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Which Neurons Matter in IR? Applying Integrated
Gradients-based Methods to Understand Cross-Encoders

Anonymous Author(s)

ABSTRACT
With the recent addition of Retrieval-Augmented Generation (RAG),
the scope and importance of Information Retrieval (IR) has ex-
panded. As a result, the importance of a deeper understanding of
IR models also increases. However, interpretability in IR remains
under-explored, especially when it comes to the models’ inner
mechanisms. In this paper, we explore the possibility of adapting
Integrated Gradient-based methods in an IR context to identify the
role of individual neurons within the model. In particular, we pro-
vide new insights into the role of what we call "relevance" neurons,
as well as how they deal with unseen data. Finally, we carry out an
in-depth pruning study to validate our findings.

KEYWORDS
Information Retrieval, Cross-Encoders, Interpretability, Integrated
Gradients
ACM Reference Format:
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ceedings of The 14th International Conference on the Theory of Information
Retrieval (ICTIR ’24). ACM, New York, NY, USA, 11 pages. https://doi.org/
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1 INTRODUCTION
Since the BERT [9] era, Information Retrieval (IR) has gone through
many changes. This paradigm shift has seen the rise of neural IR
systems in the light of the performance of BERT-base models com-
pared to previous state-of-the-art in almost all benchmarks. This
huge improvement however came at the cost of the explainability,
as Transformers (and thus BERT) are extremely complex models.
Despite being widely adopted, the Transformers’ mechanisms re-
main poorly understood and this limits the explainability of neural
IR models. In parallel, with the mass adoption of BERT, research on
explainability and interpretability (i.e., explainable AI ) has also seen
a rapid surge. Being able to understand how models make predic-
tions or which mechanisms they rely on not only helps with their
adoption by users but also unlocks the possibility for researchers
to study edge cases where they might fail, providing room for im-
provement. By improving our understanding of the mechanisms
and signals involved when performing the IR task, we can also
design new architectures or better-suited training algorithms, able
to bridge actual gaps or correct misbehavior of existing systems,
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and better transfer techniques, targeting more precisely domain or
language-specific parts of the models.

As of today, Transformers-based models remain mostly "black
boxes". Despite some successes in providing new insights about
the different signals/features that neural models regard as impor-
tant, their inner mechanism, i.e. how those signals are leveraged
and/or combined by their different components, remains unclear.
Different lines of work have emerged to address the challenge of un-
derstanding the Transformers-based models’ machinery [8, 11, 15]
such as probing [2], mechanistic interpretability [11] or attribu-
tion methods. Within the latter, another distinction exists between
perturbation-basedmethods [13, 31, 32] and backpropagation-based
methods [1, 33, 34, 37]. If the literature is expanding quickly in Nat-
ural Language Processing (NLP), it is scarcer in the specific domain
of IR.

This paper aims at filling this gap by studying the application
of a gradient-based approach, namely Integrated Gradients [37], to
understand the role of neurons within a cross-encoder model, here
MonoBERT [28], in an IR task. Furthermore, we hope this work
will pave the way for future ones aiming at improving IR systems.
We believe that understanding better how IR models work is pri-
mordial to help the field move forward and conceive new systems.
As identifying these mechanisms is not trivial because of the com-
plexity of language models, we explore the relative importance of
neurons for different aspects of the IR task (notion of relevance and
in-domain vs out-of-domain data). In particular, our study focuses
on the following research questions:

• RQ1 Is it possible to identify neurons involved in the clas-
sification of a passage as "relevant" (or "non-relevant") for
a given query?

• RQ2 Is it possible to distinguish neurons involved with
in-domain data from those involved with out-of-domain
data?

• RQ3 How important are those neurons for the IR task?

2 RELATEDWORKS
The IR landscape changed drastically with the arrival of Transform-
ers [42] and BERT [9], the whole domain shifting entirely towards
neural IR systems. If these models can significantly improve the
quality of the retrieved content, most of them, including the most
effective ones like cross-encoders [28, 29], lack interpretability and
explainability. Counter-examples with the core ability to provide
explanations for their predictions such as SPLADE [14] or ColBERT
[18] exist thanks to their architecture which leverages a form of
matching (between expanded queries’ tokens and passages’ tokens
for SPLADE, and between contextual vectors for ColBERT). Even
if some models can better explain their predictions, there is no
clear understanding of the process leading to that prediction or
the signals that they extracted and transformed to reach such a
decision.
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That is typically the reason that motivated the development of
techniques able to unlock a model black box and allow researchers
to look under the hood of neural networks. The different explain-
ability techniques can be categorized into distinct families based on
how they tackle the infamous "black-box" issue of neural networks.

First, probing [2] trains probe classifiers from the model’s hidden
representations and evaluates them on tasks associated with the
primary objective for which the model was designed (e.g., for IR,
such tasks can be Named-Entity Recognition, Semantic Similarity
or co-reference Resolution [41, 46]), revealing the specific abili-
ties that the model learned implicitly during its training to solve
the task. However, as probing relies on external classifiers, it is
considered disconnected from the original model [2]. In addition,
probing methods can’t be used to target specific neurons as they
use each hidden representation as a whole and do not provide any
explanation of the interplay between these abilities as well as their
relative importance in the model’s output.

