
DiagD vs. NTP
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18.0%

18.0%
64.0%

MC-AR DiagD
FT vs. w/o FT
Video Quality

21.0%

23.0%
56.0%

MC-AR DiagD
FT vs. w/o FT
Controllability

Tie Lose Win

Figure 5: Human evaluation results for Cosmos-12B with DiagD and MC-AR 700M with or without DiagD
fine-tuning. “Win” indicates the left setting outperforms the right one, while “Lose” represents the opposite. The
results indicate that DiagD achieves similar performance to NTP, and fine-tuning helps it perform even better.

NTP generate videos with similar visual quality and semantic meaning; 2) fine-tuning help improve
the visual quality significantly for a smaller 700M model.

4.3 ANALYSIS

Attention Pattern We visualize the attention map of the second frame generated by the Cosmos-
Autoregressive-4B, as depicted in Figure 6. The diagonal patterns indicate that significant attention
scores are allocated to tokens at fixed intervals, corresponding to tokens located in the same column
of previous rows and the preceding frame. Spatially, tokens along the same diagonal exhibit notably
high attention scores, indicating strong spatial relevance, as shown in the right square highlighted in
the attention map. Temporally, tokens primarily attend to adjacent positions in the previous frame,
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emphasizing temporal correlation, as illustrated by the left square in the attention map. The results of
the attention map provide empirical support for the intuitive motivation introduced in Section 3.2.

Figure 6: The attention scores of the second frame in the
Cosmos-4B model are shown. The bright slash lines indi-
cate that substantial attention scores are assigned to tokens
at regular intervals, corresponding to those in temporally and
spatially adjacent positions. The shown attention map is the
mean value of all self-attention layers in the model.

Scaling Effects We also observe that
DiagD achieves better performance and
greater speedup on larger models, confirm-
ing that larger models capture more spa-
tial and temporal properties in videos than
smaller ones. Although Cosmos-4B and
Cosmos-12B exhibit nearly identical FVD
scores with next-token prediction, they
demonstrate significantly different scores
when using DiagD (k = 1). Additionally,
we observed that both Cosmos-12B and
WHAM-1.6B achieve higher FPS and supe-
rior visual quality with DiagD compared to
their smaller counterparts employing next-
token prediction. Therefore, DiagD may serve as an effective benchmark for evaluating whether
models accurately capture spatial and temporal redundancies.

Study on Hyperparameters In Table 7 in the appendix, we present the results of various hyper-
parameter combinations for Cosmos-4B and Cosmos-12B. We found that k has a more significant
impact on controlling the speedup ratio than d. When k values are similar, the FPS remains compara-
ble. Additionally, increasing d can enhance visual quality. By adjusting the values of d and k, we can
precisely balance visual quality and inference speed. This finding suggests that DiagD can be flexibly
leveraged, eliminating the necessity of training smaller models solely for computational efficiency,
decoupling the strong correlation between model size and inference speed.

4.4 CASE STUDY

In this section, we present case studies on the generation results of DiagD on different models. In the
top half of Figure 4, we show results using DiagD on the Cosmos-12B model. Compared to results
obtained by next-token prediction, DiagD provides consistent camera movements and comprehensive
image details. The lower half of Figure shows results produced by the spatial variant DiagD with the
1.6B WHAM model. For game footage that features large motion and frequent scene changes, DiagD
consistently delivers high-fidelity frames; in a 10-second, 100-frame sequence with pronounced
motion, we observed very few error accumulation. Moreover, videos generated by standard next-token
prediction and by DiagD exhibit almost identical object trajectories, demonstrating that the proposed
algorithm preserves both controllability and visual quality over long-range generation.

In addition, we present cases to demonstrate the effectiveness of our fine-tuning method. As shown in
Figure 3, fine-tuning for only 1k steps helps alleviate blurry areas, and provides videos with similar
quality to that generated by NTP.

