
Federated Learning with Generative Content

Anonymous Author(s)
Affiliation
Address
email

Abstract

Federated learning (FL) enables leveraging distributed private data for model1

training in a collaborative and privacy-preserving way. However, the ubiquitous2

and notorious issue of data heterogeneity, where different data-owing clients hold3

heterogeneous datasets, significantly and fundamentally limits the performance of4

current FL methods. To address this issue, this paper explores a new direction, data-5

centric intervention, which directly enriches the clients’ local data with generative6

content, fundamentally reducing the level of data heterogeneity. Following this idea,7

we propose a novel framework, federated learning with generative content (FedGC).8

FedGC is a simple-yet-effective framework, where each client leverages diverse9

generative data from advanced generative models and original private data to train10

its local model, all guided by strategies summarized and learned from our four-11

aspect analysis. FedGC offers two significant advantages: (1) FedGC mitigates data12

heterogeneity as the diverse generative data prevents each client from over-fitting its13

client-specific private data; and (2) FedGC contributes to better privacy preservation14

as the introduced generative data dilutes the concentration of sensitive data in the15

enriched dataset, mitigating the risk of memorizing private information. Empirical16

studies on 9 baselines and 7 datasets demonstrate that FedGC consistently and17

significantly improves task performance and privacy preservation.18

1 Introduction19

Federated learning (FL) is a privacy-preserving machine learning paradigm that enables multiple20

clients to collaboratively train a shared global model without directly sharing their raw data [1, 2].21

With the world’s increasing emphasis on data ownership and privacy [3, 4, 5, 6], FL has attracted22

significant attention [7, 8, 9] and has been applied to diverse real-world fields such as natural language23

processing [10], healthcare [11], and finance [12].24

Despite multi-fold benefits of FL, data heterogeneity stands as a prominent and fundamental challenge25

in FL, significantly impacting FL’s overall performance [1, 13, 14]. This heterogeneity arises26

inherently due to the diverse environments and preferences during the collection of clients’ data.27

Consequently, it results in biased and divergent local model updates, posing difficulties in achieving a28

well-generalized aggregated global model capable of effectively addressing diverse data sources.29

To address this issue, a series of works have been proposed, primarily focusing on model-centric30

interventions that operate within the space of model parameters [15]. On the client side, they31

regularize the distance between local and global model [16, 17], introduce control variates to correct32

local gradients [18], align the feature space [19, 20]. On the server side, they introduce momentum to33

update global model [21, 13], adjust the process of aggregating local models [22, 23], modify model34

initialization [24, 25]. Despite these efforts, such model-centric interventions do not directly confront35

heterogeneous data distributions, offering only palliative solutions to its adverse impacts.36
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In this paper, we explore a new direction, data-centric intervention, which directly operates on the37

clients’ local data to fundamentally reduce the level of data heterogeneity. Specifically, given the38

fact that data heterogeneity roots from clients’ potentially specific uniform data, advanced generative39

models [26, 27, 28] offer unprecedented opportunities to enrich clients’ heterogeneous data with40

general and complementary generative content [29, 30]. This could facilitate more homogeneous41

local model updates and enhance the performance of the aggregated global model. Such data-42

centric intervention directly addresses the root cause: client-specific heterogeneous data, avoiding the43

problem in model-centric interventions where data heterogeneity will cause persistent harm to FL.44

Following this idea, we propose a novel framework, Federated Learning with Generative Content45

(FedGC). In FedGC, each client uses an off-the-shelf generative model conditioned on task-related46

prompts to generate diverse data, which is utilized to supplement the originally client-specific (the root47

of data heterogeneity) data. The supplemented dataset can subsequently facilitate local model training48

by encouraging the local model to learn general and diverse patterns rather than the potentially biased49

and specific patterns of its private data. Given the advancements in generative models across various50

modalities, the FedGC framework is inherently applicable to diverse modalities, such as image and51

text. Moreover, we position FedGC as a comprehensive and adaptable framework, setting the stage52

for thorough investigation in various dimensions. Specifically, we identify and meticulously examine53

four pivotal dimensions: budget allocation, prompt design, generation guidance, and training strategy,54

which correspond to consideration of generation efficiency, data diversity, data fidelity, and training55

effectiveness respectively (Figure 1). For each dimension, we explore three feasible solutions and56

rigorously evaluate their effectiveness in enhancing model performance, ultimately identifying the57

most effective solution. For example, for better data fidelity, we propose real-data-guidance which58

generates data conditioned on both client’s real data and task-related prompts.59

Overall, our data-centric solution FedGC offers two fundamental advantages. (1) FedGC can60

significantly mitigate data heterogeneity as the diverse generative data prevents each client from61

over-fitting its client-specific private data. (2) FedGC can contribute to better privacy preservation62

as the introduced generative data dilutes the concentration of sensitive data in the enriched dataset,63

which mitigates the risk of memorizing private information.64

To verify the effectiveness of FedGC and deepen understanding, we conduct a systematic empirical65

study from diverse perspectives, including compatibility with 9 FL baselines, 7 datasets, 2 modalities,66

and 3 data heterogeneity types. Extensive experiments reveal three significant findings: 1) our67

data-centric intervention that adds generative data is a more direct, concise, and effective solution68

to tackle data heterogeneity, than many model-centric interventions that may involve sophisticated69

designs; 2) FedGC can enhance both privacy preservation and performance of FL; 3) the generative70

data is not necessary to fully resemble real data yet can implicitly reduce data heterogeneity and71

model divergence that lead to enhanced performance.72

Our contributions are as follows:73

1. We propose FedGC, a new, simple yet effective data-centric FL framework that handles data74

heterogeneity from a new perspective: generating diverse data to supplement private real data.75

2. We summarize four critical and worth-exploring dimensions in FedGC, explore three feasible76

solutions for each, rigorously evaluate their effectiveness, and identify the most effective solution.77

3. We provide a systematic empirical study on FedGC framework, showing its effectiveness for78

enhancing both performance and privacy preservation under data heterogeneity and providing new79

insights for future works through several interesting experimental findings.80

2 Related Work81

Federated learning (FL) enables multiple clients to collaboratively train a global model without82

sharing raw data [1], which has attracted much attention due to its privacy-preserving property [8,83

2]. Data heterogeneity is one representative challenge in FL that significantly limits the FL’s84

performance [13, 31]. Addressing this, many methods are proposed to mitigate its adverse effects85

from the perspective of model-centric interventions. (1) On client-side intervention [32, 17, 33],86

FedProx [16] and SCAFFOLD [18] propose to conduct model-level correction such as regularizing87

ℓ2 distance between local and global model and introducing a control variate to correct gradient of88

local model. MOON [20] and FedDecorr [34] propose to regularize feature space. (2) On server-89
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side intervention [35, 14, 36], FedNova [22] and FedDisco [37] propose to modify aggregation90

weights to obtain better-aggregated model. Some explore the effects of model initialization [24, 25].91

FedAvgM [13] and FedOPT [21] introduce momentum to improve the aggregated global model.92

Unlike these model-centric methods that still fundamentally suffer from data heterogeneity, our93

FedGC framework focuses on data-centric improvement, which mitigates heterogeneity of the94

distributed real data by complementing it with diverse generative data. Besides, our FedGC framework95

is orthogonal to these methods, allowing seamless integration within our framework.96

Generative models have demonstrated remarkable performance across multiple domains such as large97

language models [38, 27, 39] for language generation and diffusion models [40, 26, 41] for image98

generation. Though these models can generate high-quality data for general cases, the generated data99

is not sufficient to train a well-perform model due to its incapability of representing real data [42],100

especially for uncommon cases such as medical tasks [43, 44]. Recently, [45] shows the importance101

of data diversity for image classification tasks. Some recent works explore the effectiveness of102

generative models in pre-training in FL [46, 47]. In this paper, we systematically explore the potential103

of using generative models to directly assist FL on private downstream tasks (both image and text).104

Based on our FedGC, we verify that despite failing to fully represent real data, generated data can105

still contribute to improving the performance of FL under heterogeneous private data.106