Second, mechanistic interpretability [4] refers to a line of works
that try to "reverse engineer Transformers into human-understandable
computer programs" 1. In particular, it aims at decomposing Trans-
formers into multiple blocks whose role and relations with the rest
of the model are both well-understood. This approach has provided
meaningful explanations for toy models [11] or for some specific
behaviors [30] but is hard to scale for an exhaustive study. For
example, activation patching, or causal tracing, [25, 43] is an ap-
plication of mechanistic interpretability that changes activation in
some specific parts of the model observing its effect. Despite its
good results in explaining the causal structure of models [12], it
implies iterating over every inner output of the model, and this
quickly becomes intractable. Attribution patching [38] alleviates
this limitation by making use of gradient-based approximation
but can lead to the apparition of false negatives [19] potentially
harming its conclusions.

Finally, attribution methods aim at identifying which part of the
model or the input contributed the most to a prediction. Contrary
to probing, attributions are obtained directly from the model and
are usually more easily scalable to study a full model, even large
ones, than mechanistic interpretability. It is possible to distinguish
two types of attribution methods. The first one, called perturbation-
based, introduces perturbations of many types (masking, removing,
introducing noise, etc) on the input and measures the differences in
the result compared to the original output [13, 31, 32]. Perturbations
have the advantage of being easily understandable while providing
a good estimation of the effect of each feature on the output but
are extremely costly to compute.
The second one, referred to as gradient-based or more generally
backpropagation-based, recovers attributions using gradients or ac-
tivations starting from the output prediction down to each layer
of the model [33, 34, 37]. Gradient-based methods have the advan-
tage of being faster to compute and usually have more desired
theoretical properties over perturbation-based methods, such as
sensitivity or additivity. Their main drawback is the difficulty of
giving a human-understandable meaning to their attribution.

1Quote taken from the second thread on Transformer circuits: https://transformer-
circuits.pub/

The first works in IG only consider the computation of the impor-
tance of input features. This was applied by Möller et al. [26] in the
case of Siamese Encoders for the semantic similarity task. However,
their work is limited to the study of tokens’ attributions and mostly
aims at extending IG to a setup with two inputs.

Motivated by recent studies that discovered the role of feed-
forward layers within Transformers [15], several gradients-based
methods were developed to provide attributions to individual neu-
rons within the model instead of the input’s features [10, 22]. In
parallel, other works proposed optimizations of the computations
involved in IG and its variants [22, 35], extending its possible ap-
plications and allowing to study the crucial role played by some
neurons in storing knowledge [5, 7] or in specific tasks [10]. Simi-
larly to us, Wang et al. [47] studied "skill neurons" in Transformers
but through Prompt-Tuning [21]. By concatenating soft prompts
𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑙 }, 𝑝𝑖 ∈ R𝑑 , with 𝑑 the input dimension of the
model, to the input, they show that some neurons have higher
activation than the rest of the network and that this activation is
strongly correlated to the prediction of a specific class in classifica-
tion tasks. However, the theoretical ground behind the success of
Prompt Tuning in identifying "skill neurons" remains unclear.

To the best of our knowledge, this work constitutes the first
attempt at using Integrated Gradient-based methods, particularly
the Neuron Integrated Gradients (NIG) method [35], to explain
neural IR models. In contrast to Möller et al. analyzing siamese
encoders for semantic signals [26], we are interested in studying the
behavior of cross-encoder architecture in the IR task, especially the
integration of relevance matching signals [16]. Moreover, unlike
the study of skill neurons [47] we do not limit our study to the
feed-forward layers in the Transformers but also include all linear
transformations in the model.

3 NEURON INTEGRATED GRADIENTS FOR IR
In this section, we show how we leverage Neuron Integrated Gra-
dients [35] to disentangle the neurons’ importance within a cross-
encoder model during the IR task. We leave the study of more costly
but equally relevant alternatives as well as the extension to other
architectures for future works.

3.1 Background
Originally designed for computing the attributions of the input
features (to the output), Integrated Gradients (IG) [37] is based on
path integrals. IG imply to first carefully select a baseline input𝑥 ′ for
which the model’s prediction is neutral, i.e. 𝑝 (𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) = 𝑝 (𝑛𝑜𝑛 −
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡), and to study the straight line path 𝛾 (𝑡) from this baseline
to the actual input 𝑥 . Formally, 𝛾 (𝑡) = 𝑥 ′ + 𝑡 (𝑥 − 𝑥 ′), 𝑡 ∈ [0, 1]. IG
are obtained by computing and integrating the gradients along the
path between the baseline and the input. It has been generalized
into conductance [10] to obtain the importance of any neuron 𝑦. In
this framework, the importance of an individual neuron is given by
the Neuron Integrated Gradients formula [35]:

𝑁𝐼𝐺𝑦 (𝑥) =
∫ 𝑡=1

𝑡=0

𝛿𝐹 (𝑥 ′ + 𝑡 (𝑥 − 𝑥 ′))
𝛿𝛾𝑦 (𝑡)

𝛿𝛾𝑦 (𝑡)
𝛿𝑡

𝑑𝑡 (1)
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where F is a neural network, 𝛾𝑦 (𝑡) denotes the activation value of a
neuron 𝑦 at the point 𝑡 of the path 𝛾 , i.e. the output 𝑦 of the neural
network 𝐹𝑦 (𝛾 (𝑡)). Note that this formulation of the attribution of
a neuron has an efficient approximation based on the Riemann
formulation of the integral that we leverage as described in [35].