5 CONCLUSION

In this paper, we introduce Diagonal Decoding (DiagD), a training-free algorithm that significantly
accelerates the inference speed of autoregressive video generation models. By leveraging spatial and
temporal correlations in consecutive frames, DiagD generates tokens along diagonal paths, achieving
substantial speedups while preserving visual fidelity. Through extensive experiments across diverse
models, tasks, and datasets, we demonstrate the efficiency and generality of our approach, reducing
the inference latency of Cosmos models by 10× while maintaining their performance. Additionally,
we propose a lightweight fine-tuning strategy to close the training-inference gap, further improving
generation quality with minimal computational cost. As a result, DiagD provides a practical and
scalable solution for real-time video generation, pushing the boundaries of what is achievable with
autoregressive Transformers in downstream tasks and related applications.

Future research could focus on optimizing the training process to better adapt Diagonal Decoding for
smaller models, enabling them to achieve higher acceleration ratios without sacrificing performance.

9
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REPRODUCIBILITY

We provide comprehensive implementation details, including model architectures, configurations,
and codes in Appendix and Supplementary materials to ensure reproducibility.
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A DECLARATION OF LLM USAGE

We used large language models (LLMs), including ChatGPT, to support manuscript preparation.
Their use was limited to language editing (grammar, spelling, and word choice), code formatting
(e.g., adding comments to the code), and drafting figures to aid the creation of final visualizations. All
scientific ideas, analyses, and conclusions were conceived, validated, and interpreted independently
by the authors. We gratefully acknowledge the assistance of large language models in our work.

B LIMITATION

The Diagonal Decoding method introduced in this paper is heavily dependent on the capabilities
of pre-trained models. Empirical observations and extensive experiments indicate that larger, more
thoroughly trained models produce higher visual quality and exhibit lower cumulative errors. As
noted in the main paper, smaller or less well-trained models often require larger values of d and k to
maintain visual quality. For simpler inference tasks, such as video continuation, these smaller models
tend to perform better compared to more complex tasks like conditional video generation.
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C DIRECT COMPARISON WITH ZIPAR
We provide a straightforward implementation of ZipAR as a baseline on Cosmos, which means
we only leverage spatial-level acceleration. Our experimental setup is consistent with the results
shown in Table 4. The experimental results are as follows (ws stands for window size, which is a
hyperparameter in ZipAR):

Table 4: Comparison between ZipAR (He et al., 2024) and DiagD.

Model Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ STEP (k)↓

4B
NTP 136 0.978 0.604 0.49 0.38 7.68
ZipAR ws = 1 349 0.823 0.379 0.53 3.42 0.30
DiagD k = 2 d = 10 137 0.978 0.599 0.46 3.41 0.15

12B
NTP 135 0.978 0.602 0.54 0.15 7.68
ZipAR ws = 1 137 0.974 0.569 0.49 1.04 0.30
DiagD k = 1 d = 1 139 0.967 0.564 0.51 1.71 0.11

Two interesting findings further distinguish the superiority of Diagonal Decoding in video acceleration
compared to the standard ZipAR approach.

• In the 4B model, by balancing spatial and temporal redundancy, DiagD are able to configure
parameters such that the number of forward steps is much less than the ZipAR window size of 1
(which corresponds to the maximum acceleration ratio in ZipAR), while still achieving much
better generation quality. In contrast, the ZipAR implementation shows severe image degradation
under these conditions.

• In the 12B model, by fully exploiting temporal redundancy, we achieve a higher acceleration
ratio than ZipAR(1.71 fps v.s. 1.04 fps) at comparable quality levels.

Our motivation incorporates both temporal(inter-frame) and spatial(intra-frame) redundancy (while
ZipAR focuses only on spatial redundancy). For video tasks, temporal redundancy is clearly very
important. By adjusting two hyperparameters, we can effectively balance spatial and temporal
redundancy, achieving higher acceleration and better performance. Our analysis of the model’s
attention maps also supports this distinction, revealing that temporal redundancy plays a crucial role
in accelerating video generation.

D DETAILED EXPLANATION OF ALGORITHM

In this section, we clarify our algorithms with examples and more detailed explanation.