3 Federated Learning with Generative Content107

In this section, we introduce our proposed framework FedGC, which leverages generative content to108

tackle the issue of data heterogeneity in FL. Based on FedGC, we explore four aspects to better study109

the effects of generative content in FL and explore three solutions for each aspect.110

3.1 FedGC Framework Overview111

Our FedGC follows the standard FedAvg [1] framework, encompassing of four iterative phases: global112

model broadcasting, local model training, local model uploading, and global model aggregation.113

Our goal is to generate diverse data to supplement private data to facilitate local model training.114

Though the data generation can be handled by either the server or the client (also see Appendix E),115

we focus on the latter considering communication cost [2] and flexibility, which avoids additional116

communication cost required for server-to-client transmitting generative data, and enables using the117

local data as prior to generate more task-specific data. Thus, we focus on local model training, which118

is decomposed into: data generation and local model training. Specifically, in FedGC, we 1) design119

to generate diverse data, 2) merge the generative and private dataset, and 3) train the local model,120

where the first two are required for only once; see Figure 1 for the overview. Note that FedGC is121

versatile across modalities, while here we focus on two most common modalities: image and text.122

3.2 Data Generation in FedGC123

On the designs for data generation in FedGC framework, we consider the following criteria:124

generation efficiency, data diversity, and data fidelity. Following the criteria, we explore three cru-125

cial aspects, including budget allocation, prompt design, and generation guidance, and propose126

three representative solutions as candidates for each aspect. Without loss of generality, we use the127

text-guided latent diffusion model [26] to generate images based on prompts for image task, and an128

LLM [38] to generate texts based on prompts for text task.129

Budget allocation for efficiency. Though, (1) the process of data generation is just one-shot and130

(2) FedGC does not compromise on the two first-order concerns in FL: communication cost and131

privacy [2], it still costs some computation budget in exchange for algorithm utility [48]. Thus,132

it is essential to design efficient strategies to allocate the generation budget (i.e., the total number133

of generative samples, denoted as M ) to each client and label. To achieve this, we design three134

allocation strategies. (1) The equal allocation strategy allocates the budget equally to each client135

and each category, which is the simplest and most general allocation strategy. That is, each client136

can generate M
KC data samples for each category. (2) Inverse allocation strategy allocates the budget137

inversely to each client according to its number of data samples. Specifically, each client k can138

generate M ·(Nmax−Nk)
C·

∑
i(Nmax−Ni)

samples for each category, where Nmax denotes the maximum number in139
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Figure 1: Overview of the designs of FedGC on client side. Above, we summarize four crucial
aspects that are worth exploring and propose three solutions for each aspect. Below is the pipeline of
local training, where each client first generates data based on the generation recipe, then merges the
generative and private dataset, and finally trains the local model based on the training recipe.

{Ni}i. (3) Water-filling-based: each client can generate M
K samples in total, and apply water filling140

algorithm to allocate samples to each category [49].141

Prompt design for diversity. Data diversity plays a key role in learning a generalized model in142

many domains such as image [50] and text [51]. To increase the diversity, it is essential to design143

appropriate prompts since they directly guide the process of generation. For image task, we consider144

three diversity levels. (1) Single prompt, where we use “a photo of {class}” [52]. (2) Multiple145

prompts, where we consider diverse formats such as “{class}”. (3) LLM-based diversified prompts,146

where we instruct an LLM such as ChatGPT to diversify the prompts. For text generation, we only147

design one prompt since advanced LLMs are sufficient to generate diverse content.148

Generation guidance for diversity and fidelity. Finally, we feed the prompts to the generative149

models for generation. Besides designing prompts, we randomly set the guidance scale for diffusion150

models [26] (or non-zero temperature for LLMs) to enhance the data diversity.151

(Prompt-Only Guidance) However, data diversity may not be sufficient to ensure improving model152

training, while data fidelity is also a critical factor. For cases where the domain gap between the153

generative and real data is too large, the benefits of increasing diversity may be outweighed by the154

negative effects of the domain gap, leading to degraded performance [42].155

(Real-Data Guidance) To alleviate this issue, we propose a new real-data-guided generation approach,156

which conditions data generation on both real data and prompts. For image task, unlike the original157

text-guided generation that starts from a random Gaussian noise at latent space z1T [26], we propose158

to inject information of real data into the starting noise. Specifically, we first use the auto-encoder159

to encode the real image x to latent representation z, then add some Gaussian variation to obtain160

a new z2T , which substitutes z1T as the starting point; see illustration in Figure 8. This enriched161

latent representation, infused with real data insights, enables the generative model to produce outputs162

closely resembling real data, optimizing the trade-off between diversity and fidelity. For text task, see163

illustration in Figure 9 using an off-the-shelf large language models (LLMs), such as Llama2-70B-164

Chat [39] and ChatGPT. Please see more detailed illustrations in Appendix A.165
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Table 1: Experiments on two heterogeneity types, four datasets, two heterogeneity levels, and
nine baselines. Test accuracy (%) averaged over three trials is reported. FedGC consistently and
significantly brings performance gain over baselines across diverse settings.

Baseline
H-Type Label Level Feature Level Avg.
Dataset CIFAR-10 EuroSAT PACS VLCS Acc.
H-Level High Low High Low High Low High Low ∆

Vanilla 61.25 75.88 53.82 75.59 38.67 49.13 48.00 44.74 +16.41FedAvg + FedGC 74.50 79.73 74.83 84.46 71.89 75.64 56.51 60.82

Vanilla 60.83 74.40 50.91 72.80 25.71 44.42 49.00 48.05 +18.39FedAvgM + FedGC 73.84 78.90 73.48 84.87 72.14 73.29 56.46 60.27

Vanilla 64.02 75.62 59.61 73.20 36.37 48.22 50.60 46.89 +15.54FedProx + FedGC 74.36 79.25 73.04 84.76 72.94 75.48 58.42 60.62

Vanilla 63.98 78.79 52.72 76.80 34.62 51.98 50.50 51.05 +14.36SCAFFOLD + FedGC 73.96 80.29 69.48 81.04 75.19 76.14 58.27 60.97

Vanilla 63.40 75.43 52.67 70.02 32.87 51.23 44.69 45.74 +17.80MOON + FedGC 74.02 79.82 73.69 86.06 72.24 74.89 57.52 60.22

Vanilla 64.14 76.19 63.74 69.57 34.92 41.77 44.89 46.39 +15.67FedDecorr + FedGC 73.94 78.16 69.93 81.30 71.19 74.59 57.01 60.87

Vanilla 56.14 80.50 67.09 83.67 38.72 55.38 52.76 52.66 +13.38FedDyn + FedGC 73.47 83.42 71.96 87.02 75.34 79.04 61.77 61.92

Vanilla 56.96 74.28 54.13 68.59 37.72 46.22 48.35 45.74 +18.37FedSAM + FedGC 73.73 78.45 71.43 84.06 74.09 76.49 59.42 61.27

Vanilla 61.06 75.98 56.24 70.46 35.57 48.32 51.35 45.79 +16.21FedDisco + FedGC 74.65 80.01 69.15 84.22 73.34 75.09 57.62 60.37

(Mixed Guidance) Furthermore, given that certain clients may lack data samples from specific166

categories, we propose a mixed guidance strategy. Specifically, for a given budget Nk,c for client k167

in category c, (1) if client k possesses samples from category c, it generates Nk,c/2 samples using168

text-only guidance and Nk,c/2 samples with real-data guidance; (2) in the absence of samples for169

client k from category c, it generates all the Nk,c samples using text-only guidance. This approach170

effectively addresses category omissions and refines the trade-off between diversity and fidelity.171

3.3 Local Model Training in FedGC172

By choosing generation recipe from the three aspects above, we can generate data using the generative173

model to assist local model training. Given the generative dataset Dg and the private dataset Dp,174

there could be diverse training strategies such as sequential training (optimizing on the two datasets175

sequentially) and mixed training (optimizing on the mixed dataset).176

We find that the mixed training strategy is the most effective despite its simplicity (Table 6). Thus,177

we directly merge the two datasets as the final new training dataset Dm, based on which we train the178

local model with the same training manner protocol as other FL methods. Specifically, at the t-th179

FL communication round, each client k first receives the global model θt and re-initializes its local180

model with θt. Then, each client conducts model training based on the merged dataset Dm for several181

optimization steps. Finally, each client k obtains its local model θt
k, which is subsequently sent to the182

server for model aggregation (θt+1 :=
∑

k pkθ
t
k, where pk = Nk/

∑
i Ni is the relative dataset size).183

Note that this process is orthogonal to local training algorithm, which can be SGD-based training [1],184

proximity-based training [16] or control-variate-based training [18].185

4 Experiments186

Experimental setups. Our experiments focus on two most common modalities: image and text.187

For image tasks, we consider two types of data heterogeneity, including label heterogeneity and188
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(a) CIFAR-10k (b) CIFAR-50k

Figure 2: FedGC achieves both better task accu-
racy and privacy preservation (lower attack accu-
racy). More generative data contributes to higher
task accuracy and better privacy preservation.

