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Abstract

The present article studies the minimization of convex, L-smooth functions defined
on a separable real Hilbert space. We analyze regularized stochastic gradient
descent (reg-SGD), a variant of stochastic gradient descent that uses a Tikhonov
regularization with time-dependent, vanishing regularization parameter. We prove
strong convergence of reg-SGD to the minimum-norm solution of the original
problem without additional boundedness assumptions. Moreover, we quantify the
rate of convergence and optimize the interplay between step-sizes and regularization
decay. Our analysis reveals how vanishing Tikhonov regularization controls the
flow of SGD and yields stable learning dynamics, offering new insights into the
design of iterative algorithms for convex problems, including those that arise in
ill-posed inverse problems. We validate our theoretical findings through numerical
experiments on image reconstruction and ODE-based inverse problems.

1 Introduction

In thls WOI‘k we Study the unCOnStI‘ained Optimizaﬁon prOblem
i 1
reX f(x) ’ ( )

where (X, (-,-)x) is a separable real Hilbert space with inner product (-,-)x and induced norm
|lz||% = (x,z)x. The objective function f : X — R will be assumed to be differentiable, convex, and
L-smooth with arg min, y f(x) # (). Moreover, we will always denote by x, € argmin, ¢ f(z)
the minimum-norm solution, i.e. a minimum with ||z.||x < ||Z|x for all Z € argmin ¢y f(z).
A common strategy for finding a point close to the minimum-norm solution is to employ regular-
ization techniques. One popular approach from the optimization literature is to include Tikhonov
regularization into (1] in the form of

min fo(2), fa() = f()+ Gl @

reX
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where A > 0 is called the regularization parameter. Since the regularized objective function f) is
A-strongly convex for any A > 0, there exists a unique minimum z) = argmin_ » f(x) and many
first order methods, such as stochastic gradient descent (SGD), are able to efficiently find z .

Tikhonov regularization is a simple but effective method that appears in various contexts, such as
statistics (e.g. ridge regression, [39]), classical inverse problems [31]], including parameter estimation
in partial differential equations [40]] and image reconstruction [41} 18], dating all the way back to
Tikhonov [70]. In the context of training neural networks, Tikhonov regularization is known under
the name weight decay as the method decreases the norm of the neural network weights. One early
reference is [50]], for more recent work on the effect of weight decay on generalization we refer to
[66]], for LLM training to [22]], and for a very recent experimental deep learning study to [29]. It is
still a very much open problem to fully understand the different effects of weight decay, both from a
practical but also the theoretical point of view in different optimization settings.

Recalling that ||z)]|x < |lza|la < ||@«||x for X' < ), see for instance [3], there is a trade-off
between choosing A large and small. Large A speeds up convergence with the price of finding solutions
that are too strongly regularized. On the other hand limy_¢ ||z — x«||x+ = 0 suggests to turn down
the regularization over time in order to ensure convergence to the minimum-norm solution. The
present article provides a rigorous theoretical analysis for Tikhonov regularized stochastic gradient
descent (reg-SGD) with decreasing (non-constant) regularization schedule (A)xen,. We show how
to tune step-size and regularization schedules in order to achieve strong convergence to .. By strong
convergence we refer to the convergence of the iterates X}, in the sense limy_, o0 || X — z4||lx = 0.
For practical purposes, we derive how to optimally tune the decay rates of polynomial schedules.

1.1 Fixing the setup

Let us recall the classical Tikhonov regularized gradient descent scheme (reg-GD)

X = Xp—1 — ap(Vf(Xp—1) + MeXpo1), 3
which for constant A converges to x, under suitable conditions on the step-size sequence «. In
many applications the gradient cannot be computed (or observed) exactly, instead only gradients

with noisy perturbation are available. This leads to two equivalent formulations: one in which a
noisy perturbation Dy, is added to the true gradient, and another in which the gradient is replaced

by an estimated gradient V f(Xj_1). These formulations are equivalent if we define the noise as

D=V J@l) — Vf(Xk—1). We thus stick to the first setting but use the more accessible second
notation for the pseudocode of below.

In this article, we study the regularized sfochastic gradient descent scheme (reg-SGD) with decreasing
regularization parameter \. Let (F)xen, be a filtration and (X} ) ke, be an adapted sequence defined
recursively by

Xi = Xp—1 — ap(Vf(Xp—1) + MeXg—1 + Dy), “4)
where E[|| Xo||%] < 0o, @ and \ are sequences of (deterministic or random) non-negative reals, and
D := (Dy)ren is an adapted sequence of martingale differences, i.e. E[Dy, | Fr—1] = 0 for all
k € N. More precisely, in[Theorem 2.1| we assume the sequences a := () pen and X := (Ag)pen
to be predictable stochastic processes, i.e. o and A\ are Fj_1-measurable for all £ € N. The SGD
formalism includes for instance stochastic gradients in finite-sum problems, where a random data
point’s gradient estimates the full gradient, see[Example 1.3|below, and in expected risk minimization,
where gradients are computed using samples from the data distribution.

Algorithm 1 Regularized Stochastic Gradient Descent (reg-SGD)
Require: Initial guess X, number of iterations IV, step-size schedule «, regularization schedule A

1: fork =1to N do o

2:  Compute unbiased gradient estimates: V f(Xy_1) = Vf(Xx—_1).
3:  Update parameters: Xy, = Xj—1 — o (V f(Xi—1) + A Xp—1)
4: end for

5: return X

We will further impose a second moment condition on the stochastic error terms (Dy,)en, Which
allows the noise term to grow with the optimality gap and the gradient norm. We emphasize that



throughout this work we will not impose any additional boundedness assumptions on the iterates
of the reg-SGD scheme. Therefore, a priori the noise term might be unbounded. However, in the
proofs below we show that, under weak assumptions on the step-size and regularization schedules,
the additional regularization term implies almost sure boundedness of the iterates. This contrasts the
dynamical behavior of standard SGD without regularization.

Assumption 1.1. The objective function f : X — R is convex, continuously differentiable, and
L-smooth. The latter means that V f : X — X is globally L-Lipschitz continuous, i.e. there exists
L > 0suchthat |V f(z) — Vf(y)|x < Ll|z — yl|x for all z,y € X. Furthermore, we assume that
argmin,c y f(x) # 0 and denote by . € argmin, .y f(z) the minimum-norm solution.

For the noise sequence a typical ABC-type assumption is posed. The assumption is an important
relaxation of bounded noise and can be verified in many applications [49}136].

Assumption 1.2. There exist constants A, C' > 0 such that
E[|Dkll% | Fr-1] < A(f(Xk—1) — f(zi)) +C, keN.

In contrast to the classical ABC condition, only two constants A and C' appear. In Euclidean space
when f is differentiable, L-smooth, and bounded below, one has

IVf(x)|? < 2L(f(z) — f(z.)) forallz € RY (3)

see e.g. Lemma C.1 in [73]]. The exact same argument (combining L-smoothness and the fundamental
theorem of calculus) extends readily to the Hilbert space setting. Therefore, is
equivalent to the classical ABC-condition

E[||Dxll3 | Fro1] < A(f(Xi—1) — f(z:)) + B|VF(Xp—1)|% +C, k€N,
for some A, B,C' > 0.

Example 1.3 (Mini-batch estimator for finite-sum problems). Consider the finite-sum optimization
problem

. 1
min f(z) =+ ;fi(w),

where, foralli = 1,...,N, f; : RY — R is convex and L;-smooth. At iteration k € N, we
can define a mini-batch estimator with mini-batch size M € Nvia g, = 77 Yiem V1 (Xk-1),
where (I; 1); ken is a family of iid. random variables that are uniformly distributed on {1, ..., N}.
The corresponding gradient noise is defined as Dy, = 17 >0, (V f1, . (Xk—1) — Vf(Xi—1)) and
satisfies
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E (1047 | Fir] < 55 (F(Xk1) = F) + o ©

where L = < Zi\; Liand 0? = % Zfil |V fi(z.)]|2. We will prove (6) inbelow.
1.2 Contribution

The present article continuous a line of research on convergence properties for regularized differential
equation based optimization flows (see e.g. [8,[7,56] and the references therein). We show that
the discretization of the stochastic differential equation setting considered in [56] yields a simple
iterative scheme with similar convergence guarantees. It is non-trivial to establish a discrete iterative
scheme that convergences fast to the minimum-norm solution z,, as the step-size schedules o and
regularization schedules A need to be balanced very carefully. In fact, while the assumptions we
pose on the step-size schedule « are similar to the classical Robbins-Monro step-size conditions for
convergence of SGD [63]], the regularization schedule A has to satisfy two conflicting objectives. For
a slowly decaying (almost constant) sequence A, one can use the strong convexity of the regularized
objective function fy for all A > 0 to show that X, is close to the minimum x, of f,. However,
this significantly slows down convergence to the minimum-norm solution due to the slow convergence
of ||z, — ««||x. A crucial step in the analysis of reg-SGD will be to balance the two error terms

[ Xk — zullx <[ Xk — 2l + llzn, — 2allx



appearing on the right-hand side. The main
achievement of this article is to carry out
last-iterate estimates that yield L? and almost

sure convergence rates. In contrast to non-
regularized SGD we obtain convergence to the
minimum-norm solution (not just some solu- ~
tion) of the optimization problem while obtain-

ing comparable rates for the optimality gap. The
simulation in [Figure 1|on the right shows the ef-

fect for f(x1,22) = (z1 + 22 — 1) with noisy
gradients perturbed by independent Gaussians.
While vanilla SGD converges to some minima )
(red dots), reg-SGD converges to the minimum- Figure 1: A comparison of SGD and reg-SGD,
norm solution. Another important theoretical 1eg-SGD converges to x for all initializations.
property that we reveal is that reg-SGD is more

stable. It turns out that the iterative scheme is automatically bounded and cannot explode.