D.1 DIAGONAL DECODING ALGORITHM

In the next token prediction algorithm, the Transformer receives one input token and produces the
probabilities for the next token ([t1]ß[t1, t2]ß[t1, t2, t3], .... However, this is just a conventional way
of thinking; the Transformer is not limited to receiving only one token at a time. Consider the
training phase of the Transformer, where it is actually fed a sequence of n tokens and learns to
predict the probability of the next token for each token in the sequence. Therefore, moving from
single-token generation to multi-token generation is not inherently difficult—in fact, this transition
directly addresses the generation problem illustrated in the figure below. This explains how diagonal
generation is performed. [

t1 t2 ·
t3 · ·
· · ·

]
=⇒

[
t1 t2 t3
t4 t5 ·
· · ·

]

Next, we discuss how to generate tokens correctly. The content of the tokens to be generated is
actually controlled by the position embedding. In a Transformer model, each input token is assigned
a position embedding to indicate its position in the sequence. The token to be generated corresponds
to the next position for each input token. Therefore, by adding different position embeddings to the
input token, we can predict the next token at different positions. For example, to predict t5 , we
simply use t4 along with the position embedding corresponding to t5.
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Finally, we need to address how to generate the first token of each row, since the last token of the
previous row has not yet been generated. By leveraging the spatiotemporal redundancy described in
the paper, we select the preceding token as the input. Specifically, to predict t7, we use token t4 and
the position embedding corresponding to t6.

D.2 FINE-TUNING ALGORITHM

The purpose of the attention mask is to address the inconsistency between visible tokens during
training and inference. For example, in the case of t7 shown above, causal attention masks in
autoregressive training allow t7 to attend to all tokens from t1 to t6. However, in diagonal decoding
during inference, t6 has not yet been generated when t7 is produced. This creates some inconsistency,
so the newly proposed attention mask ensures that t7 cannot see t6 during training either. Therefore,
we only need to modify the traditional causal attention mask during Transformer training to achieve
this, and finetuning can be performed in parallel. It is important to emphasize that, unless otherwise
stated in the paper, all test results were obtained without finetuning.

E COSMOS

E.1 RESULTS ON ROBOTIC MANIPULATION AND DRIVING

Open-ended scenarios indeed involve more complex motion dynamics, but there are few open-sourced
autoregressive models performs well on open-ended data. We test DiagD on two more challenging
datasets in Cosmos to demonstrate the generalization ability of Diagonal Decoding to open-ended
scenarios: the Bridges (Walke et al., 2023) dataset, which focuses on robotic manipulation, and the
BDD100K (Yu et al., 2020) dataset, which encompasses diverse driving environments. Both datasets
feature highly significant, unpredictable, and pronounced motion as well as complex environments.
We randomly selected 100 videos from the test set and randomly extracted 33 continuous frames from
each video (no downsampling or frame interpolation was performed). We obtained the following
results, Table 5 and 6. It is worth noting that the Cosmos model we used has not been post-trained on
robotic or autonomous driving datasets, which limited the capabilities of both next-token prediction
and Diagonal Decoding.

Table 5: Quantitative evaluation of Cosmos on BridgeV2 (Walke et al., 2023). ”NTP” refers to the
next-token prediction paradigm. DiagD k = i d = j denotes the Diagonal Decoding algorithm with
different hyper-parameters. ”STEP” refers to the number of forward passes required by the model to
generate a video.

Model Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree FPS↑ STEP (k)↓

4B

NTP 602 0.926 0.594 0.86 0.38 7.68
DiagD k = 4 d = 20 615 0.928 0.592 0.87 2.66 0.26
DiagD k = 2 d = 40 625 0.921 0.585 0.65 3.02 0.30
DiagD k = 2 d = 10 626 0.921 0.580 0.69 3.41 0.15

12B

NTP 585 0.926 0.590 0.80 0.15 7.68
DiagD k = 2 d = 40 599 0.930 0.597 0.70 1.21 0.30
DiagD k = 2 d = 10 608 0.930 0.598 0.76 1.50 0.19
DiagD k = 1 d = 1 609 0.923 0.590 0.69 1.71 0.11