(a) CIFAR-10k-DP (b) Sentiment140-3k-DP

Figure 3: FedGC achieves both better task accu-
racy and privacy preservation (lower attack ac-
curacy). FedGC with differential privacy (DP)
achieves good privacy-utility trade-off.

feature heterogeneity. For label heterogeneity, we consider a natural image dataset CIFAR-10 [53],189

a satellite image dataset EuroSAT [54], and a medical image dataset HAM10000 [55], where we190

allocate the original training dataset to clients based on the frequently used strategy in FL: Dirichlet191

distribution [56]. The parameter β controls the level of heterogeneity, where we denote 0.05 as192

high and 0.1 as low. For feature heterogeneity, we consider PACS [57] and VLCS [58], where we193

allocate training dataset of each domain to several clients according to Dirichlet distribution. This194

captures both the properties of feature- and label-level heterogeneity. For text datasets, we consider195

Sentiment140 from LEAF benchmark [59] (naturally allocated) and Yahoo! Answers [60] (split by196

Dirichlet distribution). We use ResNet-20 [61] for image task and LSTM for text task [59]. We set197

the number of communication rounds as 100. See more details in Section C.198

4.1 Main Results199

FedGC significantly improves the FL performance under data heterogeneity. In Table 1, we200

show experimental results on image modality on two heterogeneity types (label-level and feature-201

level heterogeneity), two datasets for each type (CIFAR-10, EuroSAT, PACS, and VLCS), and two202

heterogeneity levels for each dataset. From the table, we see that (1) incorporating baseline in our203

FedGC framework can consistently and significantly improve the performance of baseline across204

diverse settings. (2) FedGC is extremely helpful when the heterogeneity level is relatively high,205

convincingly supporting our motivation of introducing generative data to mitigate the effects of data206

heterogeneity. Specifically, based on FedAvg, FedGC brings 21.01 absolute accuracy improvement207

under a high heterogeneity level on EuroSAT and 12.26 absolute accuracy improvement on average.208

FedGC is compatible with existing FL methods. From Table 1, we also see that FedGC consistently209

and significantly brings performance gain across 6 different baselines, including FedAvg, FedAvgM,210

FedProx, SCAFFOLD, MOON, and FedDecorr. For example, FedGC averagely brings 12.68 absolute211

accuracy improvement to SCAFFOLD [18]. This demonstrates the compatibility and universality of212

our proposed FedGC framework.213

FedGC achieves better performance and privacy preservation at the same time. Figure 2 explores214

the effectiveness of different amounts of generative data, where we use image dataset CIFAR-10215

as examples. Figure 3 explores differential privacy (DP) technique, where we consider image216

dataset CIFAR-10 and text dataset Sentiment140. To measure privacy preservation, we use a simple217

membership inference attack method based on loss evaluation [62, 63] to evaluate attack accuracy; see218

more details in Appendix F.1. Lower attack accuracy indicates better privacy preservation. From the219

figures, we clearly see that our FedGC framework can not only improve the performance under data220

heterogeneity, but also enhance privacy preservation. This observation accords with our expectation221

that the generative data can dilute the concentration of real sensitive data, which mitigates the risk of222

memorizing private information. This explanation can be further verified by Figure 2 since (1) as223

the number of generated samples increases, FedGC achieves lower attack accuracy (better privacy224

preservation). (2) When the number of real training samples is smaller, i.e., from 50k (Figure 2(b))225

to 10k (Figure 2(a)), we see a much larger reduction in attack accuracy and improvement in task226

accuracy, since the ratio of private data samples in the whole dataset is lowered. We also compare227

FedAvg, FedGC, FedAvg with differential privacy (FedAvg-DP), and FedGC with differential privacy228
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Table 2: Increasing number of generated samples makes FedAvg [1] prevail.
No. Gen. 0 100 200 500 1000 2000 5000 10000 20000 50000

FedAvg 61.25 63.67 66.21 67.13 66.98 66.28 71.65 74.50 76.93 76.39
FedProx 64.02 66.47 67.40 67.05 68.55 69.19 72.10 74.36 76.81 76.73

SCAFFOLD 63.98 69.05 71.33 71.55 71.33 70.04 70.34 73.96 74.88 73.98

Table 3: Different budget allocation strate-
gies of FedGC applied on baselines. Equal
allocation is preferred for effectiveness and
simplicity.

Baseline Equal Inverse Water

FedAvg 74.50 68.10 71.26
FedProx 74.36 68.51 72.23

SCAFFOLD 73.96 73.94 74.43

Table 4: Different prompt designs of FedGC ap-
plied on baselines. The design of multiple prompt
formats is preferred for its effectiveness, diversity,
and simplicity.

Baseline No-GC Single Multiple LLM

FedAvg 27.06 50.53 54.08 41.32
FedProx 29.12 50.48 53.03 40.82

SCAFFOLD 28.56 54.13 58.53 45.87

(FedGC-DP) regarding the trade-off between performance and privacy preservation in Figure 3.229

From the figure, we clearly see that FedAvg-DP enhances privacy preservation while dramatically230

compromising on task performance compared with FedAvg. In contrast, FedGC can enhance both231

metrics compared with FedAvg; while FedGC-DP outperforms FedAvg-DP with a clear gap in both232

metrics. See experiments with deep gradient leakage [64] in Appendix F.2.233

(a) Sentiment140 (b) Yahoo! Answers

Figure 4: Results on two text datasets. Our
proposed FedGC consistently and signifi-
cantly brings improvement.

FedGC is general across modalities. In Figure 4, we234

report the performance of FedGC in text modality. We235

consider two datasets, Sentiment140 and Yahoo! An-236

swers, consisting of 1000 and 100 clients, respectively.237

Here, we use ChatGPT as the generative model. Note238

that we use ChatGPT as an example just for the simplic-239

ity of our implementation and without loss of generality240

we can use other open-source LLMs locally. We apply241

equal budget allocation and single prompt. For real-242

data-guidance, we take advantage of LLM’s few-shot243

learning ability by giving several real examples in the244

context [65]. From the figure, we see that FedGC con-245

sistently and significantly brings performance gain to all baselines. This experiment verifies that our246

proposed FedGC framework has the potential to generalize well to diverse modalities.247

Applicability to diverse scenarios. We also (1) consider scenarios where the server handles data248

generation in Appendix E; (2) consider scenarios where only some clients are capable of generating249

data in Appendix I; (3) experiment under different heterogeneity levels in Appendix J; (4) experiment250

on partial client participation scenarios in Appendix K.251

4.2 Design Analysis252

This section analyzes the effectiveness of different designs in FedGC.253

Generating more data could make FedAvg prevail. In Table 2, we explore the effects of number254

of generated samples on FL’s performance, where 0 denotes vanilla FL baseline. Experiments are255

conducted on CIFAR-10 (β = 0.05). From the table, we have an interesting finding: (1) when the256

number of generated samples is relatively small (0∼2000), FedGC can enlarge the gap between257

standard FedAvg and the method (SCAFFOLD) that is specifically designed for addressing data258

heterogeneity; (2) however, as the number continues to grow, the situation is reversed that the basic259

FL method FedAvg prevails. This finding suggests that apart from carefully designing FL algorithm,260

it is also a promising direction to explore the greater potential from the perspective of generative data.261

Equal allocation is a preferred allocation strategy for its effectiveness and simplicity. Data262

generation inevitably introduces computation overhead, therefore it is meaningful to explore an263

efficient allocation strategy given fixed generation budget. In Table 3, we compare different budget264
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Table 5: Different generation guidance of
FedGC applied on baselines on medical
dataset. Mixed guidance is the best.

