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Abstract

Self-supervised Learning (SSL) has emerged as a powerful technique in pre-training deep
learning models without relying on expensive annotated labels, instead leveraging embedded
signals in unlabeled data. While SSL has shown remarkable success in computer vision
tasks through intuitive data augmentation, its application to graph-structured data poses
challenges due to the semantic-altering and counter-intuitive nature of graph augmentations.
Addressing this limitation, this paper introduces a novel non-contrastive SSL approach to
Explicitly Generate a compositional Relation Graph (ExGRG) instead of relying solely on
the conventional augmentation-based implicit relation graph. ExGRG offers a framework
for incorporating prior domain knowledge and online extracted information into the SSL
invariance objective, drawing inspiration from the Laplacian Eigenmap and Expectation-
Maximization (EM). Employing an EM perspective on SSL, our E-step involves relation
graph generation to identify candidates to guide the SSL invariance objective, and M-step
updates the model parameters by integrating the derived relational information. Extensive
experimentation on diverse node classification datasets demonstrates the superiority of our
method over state-of-the-art techniques, affirming ExGRG as an effective adoption of SSL
for graph representation learning.

1 Introduction

In supervised deep learning, models are traditionally trained using annotated data. Recognizing the high
cost involved, SSL methods capitalize on the abundance of readily available unlabeled data. The underlying
principle is to leverage existing signals within the data distribution for pre-training parametric deep models.
SSL techniques typically involve applying data augmentations to input samples. An invariance objective
is formulated to encourage identical representations for a pair of random views originating from the same
source sample.

In computer vision, data augmentations are straightforward and intuitive. They include operations like
cropping, rotation, noise adding, and color jittering. On the contrary, the data augmentation in the graph
domain is not as intuitive as in vision. Particularly in node classification, common augmentations include
node feature masking and edge dropout, which heavily rely on the specific characteristics of the data distri-
bution. Forming representations based on masking certain features may seem counter-intuitive to domain
experts, leading to semantic-altering augmentations (Lee et al., 2022). Adding or removing random edges
to the source graph can significantly impact the structural properties of the graph (Sun et al., 2021; Lee
et al., 2022). Thus, relying on invariance loss solely based on graph augmentation is misleading and lacks
the necessary information to learn robust representations.

To alleviate the shortcomings of data augmentation, our work proposes integrating additional appropriate
information derived from the input graph. This aids in determining which data samples are candidates to
share similar representations. Rather than the prevailing rigid binary determination of whether two points
should share a similar representation or not, we embrace a soft, probabilistic evaluation of the degree of
similarity. Given the inadequacy and misguidance of graph augmentations, alternative cues are incorporated
to guide the determination of analogous representations and assess the relative significance of each pairwise
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comparison. To achieve this, we propose explicitly generating a higher-order compositional relation graph
that pinpoints crucial relation pairs, serving as candidates for the invariance loss. We propose a comprehen-
sive strategy for constructing this compositional relation graph, leveraging insights from three key sources,
each contributing to its distinct relation graph: (i) Neighborhood Similarity in the Representation Space, (ii)
Higher-Order Graph Encodings, encompassing the source graph adjacency alongside diverse positional and
structural encodings (PSEs), and (iii) A Deep Clustering module. We enrich the learning process, elevating
the acquired representation and mitigating the deficiencies associated with relying exclusively on augmenta-
tions. While we motivate and emphasize the efficacy of our model based on VICReg (Bardes et al., 2021),
our approach can be seamlessly integrated with other SSL methods simply by modifying their invariance
terms through the exact process.

Graph Neural Networks (GNNs) have the inherent ability to capture label-related patterns due to the
message-passing paradigm and the intrinsic characteristics of graph datasets. Hence, we construct a k-
Nearest Neighbour (kNN) graph on the representations. Nodes in close proximity within the kNN graph
exhibit a heightened likelihood of sharing the same label class. Therefore, this kNN graph serves as our
first source to construct the compositional relation graph. PSEs, alongside the adjacency information,
constitute our second primary source. Inspired by Lee et al. (2022), we employ the original input adjacency
to construct a relation graph. Particularly in homophilic source graphs, adjacent nodes commonly share the
same label class. Employing appropriate PSEs, transformers yield results comparable to message-passing
networks. When a pair of points shares similar positional and structural properties, it indicates their overall
similarity, offering auxiliary guidance for forming meaningful representations. Moreover, we incorporate
a deep clustering algorithm rooted in the optimal transport (Asano et al., 2019) as the third source for
guiding the invariance term. This module partitions the points into learnable clusters. Subsequently, we
guide the model to create identical representations for points having similar soft clustering assignment
distributions. This module is trained jointly in an end-to-end manner with the encoder, resembling an
EM-style optimization approach in action, where both deep components evolve simultaneously, reflecting a
dynamic interplay.

Two theoretical justifications support our proposal: the Laplacian Eigenmap (LE) perspective and the EM
viewpoint. Firstly, adopting a spectral manifold learning perspective, the original solely augmentation-based
VICReg objective can be formulated as an LE optimization (Balestriero & LeCun, 2022). The implicit
augmentation-based relation graph results in disconnected islands corresponding to a rank deficiency of its
Laplacian. We mitigate this through explicitly generating the relation graph, facilitating the connection
of these islands. Secondly, SSL methods address an underlying two-step EM characterized by two implicit
sets of variables (Chen & He, 2021). We distinctly and explicitly outline the representatives of these two
steps. The Expectation step (E-step) leverages the learned representation to dynamically generate a relation
graph, identifying candidates to promote similar representations. The Maximization step (M-step) refines the
encoder by incorporating information from the determined relation graph. These two modules synergize, with
the relation graph generator pinpointing candidate pairs for the invariance term and the encoder ensuring
the enforcement of identical representation pairs. Our introduced objective function facilitates and stabilizes
the joint optimization of these modules, enabling simultaneous execution of the two steps in a single gradient
update. Following extensive experimentation across diverse graph datasets, we showcase the superior quality
of the learned representation, consistently outperforming previous methods.