E.2 DETAILS OF COSMOS MODELS

Cosmos(Agarwal et al., 2025), a World Foundation Model (WFM) Platform for developing Physical
AI systems, integrates multiple pre-trained models, including autoregressive and diffusion-based
methods, as well as discrete and continuous tokenizers. Specifically, the autoregressive model employs
a discrete video tokenizer that leverages a codebook containing 16, 000 entries, achieving spatial
compression of 16× and temporal compression of 8×. This tokenizer is capable of compressing
a video of 33 frames at a resolution of 640 × 1024 into 12, 800 discrete tokens. In our study, We
implements the spatial and temporal diagonal decoding algorithm on Cosmos autoregressive-based
world foundation models. We provided an initial sequence of 5, 120 tokens (equivalent to 9 frames),
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Table 6: Quantitative evaluation of Cosmos on BDD100k (Yu et al., 2020). ”NTP” refers to the
next-token prediction paradigm. DiagD k = i d = j denotes the Diagonal Decoding algorithm with
different hyper-parameters. ”STEP” refers to the number of forward passes required by the model to
generate a video.

Model Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree FPS↑ STEP (k)↓

4B

NTP 567 0.946 0.500 0.99 0.38 7.68
DiagD k = 4 d = 20 575 0.947 0.501 0.98 2.66 0.26
DiagD k = 2 d = 40 579 0.945 0.498 0.97 3.02 0.30
DiagD k = 2 d = 10 585 0.940 0.492 0.99 3.41 0.15

12B

NTP 569 0.946 0.501 0.99 0.15 7.68
DiagD k = 2 d = 40 568 0.947 0.499 0.99 1.21 0.30
DiagD k = 2 d = 10 568 0.943 0.494 0.99 1.50 0.19
DiagD k = 1 d = 1 581 0.926 0.462 0.99 1.71 0.11

optionally accompanied by text depending on the task, to evaluate text-guided video generation and
video continuation tasks. This initial sequence was used to generate the subsequent 7, 680 tokens,
extending the remaining frames to reach the 33-frame length.

Due to the lack of an open-source evaluation pipeline and datasets, we replicated a comparable
setup based on details provided in its technical report. Specifically, we selected 100 videos, each
comprising 33 frames, randomly sampled from the RealEstate10K dataset (Zhou et al., 2018). To
quantitatively assess visual quality, we employed standard metrics, including Fréchet Video Distance
(FVD)(Unterthiner et al., 2018) and Subject Consistency, Dynamic Degree, and Image Quality from
VBench (Huang et al., 2024). Furthermore, we conducted a human evaluation, detailed in Section 4.3,
to compare visual quality and object movement between videos generated by next-token prediction
and DiagD. Unlike Cosmos, our evaluation metrics exclude the use of diffusion decoder for post-
processing videos generated by autoregressive models, as this would not fairly reflect the visual
quality.

E.3 EXTRA EXPERIMENTS ON HYPER-PARAMETERS

We report more combination of k and d in Table 7. The FPS values show minimal variation across
some settings. This is because the implementation of the diagonal decoding algorithm introduces
a small amount of overhead. When the speedup ratio is significantly high, the time lost due to this
overhead becomes non-negligible.

E.4 MORE CASES

We randomly choose ten cases from 100 evaluation sets in supplementary material.

F WHAM

F.1 DETAILS OF WHAM
The World and Human Action Model (WHAM) (Kanervisto et al., 2025) is a recently proposed state-
of-the-art autoregressive generative model trained on gameplay data from Bleeding Edge, capable
of generating coherent and diverse gameplay sequences based on user instructions. Unlike Cosmos,
WHAM employs an image-level Vector Quantized (VQ) tokenizer that concentrates exclusively on
spatial compression. This tokenizer independently converts each game state, with a resolution of 180×
300, into 540 discrete tokens, which are subsequently concatenated with their corresponding in-game
actions. To preserve the inherent relationship between actions and game states, our approach employs
spatial diagonal decoding algorithm alone instead of processing the entire video simultaneously. That
is to say, we sequentially generate subsequent game states from previous states and their associated
actions, alternating between state generation and action concatenation.