Baseline T-G TR-G Mixed
FedAvg 51.91 42.38 56.67
FedProx 51.43 44.76 56.19

SCAFFOLD 56.67 49.52 58.57

Table 6: Different training strategies of FedGC applied
on baselines. Generated data can only exhibit its efficacy
when combined with real data. Mix training is the best.

Baseline Pri. Gen. P2G G2P Mixed
FedAvg 60.77 41.85 67.06 67.11 73.99
FedProx 63.62 40.93 67.23 69.04 73.69

SCAFFOLD 65.00 43.45 66.73 69.50 75.79

allocation strategies on CIFAR-10, including equal allocation, inverse allocation, and water-filling-265

based allocation. Experiments show that equal allocation contributes to better performance for both266

FedAvg and FedProx, and comparable performance compared with water-filling-based allocation for267

SCAFFOLD. Considering effectiveness and simplicity, we prefer equal allocation strategy.268

Multiple prompts lead to better performance, while LLM-based diversification might be269

unnecessary. Prompts play an important role in the diversity and quality of generated data. It is270

thus essential to explore different prompt designs. In Table 4, we explore multiple prompt designs271

on PACS dataset, including using one single prompt format, multiple prompt formats and prompts272

generated by another LLM. PACS contains significant label-level and feature-level variations, making273

it an apt choice for this exploration. We compare baseline without FedGC, FedGC with single,274

multiple, and LLM-based prompts. From the table, (1) we see that FedGC incorporated with all the275

prompt designs improves the performance of baselines (see improvement over the No-GC column).276

(2) We see that multiple prompts consistently and significantly perform better, while LLM-based277

prompts perform ordinarily. This may result from the fact that the scene descriptions from the LLM278

are usually complicated, causing multifaceted patterns in one sample, thereby complicating model279

training. Overall, we prefer using multiple prompts for its effectiveness, diversity, and simplicity.280

Mixed guidance contributes to higher performance for rare tasks. Pure text-driven prompts281

cannot control the generative models to generate data that resembles real data; therefore, it would be282

essential to consider various generation guidances. This is especially critical for rare tasks, such as283

medical analysis, where the off-the-shelf generative models might fail to generate photorealistic data284

given simple textual guidance. In Table 5, we compare different generation guidance designs on a285

medical dataset HAM10000 [55]. The reason for choosing this dataset is that the diffusion model [26]286

fails to correctly understand medical prompts [66], which helps support our claim more convincingly.287

We consider three designs, including text-guided generation (T-G), our proposed data generation with288

guidance of text and real data (TR-G), and the mixed usage of T-G and TR-G. These experiments289

convey three interesting findings: (1) even though the diffusion model fails to generate data that290

visually agrees with real data, the generated data still contributes to enhancing the performance of291

FL (see improvement from Pri. to T-G). (2) TR-G itself fails to bring performance gain, which may292

result from the limited diversity and incapability to generate for missing classes. (3) Mixing these293

two strategies contributes to consistently and significantly better performance.294

Mixed training is the most effective training strategy. In Table 6, we compare different training295

strategies on CIFAR-10, including training only on the private dataset (Pri.), training only on the296

generative dataset (Gen.), sequential training with private dataset first (P2G), sequential training297

with generative dataset first (G2P), and mixed training. Experiments show that 1) generative data298

itself fails to ensure training, indicating that there is a gap between generative data and real private299

data. 2) However, when using generative data together with real private data, we see consistent300

performance gain compared to training on private data. This indicates that despite the incapability of301

fully representing real data, the generative data still contributes to improving training by increasing302

diversity. 3) Mixed training consistently and significantly achieves better performance.303

4.3 Mechanism Analysis304

This section analyzes how FedGC contributes to enhanced performance.305

FedGC reduces data heterogeneity. In Figure 5, we explore the effects of FedGC on data hetero-306

geneity from the perspective of data. To measure the data heterogeneity, we first extract the features307

of data for each client using a pre-trained ResNet-18 [61], average the features, and compute the308
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Figure 5: FedGC increases simi-
larity between local datasets.

Figure 6: FedGC better pre-
serves local models’ generality.

Figure 7: FedGC implicitly re-
duces model divergence.

pair-wise cosine similarity among the averaged features of all clients. Figure 5 shows the pair-wise309

similarity using Client 9 as reference. From the figure, we see that FedGC can significantly increase310

the similarity between datasets of two clients, verifying that FedGC can contribute to mitigating data311

heterogeneity. We also report ℓ2 distance as metric and results on PACS in Appendix H.312

FedGC alleviates over-fitting local data distribution. In Figure 6, we compare the averaged test313

accuracy of local models on the global test dataset. From the figure, we can see a clear accuracy314

gap between our FedGC and the baseline FedAvg. (1) This indicates that our proposed FedGC can315

encourage each client to preserve the capability on the global general task, rather than overly fit the316

local specific task (local data distribution). (2) This also helps explain why the generative data can317

bring performance gain even though they may fail to resemble real data.318

FedGC implicitly reduces model divergence. In Figure 7, we visualize the local model divergence319

along with the round increases. Specifically, at each round, we compute the ℓ2 difference between320

each local model and the aggregated global model [16] and report the averaged difference. From321

the figure, we see that FedGC consistently and significantly reduces the model divergence of local322

models under severe heterogeneity level (β = 0.05). This result well supports the claim that FedGC323

is a pleasant FL framework for tackling the issue of data heterogeneity since it has been shown that324

data heterogeneity leads to larger model divergence and thus mediocre performance empirically [16]325

and theoretically [15, 8].326

Generated data is diverse, but may not be similar to real data. In Figure 11, we visualize327

the real data and generated data on EuroSAT [54]. We notice that the generated data samples do328

not always closely We notice that the generated data samples do not always closely resemble real329

images, indicating the gap between generative data and real private data (at least visually). Yet, their330

inclusion still improves the FL’s performance under data heterogeneity, which may result from two331

perspectives. (1) The generative data might act as a form of data augmentation, which potentially332

introduces variations that are not covered by the original dataset. (2) The generative data diversify the333

dataset, which serves as a form of implicit regularization, preventing the model from over-fitting to334

the potentially biased private local data. Please refer to more details and discussions in Appendix G.335

We also provide an initial exploration of filtering mechanism in Appendix L.336

5 Conclusions337

This paper focuses on the notorious issue of data heterogeneity in FL. We propose a new data-centric338

FL framework termed FedGC, which leverages diverse generative data to promote FL under heteroge-339

neous private data. FedGC is a comprehensive and adaptable framework, where we investigate four340

pivotal dimensions adn conclude several appropriate designs that contribute to better performance of341

FedGC. We conduct extensive experiments with 9 baselines, 7 datasets, and 2 modalities, showing342

that our FedGC can consistently and significantly improves the task performance and privacy preser-343

vation of FL. Overall, our FedGC, as a data-centric solution, represents a paradigm shift from the344

conventional model-centric solutions, which well aligns with the current trends in the field of AI and345

could open up new possibilities for AI applications. Appendix B shows more detailed conclusions.346

Limitations. Despite putting much effort into diversifying the experimental settings, there are still347

cases not covered. For example, we only explore one diffusion model and LLM respectively. There348

could be future works to explore the effects of different generative models.349
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Figure 8: Real-data-guidance for image generation based on diffusion model. The real-data-guidance
method involves 4 steps: (1) initializing latent features with real-image data, (2) adding controlled
noise, (3) denoising with text features, and (4) generating new images using the decoder.