Summary of main contributions:

+ L2- and almost sure-convergence proof for last-iterates of reg-SGD to the minimum-norm so-
lution under the ABC-condition without additional boundedness assumption on the stochastic
iteration.

+ L2- and almost sure-convergence rates for polynomial step-size and regularization schedules.

» Experiments that show the stability of our polynomial step-size and regularization schedules.

1.3 Related work

To guide the reader we collect related articles and emphasize the line of research which we continue.

Deterministic Tikhonov regularization: The literature contains a number of articles on Tikhonov
regularization with decreasing regularization parameter. For instance, in the context of deterministic
optimization, this includes the analysis of first order ODEs [8| 26) [7] and second order ODEs
[6 (3, [7,12]]. Extensions to stochastic optimization in continuous time, in particular an analysis
of the stochastic differential inclusion process, have been considered in [56]. Many statements are
based on results for the solution curve (z) >0 derived in [3]. More generally, differential inclusions
for constrained convex optimization problems have been intensively studied in [9, [10} [T}, 27, [60].
In [Appendix D.2] we provide more details and illustrate the relation to Tikhonov regularization.
Recently, the gradient flow for a fixed Tikhonov regularization has been analyzed in [21]]. For small
values of the regularization parameter A, the optimization dynamics can be decomposed into two
distinct phases: an initial fast convergence toward the set of minima, followed by a slow drift along
this set that selects the minimizer with the smallest £2-norm.

In this article, we extend methodologies for steepest descent flows to the stochastic discrete-time
setting. Discrete time algorithms with decaying Tikhonov regularization have been analyzed in the
context of iterative regularization schemes. For instance, in Chapter 5 of [14] iterative regularization
is discussed to solve variational inequalities covering (3) for convex f as a special case. Under certain
conditions on the regularization decay and the step-sizes, strong convergence to the minimum-norm
solution can be guaranteed. A related analysis has been considered for non-linear inverse problems
[T3]. In the specific application to inverse problems, (3)) is also known as the modified Landweber
iteration, where convergence is mainly studied for nonlinear forward models using a-priori and
a-posteriori stopping rules [15] 47, [64]. The theoretical analysis is conducted in a non-convex setting
and relies on the so-called tangential cone condition.

Stochastic gradient descent (with regularization): For recent results on convergence of SGD
for possibly non-convex optimization landscapes we refer the reader to [57, and references
therein. Note that due to the non-convexity, only convergence to a critical point can be shown without
guarantees of optimality. In the smooth and convex case, almost sure convergence rates for the
last-iterates of SGD without Tikhonov regularization under the ABC-condition for the noise have
been derived in [51]. Therein, it was proved that for step-sizes a = Cok ™3¢ with e € (0, 1)

one has f(X) — f(x.) € O(k~37¢) almost surely. [39] gives a rate of convergence for SGD with



polynomially decaying step-sizes in expectation. Their rate is optimal for the choice oy, = Cok™3
which yield the rate E[f(X},) — f(z.)] € O(k~'/3). Assuming uniform boundedness of the
gradients and iterates, [67] increased this rate of convergence to O(k~1/21log(k)) for the step-sizes

ap = C’ak’%. These additional assumptions have been lifted in [S2], where only bounded variance
of the noise is assumed. Following [59] 52]], the Ruppert-Polyak average also achieves the rate
E[f(Xk) — f(z.)] € O(k~Y21og(k)) for oy, = Cok™2. These results attain the lower bound
for the optimization of L-smooth convex functions using first order algorithms that have access to
unbiased gradient estimates with bounded variance derived in [2]] up to a log(k) factor. More recently,
almost sure convergence rates under a related setting have been derived in [65]. However, without
any additional regularization one can only guarantee convergence towards some global minimum.
The present article targets specifically algorithms that find the minimum-norm solution. We show
that, when using reg-SGD one gets comparable convergence rates in the optimality gap as the ones
for vanilla SGD cited above. Moreover, one can weaken the bounded variance assumption on the
noise, while also achieving strong convergence to the minimum-norm solution. We also point to [38]],
where the role of regularization for the convergence of SGD for a prescribed number of optimization
steps is discussed. Using a fixed regularization parameter, the authors derive a complexity bound for
averaged SGD. However, they do not discuss the role of Tikhonov regularization for convergence
towards a minimum-norm solution. Finally, in the context of inverse problems the regularization
properties of (vanilla) SGD have been analyzed for linear [42] 44} 46]] and non-linear forward models
[45]] based on a-priori and a-posteriori stopping rules. Moreover, in [33] SGD has been considered
for inverse problems from a statistical point of view.

Regularization effects in ML: An exciting line of research that we do not touch directly is the
explicit and implicit regularization effect of SGD appearing in ML training. We refer the reader
for instance to the recent articles [61}, 168} [16]] and references therein. The relation to our work is
that plain vanilla SGD tends to converge to minimum-norm solution in certain problems of practical
relevance (in general it does not), while we prove that for convex problems Tikhonov regularized
SGD with decaying regularization can always be made to converge to the minimum-norm solution.

2 Theoretical results

In this section, we present our main theoretical contributions concerning the convergence of stochastic
gradient descent with decaying Tikhonov regularization. An abstract convergence result is presented,
followed by quantitative rates of convergence for polynomial step-size and regularization schedules.
For the ML practitioner, we derive optimal choices for the step-sizes and regularization parameters.
All proofs are provided in where slightly more general statements are presented.

Approach: First, we carefully balance the step-size and the regularization parameters to ensure
convergence of the energy function Ey, = fi, ., (X&) — fair (Zxag)- In we then obtain
the estimate | X, — x, ||x < Ex/Ag, which links the distance to the regularized minimizer with the
energy function. Since Ay also influences the decay of Ej, we must jointly control both quantities
to ensure that limy_, o Fr/Ar = 0. Combined with the fact that limy_,o [|zx — 2.||x = 0, this
yields strong convergence limy, o | Xz — #«||x = 0 (both in L? and almost surely). Moreover,
if a convergence rate for ||x) — x.||x is known, the analysis allows us to also quantify a strong
convergence rate for the iterates Xy, to ..

2.1 General convergence results

First, we present a general convergence statement for reg-SGD to the minimum-norm solution, both
in the almost sure sense as well as the L?-sense. The assumptions on the sequence of step-sizes «
are similar to the Robbins-Monro step-size conditions. Regarding the sequence of regularization
parameters A, the assumptions for deriving almost sure convergence to the minimum-norm solution
reflect the competing goals of using the strong convexity of fy for A > 0 and having sufficiently fast
convergence of zy — x,. Compared to the almost sure convergence statement in[Theorem 2.1] the
second result, establishes convergence in L? under arguably much weaker assumptions.
In particular, the sequence A is allowed to decay at a very slow rate and no prior knowledge of the
rate of convergence for z) — x, is required.



We stress that we do not impose any boundedness assumptions of the reg-SGD scheme. In particular,

the fact that supy, ¢y, Xi < oo almost surely is a consequence of which is guaranteed
by the retracting force of the Tikhonov regularization.

Theorem 2.1 (Almost sure convergence). Suppose that|Assumption 1.1|and|Assumption 1.2| are
fulfilled and let (X},)ken, be generated by (@) with predictable (random) step-sizes and regularization
parameters that are uniformly bounded from above. Moreover, we assume that almost surely the
sequence \ is decreasing to 0 and that

Zak’/\k = 00, Zai < oo, and Z:ozk/\k(Hcc,Jﬁ‘f — llza I3) < oo @)

keN keN keN

Then limy,_, oo X = x4 almost surely.

One can question how to verify the third assumption in (7)) for practical applications. In[Appendix E]
we quantify the distance between x and z, in linear inverse problems satisfying a source condition,
as well as in the situation, where f satisfies a L.ojasiewicz inequality. In general, one has no control
for ||z.]|% — ||z |%, see [71]. We thus present a second result on L?-convergence that holds also
under a simpler condition. Here we require deterministic step-sizes and regularization parameters.
Our requirements in (§)) are very similar to the ones needed in the deterministic setting [[14, Theorem
5.1 and Theorem 5.2] and are motivated by the corresponding deterministic result in continuous time
[26, Theorem 2.2].

Theorem 2.2 (L2-convergence). Suppose that|Assumption 1.1|and|Assumption 1.2|are fulfilled and
let (Xk)ren, be generated by @) with deterministic step-sizes and deterministic and decreasing
regularization parameters (\y,)gen. Moreover, assume that N\, — 0 and (7), or, alternatively, that

Z Oék)\k = 00, ap = O()\k)7 and )\k — )\k,1 = o(ak)\k). (8)
keN

Then limy,_, o E[|| X}, — 2..]|%] = 0.

In the next section, the theorems are made more explicit by choosing polynomial step-size and
regularization schedules that allow us to derive convergence rates.

2.2 Convergence rates

We now go a step further and derive L2- and almost sure-convergence rates for the particular choices
of polynomial schedules

ap =Cuk™@ and My =Cyk™P, p,qe(0,1).

Note that, due to[Theorem 2.2| one has E[|| X} — z.%] — 0if ¢ > pand p + ¢ < 1. However, we
can further derive the following convergence rates.

Theorem 2.3 iL2-rates for reg-SGD with polynomial schedules). Suppose that and

ssumption 1.2| are satisfied. Let Co,Cy > 0, p € (0,3] and q € (p,1 — p]. Let (Xy)ren, be

generated by (@) with ap, = Co,k™% and N\, = C\k™P. If ¢ = 1 — p we additionally assume that
20\Cy > 1 — q. Then it holds that limy_, o E[|| X — z.[|3] = 0 and

(i) ELf(Xr) = f(z.)] € Ok~ minpa=p)),
(i) E[| Xk — za,,, [|3] € O(k~ min(=a=pa=20)) for p € (0, $)and q € (2p,1 — p).
For a sequence of step-sizes o, = C, k™9 with ¢ € (0, %] one can set A\, = C\k~ %2 in order to get
E[f(Xx) = f(z.)) € Ok~ ).
For g € (%, 1) one can set A, = C\k~ 19 in order to obtain

E[f(Xy) = f(2.)] € O(K™'F).