For WHAM, we randomly selected 100 videos from its evaluation set to assess video consistency
according to WHAM’s evaluation protocol. The generation of each video was conditioned on one
second of gameplay, which included both video and controller actions, and then proceeded to be
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Table 7: Quantitative evaluation on Cosmos. 4B and 12B refer to models used for video continuation.
”NTP” refers to the next-token prediction paradigm. DiagD d = m k = n denotes the Diagonal
Decoding algorithm where d = m and k = n. ”Step” refers to the number of forward passes required
by the model to generate a video. ”TP” is the number of tokens that model can generate per second.

Model Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ TP↑ STEP (k)↓

4B

d = 2, k = 1 348 0.844 0.393 0.52 3.42 1280 0.11
d = 3, k = 1 350 0.846 0.397 0.54 3.41 1097 0.11
d = 5, k = 1 352 0.859 0.402 0.51 3.41 1097 0.11
d = 9, k = 1 342 0.863 0.408 0.52 3.41 1097 0.12
d = 4, k = 2 171 0.936 0.515 0.55 3.41 1097 0.15
d = 6, k = 2 145 0.966 0.574 0.49 3.41 1097 0.15
d = 10, k = 2 137 0.978 0.599 0.46 3.41 1097 0.16
d = 18, k = 2 136 0.979 0.601 0.48 3.00 960 0.24
d = 8, k = 4 154 0.959 0.552 0.54 2.67 853 0.24
d = 12, k = 4 139 0.976 0.595 0.49 2.67 853 0.24
d = 20, k = 4 136 0.979 0.604 0.50 2.66 852 0.26
d = 36, k = 4 136 0.979 0.603 0.48 2.40 768 0.29

12B

d = 2, k = 1 139 0.967 0.564 0.51 1.71 549 0.11
d = 3, k = 1 152 0.955 0.546 0.53 1.71 549 0.11
d = 5, k = 1 143 0.970 0.576 0.49 1.71 549 0.11
d = 9, k = 1 136 0.863 0.408 0.52 1.61 515 0.12
d = 4, k = 2 152 0.968 0.563 0.52 1.60 512 0.15
d = 6, k = 2 143 0.973 0.585 0.50 1.60 512 0.15
d = 10, k = 2 143 0.978 0.600 0.51 1.60 512 0.16
d = 18, k = 2 136 0.979 0.601 0.48 1.50 480 0.18
d = 8, k = 4 150 0.970 0.570 0.59 1.26 427 0.24
d = 12, k = 4 140 0.975 0.594 0.50 1.26 404 0.24
d = 20, k = 4 137 0.978 0.600 0.49 1.20 384 0.26
d = 36, k = 4 136 0.979 0.603 0.48 1.09 349 0.29

conditioned on the controller actions performed by a human player during the subsequent 10 seconds
of gameplay. In addition to reporting Fréchet Video Distance (FVD) and Subject Consistency,
Dynamic Degree, and Image Quality from VBench (Huang et al., 2024). Following WHAM’s
protocol, we conducted a human evaluation to assess the visual quality of generated gameplay and
object motion, comparing our results with those obtained using the next-token prediction algorithm.

F.2 MORE CASES

We randomly choose ten cases of 10 senconds videos from 100 evaluation sets in supplementary
material.