2 Related Work

2.1 Self-supervised Representation Learning

Contrastive SSL (Misra & Maaten, 2020; Bromley et al., 1994; Hjelm et al., 2019; Chen et al., 2020c; Hadsell
et al., 2006; Ye et al., 2019; Wu et al., 2018; Chen et al., 2020b) constructs positive pairs employing data
augmentation to push their representations closer while pulling apart the negative pairs utilizing InfoNCE
(van den Oord et al., 2018). These pairs could be constructed on a mini-batch (Chen et al., 2020a) or
employing memory banks (He et al., 2020). Clustering-based SSL (Bautista et al., 2016; Yang et al., 2016;
Xie et al., 2016; Huang et al., 2019; Zhuang et al., 2019; Caron et al., 2019; Asano et al., 2019; Yan et al., 2020)
employs a notion of clustering to form the representations by pseudo-labels (Caron et al., 2018) or enforcing
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identical clustering assignments of augmented pairs instead of directly enforcing identical features (Caron
et al., 2020). Knowledge distillation-based SSL leverages student-teacher architectures (Hinton et al., 2015;
Grill et al., 2020; Chen & He, 2021; Gidaris et al., 2021; Grill et al., 2020; Gidaris et al., 2020), employing
an Exponential Moving Average encoder and a Stop-Gradient (SG) mechanism. Other works maximize
the mutual information of representations (Ermolov et al., 2021; Zbontar et al., 2021). Notably, VICReg
(Bardes et al., 2021) decorrelates embedding dimensions to prevent preserving redundant information, and
VICRegL (Bardes et al., 2022) employs local and global features, enforcing the invariance term for specific
image patches.

2.2 Graph Representation Learning

GNNs (Kipf & Welling, 2016a; Veličković et al., 2017; Hamilton et al., 2017; Xu et al., 2018) accept node
features and sufficient annotated data to form representations by recursively aggregating the neighbor’s
information. Yet, to truly utilize the abundant unlabelled graph data, graph SSL pre-train GNNs to construct
node- and graph-level representations without costly labels (García-Durán & Niepert, 2017; Kipf & Welling,
2016b; Bojchevski & Günnemann, 2017). Augmentation-based methods (You et al., 2020; Peng et al., 2020;
Hassani & Khasahmadi, 2020; Zhu et al., 2021a;b; 2020c; Thakoor et al., 2021; Zhu et al., 2020b) encourage
the representations to be invariant to a specifically designed graph transformation. A BERT-inspired method
(Devlin et al., 2018; Hu et al., 2019) masks features of graphs with special structures. DGI (Veličković et al.,
2018) aligns a local graph patch with the global one by maximizing the mutual information (Hjelm et al.,
2019), followed by edge and node feature extensions (Peng et al., 2020; Jing et al., 2021) and tackling graph
classification (Sun et al., 2019). Contrastive methods (Zhu et al., 2020c; 2021b; You et al., 2020; Hassani &
Khasahmadi, 2020; Tian et al., 2020; Liu et al., 2023b) are generally inspired by SimCLR (Chen et al., 2020a),
employing negative pairs resulting in the sampling bias issue (Bielak et al., 2021), meaning some negative
samples may have similar semantics to the anchor while being pulled apart. PGCL (Lin et al., 2022) tackles
the sampling bias, constructing the negative pairs from different clusters, while BGRL (Thakoor et al., 2021)
adopts the non-contrastive BYOL (Grill et al., 2020).

AFGRL (Lee et al., 2022), an augmentation-free BYOL-based method, incorporates kNN, KMeans, and
adjacency as local structures and global semantics. Similarly, SPGCL (Wang et al., 2023), an augmentation-
free contrastive method, leverages kNN with a single encoder pass. We distinguish ourselves by offering a
non-contrastive comprehensive framework. ExGRG generates and incorporates additional guidance in the
form of relation graphs. We propose constructing an explicit compositional relation graph from various
sources through a learnable aggregation mechanism. This relation graph identifies candidate pairs for the
invariance term based on the theoretical connections between SSL, LE algorithm, and EM optimization. We
stand out by introducing a novel approach leveraging PSEs in an unexplored context. ExGRG marks the
pioneering attempt to employ a learnable clustering mechanism to drive the invariance term, departing from
relying solely on augmentation.

3 Method

3.1 Preliminary

3.1.1 Graph SSL

As demonstrated in Fig. 1, the initial data points are M nodes within a source graph Gs = (As,Xs),
where As ∈ RM×M represents the adjacency and Xs ∈ RM×Din signifies the node features. In addition,
Y s ∈ RM denotes the node classification labels. Transformations χi are sampled from the distribution of
data augmentations χ to yield V views as G(i) = (A(i),X(i)) = χi(Gs), where i ∈ {1, . . . , V }, A(i) ∈ RM×M ,
X(i) ∈ RM×Din , and typically V = 2. The mini-batch graph G = (A,X) is then constructed, where
A ∈ RN×N is the aggregation of adjacencies {A(1), . . . ,A(V )}, X = [X(1); . . . ; X(V )] ∈ RN×Din , and N =
VM = 2M denotes the mini-batch size. This graph G is subsequently fed into the graph encoder fθ, which
is usually a GNN. The representations H = fθ(G) ∈ RN×DH produce embeddings Z = gϕ(H) ∈ RN×DZ ,
employing the expander gϕ, interchangeably referred to as the projector or decoder in the literature, which
is a Multi-Layer Perceptron (MLP).
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Figure 1: The comprehensive architecture of ExGRG. We incorporate augmented views G(1) and G(2) from
source graph G(s) to compose an input graph G, which is then fed into encoder fθ and expander gϕ to
produce representations H and embeddings Z. We explicitly generate a compositional relation graph G,
aggregated from various intermediate relation graphs, to guide the invariance term LI′ instead of relying
solely on augmentations.

The essence of SSL lies in employing signals inherent in data points as a form of supervision. SSL pre-training
aims to discover representations of input points by identifying fθ and gϕ. Subsequently, the pre-trained fθ
is utilized in downstream tasks, predicting Y s from Gs, through linear probing, nonlinear probing, or fine-
tuning. In linear probing, the prevailing approach in graph SSL, a single linear layer is affixed to the frozen
pre-trained fθ while detaching gϕ. This linear layer is trained for the downstream node classification task,
utilizing the frozen representations as inputs. Though ExGRG centers around a node-level representation
learning task, it can be seamlessly extended to learn graph- and link-level representations, with details
provided in Appendix § A.1.