Therefore, we exactly recover the rates of convergence to some minimum for SGD without
regularization derived in [59]. Recently, [52] improved the convergence rate for ¢ = % to



E[f(Xy) — f(x.)] € O(k~1/?1og(k)). It is an interesting open question, whether the convergence
rate of reg-SGD can be improved in this situation.

Finally, we derive almost sure convergence rates for regularized SGD. We highlight that[Theorem 2.4]
additionally gives almost sure convergence of reg-SGD to the minimum-norm solution for a specific
choice of schedules without additional assumptions on the rate of convergence for ||x.|| — ||zx]|-
Theorem 2.4 (Almost sure-rates for reg-SGD with polynomial schedules). Suppose that[Assump]
|tion I.]| and |Assumpti0n Z.2| are satisfied. Let C,,Cyx > 0, p € (0, %) and q € (%, 1—p).
Let (Xk)ken, be generated by @) with oy = Cok™% and Ny, = C\k™P. Then, it holds that
limy o0 || Xk — 24||x = 0 almost surely and for any 8 € (0,2q — 1)

(i) f(Xp) = f(x,) € O(k™™BP)) almost surely,
(ii) | Xk — 2rp,, |2 € Ok~ mnB=P1=4=P)) glmost surely.

For a sequence of step-sizes oy = Cok™7 with ¢ € (2,1) one can set \,, = C\k~'T4"¢ with
0 < e <1 — gto get almost surely

F(Xk) = f(a.) € O(k™HH%9),
which is the vanilla SGD rate of convergence to some minimum that has been recently derived in
(511.

Remark 2.5. In of the appendix we also provide a theorem on convergence rates for
deterministic reg-GD (3) with polynomial step-size and regularization schedules.

Summary: Incorporating carefully chosen vanishing Tikhonov regularization helps mitigate an
exploding optimization sequence (the process (X} )xen, is always bounded without further assump-
tions), ensures convergence to the minimum-norm solution, and achieves convergence rates in the
optimality gap comparable to those of plain vanilla SGD.

2.3 Refinements under Lojasiewicz condition

In this final result section, we refine the above results under stronger assumptions on f. We use ideas
that were recently used for continuous-time optimization schemes, see [56]. Let us assume f satisfies
the Lojasiewicz condition

(f(2) = f(2:))" S CIVS(@)llx forallz € f7H([f (), f(z) +7]). )

for some C,r > 0 and 7 € [0, 1). It then follows (and this is what we actually need) that there exist
Creg > 0 such that

2y — zu|l v < CregX®, X € (0,1], (10)

with £ = @ see [56]. We provide further discussion in|Appendix E} Note that (9) is sufficient to

guarantee , however, in the subsequent convergence rates we rely only on (T0). Now we use that
1Xk =l < 20X0 = 2x0 1% + 2llong, — 2l

so that we can bound the distance to the minimum-norm solution by (T0) and the statements derived

in[Theorem 2.3]and [Theorem 2.4

Regarding the convergence in L2, [Theorem 2.3 together with (T0) implies the following strong
convergence rates in L?:

Corollary 2.6 (Strong L? convergence rates). Suppose that the conditions of|Theorem 2.3|are satisfied
and assume that (10) is in place for some £ > 0. Then it holds that

E[”Xk - x*”?){} == O<k7 min(liqu,Q*Qp,pr))'

Thus, we get the optimal rate of convergence for p = and q = 1# which gives

1
4643
E[[| Xy, — 2.]|%] = O(k~759).

For almost sure convergence, [Theorem 2.4 together with (T0) implies strong a.s. convergence rates:



Corollary 2.7 (Strong a.s. convergence rates). Suppose that the conditions of are
satisfied and assume that (10) is in place for some & > 0. Then for all 3 € (0,2q — 1) it holds that

| X5 — 2.3 = O(k~™in(A=a=PB=P2P))  almost surely.

1

Let ¢ > 0 and choose 8 = 2¢ — 1 — €. Then, for the optimal values p = 53

and ¢ = % we get

[ Xk — 2|3 = (’)(k_fi&z%_s), almost surely.
In [Figure 2| we illustrate the convergence rate of || Xy — z.||% depending on the decay-rates p, ¢
of schedules v and ) in the situation where f satisfies a Polyak-fojasiewicz inequality, i.e. (@) is
satisfied with 7 = 7 and, thus, (T0) is satisfied with £ = 1. In|Appendix A.2|we provide a numerical
experiment studying the behavior of convergence when implementing reg-SGD for different choices
of o and .

min(l — ¢ — p,q — 2p,2€p) with { =1/4 min(l —q—p,8—p,2p) with £ =1/4, 8 =2¢—1

o (p=0.250, q=0.625) o (p=0.222, q=0.667) 01
0.09
0.08
0.07
0.06

0.05

03 0.03
0.02 02y 0.02
01f 0.01

0.4 0.6 08 1 0.2 0.4 0.6 08
P p

Figure 2: Optimal choices of p and g. Left: convergence rate for E[|| X}, — z.||%] in the situation of
Corollary 2.6| Right: almost sure convergence rate for || Xy — 2. |3 in the situation of|Corollary 2.7

under the Polyak-Lojasiewicz inequality.

3 Practical implications

In this section, we discuss the relevance and application of reg-SGD with fine-tuned step-size and
regularization schedules in the particular setting of linear inverse problems. We perform a concrete
experiment to confirm on image reconstruction of tomography images the strength of our theoretically
derived step-size and regularization schedules.

3.1 Why is reg-SGD important?

As a motivation, we consider a classical linear inverse problem posed in a Hilbert space [17, 31]].
Let X and ) be two (separable) Hilbert spaces, and let A : X — ) be a bounded linear operator.
Given the observation y € ) the task of the inverse problem is to reconstruct x € X such that
Ax = y. The reconstruction problem is in general ill-posed, since the solution Az = y is typically
non-unique. In particular, when A has a non-trivial null space, there exist infinitely many solutions.
Moreover, when A is a compact operator the generalized Moore-Penrose inverse A’ is unbounded.
As a consequence small perturbations in the data can lead to large variations in the reconstruction.
One popular approach to solving the inverse problem is to select a stable reconstruction based on the
minimum-norm solution

2, := arg min {||§:||X‘§c € argmin || Az — yHy} .
reX

Finding minimum-norm solutions is, as we also show in the present article, closely related to reg-
SGD. When the observation y is in the range of A, then the unique minimum-norm solution is given
by x, = Afy. In practice, the data space ) is often described as a function space of variables
s € D C R¥to R (e.g., in integral equations or tomography), where s may model a sensor location or
angle. Hence, the inversion can be formulated as a risk minimization problem involving data samples

yi = A[z°](si) + o6, €R, i=1,...,n,



generated by observations of some forward-mapped ground truth x° € X perturbed by noise €;. The
empirical objective can be formulated as

. 1 « 5
min f(2), f(z):= Z |Ala(si) = wi]”-
i

In our analysis we assume access to unbiased gradient estimators for noise-free data y; in the finite
data regime, or for noisy data in the infinite data regime (n — o0). When analyzing finite noisy
data, it is typically necessary to incorporate additional regularization, such as early stopping based
on Morozov’s discrepancy principle [4} 20, I58]]. In practical applications, first-order optimization
methods, and in particular the use of reg-SGD, is gaining popularity as an efficient approach for
solving large-scale inverse problems [30} |24]]. It would be interesting to explore whether our analysis
can be extended to more advanced variational regularization schemes on constrained or non-smooth
optimization problems [25].

In what follows, we present results from an experiment on a task of image reconstruction based on
the Radon transformation. This experiment demonstrates the relevance of carefully tuning decreasing
step-size and regularization schedules. Two additional experiments are provided in[Appendix A]that
highlight the performance of our theoretically derived optimal schedules.

3.2 Fine-tuned reg-SGD for X-ray tomography

In the context of X-ray tomography, the Radon transform models how a two-dimensional image
x(z1, 22) is mapped to its projection data Ry[x](-) via line integrals along rays oriented at various
angles 0 € [0, ), see e.g. [37] for details. These projections are obtained by integrating the image
along parallel lines, simulating the physical process of X-ray attenuation. Formally, the forward
Radon transform at angle 6 is defined as

f = Rolx](t) = /R:z:(t cos() — ssin(6), tsin(0) + s cos(6)) ds

where (21, z2) is the image to be reconstructed, ¢ € R denotes the location along the detector array
orthogonal to the projection direction direction 8. For numerical implementation, the Radon transform
is discretized over a grid of pixels and a finite set of lines and projection angles. The inverse problem
then consists of the reconstruction of an unknown image « from its noisy or incomplete measured
projection data Ry[z]. For instance, the Radon transform may model X-rays passing through an
object, and the reconstruction corresponds to inferring the internal structure of this object from these
measurements, similar to assembling a complete image from multiple shadow-like projections. We
formulate the reconstruction as the optimization problem

. Mo 2
mzm E §||R9,;[~T]*90@H :
i=1

We carried out an experiment, reconstructing an image from it’s Radon transform (see
solving the ill-posed optimization problem using SGD and reg-SGD with our optimal step-size
schedule and a more aggressive regularization schedule. All details of the implementation are
provided in The experiment demonstrates the strength of our fine-tuned step-size
and regularization schedules. While our optimal schedules (p = % q= %) yield fast convergence
to the minimum-norm solution, a more aggressive schedule (p = ¢ = %) stagnates at a suboptimal
level. More critically, vanilla SGD with theoretically optimal step-sizes even fails to produce feasible
reconstructions. To illustrate this, in we compare the reconstructed images from reg-SGD
with the optimal rates from our analysis, reg-SGD with more aggressive rates, vanilla SGD, and the
minimum-norm solution z,, which is computed via the Moore-Penrose pseudoinverse z, = Afy.
Additionally, we plot both the expected and a.s. optimality gap in as well as the L?- and
pathwise-error to the minimum-norm solution In this experiment, SGD shows faster
convergence in terms of the optimality gap, but ultimately fails to converge to the minimum-norm
solution.