Figure 1: Illustration of the Neuron Integrated Gradient
method

To illustrate the intuition behind Neuron Integrated Gradients,
let us use Figure 1 that depicts the evolution along the path 𝛾 (𝑡),
between the "Baseline" 𝑥 ′ and the "Original" input 𝑥 , of the model’s
prediction (in blue) and the gradients of two types of neurons
(black for non-important neuron and green for important neurons).
The blue curve, between the "Baseline" and the "Original" input,
corresponds to the value of the output logit as 𝑡 evolves. In the
interval delimited by the two red vertical lines in the figure, a
change in the input results in a significant recovery of the original
output signal symbolized by a strong increase for the the blue
curve.With the Neuron Integrated Gradients method, the important
neurons, i.e. the neurons whose attributions with regards to the
attribution will be the highest, are neurons𝑦 whose gradient 𝛿𝛾𝑦 (𝑡 )

𝛿𝑡
evolves at the same time as the models’ output 𝐹 . If the model’s
output does not change when moving the input 𝛾 (𝑡) along the path,
then the neurons that react to this change are not important to
the model’s decision. Such neurons are represented in the figure
by the black dashed curve: its gradient is non-zero outside of the
interval where the model’s prediction increases, meaning that it is
not directly related to the model’s decision. Conversely, the green
curves correspond to neurons that are important for the output.
Note that the contribution can be either positive or negative, as
illustrated in the figure.

Neurons correspond to the activation of any layer/block in the
model but in our work, we are interested in neurons corresponding
to outputs of linear transformations (used to compute keys, queries,
values, and inside the feed-forward block [42]) as their importance
in many mechanisms (factual recall, performing annex tasks, etc.)
has already been characterized in previous works [5, 7, 15, 41, 46,
47].

Table 1: Comparison of different baselines’ effect on the
model’s predictions.

Method Average difference between each label
Original embedding 1
All tokens→ [PAD] 0.21
Query tokens→ [PAD] 1
All tokens→ zero vectors [26] 0.67
Query tokens→ zero vectors 1

3.2 Adapting NIG to identify "task-related"
neurons

As IR is different from other domains (CV and NLP) in which NIG
[35] has already been applied, some of its aspects need to be adapted.

Comparisons across datasets. To make fair comparisons between
attributions obtained for different datasets, we aggregate the con-
tribution value of each linear transformation’s outputs. As they are
shared among tokens composing the query-document pair, we sum
the conductance over tokens: a "neuron" in our experiments thus
includes its corresponding outputs over all tokens. This aggregated
conductance can be thought of as the importance of outputs of a
linear transformation within a Transformer.

Dependency to the input. As pointed out by Wang et al. [47],
gradient-based methods produce results that are input-dependent.
As we want to identify "IR task-related" or "skills" neurons, i.e.,
neurons that are important for any input in the IR task, we average
NIG results over multiple samples across multiple datasets and only
retain the neurons with the highest mean attribution values.

Baseline. For images, an obvious baseline 𝑥 ′ is a black image.
In IR, there is no obvious baseline, and we thus empirically verify
which one is better suited as a baseline by comparing how well
they degrade the relevance signal on average over 1000 inputs from
the MSMARCO dataset [27]. Among the baseline that we consider,
we include the method of Möller et al. [26] who study IG in the
context of Siamese encoders. The authors build a baseline for which
the predicted relevance probability is close to 0.5 by subtracting
the embeddings of the baseline on every sample along the path
between the baseline and the original input. This is equivalent
to replacing every token in the input with a zero vector, i.e. an
embedding where every dimension equals 0. As the authors don’t
try alternatives, we further compare the effect of "zeroing out" only
the queries’ tokens or the entire input and of simply using [PAD]
tokens instead of the query or entire input tokens (the first step
in Möller et al. [26] before they subtract their embeddings), on the
model’s predictions. We consider the values from the output of the
Softmax operator. For the choice of the baseline, we subtract the
value for the "non-relevant" label from the value for the "relevant"
label for each of our 1000 inputs and average the difference. We
compare the average difference with the original inputs and when
applying our baseline obtention methods. The closer the average
difference is to zero, the stronger the baseline’s suppression of the
original input’s relevance signal. Results are in Table 1. Based on
this, we decided to transform every embedding into its fully padded
counterpart to obtain our baseline.
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Table 2: Details of the datasets along with their abbreviations
we use in the remainder of the paper as well as the task
associated with it.