3.1.2 VICReg and Relation Graph

Contrastive SSL prevents the representation collapse by incorporating negative pairs (Chen et al., 2020a). In
contrast, the VICReg objective LV ic (Eq. 2) introduces constraints to maximize the volume of the embedding
space through two regularization terms, variance LV and covariance LC (Eq. 1). The term LV ensures
variance of embedding dimensions exceeds a threshold, while LC enforces decorrelation between every pair
of dimensions. The invariance term LI (Eq. 1) encourages similar representations for semantically related
points through augmentation.

LV =
DZ∑
k=1

max
(

0, 1 −
√

Cov(Z)k,k
)
, LC =

DZ∑
k=1

DZ∑
j=1,j ̸=k

Cov(Z)2
k,j , LI =

∑
(i,j)∈Sa

∥Zi,. − Zj,.∥2
2. (1)

LV ic = αLV + βLC + γLI (2)

The invariance term LI is exclusively guided by augmentations, performed on data points with index pairs
(i, j) in an implicitly defined set Sa = {(i, j) ∈ N2 | Xi,. and Xj,. are augmented from same source
Xs
k,. s.t. 1 ≤ i < j ≤ N and 1 ≤ k ≤ N

2 }. The notation X encompasses all points from both views
within a unified matrix. Thus, with (i, j) ∈ Sa, the i-th point Xi,. is the same as the k-th point in the
first view, denoted as X

(1)
k,. . Similarly, the j-th point Xj,. is the same as the k-th point in the second view,

represented as X
(2)
k,. . The pair (Xi,.,Xj,.) is augmented from the same source point Xs

k,.. In the original
invariance term LI , the enforcement is applied only over (i, j) ∈ Sa. We can conceptualize the relations
among data points determined by this augmentation using a relation matrix Ga ∈ RN×N , where Ga

i,j = 1
if (i, j) ∈ Sa, and Ga

i,j = 0 otherwise. A relation matrix can be interpreted as an adjacency matrix for a
relation graph, though we may use the terms relation graph and relation matrix interchangeably.

3.2 Explicit Compositional Relation Graph

Eq. 3 demonstrates the ExGRG’s invariance term LI′ employing our explicitly-generated compositional
relation graph G ∈ RN×N as opposed to only relying on augmentations Ga. Our invariance term LI′ may
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be reduced to the original LI by simply setting G = Ga.

LI′ =
N∑
i=1

N∑
j=1

Gi,j∥Zi,. − Zj,.∥2
2 (3)

Two theoretical justifications underpin the rationale behind explicitly generating G. This is motivated by
the interplay between SSL with (i) the LE method and (ii) the EM optimization.

3.2.1 Laplacian Eigenmap Perspective

In variance-covariance-constrained VICReg, α = β ≫ γ, signifying that the variance and covariance terms in
LV ic are already satisfied (Eq. 2). Optimizing this VICReg objective is equivalent to solving the LE problem
in Appendix Eq. 11 (Balestriero & LeCun, 2022). The distinction lies in VICReg’s G being determined
through data augmentations, while in LE, it can be designed by forming kNN graphs in the input. Due to
the duality between Sa and Ga, the augmentation-based relation graph Ga consists of M = N

2 disconnected
islands. Therefore, the corresponding Laplacian La for Ga suffers from rank deficiency, as it has N

2 zero
eigenvalues. In addition, due to the shortcomings of graph augmentations, connections between pairs of
data points within each island in Ga tend to be much less valuable compared to the vision domain. To
address this challenge, we mitigate the rank deficiency of La by constructing a more informative G through
the incorporation of additional sources to guide the invariance term. We introduce meaningful entries to G,
establishing connections among the disconnected islands while assigning soft importance to each connection.

3.2.2 Alternating Two-Step EM Perspective

SimSiam (Chen & He, 2021) hypothesizes that SSL methods with Siamese architectures share an underlying
optimization problem that could be effectively modeled employing the EM framework. In this optimization,
SSL pre-training deals with two implicit sets of variables, reflecting an implied alternating optimization for
each set in EM. Employing SG emerges as a viable approach to prevent collapse, resembling the alternating
two-step EM optimization style in a single gradient update. The E-step is performed utilizing a predictor.
Instead of directly comparing augmented views, the predictor assigns implicit targets for each anchor point,
upon which the invariance loss is applied. In the M-step, the encoder is updated but only through one of
the two available paths employing the SG technique.

ExGRG departs from computing these implicit targets. Instead, we opt for an explicit, end-to-end method-
ology that leverages nodes’ intrinsic information and characteristics to construct the relation graph. The
connections in our relation graph determine candidate targets for each anchor point, formulated as the en-
tries within G. Within our framework, the two EM steps are consolidated into a single update via a joint
optimization. Notably, ExGRG diverges from the implicit sets mentioned earlier. Instead, we utilize distinct
and explicit sets of parameters. Specifically, leveraging our proposed loss function, both the parameters of
the encoder and the relation graph generation modules are simultaneously updated.

In the EM algorithm, the E-step assigns data points to different given distributions. In ExGRG, this
assignment corresponds to constructing G, indicating which points should be brought closer. This E-step
offers a roadmap for our M-step, which incorporates the invariance term LI′ based on the constructed G.
Optimizing LI′ leads to updating fθ and gϕ, leading to new H and Z, which subsequently determine a new
G in the E-step of the next iteration.

3.2.3 Intra-view and Soft Relations

An invariance term LI′ based on constructing G enables capturing and enforcing similarities among points
within a view (intra-view) or across different views (inter-view). In essence, the enforcement of invariance
criteria occurs concurrently for an anchor point in three key scenarios: (i) with its corresponding point in
the other view, both resulting from augmentations on the same source, (ii) with its analogous points from
the same view representing augmentations from different source points but sharing similar semantics to the
anchor point, and (iii) with some analogous points from the other view holding similar characteristics as
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described in (ii). While conventional methods only support scenario (i), our extension enables us to integrate
additional information from the same mini-batch.

Another distinction in our approach is the incorporation of support for soft values of relations. Unlike the
binary nature of the conventional Ga entries (0 or 1), we allow for soft values that indicate the degree of
enforcing identical representations for a candidate pair in G. This introduces flexibility and indicates the
relative importance of each connection pair compared to other pairs resembling LE.