4 Conclusion and future work

We analyzed convergence properties of SGD with decreasing Tikhonov regularization. For convex
optimization problems that may have infinitely many solutions, we showed that the regularization
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Figure 3: Left: base image. Middle: Radon transform. Right: minimum-norm solution z..
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Figure 4: Left: reconstruction using reg-SGD with our optimal schedules. Middle: reconstruction
using reg-SGD with more aggressive schedules. Right: reconstruction using vanilla SGD.
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Figure 5: Left: pathwise optimality gap f(Xj) — f(x.). Right: pathwise squared error to the
minimum-norm solution || X — x.||?. Each curve represents one of 10 independent runs, each of
length N = 5 - 105. The red shaded lines depict individual runs of SGD, while the green dash-dotted
and blue dashed shaded lines correspond to reg-SGD. The red solid line shows the average error
across runs for SGD, the green bold dash-dotted and blue dashed line shows the average for reg-SGD,
and the black dashed line indicates the theoretical convergence rate.

can always be chosen to guarantee convergence (almost surely and in L?) to the minimum-norm
solution. In fact, we provided guidance on explicit choices for polynomial step-size and regularization
schedules that ensure best (in the sense of our upper bounds) convergence rates. On the way we
revealed interesting mathematical insight into the effect of regularization. In contrast to plain
vanilla SGD, boundedness of the approximation sequence is always ensured. A number of concrete
applications was provided to show that our theoretical best schedules indeed are consistent with

experimental observations, specifically in the experiments of Since our analysis is
limited to the smooth convex setting without constraints, for future work it could be interesting to

* extend results beyond the convexity assumption on f, e.g. using gradient domination
properties or the tangential cone condition which is commonly employed in iterative
regularization methods for non-linear inverse problems [47],

* experiment with our suggested decreasing regularization in deep learning problems,

* use decreasing regularization schedules to better understand the relation of implicit and
explicit regularization present in SGD, and

* study other regularization variants in situations in which minimum-norm solutions are not
desirable (e.g. linear inverse problems with noisy data).
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction summarizes the theoretical findings in this paper;
all claims are proven.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work and possible future work are discussed in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Justification: Full proofs of all results are provided in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all information to reproduce the results of the numerical experiment
in

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code as zip-file.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The problem setup is explained in[Appendix Al

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are conducted on multiple repetitions and the pathwise
error is plotted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The numerical experiments can be run without specific computer resources.
The code was run on a local machine (Macbook M3 Pro 2023). The runtime of execution for
the experiments in were around 20 minutes, for the experiments in[Section 3.2]
around 3 hours, and for the experiments in[Appendix A.3]around 20 minutes.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We agree with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Omitted details and additional numerical experiments

In the following section, we give a detailed description of the implementation for our numerical
experiment conducted in Moreover, we provide two additional experiments.

A.1 Implementation details of the Radon transform

In the example of] we discretize the Radon transform using a fixed set of 32 equally spaced
projection angles 0; € [0,7),7=1,...,32 and use 100 parallel rays per angle. The unknown image
is defined on a 128 x 128 pixel grid and represented as a vector T € R? = R128x128 ' — 1282
Given any image = € R its discretized Radon transform is implemented as a matrix-vector product
Az, where A € RE*4 i the forward operator, and K = 32 x 100, corresponds to the total number
of measurements (i.e., the number of angle-ray combinations). Each row of A represents a discrete
line integral along one ray at a given projection angle. The objective function is then defined as

1
f@) =51z —gl?, zeR?,

where g = (gg, ;- - - , 9os,) € RE collects all projection measurements.

We implemented both SGD and reg-SGD by partitioning the forward operator A € R¥*4 into

blocks A; € R'99%4  each corresponding to a fixed projection angle 6;, i = 1,...,32. At each
iteration, the angle 6; is sampled uniformly at random, and the gradient of f is approximated
by Vfi(z) = A (A;x — gp,) € R? and additionally perturbed by independent noise following
a multivariate normal distribution with zero mean and covariance 0.52 - Id. For SGD we chose
the step-size schedule oy, = 20k~'/2. For reg-SGD we chose a, = 20k~2/3 and regularization
At = 0.01k~1/3. Moreover, we compare to reg-SGD with a;, = 20k~2/3 and regularization
A = 0.01k~2/3, i.e., reg-SGD with a too fast decay of regularization. We initialize all algorithms
for each repetition at zero.

A.2 A toy example

In this section we present a didactic toy example from [7], where the regularization error in terms of
lxx — x| x can be calculated exactly. Consider the objective function

f(a:l,xg) = %(.’L’l + To — 1)2

with unique minimum-norm solution z, = (1/2,1/2), see the plot in[Section 1.2} Note that there
exist infinitely many global minima of f. Incorporating Tikhonov regularization results in

Faz1,a2) = flar, z2) + é(m%+m§) with x) = ( 1 1 )

2 24+ X724 A
such that the residuals in the Euclidean distance of R? are bounded by
A A
e — ]l =

< .
V2(2+2) T 2v2
Therefore, equation (T0) is satisfied with & = 1.

Implementation details: We have implemented both vanilla SGD and reg-SGD by hand and initialized
both algorithms with same initial state X ~ N(0, 1) and perturbed the exact gradient V f in each
iteration by independent noise following a multivariate normal distribution with zero mean and
covariance 0.12 - Id. For SGD we chose the step-size schedule oy, = 0.1k~ /2, k € N. For reg-SGD
we chose o, = 0.1k77 and regularization A\, = k~P, where p = ﬁ, g = (1 + p)/2 when

considering the L? convergence rates and p = (6¢ + 3) ™!, ¢ = 2/3 when considering the almost

sure convergence rates see Corollary 2.6land (forollary 2. 71

The plots of Figures|[6|and[7]illustrate that reg-SGD converges to the minimum-norm solution both in
L? (Figure 6)) and almost surely (Figure 7), as indicated by the vanishing squared error. In contrast,
SGD does not converge to the minimum-norm solution, although it achieves convergence in the

expected (Figure 6) and pathwise optimality gap (Figure 7). This highlights the regularization effect
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Figure 6: Left: expected optimality gap E[f(X}) — f(z«)]. Right: L?-error to the minimum-norm
solution E[|| X — 2. ||%]. Each curve is computed over 100 independent runs of length N = 106. The
red line shows the average performance of SGD, the green line represents reg-SGD, and the black
dotted lines indicate the corresponding theoretical convergence rates from our theorems.
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Figure 7: Left: pathwise optimality gap f(Xx) — f(x.). Right: pathwise squared error to the
minimum-norm solution || X — z.|?. Each curve represents one of 10 independent runs, each of
length N = 106. The red shaded lines depict individual runs of SGD, while the green dash-dotted
shaded lines correspond to reg-SGD. The red solid line shows the average error across runs for SGD,
the green bold dash-dotted line shows the average for reg-SGD, and the black dashed line indicates
the theoretical convergence rate.

of reg-SGD in guiding the iterates toward the unique minimum-norm solution as also indicated in
Next, we compare different choices of (p, q) for reg-SGD. In particular, we run reg-SGD with
ap = O.qufl/2 and A\, = kP for the choices

(p,q) € {(0.111,0.667), (0,0.667), (0.67,0.5), (0.111,0.29) } .

Moreover, we increase the noise covariance to N (0,1d). The expected convergence behavior is

shown in while the resulting errors are displayed in As expected, we do not
observe convergence for the choices (0,0.667) and (0.67,0.5) as the regularization is not turned
off, respectively turned off too fast. We observe convergence both a.s. and in L? when choosing

min(l — g —p,q—2p,26p) with £ =1 min(l—qg—p,8—p,26p) with E =1, 8 =2¢—1

Figure 8: Convergence rate for E[|| X}, — z.]|3] in the situation of [Corollary 2.6| (left) and
almost sure convergence for | X} — z.||3 in the situation of |Corollary 2.7 in the consid-
ered setting of with ¢ = 1. Furthermore, we display the choices (p,q) €
{(0.111,0.667), (0, 0.667), (0.67,0.5), (0.111,0.29)} which are simulated and displayed in
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Figure 9: Left: pathwise optimality gap f(Xjx) — f(z«). Right: pathwise squared error to the
minimum-norm solution || X — z.||*>. Each curve represents one of 10 independent runs, each
of length N = 107. The shaded lines depict individual runs of reg-SGD. The solid lines show
the average errors for reg-SGD. The different colors correspond to various choices of (p,q) €
{(0.111,0.667), (0,0.667), (0.67,0.5), (0.111,0.29)}.

(0.111,0.667) as suggested by our theory. In contrast, when choosing (0.111, 0.29) our theoretical
results suggest that the step-size decay is too slow, which we observe in a high variance of the
deviation to the minimum-norm solution. In the final experiment, we examine the effect of the initial
value ar; > 0 in the step-size schedule. For SGD, we set a, = o k’1/2, while for reg-SGD we
fix \y = k= %! and use the step-size schedule oy, = a1k~%%7. We report both the pathwise
optimality gap and the pathwise squared error to the minimum-norm solution for SGD
and reg-SGD under varying initial step sizes ; € {0.01,0.1,1,2}.