Dataset’s name Abbreviations Associated task
MSMARCO [6, 27] ms Web Retrieval

FiQA [23] f Question Answering
Natural Questions [20] nq Question Answering

BioASQ [40] b BioMedical-IR
TREC-Covid [44] tc BioMedical-IR
NFCorpus [3] nf BioMedical-IR

TREC-News [36] tn News Retrieval
TREC-Robust04 [45] r News Retrieval

4 EXPERIMENTS
Using Neuron Integrated Gradients, we conduct several experi-
ments using one base IR model over different datasets to compute
the neuron attributions. By comparing the attributions over multi-
ple datasets, we want to identify the core set of important neurons
for the IR task (see RQ1 and RQ2). To empirically verify our re-
sults, we perform a series of ablation studies where we evaluated
the decrease in performance on a new set of datasets caused by the
ablation of the neurons tagged as important by our attributions in
the IR model (see RQ3).

Finally, note that the code, including all technical details, will be
publicly released upon publication.

4.1 Experimental setup
In our experiments, we analyze the model MonoBERT [28] as it is
a strong baseline and a typical cross-encoder. Despite the existence
of stronger models such as MonoT5 [29], we decided to stick to
MonoBERT as it is an encoder-only architecture, contrary to T5:
We are interested in interpreting the model’s inner mechanisms
and the decoder part brings an additional layer of complexity to
deal with. The version of MonoBERT we use has been fine-tuned
on MSMARCO2 [27].

Motivated by the RQ2, we compute attributions over several
datasets, both in the same domain (ID) as the training data of our
model and outside of it (OOD). For ID, we use the test set of MS-
MARCO3 from the TREC 2019 Deep learning track [6] and for OOD,
datasets from BEIR [39]. We choose datasets corresponding to tasks
that resemble the most a traditional IR setup in BEIR according to
their classification4: FiQA [23], TREC-Covid [44], TREC-News [36],
NFCorpus [3], BioASQ [40], Natural Questions [20]. In addition,
we also include TREC-Robust04 [45] as it is also a known dataset
for retrieval. Together, these datasets as well as the test set of MS-
MARCO compose our attribution corpus. Table 2 summarizes the
attribution datasets and their different characteristics, including
their abbreviations, used in the different formulas later in the paper.

2The model is available on the HuggingFace’ Hub: castorini/monobert-large-msmarco
3We compute Neuron Integrated Gradients on the test set as the development set has
many false negatives
4The BEIR benchmark covers a total of 9 tasks, among which 3 can be considered the
closest to the IR task: News Retrieval, Question-Answering (minus HotpotQA [48]
which is a multi-hop QA dataset) and Bio-Medical IR

To empirically validate our findings, we further use the develop-
ment set of MSMARCO (we are less focused here on the quality of
the assessments because this is a ranking setup) as well as of the
LoTTE benchmark [18], also spanning various domains: Lifestyle,
Recreation, Science, Technology, and Writing.

4.2 Analysis methodology
In the case of a cross-encoder, the IR task can be seen as a series
of binary classification tasks where the model has to estimate the
relevance of a passage to a query. When computing NIG, we es-
timate separately the attributions for the "relevant" label and for
the "non-relevant" label (when available 5). We name the output
of the NIG attribution method an attribution scheme, i.e. the set
of attribution values of every neuron for either the "relevant" or
"non-relevant" labels of a given dataset. We ensure before assigning
one query-passage pair to the label "relevant" or "non-relevant"
that the original model prediction matches the assessment. Future
work could include a more fine-grained analysis by distinguishing
the assessments between the unambiguous pairs and the ambigu-
ous pairs. As we focus on understanding the generic mechanisms
behind IR systems’ predictions, we exclude the ambiguous pairs.
For each attribution scheme, we can rank the neurons 𝑦 based on
their mean importance 𝑁𝐼𝐺𝑦 and select the top 𝑋% of neurons in
the model (typical values of 𝑋 ∈ [0.01, 0.1, 1]). For example, we
can derive the top 1% of neurons with the highest attribution value
in the whole model for the "relevant" label on MSMARCO. These
subsets constitute the base units of our analysis. Following previous
works [26, 37] and to keep the computing time reasonable (given
the number of linear transformations that we consider in our study),
we approximate attributions using 𝑁 = 100 steps. We verified this
number is high enough to minimize the approximation error due
to the discretization when computing the integral [24].

Answering RQ1. To know if it is possible to identify neurons
involved in the classification of a passage as "relevant" (or "non-
relevant") for a given query, we leverage the attributions for both
types of labels. We start from the sets of neurons involved in the
prediction of the "relevant" (positive) label and "non-relevant" (nega-
tive) label for the dataset 𝑥 , 𝑥 ∈ {𝑚𝑠, 𝑓 , 𝑡𝑐, 𝑡𝑛, 𝑛𝑓 , 𝑏, 𝑟, 𝑛𝑞} (see Table
2 for the abbreviations), denoted as 𝑃𝑥 and 𝑁𝑥 respectively. These
correspond to the basic attribution schemes. We suppose that the
set of "core" neurons for relevance (resp. non-relevance) (RQ1) is
the intersection of the basic attribution schemes, based on the fact
that neurons specific to the IR task (for a given label) should be
consistently tagged as important across datasets. We consider the
relevance and non-relevance separately to replicate prior works
leveraging NIG on classification tasks and who found that sets
of important neurons for different labels usually do not intersect
[10, 47].