3.3 Strategies for Constructing Relation Graphs

Our approach to enhancing the invariance term involves exploring ways to construct more informative relation
graphs. This empowers the invariance term to leverage additional similarities beyond augmentations through
(i) utilizing Neighborhood Similarity employing the kNN graph, (ii) exploiting Higher-Order Encodings as
the structural and positional similarities of nodes, and (iii) incorporating an end-to-end Deep Clustering
algorithm.

3.3.1 Neighborhood Similarity in the Representation Space

We can explicitly determine a relation graph by leveraging the similarities between the representations of
points. This approach encourages the convergence of embeddings for points with similar neighborhoods in
the representation space, resembling LE. Thus, we compare the points in H to compute the kNN relation
matrix denoted by Gk = Fk(GH) ∈ RN×N , where GH

i,j = sim(Hi,.Hj,.) and i, j ∈ {1, . . . , N}. The function
sim represents a notion of similarity, such as Euclidean or cosine similarity. Additionally, Fk sets entries
other than the k-largest values in each row of its input to zero, resembling the kNN algorithm.

3.3.2 Higher-Order Graph Encodings

In homophilic input graphs, the proximity of two nodes in Gs indicates sharing the same class label in Y s (Zhu
et al., 2020a). Therefore, depending on the degree of homophily in the source graph Gs, the edges between
source points in As can be exploited to construct an informative relation matrix GA = FA(As) ∈ RN×N ,
where FA extracts the adjacency information corresponding to the N points in the mini-batch. Recognizing
that Gk or GA are often noisy on their own (Lee et al., 2022), we propose another more conservative filtered
version through element-wise multiplication as GA′ = GA ⊙ Gk. This GA′ retains the soft similarities of
Gk, with additional details provided in Appendix § A.5.

Additionally, drawing inspiration from LE, we can conduct pre-processing on the input to extract character-
istics that can be utilized to construct a more informative G. This could involve leveraging the comparison
of some statistics and features at the level of individual nodes, neighborhoods, or sub-graphs. To achieve
this, we incorporate positional or structural similarities of nodes. Our approach differs from their typical
application in transformers to enhance the identifiability of nodes within a graph (Liu et al., 2023a). To the
best of our knowledge, this is the first attempt to integrate PSEs into the SSL pre-training.

Positional Encodings (PEs) attempt to encode the position of a node within a graph. Thus, comparing
these encodings can help identify nodes with similar positions in the graph, capturing a higher-level under-
standing of what the adjacency matrix can signify. Alternatively, Structural Encodings (SEs) capture the
structural characteristics of the neighboring region surrounding each node. By incorporating SEs, ExGRG
gains access to rich information about nodes with analogous local and global connectivity patterns. Our
approach encompasses three PSEs: Laplacian Eigenvectors Positional Encoding (LapPE) (Dwivedi et al.,
2023), Random Walk Structural Encodings (RWSE) (Dwivedi et al., 2021), and SignNet (Lim et al., 2022).
LapPE serves as a global PE, offering insights into the node’s overall position within the graph. RWSE
provides local structural information, indicating the sub-structure to which a node belongs. SignNet, acting
as another global positional encoder, is also capable of capturing some local structural information.

To construct a relation matrix from these PSEs, a comparison of encodings for pairs of nodes is necessary,
followed by the formation of candidate pairs based on a construction algorithm such as kNN. By denoting
a computed PSE as E ∈ RN×DE , we obtain GPSE = Fk(GE) ∈ RN×N , where GE

i,j = sim(Ei,.,Ej,.)
and i, j ∈ {1, . . . , N}. By incorporating LapPE, RWSE, and SignNet PSEs into the GPSE placeholder,

6



Under review as submission to TMLR

we construct three relation matrices, GL, GR, and GS . Similar to GA′ , we observe the filtered RWSE
GR′ = GR ⊙ Gk to be more beneficial for certain datasets.

3.3.3 Deep Clustering for Relation Graph Generation

Various methods are introduced to jointly optimize a deep feature extractor module and a deep clustering
module (Zhou et al., 2022). Conventionally, this is performed by leveraging the feature extractor module to
provide essential features for the clustering module, with the aim of addressing a clustering task. However,
in our approach, we invert this paradigm by proposing a novel relation between these two modules through
our introduced objective function. Instead, we leverage the clustering module to explicitly guide the feature
extractor module towards a representation learning task.

Our encoder and learnable clustering modules collaboratively aim to enhance the representations. The
clustering module employs learnable prototypes to assign a probability distribution to each data point. This
distribution indicates the confidence of assigning a data point to different clusters. Subsequently, these
assignments are employed to guide the invariance loss. This encourages the encoder to map points with
similar clustering assignments to identical representations. Both the prototypes and the encoder are learned
jointly, providing a more integrated and effective approach.

This marks a novel attempt to integrate a learnable clustering algorithm for representation learning. While
a clustering algorithm is previously employed in SSL methods to partition the points (Caron et al., 2020), a
key distinction lies in the representation learning aspect. In these methods, the invariance loss is still guided
through data augmentation. This means that for points in Sa, instead of ensuring identical features directly
through LI , they aim for identical clustering assignments. In contrast, ExGRG positions the clustering
module as an explicit and direct guide, promoting the same representation for data points with similar cluster
assignments at each iteration. In essence, our proposal deviates from the approach of enforcing identical
cluster assignments for augmentation-based paired points; instead, we enforce identical representations for
points with similar cluster assignments. The candidate pairs for this enforcement encompass the entire
mini-batch, not only pairs augmented from the same source.