Table 7: Obtaining LLM-based prompts for generating images using diffusion models. Instructions
for generating scene descriptions (i.e., prompts for diffusion models) given a class name using
ChatGPT. Here, we provide an example on the dog category of PACS dataset.

System Prompt:
You are an AI assistant that helps people find information.

User Prompt:
Please help me come up with scene descriptions that contain a dog while not containing an
elephant, giraffe, guitar, horse, house, person.

For example:

[“A dog is running on the grass”, “A dog is sleeping on the floor”]

Please generate 10 samples in the format of a list.
Remember: each description should be within 10 words.

A More Illustration of FedGC547

For the prompts conditioned on the latent diffusion model, we show the LLM-based prompts for548

generating images in Table 7. In detail, we instruct ChatGPT through System Prompt and User549

Prompt, to help us create text samples containing the corresponding class name for image generation.550

Utilizing ChatGPT’s rich imagination of scenarios and the diversity of text styles, we can achieve551

a diversity of prompts. Therefore, it helps Stable-diffusion to generate diverse and more realistic552

pictures.553

For generation guidance beyond prompts, we show the real-data guidance for image generation using554

diffusion models in Figure 8. First of all, the latent features are meticulously initialized using actual555

real-image data. Subsequently, controlled noise is introduced into the latent representations, which556

serves to perturb and diversify the features while maintaining the underlying structure. Following557

this, with conditioned prompts, we denoise this combined feature using U-Net [67]. Finally, passing558

through the image decoder, we obtain generated images.559

We show the real-data-guidance for text generation using ChatGPT in Figure 9. Please note that using560

ChatGPT is just an example and without loss of generality we can also use many open-source LLMs561

such as Llama2 [39]. Compared to prompts containing class num, here we instruct the LLM to imitate562

the theme and content of the corresponding text and directly expand the amount of text data. In our563

illustrative examples shown in Figure 9, we simulate real-world data scenarios by incorporating four564

actual instances and generating an additional set of four synthetic instances. In this experimental565

setup, we task the LLM with the generation of data that exhibits diverse patterns akin to those found566

in authentic real data. Furthermore, we guide the LLM to produce two distinct samples for each567

distinct label category, fostering a balanced and representative dataset.568
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System Prompt:
Assistant is an intelligent chatbot designed to help users generate similar data. Users will provide a 
few real samples and the Assistant will generate data that follows the pattern of real samples. This is 
a binary dataset on sentiment analysis, where 0 denotes negative and 1 denotes positive.

Instructions:
1. Generate two samples with label 0 and two samples with label 1, try to make the content diverse
2. Should have a similar pattern of users' data.

User Prompt:
**Data: {example_input_1}, Label: {example_label_1}**
**Data: {example_input_2}, Label: {example_label_2}**
**Data: {example_input_3}, Label: {example_label_3}**
**Data: {example_input_4}, Label: {example_label_4}**

Generate two samples with label 0 and two samples with label 1.
In the format of Data: {}, Label: {}. Each sample should start with ** and end with **.

Figure 9: Real-data-guidance for text generation using LLMs. Real data is modeled in the examples,
where we provide four real examples and generate four new examples. We instruct the LLM to
generate diverse data that has a similar pattern to real data. We also instruct the LLM to generate two
samples for each label.

B Detailed Conclusions569

This work introduces a new data-centric federated learning (FL) solution named FedGC, which570

leverages diverse generative content to address the notorious data heterogeneity issue in FL. Unlike571

previous works on data heterogeneity issue that focus on model-level optimization yet largely overlook572

the root cause of the issue: data itself, our FedGC targets this core aspect directly by enriching client573

datasets with generative content. FedGC is a simple yet effective framework, which merely introduces574

a one-shot data generation process compared to standard FL framework. Specifically, in FedGC, each575

client generates a series of diverse data based on off-the-shelf advanced generative models to enrich576

its potentially biased private data, then trains its local model on this enriched dataset. We further577

explore FedGC from four pivotal dimensions including budget allocation, prompt design, generation578

guidance, and training strategy, and conclude several appropriate designs that contribute to better579

performance of FedGC.580

The advantages of FedGC are three folds. (1) FedGC enhances FL’s performance under data581

heterogeneity. Since the diverse generative content can help enrich clients’ potentially biased and582

heterogeneous data, clients’ data would be enriched to be more general and homogeneous, therefore583

directly and fundamentally reducing the heterogeneity level. (2) FedGC contributes to better privacy584

preservation of FL. Since the diverse generative data dilutes the concentration of real, sensitive data585

in the enriched dataset, it naturally mitigates the model’s memorization of private data. (3) FedGC586

is compatible with standard FL infrastructure without extra changes to the training phase, making587

it simple to deploy in real-world applications. Additionally, in the future, as generative models588

become increasingly powerful, our FedGC can also grow stronger in tandem. Technically, FedGC, as589

a data-centric solution, represents a paradigm shift from the conventional model-centric solutions,590

which well aligns with the current trends in the field of AI. This could potentially opens up new591

possibilities for AI applications in areas where data collection is challenging or ethically sensitive,592

such as in medical or personal domains. Broadly, by mitigating data heterogeneity and enhancing593

privacy, FedGC sets the stage for more powerful and socially responsible AI development, fostering594

greater trust among users and increase their willingness to participate in AI-enabled systems.595

We conduct extensive experiments on 7 datasets, 2 modalities, and 9 FL baselines to verify the596

effectiveness of our FedGC framework. The results demonstrate that FedGC not only brings consistent597

performance gain to all FL baselines on all settings by mitigating the data heterogeneity level, but598

also enhances privacy preservation by mitigating the risk of memorization. In comparison to the599

standard privacy-preserving FL method FedAvg-DP that compromises utility for privacy, FedGC600
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Table 8: Number of clients for each dataset.

Dataset CIFAR-10 EuroSAT PACS VLCS HAM10000 Sentiment Yahoo!

Client Number 10 10 20 20 10 1000 100

Table 9: Performance comparison between local training with generative content and our FedGC.

Method CIFAR-High CIFAR-Low EuroSAT-High EuroSAT-Low

Local+GC 46.89 50.47 24.87 35.48
FedGC 74.50 79.93 74.83 84.46

with differential privacy strikes a significantly better privacy-utility balance. Additionally, we conduct601

experiments to determine the most suitable designs in FedGC; and to shed light on why FedGC could602

bring such huge benefits.603

C Implementation Details604

We list the number of clients for each dataset in Table 8.The number of iterations for local model605

training is 200 and uses SGD as the optimizer with a batch size of 64. The learning rate is set to606

0.01 [20, 37]. We use ResNet-20 [61] for image task and LSTM for text task [59].607

Our experiments were conducted on a machine equipped with an NVIDIA GeForce RTX 3090 GPU608

with 24 GB of VRAM. However, when training without differential privacy, most experiments only609

cost less than 2GB of VRAM. The generative model we use can run with a GPU with only 8GB of610

VRAM. Experiments with differential privacy on text dataset need 20GB of VRAM since the client611

number is large.612

D The Necessity of Federated Setting613

Even though we have reach a massive boost on performance with FedGC, we can’t determine whether614

the boost comes from generative model itself or the mitigation data heterogeneity. In other words,615

whether local training with generative content can still achieve similar results?616

To find whether the federated setting is a must, we conduct experiments local training with generative617

content and federated training with local contents respectively on CIFAR-10 and EuroSAT. The618

results are shown in Table 9. We can see that local training (without FL) with generative content619

performs significantly worse.620

In fact, we propose FedGC to with a focus on data heterogeneity. Data heterogeneity is a representative621

and common issue in federated setting while in a non-federated setting there is no definition of data622

heterogeneity. The generative data can significantly mitigate the level of data heterogeneity and the623

issue of overfitting, which promotes the performance of FL.624

E Discussion about Generation and Communication Cost625

In our framework, the data generation can be handled by either the server or the client. Here, different626

from the main text, we focus on the former where the communication cost should be considered.627

However, even in such case, the communication cost is quite low. Here, we provide a detailed628

example on launching FedGC on SCAFFOLD on CIFAR-10 in Table 10. From the table, we can see629

that FedGC can achieve significantly higher performance than the baseline while introducing minor630

additional communication cost. Besides, we only introduce some downlink cost rather than uplink631

cost, and it is commonly known that the uplink is slower at least five times than the downlink [68, 69].632

Specifically, FedGC can achieve 5.07% absolute accuracy improvement while only introducing633

0.007% additional communication cost.634
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Table 10: Communication cost per client and accuracy in cases where we use cloud generation.