F(Xe) — 1

10° T - - :

10715 F

————ay = 0.1
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ap =1
-—ay =2
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Figure 10: Left: pathwise optimality gap f(Xj) — f(x.). Right: pathwise squared error to the
minimum-norm solution || X — . ||?. Each curve represents one of 10 independent runs of SGD,
each of length N = 107. The shaded lines depict individual runs of SGD. The solid lines show the
average errors for SGD. The different colors correspond to various choices of a; € {0.01,0.1,1, 2}.

A.3 ODE based inverse problem.

In the following example, we consider a linear inverse problem arising from the one-dimensional
elliptic boundary value problem

d?p(s)
ds?

+p(8) :x(s), s € (Ovl)a
p(s) =0, se€{0,1}.

It consists of recovering the unknown function x € L°°(D) from discrete, noisefree observations
2 . .
y = Ax € RE where A = O o G~L. Here, G = —% + Id denotes the differential operator on

D(G) = H([0,1]) and O : H} (D) — R¥ denotes the discrete observation operator evaluating a
function p € H}([0,1]) at K = 64 equidistant observation points s, = k/K, k=1,..., K, ie.,

Y
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Figure 11: Left: pathwise optimality gap f(Xj) — f(z.). Right: pathwise squared error to the
minimum-norm solution || X — z.||?. Each curve represents one of 10 independent runs of reg-
SGD, each of length N = 107. The shaded lines depict individual runs of reg-SGD. The solid
lines show the average errors for reg-SGD. The different colors correspond to various choices of
ap € {0.01,0.1,1,2}.

Op(-) = (p(s1),...,p(sx))". The ground truth right-hand side ' used to generate the data is
simulated as a random function

100
zl(s) = Z g@- sin(ins), & ~ N(0,i7%).
i=1

Implementation details: We numerically approximate the solution operator G~! on a grid Ds C [0, 1]
with mesh size § = 278 and represent the unknown function as a vector 2 € R¢ with d = 2%. The
resulting discretized forward model is then given by a matrix A € R¥*? and the inverse problem
reduces to solving the least-squares problem:

min f(2), () = 54z~ yl?,

where y = (p(s1),...,p(sK)) € RE contains the discrete measurements associated with (TT)).

We implemented both SGD and reg-SGD by partitioning the forward operator A € R¥* into rows
A; € R™™? j =1,... K. Hence, A;x corresponds to the discretized ODE solution at location
s;. At each iteration, a batch of 16 locations (s;, , . .., S;,,) are sampled uniformly at random, and
the gradient of f is approximated by V f(x) = %6 Z;il AiTj (A;;x — y;;) € R? and additionally
perturbed by independent noise following a multivariate normal distribution with zero mean and

——SGD: f(Xy) — f*
—-—-1eg-SGD: f(X;)— f*
R SRV

........ L1/2

Figure 12: Left: pathwise optimality gap f(Xj) — f(x.). Right: pathwise squared error to the
minimum-norm solution || Xy — . ||?. Each curve represents one of 10 independent runs, each of
length N = 107. The red shaded lines depict individual runs of SGD, while the green dash-dotted
shaded lines correspond to reg-SGD. The red solid line shows the average error across runs for SGD,
the green bold dash-dotted line shows the average for reg-SGD, and the black dashed line indicates
the theoretical convergence rate.
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covariance 0.0012 - Id. For SGD we chose the step-size schedule oy, = 100k~ /2. For reg-SGD we
chose o, = 100k~2/3 and regularization \;, = 0.001%~ /3. We initialize both algorithms for each
repetition at zero.

In we compare the expected and pathwise optimality gap (left) as well as the L? and
pathwise error to the minimum-norm solution (right). While SGD shows fast convergence in terms of
the optimality gap, it again fails to converge to the minimum-norm solution. In contrast, reg-SGD
slows down the convergence in terms of the optimality gap, but safely reconstructs the minimum-
norm solution. In (left), we plot the reconstruction of the unknown right-hand side xt
resulting from the minimum-norm solution z, = ATy, and from the last iterates of SGD and reg-SGD.
Moreover, in (right) we plot the corresponding ODE solutions when solving (TT) with the
estimated right-hand side.

wﬁ‘” ly

\;

0 0.2 0.4 0.6 0.8 1
s s

Figure 13: Left: reconstruction of Pl using the minimum-norm solution z, = ATy, where AT is the
Moore-Penrose inverse of A, the last iterate of reg-SGD and of SGD. Right: corresponding ODE
solutions of (TT).

B Auxiliary results

In the following section, we provide a list of auxiliary results which are needed in the proofs of our
main results.

Lemma B.1. Suppose that f satisfies[Assumption 1.1| then the following statements hold true:

(i) For all \, X' > 0 it holds that

=N
In(xy) < far(ex) + 5 1% -

(ii) Forall X\ > X > 0 it holds that

A=N
0 < falma) = far () < 5 [EAE

(iii) For all X > 0 it holds that

F@) — () < (o) falea) + Gz

Proof. The first assertion is a direct consequence of f)(zx) < fa(zx) = f(zx) + 5|2y |3, since
x is the minimum of fy. The second assertion follows from f)(z) > fi (z) for all x € X and
lza |2 < ||z«]| x- For the third assertion we use (ii) with A’ — 0 together with f(z) < fi(x) for
allz € X. 0

Lemma B.2. Let f be L-smooth, then fy is L + A-smooth for any A > 0.

Proof. For arbitrary z,y € X we apply triangle inequality to deduce
V(@) = ViAWlx = [IVF(x) = Vi) + Mz —y)llx < Lz —yllx + Az —yllx.
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Note that by L-smoothness the descent condition holds, meaning that for any x,y € X we have
F(u) < 5@) + (VI @)y~ 2)a + 2z~ ylk. (12
The following lemma is similar to [7, Lemma 3]. For completeness we give a proof.
Lemma B.3. Under[Assumption 1.1|the following estimates are satisfied for all z € X and X > 0:
(i) f(z) = f(2) < fal@) = fal@n) + 3oz

(ii) |lx —za||% < M

Proof. (i): For arbitrary x € X we have
A
f(@) = f@e) = (@) = fale) + Slelz = ll2]%)
A
= @) = falen) + falen) = Al + Iz = ll2]%)
A 2
< fa(@) = falen) + 5
(ii): The second assertion follows from the A-strong convexity of f and V fy(x)) = 0. O

Lemma B4. Letp > 0and \;, = k%, k € N. Then for all k € N one has

p p
WS)\IC_)\I@+1SW

and

Aikl =1+3 *0(@

Proof. We define o(s) = 577, s € (0,00), and note that ¢’(s) = —ps~(P*1), By the mean value
theorem, for all k& € N there exists a ¢ € [k, k + 1] such that

p

A = Aks1 = @(k) —p(k+1) = =@ (c)(k+1 - k) = o+l

The first assertion follows by the monotonicity of s — 1/sPT1. For the second assertion, we use
Taylor’s approximation theorem at s = 1 to get

At - (525 o0 ) ol 1)

:1+%+0<%).

]
Lemma B.5 (Robbins-Siegmund theorem, see Theorem 1 in [62]). Let (Fi)ren be a filtration and

(Xk)ken, (Yi)ren, and (Zi)ken be (Fi)ken-adapted sequences of non-negative random variables.
Let (k) ken be a sequence of non-negative reals and assume that

(i) T2 (14 %) <
(ii) Z:ozl Zy, < oo, almost surely, and
(iii) E[Yiy1 | Fr] < (1 +9%)Yr — X + Zi, almost surely for all k € N.
Then Y po Xi, < o and (Yy;)gen converges almost surely.

We will use the following two versions of the Robbins-Siegmund theorem.
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Corollary B.6. Let (Fy)ren be a filtration, let (zx)ken be a summable sequence of non-negative
reals and let (Yy)ren be an (Fi)ren-adapted sequence that is uniformly bounded from below.
Assume that for all k € N

EVis1 | Fi] < Vi + 2 (13)

Then (Yy)ren converges almost surely.

P~r00f. Let C > 0 be a constant such that for all ¥ € N one has Y, > —C, alm0§t surely. Set
(Yi)ken = (Y 4+ C)ren and note that (T3) still holds when replacing (Y)ren by (Yi)ken. Thus,
the statement follows from [Lemma B.5|for the choice 7, = 0, X;; = 0 and (Zy)ken = (2k)ken. O

Corollary B.7. Let (Fy,)ren be a filtration and (Yy)ken, (Ak)ken, (Bg)ken and (Ck)ken be non-
negative and adapted processes satisfying almost surely that

iAk:oo , i3k<oo and i0k<oo.
k=1 k=1 k=1

Moreover, suppose that for all k € N one has almost surely that
E[Yit1 | Fi] < (1 4+ Cr — A)Yr + By

Then Yy, — 0 holds almost surely as k — oo.