In our deep clustering module, we leverage optimal transport (Asano et al., 2019) to partition the points
employing K trainable prototypes C ∈ RK×DH . The probabilities P ∈ RN×K , represent the distribution
of assignments of points to different clusters. They are computed by comparing the representations H with
prototypes C, followed by a softmax function with temperature τ . The probability Pj,k of assigning the
point Hj,. ∈ RDH to the k-th prototype Ck,. ∈ RDH is given by

Pj,k =
exp( 1

τHT
j,.Ck,.)∑

k′ exp( 1
τHT

j,.Ck′,.)
. (4)

To update P , we aim to make them more similar to codes Q ∈ RN×K , which serve as a refined version of P
computed from the optimal transport problem. The underlying concept of the target probability distribution
Q is evenly distributing data points among clusters. The updates for P and C are performed leveraging our
loss term LO that aligns P and Q using cross-entropy for all pairs in SO as

LO = 1
|SO|

∑
(i,j)∈SO

li,j , where li,j = −
∑
k

Qi,k log Pj,k, and SO = {(i, j) ∈ N2 | i = j} ∪ Sa. (5)

At each iteration, Q is derived directly from C and H employing the Sinkhorn-Knopp algorithm (Cuturi,
2013; Asano et al., 2019; Caron et al., 2020), with further details provided in Appendix § A.6. Simultaneously,
P is aligned with Q to adjust C accordingly for the subsequent iterations. To incorporate the auxiliary
online extracted information available in P , a relation matrix GO ∈ RN×N is constructed as

GO = FK
(
Fn(GP )

)
, where GP

i,j =
∑
k

Pi,k log Pj,k. (6)

Here, Fn normalizes entries of GP to [0, 1]. Additionally, FK selects the top Kg entries of the input matrix
globally and sets the rest to zero. As a result, GO is a sparse normalized version of GP . The entry
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GP
i,j represents negative cross-entropy over distributions Pi,. and Pj,., indicating a notion of similarity for

clustering assignments. If points Hi,. and Hj,. share high similarity in their clustering assignments, signifying
similar characteristics, their representations are encouraged to be closer through GO.

3.4 Multi-Source Aggregation

To compute the invariance term LI′ (Eq. 3), we construct a compositional relation matrix G through
aggregating various relation matrices G(i) ∈ SG derived from previously-discussed sources gathered in SG
(Eq. 7). In a straightforward scenario, this aggregation can be accomplished through summation with
learnable coefficients λi. This is illustrated in Eq. 7, where FSG denotes the identity function but enforces
the SG mechanism outlined in § 3.5. Combining Eq. 7 and Eq. 3, we observe that this effective aggregation
can also be represented as individual invariance terms corresponding to each of the G(i) ∈ SG. Besides,
employing a softmax, we ensure λi are normalized, guaranteeing that they collectively sum up to one, i.e.,
we enforce

∑
G(i)∈SG

λi = 1.

G =
∑

G(i)∈SG

λiFSG(G(i)), where SG = {Ga,Gk,GA,GA′
,GL,GR,GR′

,GS ,GO}. (7)

To generate the learnable coefficients λi, we employ an MLP Ψψ as a hypernetwork (Ha et al., 2016). This
aims to efficiently aggregate an arbitrary number of relation graphs using a single module in an online
manner. We leverage a hypernetwork-inspired formulation for its computational capabilities encompassing
information-sharing, compressed nature, and expedited training process (Chauhan et al., 2023). This module
receives some characteristics about each G(i) ∈ SG in an online manner as

λi = Ψψ

(
Fs(G(i))

)
, (8)

where Fs denotes a function that computes two simple yet effective statistics from its input G(i) to determine
the appropriate contribution to G: (i) the sum of G(i) entries, reflecting the average strength of connections
within G(i), and (ii) the count of G(i) non-zero entries, resembling the level of sparsity.

3.5 End-to-End Training Procedure

The transition between optimizing our modules, specifically the alteration of (i) updating fθ and gϕ, and (ii)
generation of a more informative G(i) ∈ SG and eventually G, can be achieved through the incorporation of
an SG mechanism (Eq. 7), inspired by Grill et al. (2020) and Chen & He (2021), alongside a relation matrix
regularization as

LR = −
∑
i,j

(Gi,j)2. (9)

These two components are introduced to prevent G(i) and G from collapsing to a degenerate solution,
wherein all entries are encouraged to be zero under the influence of LI′ . This integration enables us to
squeeze the two EM steps into a single gradient update, thus enabling joint optimization. This strategy aims
to enhance the synergy between the encoder’s parameter adjustment and the refinement of the informative
content within the relation matrices. Additional details are provided in Appendix § A.7.

Finally, to facilitate end-to-end training of our model through gradient descent, we employ a comprehensive
multi-term loss function LETE that encompasses the terms discussed so far as

LETE = αLV + βLC + γLI′ + α1LO + α2LR, (10)

where α, β, and γ, α1 and α2 serve as coefficients for the respective loss terms.
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Table 1: Downstream performance measured in terms of node classification accuracy’s mean and standard
deviation over 20 random model initializations and dataset splits. OOM indicates Out Of Memory.

Model WikiCS AmzComp AmzPhoto CoCS CoPhy Cora CiteSeer PubMed DBLP

Supervised MLP 71.98 ± 0.42 73.81 ± 0.21 78.53 ± 0.32 90.37 ± 0.19 93.58 ± 0.41 47.92 ± 0.41 49.31 ± 0.26 69.14 ± 0.34 -
Supervised GCN 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16 81.54 ± 0.68 70.73 ± 0.65 79.16 ± 0.25 82.7 ± 0.00

Node2Vec 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04 71.08 ± 0.91 47.34 ± 0.84 66.23 ± 0.95 -
DeepWalk 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15 70.72 ± 0.63 51.39 ± 0.41 73.27 ± 0.86 -

DW + Features 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09 - - - -
DGI 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52 82.34 ± 0.71 71.83 ± 0.54 76.78 ± 0.31 -
GMI 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM 82.39 ± 0.65 71.72 ± 0.15 79.34 ± 1.04 -

MVGRL 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03 83.45 ± 0.68 73.28 ± 0.48 80.09 ± 0.62 -
GRACE 77.97 ± 0.63 86.50 ± 0.33 92.46 ± 0.18 92.17 ± 0.04 OOM 81.92 ± 0.89 71.21 ± 0.64 80.54 ± 0.36 -

GCA 77.94 ± 0.67 87.32 ± 0.50 92.39 ± 0.33 92.84 ± 0.15 OOM 82.07 ± 0.10 71.33 ± 0.37 80.21 ± 0.39 -
BGRL 79.98 ± 0.10 90.34 ± 0.19 93.17 ± 0.30 93.31 ± 0.13 95.73 ± 0.05 83.83 ± 1.61 72.32 ± 0.89 86.03 ± 0.33 84.07 ± 0.23