Method SCAFFOLD FedGC-100 FedGC-200 FedGC-1000 FedGC-10000

Downlink Cost (B) 215,777,600 +30,720 +61,400 +307,200 +3,072,000
Uplink Cost (B) 215,777,600 +0 +0 +0 +0
Total Cost (B) 431,555,200 +30,720 +61,400 +307,200 +3,072,000
Additional Cost (%) - +0.007% +0.014% +0.071% +0.712%
Accuracy 63.98 +5.07% +7.35% +7.35% +9.98%

Table 11: Accuracy comparison between FedGC and SCAFFOLD when keeping FedGC with less
communication cost.

Method SCAFFOLD FedGC-100 FedGC-200 FedGC-1000 FedGC-10000

Total Cost (B) 431,555,200 427,270,368 427,301,048 427,546,848 430,311,648
Accuracy 63.98% 69.05% 71.33% 71.33% 73.96%

For further comparation when considering communication cost, we keep the communication cost635

less than baselines by reducing the communication rounds (i.e., 1-2 rounds reduction) for FedGC in636

Table 11. From the table, we see that even with less communication cost, FedGC still significantly637

outperforms the baseline.638

F Privacy639

F.1 Membership Inference Attack640

To measure the privacy preservation of FedAvg and FedGC, we carry out a simple membership641

inference attack based on loss evaluation, as [63] has shown that it is reasonable to use the loss of642

the model to infer membership. We consider a scene where an attacker who has a tiny amount of643

training data can get the global model and wants to figure out whether a similar datum (i.e. also a644

photo of an airplane) has been used to train the model or not. During the attack, the attacker feeds its645

few data to the global model and trains a binary classifier based on the loss of each training-used and646

not-training-used datum.647

We conduct our experiment on CIFAR-10 dataset. In the training process, we set the client number648

to 10 and the Dirichlet distribution parameter to β = 0.1. We also discard data augmentations (i.e.649

flipping and cropping) for more clear comparisons. In the main body, we compare both task accuracy650

and attack accuracy, as shown in Figure 2.651

We also compare the attack accuracy at the point when FedAvg and FedGC achieve similar task652

accuracy in Table 12. From the table, we see a much more significant reduction in privacy leakage653

(i.e., much lower attack accuracy). This is reasonable as FedGC can accelerate the convergence speed,654

which means FedGC requires fewer steps of optimization on the sensitive private data to achieve the655

same.656

F.2 Deep Gradient Leakage657

In Figure 2 and Figure 3, we show that FedGC can significantly alleviate the risk of membership658

inference attack. Here, we further evaluate the level of privacy preservation before and after introduc-659

ing generative content via deep gradient leakage [70, 71]. We run two experiments for FedAvg [1]660

and our FedGC respectively. For FedAvg, two real images are used for training while for FedGC, one661

real image and one generative image are used for training. We report the results in Figure 10 and see662

that FedGC mitigates the risks of one real image being recovered. Though the rightmost image is663

recovered in FedGC, it does not raise privacy concerns as the image is generative rather than real.664
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Figure 10: Evaluation of privacy preservation by DLG [70]. Results show that FedGC mitigates the
risks of privacy leakage.

Table 12: Membership inference attack accuracy comparisons when FedAvg and FedGC achieve
similar task accuracy. We consider two scenarios where the total number of clients’ real samples is
50k and 10k, respectively. We also explore the effects of using different number of generated samples.
FedGC can reduce privacy leakage to a very low level (since random guess is 50%) while maintaining
task accuracy at the same time.

Number of Real Samples 50k 10k
Accuracy Task Attack Task Attack

No. of Generated Samples

0 59.71 60.55 35.48 77.55
10k 61.65 52.05 35.97 52.80
20k 62.49 51.20 39.18 52.85
30k 61.82 51.95 39.40 52.50
40k 60.38 51.20 37.17 52.75
50k 62.49 51.60 38.68 52.35

F.3 More Details about Differential Privacy665

Differential privacy (DP) [72] has become a widely accepted framework for ensuring privacy in666

statistical analyses. With the help of DP, we can implement computation on large datasets and keep667

individual data points indistinguishable at the same time, which protects individual’s privacy.668

We use privacy parameters ϵ and δ to formally define DP. Specifically, a randomized mechanism669

M : D → R is (ϵ, δ)-differentially private for ϵ > 0 and δ ∈ [0, 1) if for any two neighboring670

datasets D,D′ ∈ D differing by at most one entry and for any subset of outputs R ⊆ R it holds that671

P(M(D) ∈ R) ≤ exp(ϵ)P(M(D′) ∈ R) + δ.

Differentially Private Stochastic Gradient Descent (DP-SGD) [73] is a DP algorithm that trains672

a neural network using sensitive data modified from SGD. In DP-SGD, per-sample-gradients are673

clipped and Gaussian noise is added to the clipped gradients.674

In our experiments, we use a commonly used library Opacus [74] to implement DP-SGD, ensuring675

sample-level DP. Opacus uses a parameter called ‘noise_multiplier’ to change the noise level, which676

represents the ratio of the standard deviation of the Gaussian noise to the ℓ2-sensitivity of the function677

to which the noise is added. It uses another parameter called ‘max_grad_norm’ to clip the gradients,678

which means the maximum norm of the per-sample gradients.679

For experiments on image dataset CIFAR-10, we set noise_multiplier to 0.1 and max_grad_norm to680

2, when using text dataset Sentiment140, we set noise_multiplier to 0.5 and max_grad_norm to 2. As681

shown in Figure 3, FedGC with differential privacy (DP) achieves good privacy-utility trade-off with682

privacy guarantee.683
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(a) EuroSAT: real data samples

(b) EuroSAT: generated similar samples

(c) EuroSAT: generated dissimilar samples

Figure 11: Visualization of real and generated data. (a) Visualization of real data samples from
the EuroSAT dataset. (b) Visualization of generated data samples that are more aligned with the
corresponding semantic or real data. (c) Visualization of generated data samples that are not aligned
with the corresponding semantic or real data.

G Visualization of Real and Generated Data684

Generated data is diverse, but may not be similar to real data. We notice that the generated data685

samples do not always closely resemble real images, indicating the gap between generative data and686

real private data (at least visually). Yet, their inclusion still improves the FL’s performance under687

data heterogeneity, which may result from two perspectives. (1) The generative data might act as688

a form of data augmentation, which potentially introduces variations that are not covered by the689

original dataset. (2) The generative data diversify the dataset, which serves as a form of implicit690

regularization, preventing the model from over-fitting to the potentially biased private local data.691

We visualize the real data and generated data on EuroSAT [54] in Figure 11. For the uncommon692

and detailed satellite images in EuroSAT [54], the quality of the data generated by the diffusion693

models varies. From the naked eye, the data generated by some diffusion can capture the semantic694

information brought by the label very well. For example, the generated images with the label "River"695

as guidance do contain rivers, but hard to achieve a similar satellite style to actual images. Although696

the gap between generated and actual data definitely exists, generated data obviously improves697

specific task performance, which is demonstrated by our extensive experiments.698

H FedGC Mitigates Data Heterogeneity699

We visualize the cosine similarity and ℓ2 distance of features on EuroSAT and PACS in Figure 12 and700

Figure 13 respectively. We measure the discrepancy among local data in clients on the feature level,701

using 2 metrics: cosine similarity and ℓ2 distance. To be specific, we calculate the average features702

with pre-trained ResNet-18 [61] on each client in turn, and then measure the indicators between all703

pairs of clients.704

Results in the figures manifest that after applying FedGC, the cosine similarity and ℓ2 distance705

among client pairs separately increase and decrease. In other words, local data possessed by clients706

are more homogeneous than before. FedGC efficiently mitigates data heterogeneity by generating707

corresponding data on the client side. From the feature respective, we show the latent reason for708

significant performance improvement brought by FedGC.709

19



(a) cosine: FedAvg

(b) cosine: FedGC

(c) ℓ2: FedAvg

(d) ℓ2: FedGC

Figure 12: Feature cosine similarity and ℓ2 distance heatmap among 10 clients on EuroSAT. We
calculate the two metrics on average data features among clients using the pre-trained ResNet-18 [61].
FedGC enhances the feature similarity and closes their distance, which effectively mitigates the
feature-level heterogeneity on EuroSAT.