Proof. The proof follows the same lines as the proof of Lemma A.2 in [72]. For completeness, we
provide the full details. Compared to[Cemma B.5] we have Y, = Yy, Xj, = AyYy, Z, = By, and
v, = Cf. Using[Cemma B.5| we obtain the existence of Y, which is almost surely finite, integrable
and satisfies Y,, — Y, almost surely. Additionally, we have that Z}ii1 Xk = DALY, < o0
implying that lim infj,_,~ Y3 = 0, where we have used the assumption > -, Ay = oo almost surely.
Since the limit inferior and limit coincide for converging sequences, the assertion follows by

Yo = lim Yy, =liminf Y, =0 almost surely .
k—o00 k—o00

C Finite-sum problems

In this section, we prove (6) from in the introduction. We consider the finite-sum
optimization problem

| X
min f(z) = N Zfz(x),

zER4

where, forall i = 1,..., N, f; : R? — R is convex and L;-smooth. The mini-batch estimator
with mini-batch size M € N is defined via g5, = 17 > ;cps V1,0 (Xi—1), for all & € N, where
(Ii k)i ken is a family of iid. random variables that are uniformly distributed on {1,..., N}. The
corresponding gradient noise is defined as Dy, = 77 > .0, (V f1, , (Xi—1) — Vf(Xk—1)). We show
that in the finite-sum situation the ABC-condition is satisfied. The following lemma

is a version of [34, Lemma 4.20] with improved constants.
Lemma C.1. The sequence (Dy)en satisfies for all k € N

02
E [|| D] | Froi] < %(f(XH) = f(z.)) + 2M*7

7 N N
where L = + 30" Liand 0% = & 3.0, ||V fi(z.)[%
Proof. Since, foralli € {1,..., N}, f; is convex and L;-smooth we get for all x,y € R? that

i)~ Fily) < (VFulw)x— )+ D~y
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For fixed y € R? let
pi(z) = fi(z) — fily) — (Vfily),z — y).

Due to convexity of f;, ¢, is non-negative. Moreover, V;(z) = V f;(x) — V f;(y) is L;-Lipschitz.

Thus, for z = = — V%@

Vi(z)

e Ly Tedalye

(x) = Vi),

= fiz) — fily) —(Vfi(y),z —y) —
which yields

IV fi(z) = VFi)I? < 2Li(fi(x) — fily) = (Vfily),z — ). (14)
Thus,

1 N
E [I1Del® | Fieet] = 537 2; IV £i(Xk1) = VF(Xen)|?

N
—LMZ IV £i(X0m) = Vi) = VF(Xnor) + Vi)

2

=27 ZHsz Xi—1) = Vfilz) = V(X—1)|?

Since +; vazl Vi i(Xk=1) — Vfi(zs) = Vf(Xi_1), we can use (T4) withz = Xj,_; andy = z,
to get

N N
S IV A )~ Vi) = VA DI < 1 S0 IVAK )~ Vi) P
=1

=1

N
_ 1
<2Lf(Xp-1) = flo) = Z Vi), Xpo1 — ) -

(VI(@4),Xp—1—2)=0

D Proofs of the main results

As a first step, we derive an iterative bound for the optimality gap of the regularized objective function

Ek: = f)\k+1 (Xk?) - f/\k+1(x)\k+1)7 k e NO' (15)

Given|Lemma B.3| this process (E})ren, serves as Lyapunov function for computing the convergence
rates stated in[Section 2|

Proposition D.1. Suppose that|Assumption 1.1|\and|Assumption 1.2)are fulfilled and and let (X},) ken,
be generated by @) with predictable (random) step-sizes and regularization parameters that are
uniformly bounded from above and such that (\i)ken is almost surely decreasing. For k € N denote
by Ay = {ay < %Ak} € Fi—_1. Then, forall k € N,

L+ A L+ A\
E[ly, Ex | Fr—1] < (1 — 2M\pag (1 - kak) + TkOéQA) 1a, Er—1

2
Ak — Ak+1 L+ X\
TR 2 B (4

Zlaal +C).
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Proof. Using[Assumption 1.2] the property f < f,, and the descent condition (T2) applied to the
(L 4+ Ag)-smooth function fy,, yields, for k € N,

L+ X
) IV A (Xl

E[la, fa, (Xk) [ Fe—1] < g, (ka(Xk—l) —ag (1 -

+ B2 TR Di | Fia))
<, (P () — o (1= B0 19, (I
+ B2 (A ()~ £(@)) +0))
< (P (Xamn) — o (1= B0 19, (I
L+)\k o2

2

where in the last step we also used (iii). Since each fy, is Ax-strongly convex, it satisfies
the Polyak-tL.ojasiewicz inequality

AU (Xi1) — fan(an) + A% 3+ ©)),

fanle) = fuuon) < 5 IVh @I ze . (16)
Thus,
L+ g
Bl fan (X0) | Fet] < Ty (o (K1) = 2000 (1= Z5 5 00) (Fn (Xie1) = fae(@a,)

L+ Mg o2
+ 2

A
FAU (Xet) = Paean)) + A5 e +C) ).
Next, we observe that

f>\k+1 (Xk) - f>\k+1 (aj)\k+1) = f>\k (Xk) - f>\k (xAk) + f>\k+1 (Xk) - f)\k- (Xk)
+ f>\k (‘fL‘Ak> - f>\k+1(x/\k+1)
< f>\k (Xk) - f>\k (I’Ak) + f>\k (:17)\&) - fAk+1(x>\k+1) ’

since fy,,, (Xr) — fa, (Xi) < 0. Combining the previous computations and using (i)
yields

L+)\k

E[14, By, | Fe1] < (1 - 2)\kak(1
L -l- Y

k)) 1, Eror + o (@a) = o (@)

A
0F (L, A(fr (Xio1) = fr(on,)) + A |k +C)

Ak — A1
A At 2,

< (]_ — 2\ (].
L + Ak

k))lAkEk—l +

a (]IAkAEk L+ A ||x*||X+C)

O

With the help of the energy function (E} )ren,. we can bound the optimality gap of the true objective
function, as well as the distance to the unique minimizer of the regularized objective function. For

this, we rephrase in the notation used in this section.
Lemma D.2. Suppose that is fulfilled and let (X},)ren, be generated by (@). Then
the following estimates are satisfied for all k € N:

(i) f(Xi) = f(z.) < B+ 252 a3,

28,
Ak41”

(ii) ”Xk - x)\k+1||.%( <
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D.1 General convergence result

First, we prove the general convergence results. We emphasize that no boundedness assumption is
imposed on the reg-SGD scheme. In fact, in the proof of we will show that Assump-
tions together with (I7) imply that sup;cy, | Xx||3 < oo almost surely. The proof uses ideas
from Theorem 4.1 in [56] and Lemma 3.1 in [28]]. Due to the discretization error, we introduce and
analyze a combined Lyapunov function (¢ + Ej)ken, where ¢ = || X — 2.3 and Ej, is defined
in (T3)), in order to prove a descent step.

D.1.1 Proof of Theorem 2.11

Let us recall the statements. We note that using a stopping time argument one can lift the boundedness
assumption on the step-sizes and regularization parameters. However, proving this generalization
requires a lot of heavy notation and technical arguments.

Theorem D.3 (Almost sure convergence). Suppose that|Assumption I.1|and|Assumption 1.2|are
fulfilled and let (X,)ken, be generated by (@) with predictable (random) step-sizes and regularization
parameters that are uniformly bounded from above. Moreover, we assume that almost surely (A)ken
is decreasing to O and

Zak)\k =00 , Zai < oo and Zak)\k(H:v*H%( — [lza, %) < oo (17)
keN keN keN

Then limy,_, oo Xy = x4 almost surely.

Proof. Fork € Ny let ), = || X} — z.||%. Then, forall k € N,
Elen | Fr1] < or-1 = 208 (V fr, (Xp—1), Xpo1 — Za)x + @Z |V, (X1 [3

2 Ak 2 (18)
+ aF (AU (K1) = fanlon) + A5 ol + C),
where we used [Assumption 1.2|and [Lemma B.1|(iii). Strong convexity of fy, yields
A
P (@) = e (Xi—1) + (Vi (Xg—1)s 26 — Xp—1)a + %“kal — 2%
A
> fr (@) + AV (Xim1), 20 = X)o7 1 Xemr — 23
Since, f(z.) < f(x,,) this implies
A A A
Sl = Flleadlk + (Vo (K1), 2e = Xema)a + X - 2k,
so that
Ak 2 2 Ak 2
(Vi Xi-1), X1 —zda 2 o (llonly = llzalle) + X1 —2all. (19

Combining (T8) and (19) gives
Elpr, | Fro1] < (1= ardr)on—1 + apde(llzlF — o 13) + @IV A (Xe-0) 1%
Ak
+ 0} (A (Xkr) = Sa(22,)) + AT 2l +C)
< (1= apd)pr—1 + a2 3 = o 1%)
A

0} ((A+2L 4+ 20) (Fa, (Xim1) = fo (@) + AT |5 + O),

where in the last step we used that analogously to (3)) one has
IVEr @)% < 2(L + M) (fa (@) = f(an,)  foralle € X
Now, recall that gives that for all K € N
L+ X L+ X
E[]lAkEk | ]:kfl] < (1 — 2\ (1 — 9 kOék> + TkaiA) ]lAkEkfl
L+X o

2 (A% e +©),

Ak — Akt
TR 2
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where B = f,,, (X&) = faer (@2,,,). Fix N € Nand for £ > N denote By, (V) = {o; < ﬁ :
i=N,...,k}. Then, forall k > N

Efs, () (0r + Ei) | Fioa] < 7,y (0r-1 + Bima) + ande(llz- % = lloc13)
Ak — Mgyl Ak L4y (20)
S et 0 (AT R+ 0) (14 757,

2
where
L+ \ L+
T = max (1 — apAg, 1 — 2/\kak(1 — _; kozk> + ( _; kA+A+2L+2)\k>ai)
and we have used that ¢y, _1 + Ex_1 > 0 and Bx_1(N) D Bx(N). On the event B;_; () we have
L+ A
Tk§1—akAk+( + ’“A+A+2L+2Ak)ai, @1
—— 2
::Ak
=:Ck

where by assumption », Cy < oo and ), Ar = oo almost surely. Now, we can apply

Corollary B.7|for the process (1p, (v) (@K + Ek))k>n to deduce that, on B (N) = (5 y B (),
one has ¢ — 0 almost surely as £ — oo. Since o, — 0 almost surely one has

IP’( U IB%OO(N)) =1

NeN
and, thus, the proof of the theorem is finished. O

D.1.2 Proof of[Theorem 2.2

We again reformulate the statement and provide the full proof of the general L?-convergence.