AFGRL 77.62 ± 0.49 89.88 ± 0.33 93.22 ± 0.28 93.27 ± 0.17 95.69 ± 0.10 81.60 ± 0.54 71.02 ± 0.37 80.02 ± 0.48 -
SPGCL 79.01 ± 0.51 89.68 ± 0.19 92.49 ± 0.31 91.92 ± 0.10 95.12 ± 0.15 83.16 ± 0.13 71.96 ± 0.42 79.16 ± 0.73 -
ExGRG 82.09 ± 0.67 93.37 ± 0.48 96.42 ± 0.54 94.57 ± 0.31 96.59 ± 0.20 97.87 ± 0.55 89.68 ± 1.46 88.03 ± 0.49 86.01 ± 0.59

4 Experimental Evaluation

4.1 Experimental Setup

We undertake an extensive experimental analysis, aiming to demonstrate the efficacy of our approach and
its superiority in comparison to other state-of-the-art methods. A GCN (Kipf & Welling, 2016a) as the
encoder fθ is utilized, with details provided in Appendix § B.2. Also, we follow the linear probing protocol,
the established approach in prior graph SSL works (Thakoor et al., 2021). Further details can be found in
§ 3.1.1 and Appendix § B.3.

Datasets: We employ a wide range of real-world graphs within 9 node classification datasets, including
WikiCS, Amazon Computers (AmzComp), Amazon Photo (AmzPhoto), Coauthor CS (CoCS), Coauthor
Physics (CoPhy), Cora, CiteSeer, PubMed, and DBLP, with corresponding statistics in Appendix Table 3.

Baselines: We compare ExGRG with various graph representation learning methods, encompassing (i)
supervised MLP employing raw node features and GCN (Kipf & Welling, 2016a), (ii) conventional unsuper-
vised graph embedding works Node2Vec (Grover & Leskovec, 2016) and DeepWalk (Perozzi et al., 2014),
alongside (iii) state-of-the-art contrastive and non-contrastive SSL methods, including DGI (Veličković et al.,
2018), GMI (Peng et al., 2020), MVGRL (Hassani & Khasahmadi, 2020), GRACE (Zhu et al., 2020c), GCA
(Zhu et al., 2021b), BGRL (Thakoor et al., 2021), and augmentation-free works AFGRL (Lee et al., 2022)
and SPGCL (Wang et al., 2023).

4.2 Experimental Results

The empirical performance compared to the baselines is presented in Table 1, showcasing node classification
accuracy’s mean and standard deviation over 20 trials. Each trial corresponds to a random model initializa-
tion and distinct train-validation-test splits. Data for other methods are sourced from previous works where
available (Thakoor et al., 2021; Lee et al., 2022; Wang et al., 2023). ExGRG consistently outperforms all
baselines across these datasets. This demonstrates the effectiveness of our proposed framework in explicitly
generating relation graphs by incorporating various forms of prior knowledge, such as PSEs and adjacency,
as well as online extracted information through a kNN graph and a deep clustering module. Concerning
Table 1, the following insights are noteworthy.

(i) Previous SSL methods consistently outperform supervised GCN with a notable gap across all datasets
except the large-scale ones CoCS and CoPhy, where the top-performing method, BGRL, achieves comparable
results with GCN. However, ExGRG maintains superiority even under this scenario. (ii) When compar-
ing MLP with GCN, the performance gap is more pronounced in Cora and CiteSeer compared to CoCS
and CoPhy, underscoring the importance of graph structural properties facilitated by the message-passing
mechanism. This trend aligns with the datasets where the ExGRG’s most significant improvements are
observed compared to the state-of-the-art. This indicates the effectiveness of incorporating adjacency and
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Table 2: Ablation studies on Amazon Computers. Models are altered concerning ExGRG (5k iters) as the
reference. The metrics are outlined in Appendix § B.4.

[Ablated] Model Accuracy corr H corr Z std H std Z nstd H rank H rank Z

ExGRG (9k iters) 93.37 ± 0.48 0.0025 0.1072 0.1536 0.9185 0.0447 512 1024
ExGRG (5k iters) 93.26 ± 0.57 0.0009 0.0866 0.1250 0.6769 0.0448 512 1024

Binary G 93.21 ± 0.40 142.28 0.0012 0.7460 0.0985 0.0413 279 777
No LR 92.89 ± 0.50 5513.5 0.0001 1.5969 0.0222 0.0378 19 272
No Ψψ 92.90 ± 0.52 5514.3 0.0001 1.5971 0.0223 0.0378 19 269

No FSG on GS 93.12 ± 0.51 0.0009 0.0825 0.1200 0.6726 0.0448 512 1024
Add Standalone Gk 91.67 ± 0.47 0.0006 0.0485 0.1127 0.4813 0.0439 512 1024

No GA′ or GR′ 93.11 ± 0.47 0.0010 0.0544 0.1200 0.5708 0.0448 512 1024
No Ga 93.03 ± 0.52 0.0010 0.0550 0.1202 0.5768 0.0448 512 1024

No GA′ 93.03 ± 0.53 0.0010 0.0550 0.1202 0.5768 0.0448 512 1024
No GL 92.96 ± 0.58 0.0007 0.0778 0.1161 0.6552 0.0448 512 1024
No GR′ 92.94 ± 0.47 4348.2 0.0001 1.5292 0.0224 0.0374 23 294

GR instead of GR′ 92.89 ± 0.61 0.0043 0.0602 0.1326 0.4390 0.0446 512 1024
No GS 93.15 ± 0.53 0.0011 0.0729 0.1227 0.6525 0.0448 512 1024

No GPSE or GA′ 93.04 ± 0.49 0.0007 0.0780 0.1167 0.6568 0.0448 512 1024
No GO 92.82 ± 0.56 4519.4 0.0001 1.5336 0.0217 0.0346 22 297

Fk instead of FK in GO 93.12 ± 0.51 0.0009 0.0825 0.1200 0.6726 0.0448 512 1024
SO = {(i, j)| i = j} 93.12 ± 0.51 0.0009 0.0825 0.1200 0.6726 0.0447 512 1024

SO = Sa 93.12 ± 0.51 0.0009 0.0825 0.1200 0.6726 0.0448 512 1024
Intra Relations 93.26 ± 0.54 0.0027 0.1064 0.1524 0.9322 0.0321 512 1024

PSEs into the learning process through their corresponding relation graphs. (iii) Despite the limitations of
graph augmentations, comparing the two BYOL-based methods, BGRL with the augmentation-free AFGRL
across WiKiCS, AmzComp, Cora, CiteSeer, and PubMed, we observe the superiority of employing graph
augmentations. This validates our approach of not solely relying on augmentations while still utilizing them
in Ga alongside other informative sources.