Answering RQ2. Another important aspect of these intersections
is the nature of the target domain. Indeed, to determine whether
or not MonoBERT contains neurons dedicated to OOD predictions
(RQ2), it is necessary to compare the "core" set of neurons across
every dataset and the "core" set of neurons across OOD datasets
only.

5BioASQ and FiQA only have relevant annotations
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(a) "Relevant" neurons: Comparisons of the intersection between
any 2 datasets in the attribution corpus. The grey dashed curves
summarize the intersection between two OOD datasets.

(b) Relevant neurons: Comparisons of the intersection between
any 2 datasets in the attribution corpus except Robust04 and
NFCorpus

(c) Non-relevant neurons: Comparisons of the intersection be-
tween any 2 datasets in the attribution corpus except BioASQ
and FiQA. The grey dashed curves summarize the intersection
between two OOD datasets.

(d) Non-relevant neurons. Comparisons of the intersection be-
tween any 2 datasets in the attribution corpus except BioASQ,
FiQA, Robust04 and NFCorpus

Figure 2: Percentage of intersection between pairs of attribution schemes for the label "relevant" (top) (resp. "non-relevant"
(bottom)) at different percentages of pruning

Answering RQ3. At this point, our findings are based on the
attribution from NIG but it is still unclear whether they can impact
the IR task by changing the rankings produced by MonoBERT.
To investigate this, we need to deprive the model of its ability
to deal with relevance and/or non-relevance. Following [22], we
set important neurons to zero and observe the effects on both

the model’s predictions but also the IR task. As our target is to
identify the most important neurons for the IR task, we do not limit
ourselves to the attribution schemes composed of the top 𝑥% of
the most important neurons for a single dataset and a single label.
Instead, we combine attribution schemes to further refine the set
of most important neurons. As intersections might not be the best
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Table 3: Summary of the notations we have introduced and
their meaning. For both intersection and fusion, as long as
the operation involves attribution schemes for the label "non-
relevant", we exclude BioASQ and FiQA from the set datasets
as they both lack "non-relevant" assessments.

Notation Signification
𝐴 = {𝑚𝑠, 𝑓 , 𝑡𝑐, 𝑡𝑛, 𝑛𝑓 , 𝑏, 𝑟, 𝑛𝑞} The set of every dataset in the attribution

corpus
𝑂 = {𝑓 , 𝑡𝑐, 𝑡𝑛, 𝑛𝑓 , 𝑏, 𝑟, 𝑛𝑞} = 𝐴 \ {𝑚𝑠} The set of every OOD dataset in the attribution

corpus
𝑃𝑥 , 𝑥 ∈ 𝐴 The attribution scheme for "relevant" label on

dataset 𝑥
𝑁𝑥 , 𝑥 ∈ 𝐴 \ {𝑏, 𝑓 } The attribution scheme for "non-relevant" label

on dataset 𝑥
𝑃𝑥 ∩ 𝑃𝑦, 𝑥,𝑦 ∈ 𝐴 The intersection between two attribution

schemes for the "relevant" label from two
different datasets⋂

𝑎∈𝐴 𝑃𝑎 Intersection of every attribution schemes for
the "relevant" label

𝑃𝑥
⊕

𝑁𝑥 , 𝑥 ∈ 𝐴 \ {𝑏, 𝑓 } Fusion of the attribution for both labels
"relevant" and "non-relevant" of dataset 𝑥⋂

𝑎∈𝐴\{𝑏,𝑓 } 𝐹𝑎 Intersection of the fusions of the attributions
schemes "relevant" and "non-relevant" of every

dataset in 𝐴 \ {𝑏, 𝑓 }
𝐹𝐴 Fusion of every attribution schemes together

way to combine schemes, we explore other ways to better define
the most important neurons. One obvious solution is what we call
the fusion operation, where the attribution values of both relevant
and non-relevant sets are averaged to compute the importance of
each neuron. We denote this operation with

⊕
. For any dataset

x, 𝑃𝑥
⊕

𝑁𝑥 denotes the fusion of the attribution schemes for the
"relevant" label and the "non-relevant" label. Please note that to
ease reading, this fusion is referred to as 𝐹𝑥 . Other combinations are
more straightforward as they only rely on intersections between
sets. Additionally, we denote the subset of all the OOD datasets as
𝑂 = {𝑓 , 𝑡𝑐, 𝑡𝑛, 𝑛𝑓 , 𝑏, 𝑟, 𝑛𝑞}. Similarly, we denote the set of all datasets
as 𝐴 = {𝑚𝑠, 𝑓 , 𝑡𝑐, 𝑡𝑛, 𝑛𝑓 , 𝑏, 𝑟, 𝑛𝑞}. Note that we do not specify the
pruning level when denoting those sets.