G MC-AR

G.1 DETAILS OF MC-AR MODELS

We conducted a series of experiments by training models from scratch on the VPT dataset (Baker et al.,
2022). The VPT dataset is a domain-specific dataset comprising gameplay videos from Minecraft. We
employed a pre-trained image VQ-VAE (Patil et al., 2024), an image-level tokenizer with a codebook
containing 8, 192 entries, achieving a spatial compression ratio of 16×. To enhance visual quality,
we subsequently fine-tuned the VQ-VAE on the VPT dataset. Our Transformer model was based on
the LLaMA architecture (Touvron et al., 2023) and augmented with 3D Rotary Embeddings (Su et al.,
2024). We combine each game state tokens with the corresponding actions just like WHAM, so for
each pair of game state and actions in the original input (xi, ai), the tokenizers will transfer them
into a flat sequence of discrete ids as:

(ti∗c+1, · · · , t(i+1)∗c, t
ai
1 , · · · , tai

n ). (7)
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and c is the number of ids to represent each state, n is the number of actions. We trained our model
on next token prediction tasks, enabling the model to predict future states based on previous game
states and current action. We use the Adam optimizer(Kingma & Ba, 2015) with a cosine decay
learning rate scheduler to train the model. Additionally, fine-tuning was performed for an extra 1, 000
steps on the same dataset.

For MC-AR, we selected 100 video clips from an unused subset of the evaluation set, each containing
16 frames, with the last 15 frames corresponding to actions in the gameplay. Each model generated
15 subsequent frames conditioned on the first frame of each clip and the 15 actions. These generated
frames were then compared against the ground truth using the FVD, Subject Consistency, Dynamic
Degree, and Image Quality metrics.

G.2 MODEL CONFIGURATIONS

We train three different sizes of the model within the LLaMA architecture: 300M, 700M, and 1.2B.
We tune the hidden dimension, intermediate dimension, and the number of layers to achieve different
model sizes. The configuration of these models are listed in Table 8. The hyperparameters of the
optimizer used to train the model are listed in Table 9.

Table 8: The configuration of different size of models.

Hidden dim MLP dim Num. Heads Num. Layers
300M 1024 4096 16 20
700M 2048 4096 32 20
1.2B 2048 8192 32 20

Table 9: Optimization hyperparameters.

Hyperparameter Value
Learning rate scheduler cosine

Learning rate 3e−4

Warm up steps 10000
Weight decay 0.1

Optimizer AdamW
AdamW betas (0.9, 0.95)

Maximum Positions 5376

Table 10: Quantitative evaluation on 300M MC-AR. We use DiagD (k = 2) in experiment.

Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ STEP (k)↓

NTP 223 0.869 0.676 0.98 1.08 5.04
DiagD k = 2 w/o FT 246 0.854 0.650 0.99 3.98 0.75
DiagD k = 2 w/ FT 233 0.845 0.648 0.98 3.98 0.75

G.3 EXTRA EXPERIMENTS

We provide models of three scales (300M Table 10, and 1.2B Table 11) to present additional results
on MC-AR.

G.4 MORE CASES

We randomly choose ten cases from 100 evaluation sets in supplementary material.
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Table 11: Quantitative evaluation on 1.2B MC-AR. We use DiagD (k = 2, 4) in experiment.

Algorithm FVD↓ Subject
Cons.↑

Image.
Qual.↑

Dynamic
degree ↑ FPS↑ STEP (k)↓

NTP 203 0.866 0.677 0.97 0.89 5.04
DiagD k = 4 w/o FT 246 0.857 0.645 0.98 1.42 1.14
DiagD k = 2 w/o FT 246 0.841 0.606 0.97 1.98 0.75
DiagD k = 2 w/ FT 227 0.853 0.661 0.98 1.98 0.75

H DERIVATIONS

We derive Equation (4) and (6) here. First, for Equation (4), assume min{h,w} = h, we have:

rspa =
h · w

(h− 1) · k + w

=
h

h
w · k − k

w + 1

≈ h
h
w · k + 1

.

(8)

Where we assume k
w ≈ 0 which is applicable for most of our cases. And as a result, the approximation

in Equation (4) achieves if h ≈ w.

Similarly, for Equation (6), we have:

rdiag =
T · h · w

(T − 1) · h+ h+ w − 1

=
T · h · w

T · h+ w − 1

≈ w

1 + w
T ·h

≈ w

(9)

Where the approximation stands when T ∗ h ≫ w, which is applicable for most of video generation
cases.
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