I FedGC with Partial Clients Capable of Generation710

Our proposed FedGC framework is also applicable in cases where not every client has the capability711

to generate data. Here, we experiment on CIFAR-10 under two different heterogeneity levels. In712

Table 13, we compare vanilla baseline with no generative data, FedGC where all clients can generate713

data, and FedGC where only half of the clients can generate data.714

From the table, we see that (1) our proposed FedGC can consistently and significantly achieve the best715

performance despite the amount of generation-capable clients. (2) Surprisingly, we find that under716

low heterogeneity level, when applied to SCAFFOLD [18], FedGC with few generation-capable717

clients even performs better. This interesting finding demonstrates that our framework may be further718

improved by more fine-grained designs regarding who is responsible for data generation and the719

volume of data to be generated.720

J FedGC under Different Heterogeneity Levels721

Here, we conduct experiments of three baselines including FedAvg, FedProx, and SCAFFOLD,722

with different heterogeneity levels on CIFAR-10. The Beta β stands for the hyper-parameter in the723

Dirichlet distribution. As β increases in [0.05, 0.07, 0.1, 0.3, 0.5, 1.0, 5.0], the data heterogeneity724

level reduces. Illustrated in Figure 14, we can observe that (1) FedGC consistently outperforms these725

three algorithms in all different data heterogeneity levels. (2) As the heterogeneity level increases,726

the accuracy improvement brought by FedGC significantly elevates, which showcases the reliability727

of FedGC to mitigate heterogeneity, one of the intricate issues in FL.728
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(a) cosine: FedAvg

(b) cosine: FedGC

(c) ℓ2: FedAvg

(d) ℓ2: FedGC

Figure 13: Feature cosine similarity and ℓ2 distance heatmap among 4 clients on PACS. We calculate
the two metrics on average data features among clients using the pre-trained ResNet-18. FedGC
enhances the feature similarity and closes their distance, which effectively mitigates the feature-level
heterogeneity on PACS.

Table 13: Experiments of a scene in which partial clients are capable of generation. 1k/50% indicates
only half of the clients are capable of generation. However, FedGC still significantly outperforms the
baseline with no generative data.

H-Level High Low
Generation No 1k/100% 1k/50% No 1k/100% 1k/50%

FedAvg 60.77 73.99 71.53 71.57 79.73 77.45
FedProx 63.62 73.69 72.65 75.76 79.25 79.23

SCAFFOLD 65.00 75.75 73.28 78.74 80.29 81.27

K FedGC for Partial Client Participation Scenarios729

Here, we conduct experiments of three baselines including FedAvg, FedProx, and SCAFFOLD on730

CIFAR-10 with Dirichlet distribution parameter β = 0.1. Specifically, we set the communication731

round to 200, local iteration number to 100, and try different client number and participation rate. As732

illustrated in Table 14, we can observe that FedGC still significantly outperforms the baseline with no733

generated data under each circumstance.734
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(a) FedAVg (b) FedProx (c) SCAFFOLD

Figure 14: Performance comparisons between vanilla baseline and baseline in FedGC framework
under different heterogeneity levels on CIFAR-10. Beta (β) is the hyper-parameter in Dirichlet
distribution. As the heterogeneity level increases (Beta decreases), the improvement brought by
FedGC becomes more significant. This indicates that FedGC can effectively alleviate the issue of
data heterogeneity.

Table 14: Experiments of a scene in which only partial clients participate in training each round. We
conduct experiments on three different total client numbers and several different participation rates.
For example, client 200 and participation rate 5% means randomly selecting 10 clients to participate
in training each round. In each case, FedGC still significantly outperforms the baseline with no
generative data.

Baseline Client 200 100 50
Participation 5% 10% 20% 10% 20% 10% 20%

Vanilla 53.62 60.00 65.76 56.53 57.69 55.90 63.33FedAvg + FedGC 68.93 74.06 75.74 74.16 74.26 75.34 77.20
Vanilla 53.93 59.95 64.53 56.74 59.54 56.36 65.66FedProx + FedGC 70.23 73.79 75.07 74.39 74.05 75.47 77.47
Vanilla 60.41 68.02 70.15 65.03 68.12 65.73 72.42SCAFFOLD + FedGC 71.65 74.83 77.54 74.38 76.26 72.74 77.56

L Global-model-based Data Filtering735

We propose global-model-based data filtering, where each client conducts data filtering on the client736

side according to the received global model before local model training. Specifically, to determine737

which data to filter, a client feeds its generated data to the global model to evaluate the loss value738

for each data sample. Then, each client selects the top x% data (we set x = 90 here) and mixes the739

selected generated data with its real data.740

Furthermore, since the global model might perform drastically differently on different categories,741

simply selecting according to the loss of all data samples may result in imbalanced filtering. That is,742

this could make global model filter out most of the samples where it performs poorly. Addressing743

this, we further propose category-wise data filtering based on global model, which filers the same744

ratio of data for each category.745

Here, we perform experiments on EuroSAT dataset with two heterogeneity levels in Table 15. Vanilla746

denotes FedAvg itself, No F denotes FedGC without filtering, F@50 denotes filtering from round 50,747

F@50-C denotes category-wise filtering. From the table, we see that (1) under a high heterogeneity748

level, F@75 contributes to higher performance than No F, even with only 90% of data at final rounds.749

(2) Category-wise filtering generally performs better than unified filtering, indicating its effectiveness.750

(3) Nevertheless, such filtering technique can not always ensure performance improvement, calling751

for more future work. The performance drop could result from reduced number of data samples and752

ineffective filtering.753

Overall, here we just provide an initial attempt to consider the potential of data filtering. We believe754

more future works could be proposed to better filter the generated data such that we could use the755

generated data more efficiently.756
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Table 15: Experiments of global-model-based data filtering. We conduct our initial attempt on
EuroSAT dataset with two heterogeneity types (β = 0.05 and β = 0.1 denote high and low
heterogeneity level respectively). F@50 means start filtering after 50 communication rounds and C
means filtering by each class.