5 RESULT ANALYSIS
We now comment on the results of the experiments and answer
the research questions. To ease reading, we provide a summary of
the notation we use in Table 3.

5.1 RQ1: Are there relevance-specific neurons?
Figures 2a-d. depict the intersections between the sets of relevant
or non-relevant neurons, at different pruning levels. More precisely,
we report for a given label:

(1) Every pairwise intersection , i.e. 𝑃𝑥 ∩𝑃𝑦, 𝑥,𝑦 ∈ 𝐴 and 𝑁𝑥 ∩
𝑁𝑦, 𝑥,𝑦 ∈ 𝐴 \ {𝑏, 𝑓 } (BioASQ and FiQA lack non-relevant
assessment). We distinguish the OOD/OOD datasets pairs
from the MSMARCO/OOD pairs, as these will also help us
answer RQ2;

(2) The intersection between every dataset in 𝑂 and 𝐴,
i.e.,

⋂
𝑜∈𝑂 𝑃𝑜 (resp.

⋂
𝑜∈𝑂\{ 𝑓 ,𝑏} 𝑁𝑜 ) and

⋂
𝑎∈𝐴 𝑃𝑎 (resp.⋂

𝑎∈𝐴\{ 𝑓 ,𝑏} 𝑁𝑎);
(3) for any dataset 𝑥 in 𝐴 \ {𝑓 , 𝑏}, we compute 𝑃𝑥 ∩ 𝑁𝑥 .

Figure 3: Summary of the intersections amongst all the at-
tribution schemes of every dataset (or all the datasets but
Robust and NFCorpus) for a given label (either "relevant" or
"non-relevant") and of the intersections between two attribu-
tion schemes (both label) for a single dataset

In these figures, the curves describe the percentage of neurons
in the intersection between 2 sets at different pruning percentages.
Dashed curves correspond to the intersection between two OOD
datasets and plain curves to the intersection between MSMARCO
and an OOD dataset (as previously described). One can easily see
that for both "relevant" and "non-relevant" predictions, there exists
a set of neurons that is consistently involved across domains which
means that there are neurons specifically allocated for relevance,
thus answering the RQ1.
Furthermore, in Figure 3, which summarizes Figures 2a-d, the grey
dotted lines describe the percentage of the neurons that are in com-
mon between the relevant and non-relevant attribution schemes
(for the same dataset). We see that whatever the dataset 𝑥 , 𝑃𝑥 and
𝑁𝑥 do not intersect, implying that the sets of most important neu-
rons for each label are almost entirely different. Note that this
phenomenon has previously been observed in sentiment analysis
[10, 47], but we are, to the best of our knowledge, the first to report
it in IR.
As the intersection between the relevant and non-relevant attri-
bution schemes is almost empty across every dataset, it suggests
the possibility to distinguish between the neurons involved in pre-
dicting the label. In addition, this observation could imply that in
each case, the type of signals or mechanisms involved is different,
outlining the existence of different signals in relevance (beyond
semantics ones) as suggested in DRMM [16]. However, understand-
ing exactly what are the relevance signals involved in each case
would require a new set of experiments that we leave for future
work.
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Table 4: % of differences on nDCG@10 between pruned and original models, following different ablation schemes. For each
ablation scheme, we distinguish its impact on MSMARCO and on the LoTTE benchmark’s datasets. For the latter, we average
the results over the five datasets and report between parenthesis the number of datasets (out of 5) if any, for which there is a
difference compared to the original model, with statistical significance (𝑝 ≤ 0.05) under the two-tailed Student’s t-test. The
biggest perturbation at each percentage is in bold, the second one is underlined.

Sets of neurons pruned Datasets % of nDCG@10 diff.

0.01% 0.1% 1%

𝑃𝑚𝑠
LoTTE benchmark -1.98 3.32 8.97
MSMARCO dev set 3.11 4.87 8.94

𝑁𝑚𝑠
LoTTE benchmark 2.15 35.55 (5) 48.40 (5)
MSMARCO dev set 2.43 42.92 (1) 52.09 (1)

∩𝑜∈𝑂𝑃𝑜
LoTTE benchmark -0.11 0.44 -0.44
MSMARCO dev set 0.24 0.50 3.54

∩𝑜∈𝑂\{𝑏,𝑓 }𝑁𝑜
LoTTE benchmark 2.11 3.29 8.41
MSMARCO dev set 3.95 2.38 10.17

∩𝑎∈𝐴𝑃𝑎
LoTTE benchmark -0.11 -0.01 -0.31
MSMARCO dev set 0.24 0.45 3.69

∩𝑎∈𝐴\{𝑏,𝑓 }𝑁𝑎
LoTTE benchmark 2.11 3.25 8.71
MSMARCO dev set 3.95 2.44 12.24

𝐹𝑚𝑠
LoTTE benchmark -2.22 17.96 (2) 33.71 (4)
MSMARCO dev set -0.62 29.32 (1) 37.43 (1)