Theorem D.4 (L2-convergence). Suppose that|Assumption 1.1|and|Assumption 1.2|are fulfilled and
let (Xy)ken, be generated by @) with deterministic step-sizes and deterministic and decreasing
regularization parameters (\)ken. Moreover, assume that A\, — 0 and @), or, alternatively,

Z ak)\k = |, ap = O(/\k) and /\k — /\k—l = o(ak/\k). (22)
keN
Then limy_, o E[|| X}, — z.]|%] = 0.

Proof. First, we prove the theorem assuming that (I7) holds. By assumption, one has >, en Ak = 00,
ZkeN Cr < 00, ZkeN O‘i < oo, ZkeN O‘k)‘k(Hx*”?\f - ||'I)\kH.2X) < oo and 2211()% — Aig1) =
A1 < oo, where (Ay) and (C}) are defined in (ZI). Therefore, after taking expectations in (20), we
can apply [Corollary B.7|for the deterministic process (Y% )ren = (E[or + Ex])ren to deduce that
E[pr] — 0 and E[E)| — 0.

Let us now prove the statement under (22). Combining (20) with the fact that i, — 0, there exist
C7 > 0and N € N such that for all £k > N one has

Eler + B | Feo1] < (1= Craghe)(0r—1 + Ex1) + arde (25 = loa, 13)
S S e + o (A5 + ©) (14 =578,

Moreover, using that af = o(agAx), Ak — Ak+1 = o(aAg) and ||zy, [[x — ||z 2, foralle > 0
there exists an N € N such that for all k > N

+

Elpr + Er | Fr—1] < (1 = CragAe)(pr—1 + Ex_1) + eagg. (23)
Rewriting 23) gives
€
E[@k + Ey — c ‘fk—1:| <(1- Clak/\k)(%—1 + Ep_1 — a),

so that, taking expectation and using ), . axAx = 00, we get
limsup E[py, + Ei] — £ <0.
k— 00 Ch

The statement now follows from £ — 0. O
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D.2 Deterministic case: Convergence rate for reg-GD

Before discussing the convergence rates for reg-GD, we want to relate our analysis to the literature in
convex optimization. For this purpose we formulate our task of finding the minimum-norm solution
as constrained optimization problem in form of

1 2
in - .t eC .= i .
min - flzfy st @ arg min f)

This naturally relates to the task of solving general variational inclusions of form
0 € A(z) + Ne()

where A denotes a (maximal) monotone operator and No(z) = {v € X : (v,w—2z) <0 Yw e C}
is the normal cone of a closed convex set C at 2. In our setting the operator A(z) = V.3 [|z[% |.=o=
x is strongly monotone. Another important class of problems studied in this context are hierarchical
optimization problems of finding points in the set

S = argmin{g(z) | z € argmin f(z)}
for two convex functions g and f. This relates to our setting by choosing g(-) = || - [|%-

To solve these types of problems, one popular approach includes penalty based methods which are
described as differential inclusion

o(t) + A(z(t) + B()0f (x(t)) 3 0 (24)

where the penalty parameter 3(t) tends to infinity. As demonstrated in [9], when the monotone
operator is a sub-differential A = Og, then we may equivalently consider the differential inclusion

() + A(t)9g(xz(t)) + 0f(x(t)) 20

with vanishing parameter A(¢). In summary, analyses of the above differential inclusion can be
translated to the differential equation

Z(t) + Vf(z(t) + At)z(t) =0 (25)

describing the regularized steepest descent in continuous time. Note that reg-GD defined in (B)) can
be interpreted as explicit Euler discretization of (23).

D.2.1 Related work in the deterministic setting

The analysis of dynamical systems corresponding to with 0f = 0 dates back to the 1970s. For
instance, in [13]], it was shown that for A = 0g, where ¢ is lower semicontinuous, proper, and convex,
the trajectory converges weakly to a minimizer of g. More generally, for maximal monotone operators
A, the ergodic average of the trajectory converges weakly to a point in A=1({0}) [23].

The penalty-based differential inclusion (24) was introduced in [9]], where the authors established
weak ergodic convergence (and even strong convergence for strongly monotone operators A) under
the integrability condition

~ f(_P p
/0 B(t) [\Il (%) - 0'0(%)] dt < oo forall p € range(N¢),

where U* denotes the Fenchel conjugate of ¥, and o¢ is the support function of the set C'. This
condition is now commonly referred to as the Atfouch—Czarnecki condition.

Note that a similar condition arises in our analysis as the final requirement in (7). While our
condition can be characterized via the Lojasiewicz inequality, the Attouch—Czarnecki condition can
be characterized using a quadratic error bound of the form

¥(z) > Cdist(z,C)?,
which implies that

U*(p) —oc(p) < Il
— 20 )
see for instance [9} [11]] for more details. In this case, the Attouch—Czarnecki condition is guaranteed
under integrability conditions on the penalty function 3(-).
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In the discrete-time setting, the Attouch—Czarnecki condition translates into a summability condition
involving both the penalty sequence and the step-sizes. For instance, [60] introduces a coupled
gradient method with exterior penalization, leading to the condition

3 anba [@*(%) = Uc(ﬁ%)] <.

Here, the author considers the case where A = Vg and both V f and Vg are Lipschitz continuous,
establishing weak convergence under convexity of g, and strong convergence when g is strongly
convex. Other results in the discrete-time setting include splitting-based discretization schemes
[LO, [11L 27]] whose convergence analysis rely on some similar variant of the Attouch—Czarnecki
condition.

D.2.2 Convergence rate for reg-GD

In the following, we quantify the rate of convergence of reg-GD defined in (3). Our derived rates
are consistent with known results for the ODE (23). In particular, for sufficiently small step-sizes,
ie. ap < %, our results match those derived in [7, Theorem 5] when defining the numerical time

tr = Zle a; for k € N and noting that ¢, ~ %kl’q and )\, ~ C’A(%tk)’p/(lfq) for g < 1.
The proof follows the strategy of [7, Theorem 5].

Theorem D.5. Suppose that is satisfied. Let Co,Cyx > 0, p € (0,1] and q €
[0,1—p]. Let (Xy)ren, be generated by (3) for all k € N, (Ag)ren = (Crk™P)gen and (o )keny =
(Cok™9)ken such that the following conditions are satisfied:

Ca<% :q=0
20,\Cy >1—¢q cq=1—pandq+#0.
20\Co(1 —£82)>1 1g=0andp=1

Then it holds that
(i) B € O(k—1+9),
(ii) f(Xk) = f(zs) € O(k™P),
(iii) || X — Txapps |3 € O(k=1+9+P) for g € [0,1 — p), and
(iv) limg oo | Xk — zi]|x = 0 forq € [0,1 — p).

Proof. (i): |Proposition D.1{with D; = 0 guarantees that, for all k£ € Ny with o, < ﬁ one has

L+ A Ak — A
Ej < (1—2/\k&k(1— 5 kak)>Ek—1+%Hx*”2X-

Set3=1—gandfork € N deﬁneﬂ ¢ = EikP. By assumption on (av;)en one has oy, < 2 for
all but finitely many indices k. Therefore there exists an N € N such that for all &k > N

[ (26)

Pk = (12)\kak<1L+)\kO&k))(k i Ak = A1

9 _1)690k—1+ ok—B
Using[Lemma B.4] one has

A —r1 _ COxp,g_q_
- T
2k—5 - 2

and there exist £,&’ > 0 such that after possibly increasing N one has for all k > N

(1220 (1 Lﬂko"“)) k kﬂl)ﬁ < (12 (1 - L;Akak»(” wﬂ))

2 k

S 1 - El}‘k’ak’a
27

'Tn order to avoid confusion, we note that oy, is defined differently as in the proofs of [Theorem D.3|and
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where in the case ¢ = 1 — p and ¢ # 0 we have used that 2C\C,, > 1 — ¢ and in the case ¢ = 0 and
p = 1 we have used that 205,C,, (1 — £5~) > 1. Inserting these inequalities in (26},

NP 1|10, 1%
2

= (1= €'Cr\Cok ™ V)pp1 +

o < (1— &' Mpag)pr—1 + ——

Chp

a3,

which is equivalent to
o p
(o1 = g lleell) < (1= CaCak ™) (01 = i),

Therefore, by induction we get

k
(o1 = g lle-llx) < (o = 5 SC*|X)i_l;[Jrl(l—g’C)\Ca(i—&-l)—P—q)

k
p . oy k— 00
< ((pN— Wllx*Hx) exp(— Z 'O\Co(i+1)7P q) 30,
« i=N+1

where convergence holds since p + ¢ < 1. This implies

li =i EpkP < R
imsup gy = limsup Bjk” < o- /c |2 |-
(ii): Follows from (i) and[Cemma D.2] using thatp < 1 — ¢.
(iii): Follows from (i) and[Cemma D.2]
(iv): Follows from (iii) together with ;in% lzx — 4|2 = 0. O
—

In the spirit of we will derive optimal decay rates for the step-size and regularization
decay for the convergence to the minimum-norm solution under the additional assumption that there
exist Creg, & > 0 with

lxx — 2|2 < OregAg, A€ (0,1]

see also[Section 3| Using|Theorem D.5| one has

| X — 2.3 = Ok~ min(ma=p.2p)y (28)

Thus, we get the optimal rate of convergence for C,, < %, g=0andp = which gives

1
28+1°
2¢
1 X, — 2]} € Ok~ =51).
In|Figure 14} we illustrate the convergence rate on depending on the decay-rates p, q for § = 7

min(l — ¢ — p,2&p) with £ =1/4

e (p=0.667, g=0.000) 03

02 0.4 06 08 1
p

Figure 14: Convergence rate for || Xj — z.[|% 1n the situation of [Theorem D.5| m under the Polyak-
Lojasiewicz inequality, i.e. under (T0) with £ =
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D.3 L2-convergence rate for reg-SGD: Proof of[Theorem 2.3

In the following, we formulate in more details and provide a full prove.