Heterogeneity Level Vanilla No F F@50 F@75 F@50-C F@75-C

High 53.82 74.83 72.96 74.93 73.50 74.20
Low 75.59 84.46 83.82 83.83 84.19 83.83
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information about the statistical significance of the experiments?910

Answer: [No]911

Justification: We do not provide information about statistical significance of the experiments912

yet in main table due to the limit of space. However, we run the experiments three times and913

average the results (e.g. in Table 1).914

Guidelines:915

• The answer NA means that the paper does not include experiments.916

• The authors should answer "Yes" if the results are accompanied by error bars, confi-917

dence intervals, or statistical significance tests, at least for the experiments that support918

the main claims of the paper.919

• The factors of variability that the error bars are capturing should be clearly stated (for920

example, train/test split, initialization, random drawing of some parameter, or overall921

run with given experimental conditions).922

• The method for calculating the error bars should be explained (closed form formula,923

call to a library function, bootstrap, etc.)924

• The assumptions made should be given (e.g., Normally distributed errors).925

• It should be clear whether the error bar is the standard deviation or the standard error926

of the mean.927

• It is OK to report 1-sigma error bars, but one should state it. The authors should928

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis929

of Normality of errors is not verified.930

• For asymmetric distributions, the authors should be careful not to show in tables or931

figures symmetric error bars that would yield results that are out of range (e.g. negative932

error rates).933

• If error bars are reported in tables or plots, The authors should explain in the text how934

they were calculated and reference the corresponding figures or tables in the text.935

8. Experiments Compute Resources936

Question: For each experiment, does the paper provide sufficient information on the com-937

puter resources (type of compute workers, memory, time of execution) needed to reproduce938

the experiments?939

Answer: [Yes]940

Justification: We provide the compute resources and environment to reproduce our experi-941

ments in Appendix C942

Guidelines:943

• The answer NA means that the paper does not include experiments.944

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,945

or cloud provider, including relevant memory and storage.946

• The paper should provide the amount of compute required for each of the individual947

experimental runs as well as estimate the total compute.948

• The paper should disclose whether the full research project required more compute949

than the experiments reported in the paper (e.g., preliminary or failed experiments that950

didn’t make it into the paper).951

9. Code Of Ethics952

Question: Does the research conducted in the paper conform, in every respect, with the953

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?954

Answer: [Yes]955

Justification: We strictly conform with the NeurIPS Code of Ethics.956
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Guidelines:957

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.958

• If the authors answer No, they should explain the special circumstances that require a959

deviation from the Code of Ethics.960

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-961

eration due to laws or regulations in their jurisdiction).962

10. Broader Impacts963

Question: Does the paper discuss both potential positive societal impacts and negative964

societal impacts of the work performed?965

Answer: [Yes]966

Justification: We provide discussion about our societal impacts in Appendix B.967

Guidelines:968

• The answer NA means that there is no societal impact of the work performed.969

• If the authors answer NA or No, they should explain why their work has no societal970

impact or why the paper does not address societal impact.971

• Examples of negative societal impacts include potential malicious or unintended uses972

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations973

(e.g., deployment of technologies that could make decisions that unfairly impact specific974

groups), privacy considerations, and security considerations.975

• The conference expects that many papers will be foundational research and not tied976

to particular applications, let alone deployments. However, if there is a direct path to977

any negative applications, the authors should point it out. For example, it is legitimate978

to point out that an improvement in the quality of generative models could be used to979

generate deepfakes for disinformation. On the other hand, it is not needed to point out980

that a generic algorithm for optimizing neural networks could enable people to train981

models that generate Deepfakes faster.982

• The authors should consider possible harms that could arise when the technology is983

being used as intended and functioning correctly, harms that could arise when the984

technology is being used as intended but gives incorrect results, and harms following985

from (intentional or unintentional) misuse of the technology.986

• If there are negative societal impacts, the authors could also discuss possible mitigation987

strategies (e.g., gated release of models, providing defenses in addition to attacks,988

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from989

feedback over time, improving the efficiency and accessibility of ML).990

11. Safeguards991

Question: Does the paper describe safeguards that have been put in place for responsible992

release of data or models that have a high risk for misuse (e.g., pretrained language models,993

image generators, or scraped datasets)?994

Answer: [NA]995

Justification: This paper mainly focus on technical advancement, and the datasets and996

generative models we used are all publicly available. Thus, the paper poses no such risks.997

Guidelines:998

• The answer NA means that the paper poses no such risks.999

• Released models that have a high risk for misuse or dual-use should be released with1000

necessary safeguards to allow for controlled use of the model, for example by requiring1001

that users adhere to usage guidelines or restrictions to access the model or implementing1002

safety filters.1003

• Datasets that have been scraped from the Internet could pose safety risks. The authors1004

should describe how they avoided releasing unsafe images.1005

• We recognize that providing effective safeguards is challenging, and many papers do1006

not require this, but we encourage authors to take this into account and make a best1007

faith effort.1008

12. Licenses for existing assets1009
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in1010

the paper, properly credited and are the license and terms of use explicitly mentioned and1011

properly respected?1012

Answer: [Yes]1013

Justification: We cite the original paper of all datasets and generative models we use in1014

Section 4. For bits of others’ code, we list the source and license.1015

Guidelines:1016

• The answer NA means that the paper does not use existing assets.1017

• The authors should cite the original paper that produced the code package or dataset.1018

• The authors should state which version of the asset is used and, if possible, include a1019

URL.1020

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1021

• For scraped data from a particular source (e.g., website), the copyright and terms of1022

service of that source should be provided.1023

• If assets are released, the license, copyright information, and terms of use in the1024

package should be provided. For popular datasets, paperswithcode.com/datasets1025

has curated licenses for some datasets. Their licensing guide can help determine the1026

license of a dataset.1027

• For existing datasets that are re-packaged, both the original license and the license of1028

the derived asset (if it has changed) should be provided.1029

• If this information is not available online, the authors are encouraged to reach out to1030

the asset’s creators.1031

13. New Assets1032

Question: Are new assets introduced in the paper well documented and is the documentation1033

provided alongside the assets?1034

Answer: [NA]1035

Justification: Our paper does not release new assets.1036

Guidelines:1037

• The answer NA means that the paper does not release new assets.1038

• Researchers should communicate the details of the dataset/code/model as part of their1039

submissions via structured templates. This includes details about training, license,1040

limitations, etc.1041

• The paper should discuss whether and how consent was obtained from people whose1042

asset is used.1043

• At submission time, remember to anonymize your assets (if applicable). You can either1044

create an anonymized URL or include an anonymized zip file.1045

14. Crowdsourcing and Research with Human Subjects1046

Question: For crowdsourcing experiments and research with human subjects, does the paper1047

include the full text of instructions given to participants and screenshots, if applicable, as1048

well as details about compensation (if any)?1049

Answer: [NA]1050

Justification: Our paper does not involve crowdsourcing nor research with human subjects.1051

Guidelines:1052

• The answer NA means that the paper does not involve crowdsourcing nor research with1053

human subjects.1054

• Including this information in the supplemental material is fine, but if the main contribu-1055

tion of the paper involves human subjects, then as much detail as possible should be1056

included in the main paper.1057

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1058

or other labor should be paid at least the minimum wage in the country of the data1059

collector.1060
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1061

Subjects1062

Question: Does the paper describe potential risks incurred by study participants, whether1063

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1064

approvals (or an equivalent approval/review based on the requirements of your country or1065

institution) were obtained?1066

Answer: [NA]1067

Justification: Our paper does not involve crowdsourcing nor research with human subjects1068

Guidelines:1069

• The answer NA means that the paper does not involve crowdsourcing nor research with1070

human subjects.1071

• Depending on the country in which research is conducted, IRB approval (or equivalent)1072

may be required for any human subjects research. If you obtained IRB approval, you1073

should clearly state this in the paper.1074

• We recognize that the procedures for this may vary significantly between institutions1075

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1076

guidelines for their institution.1077

• For initial submissions, do not include any information that would break anonymity (if1078

applicable), such as the institution conducting the review.1079

29



ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像



ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像



ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像



ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像



ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像



ChaiJY
放置图像

ChaiJY
放置图像

ChaiJY
放置图像



ChaiJY
放置图像


	Introduction
	Related Work
	Federated Learning with Generative Content
	FedGC Framework Overview
	Data Generation in FedGC
	Local Model Training in FedGC

	Experiments
	Main Results
	Design Analysis
	Mechanism Analysis

	Conclusions
	More Illustration of FedGC
	Detailed Conclusions
	Implementation Details
	The Necessity of Federated Setting
	Discussion about Generation and Communication Cost
	Privacy
	Membership Inference Attack
	Deep Gradient Leakage
	More Details about Differential Privacy

	Visualization of Real and Generated Data
	FedGC Mitigates Data Heterogeneity
	FedGC with Partial Clients Capable of Generation
	FedGC under Different Heterogeneity Levels
	FedGC for Partial Client Participation Scenarios
	Global-model-based Data Filtering