(iv) The significance of our non-contrastive approach is highlighted in PubMed, where BGRL, the other non-
contrastive work, also outperforms contrastive approaches GRACE, GCA, and SPGCL by a considerable
margin. We hypothesize that contrastive methods suffer from the sampling bias issue in such scenarios,
where the representation of every other point is treated as negative samples to be pushed apart from the
anchor. In contrast, we adopt volume maximization terms LV and LC alongside explicitly determining
which points should be connected in our compositional relation graph, leading to identical representations
in LI′ . (v) Contrastive approaches also face significant memory consumption due to the excessive number
of negative pairs, making them incapable of handling large-scale datasets like CoCS and CoPhy. Conversely,
our non-contrastive approach manages to outperform even with a small mini-batch size N , as demonstrated
in Appendix Fig. 10.

4.3 Ablation Studies

To showcase the effectiveness of our design choices and underscore the significance of each introduced com-
ponent and loss term in LETE , we conduct ablation studies on AmzComp (Table 2), alongside CiteSeer and
Cora (Appendix Tables 4 and 5). We follow a similar 20-trial setup in the ablation studies and conduct these
experiments with 5k pre-training iterations, with further details provided in § B.5. Our ablations yield the
following insights.

(i) Utilizing a binary G, the prevalent approach in SSL, leads to a dimensional collapse in our framework,
characterized by low feature spreads, diminished ranks, and elevated inter-feature correlations. This stems
from the strict enforcement of either identical representations for a pair or none at all. However, we address
this by employing finer enforcement in invariance term LI′ through soft G entries. (ii) Omitting regulariza-
tion LR leads to the relation graph converging towards a degenerate solution where all G entries collapse to
zero. Consequently, no guidance is provided for the invariance term, resulting in dimensional collapse and
markedly reduced feature spread. (iii) Absence of Ψψ results in dimensional collapse with low spreads. This
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occurs because the aggregation of various relation graphs remains fixed throughout training, employing λi
in Eq. 7 as hyperparameters. We mitigate this issue by proposing online aggregation through Eq. 8. (iv)
The SG mechanism prevents G(i) ∈ SG and G from collapsing to a degenerate solution, as demonstrated in
Cora.

(v) Utilizing a standalone Gk results in extremely noisy over-enforcement of neighborhood proximities,
leading to representations becoming excessively close, as evidenced by low spread for AmzComp and com-
plete collapse in Cora. (vi) Augmentations in Ga prove to be extremely beneficial for Cora and CiteSeer,
contradicting the adoption of a completely augmentation-free approach.

(vii) In AmzComp, removing Ga, GA′ , GL, or GS maintains full-rank representations with sufficient spread.
Though accuracy slightly drops, we speculate that online clustering compensates for this absence to some
extent. The information extracted in GO can effectively provide some insights comparable to augmentations,
adjacency, and PEs. Notably, GO proves to be the most impactful among other relation graphs in AmzComp,
enabling an automatic online approach to capture information that other sources may also offer. This
underscores our model’s capability to handle various scenarios where higher-order encodings may not be
as useful, such as extremely sparse graphs. (viii) In AmzComp, the model collapses when we eliminate
SE GR′ , while still incorporating adjacency and PEs. We speculate that RWSE is particularly effective in
mitigating noisy information from adjacency and PEs. Consequently, adjacency and PEs should be utilized in
conjunction with SEs, leading to our proposal of employing PSEs as the higher-order encodings. Consistent
with this rationale, eliminating the higher-order encodings entirely results in generally better performance
than removing only one PSE at a time. (ix) The noisy nature of GR is evident in CiteSeer, highlighting the
effectiveness of filtering it to construct GR′ .

(x) The profound impact of deep clustering in preventing collapse is evident. Our online clustering maintains
a global perspective by evenly distributing representations to learnable prototypes, effectively mitigating
potential over-enforcement caused by other relation graphs. (xi) Similarly, adopting a global perspective to
sparsify GO yields slightly improved performance. Utilizing the global FK instead of the local Fk enables the
model to capture a broader picture rather than focusing solely on local properties possibly covered by other
relation graphs. (xii) Enforcing all relation graphs to consider intra-view relations alongside inter-view ones
leads to convergence of spread to 1 in fewer iterations and even better downstream performance in Cora,
although with a computational overhead.

4.4 SSL Pre-Training Analysis

SSL models undergo pre-training for a specific number of iterations before finally being evaluated on a
downstream task. However, it is beneficial to examine the pre-training process periodically to gain insights
into learning suitable representations. Thus, we evaluated checkpoints at intervals of 1k iterations. Due to
the considerably higher resource consumption of CoPhy, pre-training is manually terminated before reaching
7k iterations. Fig. 2a demonstrates the accuracy mean and standard deviation throughout the learning
process. The general trend indicates that as the pre-training progresses, the representations tend to become
more suitable for the downstream task, prominently observed in AmzComp, AmzPhoto, CoPhy, PubMed,
DBLP, CiteSeer, and the initial iterations of CoCS and Cora. Notably, WikiCS exhibits a consistent accuracy
for the first few thousand iterations, followed by a decline. In SSL training, the objective may not always
align directly with the particular downstream task, as the goal is to derive a more generalized representation
adaptable to various downstream tasks. Hence, the decreasing trends after a point suggest that ExGRG may
sacrifice some aspects of a representation suitable for the specific node classification to enhance other aspects
targeted in LETE . Additionally, the overall decreasing trends for correlations, along with the prevailing
increasing trends for standard deviations and ranks for both H and Z throughout the pre-training are
detailed in Appendix Fig.3-8 and § B.6.

4.5 Hyperparameter Analysis

The employed hyperparameters, encompassing design choices and optimizers for each dataset, are outlined in
Appendix Table 6 and § B.7. Here, we analyze the influence of these parameters on our model’s performance,
focusing on AmzComp. Notably, Fig. 2b alters DH , the number of feature dimensions of representations.

11



Under review as submission to TMLR

(a) (b)

Figure 2: (a) Accuracy vs. iterations over 20 trials throughout the SSL pre-training. (b) Impact of altering
DH on ranks and downstream accuracy for Amazon Computers.