∩𝑜∈𝑂𝐹𝑜
LoTTE benchmark 0.00 0.66 -1.48
MSMARCO dev set 0.00 0.44 -1.46

∩𝑎∈𝐴𝐹𝑎
LoTTE benchmark 0.00 0.66 -1.49
MSMARCO dev set 0.00 0.44 -1.38

𝐹𝐴
LoTTE benchmark -0.74 -2.33 9.75 (1)
MSMARCO dev set 0.09 2.29 11.15

Random baseline LoTTE benchmark 0.00 -0.53 -0.93
MSMARCO dev set 0.00 0.09 -0.12

5.2 RQ2: Do neurons for ID predictions differ
from those for OOD predictions?

Another interesting observation that we can draw from Figures
2a and 2c is that, if we consider every possible dataset for each
label, there does not seem to be a clear distinction between the
neurons involved only with OOD datasets and with MSMARCO
and an OOD dataset. However, if we are more careful and analyze
further the impact of each dataset, we note in Figures 2b and 2d
that if we leave aside NFCorpus and Robust, the plain curves are
now completely separated from the dashed ones. This means that
the intersections between two OOD datasets have a higher number
of neurons than between MSMARCO and an OOD dataset. This
observation is further confirmed in Figure 3. In this figure, each pair
of curves with the same color represents the intersection between
all the OOD datasets and every dataset in the attribution corpus for
both labels, modulo NFCorpus and Robust (see the red and purple
pairs). One can easily verify that in every case, even when including
NFCorpus and Robust in the set of datasets, the OOD datasets have
a higher percentage of intersections together than when we add
MSMARCO to the mix. Figure 3 already showcases the existence

of two sets of neurons consistently involved in the prediction of
either "relevant" or "non-relevant" labels across domains. It further
suggests the existence of two additional sets of neurons, completely
different from the first two sets, dedicated to OOD predictions.
As an additional and distinct set of neurons is involved consistently,
it seems as if predictions outside of the training domain of the model
are somehow handled differently. This observation (if consistent
across models) motivates future works to better understand the
role of this specific set of neurons when dealing with OOD data
and to design better adaptation methods for IR systems.

5.3 RQ3: Can NIG identify neurons important
for the IR task?

To explore the impact of our observations in an IR setup, we conduct
an ablation study using the corpus described in Section 4. For each
dataset, we select a subset of queries and associate each relevant
passage with 20 others retrieved by BM25. The ablations are con-
ducted following different ablation schemes, coming either directly
from the attribution schemes of each dataset or by combining some
of them. As a baseline to our ablations, we use a random ablation
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(a) Distribution in the model of the most important neurons for the attribution scheme 𝑁𝑚𝑠

(b) Distribution in the model of the most important neurons in for the attribution scheme 𝐹𝑚𝑠

Figure 5: Number of important neurons at each layer ( 1% pruning).

scheme, where the same amount of neurons and in the same layers
that a given attribution scheme are selected. To account for ran-
domness, we averaged the results over 50 repetitions, each time
removing a different set of neurons. For each query, we measure the
difference in nDCG@10 between the original MonoBERT model
and its pruned counterparts when re-ranking the list of passages.
For both the random baseline and the different attribution schemes,
we consider three levels of pruning: 0.01%, 0.1%, and 1% and report
the average differences in nDCG@10 in Table 4.

Description of the attribution schemes applied to the original model.
Inspired by the previous experiments, we first compute the re-
sults obtained when pruning following the attribution schemes
based on MSMARCO, 𝑃𝑚𝑠 and 𝑁𝑚𝑠 , and on the intersection of the
OOD datasets ("relevant" and "non-relevant" separately at first),

i.e.
⋂

𝑜∈𝑂 𝑃𝑜 and
⋂

𝑜∈𝑂\{𝑏,𝑓 } 𝑁𝑜 , and every dataset, i.e.
⋂

𝑎∈𝐴 𝑃𝑎
(resp.

⋂
𝑎∈𝐴 𝑁𝐴\{𝑏,𝑓 } ). Finally, as the IR task involves both types

of relevance signals at the same time, we also combine "relevant"
and "non-relevant" attribution schemes together by merging 𝑃𝑚𝑠

and 𝑁𝑚𝑠 as 𝑃𝑚𝑠

⊕
𝑁𝑚𝑠 = 𝐹𝑚𝑠 . In addition, we also consider the

intersections of the fusion schemes 𝐹𝑥 together such as
⋂

𝑜∈𝑂 𝐹𝑜
and

⋂
𝑎∈𝐴 𝐹𝑎 ( for each dataset, we first compute the set of neurons

using fusion, before doing the intersection over the datasets). Last,
we compute the global fusion of all the original schemes together,
simply denoted as 𝐹𝐴 .