Theorem D.6. Suppose that|Assumption 1.1\ and |Assumption 1.2 are satisfied. Let Cy,Cy > 0,
p€ (0,1 and q € (p,1 — p). Let (Xy)ren, be generated by @) with (ou,)wen = (Cok™)ken and
()\k)keN = (CA\k™P)ren- If ¢ = 1 — p we additionally assume that 2C,\C,, > 1 — q. Then, it holds
that limy_, o E[|| X — z.||3] = 0 and

(i) E[E}] € Ok~ min(-a.a-p)),
(i) E[f(Xk) — f(z.)] € O(k~ minpa=r)), and
(iii) B[|| Xy — 2r, 3] € O(k~ min0=a=pa=20)) for p € (0, %) and q € (2p,1 — p).

Proof. We will only prove the first claim (i). Due to[Theorem 2.2} one has E[|| X}, — z.||3] — 0 if
q > pand p + g < 1. The statements (ii)-(iii) follow analogously to the proof of [Theorem D.5| Let

B =min(l — q,q — p) and ¢}, = E[E}]k". By assumption on (ay)en one has ay, < 7 for all but

finitely many k£ € N so that, using |Proposition D.1}

L+ A L+ Mg o2 kB
(pk (]. 2)\kak (]. B Olk> + 9 A) 7(]{5 — 1)5@]@,1
Ak — A+l 9 L+ o, Ak
A A B 2 (a2 4 )

Since ¢ > p, p+ ¢ > 1, and 2C\C,, > min(p, 1 — 2p) in the case that ¢ = 1 — p one can show as in
that there exist ¢’ > 0 and N € N such that forall k > N

L+¢

C Ae' _
or < (1— e Npaw)gr_1 + *pkﬂ 1P|z, |12 + c§(7||x*||%(+c)k 2048 (29)

By choice of 3, one has p + ¢ = max(1 + p — 8,2q — ). Therefore, we can show analogously to

the proof of that

lim sup ¢y, = lim sup E[E}]k® < oo.

k—o00 k—o0

D.4 Almost sure convergence rate for reg-SGD: Proof of

In the following, we formulate [Theorem 2.4]in more details and provide a full prove. The proof of the
almost sure convergence rates requires a sophisticated application of the Robbins-Siegmund theorem,
For this, we use the variation of constants formula to separate the influence of the
stochastic noise term (Dy,);en and the deterministic change in the global minimum of the regularized
objective function (zy, — oz, )ken.

Theorem D.7. Suppose that|[Assumption 1.1\ and |Assumption 1.2] are satisfied. Let C,,Cy > 0,
p € (0, %) and q € (%, 1 — p|. Let (Xi)ken, be generated by @) with (ag)ren = (Coak™)ren
and (M\p)ren = (Oxk™P)gen. Let B € (0,2 — 1) and, if ¢ = 1 — p, we assume that 2C\C,, >
min(8,1 — q). Then,

(i) By € O(k=™nB81=9)) almost surely,
(i) f(Xk) — f(zy) € Ok~ ™n0BP)) glmost surely,
(iii) || Xk — Tap,, |2 € Ok~ ™inB=P1=a=P)) glmost surely, and

(iv) limg—o0 || X5 — @.]|x — 0 almost surely for p € (0, 1) and q € (21 - p).
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Proof. We will only prove property (i). Properties (ii)- (1V) follow analogously to the proof of

|Theorem D. Sl By lProposmon D. 1|, for all k € N with iy < 75— one has
L+ ) L+ X
E[Ek | fk,ﬂ < (1 — 2)\kak (1 — —; kOék) + i kOéQA)Ek,1
Ak — Ak+1 L+ Mg
¢ TR 2 B2 (A% %+ O).
2 2
For k € Ny we define
k k
Ai = N1y g L+ )\ L+X
U, = ; T”x*”)(j:zlll (1-2x05(1 - =50y ) + =5 a24)

and Ej, = Ej, — Uy,. Since ay, — 0, one has for all but finitely many k’s that

E(Ey | Fi-1] = E[E), — Uy, | F—1]

< (1-2ne(1- Lt ar) + Chs A’“oﬂA)Ek,l

TR 2 PR (A% 4 O) —
= (1 — 2\ (1 - L+ ak) + L+ AkoﬁA)Ek,l

2 2202 (A% o, 3+ C)

— (1= 220 (1- L J;A’“ ar) + L zA’“ 0FA) U — W\Ix*lli
= (1 — 2O (1 — Lt M ozk) + L+ aiA)EN'k,l

+ EE 202 (423 4 C).

Let 8 € (0,2 — 1), 8 = min(3,1 — ¢) and ¢}, = Ey kP, By assumption on (ay)ken one has
g < 2 for all but finitely many & € N so that

Elpk | Fr—1] < (1 — 2D\ O (1 —

L+)\k

L+ Mg L+ o kP
A)
7o) + 5ot (k

+

(A% o + )27
Since ¢ > p, p+ ¢ > 1, and 2C\C,, > J in the case that ¢ = 1 — p, one can show as in (27) that
there exist &/ > 0 and N € N such that for all k > N

L+¢
2

Ae’ ,
Elpw | Fir] € (1= & Aaw)pros + =5 C2 (Sollellf + €)%, (30)

for all sufficiently large k.

In order to apply the Robbins-Siegmund theorem, |Corollary B.6| we first prove that (Uk)ken €
O(k~?). Note that (¥, )ren is a deterministic sequence that satisfies for all k € N

L+ L+ Ak — A
\Ilk:(1—2)\kak(1— 5 kak>+ 5 k 2A)\I’k 1+%||x*||§(

Therefore, analogously to the proof in the deterministic setting, see and especially (27),
we get Uy, € O(k~ ] ),ie. (\Ilkkﬂ)keN is bounded and, subsequently, (¢ )xen is umformly bounded
from below. Now, since 3 < 2¢ — 1 we get > k=297 < co. Hence, we can applym
to get almost sure convergence of (¢k)ken and, thus, E, € Ok~ B ) almost surely. Together with
E,=E;— U, and U, = O(k~ ) this implies that Fy, € O(k~ ﬁ) almost surely. O
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E Properties of the Tikhonov regularization
In the following section, we want to describe scenarios in which (T0) is satisfied.

Linear inverse problems. Let A : X — ) be a compact linear operator between two Hilbert
spaces. For y € R(A) ® R(A)L, the minimum-norm solution to the problem

1
;%i}%f(m)’ flx) = 5”1495 -yl3

can be written in the form of the singular value decomposition (SVD) of A:

1
Ty = ATy = Z 0_7<y7un>yvna

neN "

where (0, Up, Un )nen is the SVD of A with singular values (0, )nen, an orthonormal basis (%, )nen

of R(A), and an orthonormal basis (v, )nen Of R(A*). Similarly, for any A > 0, the unique
minimizer of

) 1 R S
min fy(e),  fa(@) = 514z — gl + Slal%
can also be written using the SVD as:

On
Tx = Z m@vunhﬂ)n-

neN T

To obtain a convergence rate for ||z, — || x as A — 0, we need to bound

r(/\)'—i— on _ op(0Z+N)—od A
e, 024N 02(024+)) on(oZ 4N

However, when A is infinite-dimensional, the singular values o, are positive and satisfy
lim;,—, o0 0, = 0, meaning that r,, (A) remains unbounded. Therefore, without additional assumptions,
we can only deduce that

lim [l — @[l =0,
but without a specific rate in A. To impose a convergence rate, one typically assumes a so-called source
condition [31] common in the inverse problem literature, which imposes a smoothness assumption
on the (infinite-dimensional) minimum-norm solution .

In terms of the SVD, the source condition with parameter ~ > 0 can be described by the representation
of the minimum-norm solution

Aly =z, = Z oy (W, vp) xUn,
neN

for some bounded w € X. Using this representation together with the SVD expression for x, one
can derive the following bound for the error ||z, — z)||%:

C,\, v>2
. — 2 < v = 4

where C, is a constant depending on v > 0.

Lojasiewicz condition. Introduced in the 1960s by Lojasiewicz [54} 53], the Lojasiewicz inequality
(31) has become one of the standard assumptions for convergence of gradient based algorithms
[SSL1LL169L 1281 [72]]. It has the appeal that it is locally satisfied by every analytic objective function
[54]. In the machine learning community, 1)) with 7 = % is especially popular, since it allows linear
convergence of deterministic algorithms in non-convex situations [48| [73[]. We cite a recent result in
[56] that derives and upper bound for the distance of x and =, under validity of the Lojasiewicz
inequality. The result uses a connection between the Lojasiewicz inequality and a Holderian error

bound derived in [19].

Lemma E.1 (See Theorem 5 in [19] and 4.7 in [S6]). Let f : X — R be a differentiable, convex
function with arg min f # (.
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(i) Assume that there exist C’, r > 0and T € [0,1) such that

(f(@) = f(2.))” <CIVf(@)llax  forallz € f~ ([f(2.), f(ze) +7]). (3D

Then there exists a constant C' > 0 such that with p = ﬁ it holds that

fl@) = flz) =€ inf o —ally  forallz € f7([f(zs), flas) +7]). (32)

Z€arg min f
(ii) Assume that (32) holds. Then, there exist Cyeq, > 0 such that
lza — il < C,eg)\% Sforall X € [0,¢].

Finally, we note that in linear inverse problems a Lojasiewicz condition can be verified under the
source condition discussed before, see [35, Theorem 5.10].
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