From Table 4, we first observe that the random pruning baseline
does not significantly impact the performances of the model. When
pruning only 0.01% of the neurons, the performances are not altered
at all. Higher levels of pruning (0.1% and 1%) produce changes of
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at most 2% on a single dataset. When it comes to the attribution
schemes obtained from our combinations, we note that even if it
is not statistically significant, some of them already impact nega-
tively the IR metrics when pruning as little as 0.01% of the neurons
(around 20 neurons before any intersection). For higher levels of
pruning, we observe larger degradation which eventually becomes
statistically significant on some datasets. As an answer to RQ3, it
seems that NIG can identify neurons that matter for the IR task as
removing them negatively impacts IR metrics. Another observation
is that one of the best attribution schemes is 𝐹𝑚𝑠 . This highlights
the value of fusion in selecting relevance-sensitive neurons but also
the importance of considering both relevant and non-relevant attri-
butions. Altogether, this shows the possibility to identify neurons
important for the IR task with NIG.

Beyond the scope of RQ3, Table 4 further helps us to understand
the relations between these different sets of neurons and the IR task.
In particular, perturbing the original model using "non-relevant"
attribution schemes have more impact on performance compared
to their "relevant" counterpart (i.e. 𝑁𝑚𝑠 has more impact than 𝑃𝑚𝑠 ,
and likewise for intersections of attribution schemes).

6 DISCUSSIONS
Beyond the scope of the research questions, attributions from Neu-
ron Integrated Gradients offer multiple new insights into the inner
mechanisms of MonoBERT. In particular, Figures 4a and 4b give
more details on the distribution of important neurons across the
model layers and components for the two schemes with the biggest
impact at 1% of pruning percentage, i.e. 𝑁𝑚𝑠 and 𝐹𝑚𝑠 . From these
figures, we observe that a significant peak in the number of impor-
tant neurons occurs around the last two layers. We suspect this peak
is associated with the concentration of all the signals into the [CLS]
token as the model’s output uses CLS-pooling. Even if it is smaller
in magnitude, both figures contain a second peak located around
the middle layers. This peak of activation is spread across layers
7 to 12 and emphasizes the role of these mid-level layers in the
model’s predictions. Interestingly, the position of this peak in the
model matches the conclusions of other studies based on probing
which show the importance of intermediate layers’ representations
in IR [46].

In addition, when looking at the details of which transforma-
tions have the most important neurons in these layers, we remark 1)
the omnipresence of the last linear transformation in the attention
mechanism ("attention_output") and of the value [42] and 2), the
absence of important neurons in the key and query’s linear trans-
formations. If, as we suspect, these mid-level layers are involved
in relevance matching (semantic and lexical), we interpret these 2
observations as matches occurring at the level of the query and key
matrices before being filtered by the value and propagated to the
upper parts of the model. When computing attributions, neurons
appear more important in the value matrices because these are
responsible for the filtering – signals in key and matrices can be
considered redundant. Following this matching process, we note
that the relative importance of feedforward layers also increases
in mid-level layers ("intermediate" and "ff_output"), which could
mean that they are used to integrate this information.

Impact of the baseline’s choice. As detailed in Section 3.2, we care-
fully select our baseline to compute NIG attributions by empirically
validating that it erased most of the relevance signal in the original
input embeddings. This design choice is crucial as we observed dif-
ferent behaviors when running through the experimental process
with the baseline proposed by Möller et al. [26]. Even if it did not
change the conclusions, both the ablations and the observations
were partially impacted: the biggest differences in Table 4 were
less pronounced. For instance, for the in-model distribution of the
important neurons, the peak in the middle layers was even more
important, contrary to the peak in the last two layers. This reminds
us that NIG attributions are dependent on the choice of a good
baseline that can otherwise hinder results and conclusions.

7 CONCLUSION
In this paper, we present an adaptation of the Neuron Integrated
Gradients attribution method that fits with the IR task, applied
to MonoBERT. Our analyses highlight that within the model, it is
possible to identify neurons specifically allocated to determine the
relevance of a passage to a query. By extending our study across
multiple datasets, we have been able to identify a core set of neurons
related to the notion of "relevance" and have demonstrated the
existence of a different set of neurons important in the case of OOD
data. Finally, we empirically demonstrate that neurons identified
by NIG are actually related to the IR task by performing multiple
ablations. Overall, our study shows that the relevance of a passage
is treated by two independent sets of neurons that do not depend
on the dataset. Our statements link one set of neurons to matching
signals particularly and another one to domain adaptation.

This work is not without limitations and could benefit from
exploring additional neural IR architectures/models. The number
of relevance judgments (particularly negatives) also might hinder
our conclusions. Having this in mind, we however believe that
our analysis provides interesting outcomes regarding the nature
of neurons in the IR task and paves the way towards the design of
more robust and generalizable neural IR models.

Future works. Our work paves the way for many follow-ups to
refine the observations that we make on the role of some particular
neurons in MonoBERT in the IR task. In particular, it would be
interesting to explore methods such as those inspired from mecha-
nistic interpretability, that are more costly, on the reduced scope
of layers or blocks in the model that we have identified as more
relatively important than the others or the role of the core set of
OOD neurons. To expand our work, other models could also be
considered, either stronger cross-encoders such as MonoT5 [29],
bi-encoders [17] (extending the work from Möller et al. [26]) or
more recent architectures such as ColBERT [18] or SPLADE [14].
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