Both accuracy and rank of H exhibit an upward trend, indicating the model’s capacity to effectively leverage
the feature dimensions to encode valuable information.

Furthermore, the impact of various parameters is detailed in Appendix Fig. 9-13 and § B.8. Notably, the
simultaneous increase in both DZ and DH results in an ascending trend in accuracy and ranks, affirming the
model’s effectiveness in leveraging larger feature dimensions. Conversely, alternative contrastive methods
rapidly saturate, suffering from the curse of dimensionality (Zbontar et al., 2021). In addition, the model
exhibits robustness concerning mini-batch size N , indicating its ability to derive meaningful directions for
guiding the invariance term even with a reduced number of points. Moreover, the influence of k in Gk

reveals that extremely high k for kNN negatively impacts performance, contributing to heightened noise in
guiding the invariance term. Also, increasing K in GO emphasizes the stability, but with an overall slightly
increasing trend for downstream accuracy. Though we effectively leverage a higher number of prototypes,
determining the appropriate number of clusters for each dataset is traditionally challenging (Zhou et al.,
2022), underscoring the importance of achieving this general robustness.

5 Conclusion

In this paper, we introduced ExGRG, a novel graph SSL approach inspired by the theoretical interplay
among the SSL pre-training approaches, the spectral embedding methods in manifold learning, and the
EM optimization algorithm. ExGRG offers a comprehensive framework for injecting higher-order domain
knowledge into the SSL process. This involves diverse forms of prior knowledge, including positional and
structural encodings and adjacency, alongside online extracted information through a kNN graph and a deep
clustering module. To achieve this, we propose explicitly generating a compositional relation graph to guide
the invariance objective, deviating from the conventional reliance on data augmentations, which proves prob-
lematic and counter-intuitive in the context of the graph domain. Extensive experimental evaluations across
diverse graph datasets showcase the superiority of ExGRG over state-of-the-art graph SSL approaches.
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A Method

A.1 Preliminary

Nonlinear and Fine-tuning Evaluation Protocols. Nonlinear probing mirrors the linear probing ap-
proach but adopts an MLP or a kNN classifier. In fine-tuning, either all or the last few layers of the
pre-trained fθ are updated based on backpropagations computed from the downstream task.

Graph Classification and Link-level Prediction. Graph downstream tasks encompass node classifi-
cation, graph classification, or link-level prediction. Graph classification typically involves learning node
representations followed by a pooling mechanism to compute the graph representation. Link-level prediction
can be simplified into node-level tasks aggregating representations from the two end nodes of a specific link.
Hence, while ExGRG primarily focuses on node representation learning, its framework can be extended to
facilitate the acquisition of graph-level or node-pairwise representations tailored for link-level tasks.

LapPE. This encoding is derived from eigenvectors of the source graph’s Laplacian corresponding to the
k-lowest non-zero eigenvalues (Dwivedi et al., 2023).

RWSE. Specifically, the k-th RWSE reflects the probability of returning to the starting state of a random
walk after precisely k steps (Dwivedi et al., 2021; Liu et al., 2023a).

SignNet. Utilizing eigenvectors, SignNet is a sign-invariant network proposed to handle varying numbers
of sign-ambiguous eigenvectors (Lim et al., 2022; Rampášek et al., 2022).

A.2 Explicit Compositional Relation Graph

Our methodology involves initially generating relation graphs from various sources using different construc-
tion algorithms. Subsequently, we aggregate all these relation graphs simply through a learnable linear
combination to form a comprehensive relation graph G, which is then applied in the invariance term. Gen-
erally, potential sources for the G generation process encompass representations Z, embeddings H, node
features Xs or X, intermediate hidden features, and the embeddings of another latent space projection,
such as nodes’ PSEs. Some sources, like the adjacency matrix As or data augmentation, require no further
processing. However, other sources necessitate processing through a so-called construction algorithm, such
as kNN or a clustering-based method.

A.3 Laplacian Eigenmap

Z∗ = arg min
Z

Tr
(
ZTLZ

)
s.t. ZTDZ = I, (11)

where D = V I = 2I and L = D − G are degree and Laplcian matrices for G, while Z∗ is the optimal LE
embeddings.

A.4 Neighborhood Similarity in the Representation Space

Our preliminary experiments indicate that the kNN graph on H provides more informative relations com-
pared to Z. We speculate that due to the invariance term, the points in Z are compelled to be excessively
close; therefore, the distance between corresponding points in H is more instructive for constructing a
relation graph.

A.5 Higher-Order Graph Encodings

A.5.1 Adjacency-based Relation Graph

The relation matrix GA, based on the adjacency information of the source graph, is defined in 3.3.2. In-
tuitively, GA can provide independent guidance for a standalone relation matrix with increased confidence,
especially in datasets exhibiting more homophily. Conversely, using Gk directly in heterophilic graph datasets
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might be more beneficial, as all entries in GA′ are likely zero with higher confidence. This is because, in
a heterophilic graph, neighboring nodes in the input do not share the same class label, making the overlap
between nodes that are neighbors in both the representation kNN graph and the source graph less probable.

A.5.2 PSE-based Relation Graph

The efficacy of various GPSE depends on the dataset and domain under consideration. Our strategy for
employing PSEs diverges from their conventional application in transformers. Nevertheless, a similar impact
can be observed when utilizing PSEs in transformers, where the performance of RWSE proves advantageous
for small molecular data, while LapPE excels in tasks involving image superpixels and those requiring
long-range dependencies. In addition, SignNet with DeepSet encodings demonstrates success across diverse
domains and tasks (Rampášek et al., 2022; Liu et al., 2023a).

A.6 Deep Clustering

To obtain the codes Q, we follow the approach outlined in Asano et al. (2019) and Caron et al. (2020). This
is performed by solving the optimization problem by maximizing the similarity between representations and
prototypes, with Q∗ representing the optimal solution as

Q∗ = arg max
Q

Tr(QTCHT ) + ϵH (Q). (12)

The term H (Q) = −
∑
i,j Qi,j log Qi,j represents the entropy of Q, while ϵ serves as a balancing factor,

determining the significance of achieving a uniformly distributed partition through entropy maximization.
This involves imposing a constraint on the codes Q to lie within the transportation polytope, indicating that
our codes Q should adhere to a set Q, where

Q =
{

Q ∈ RN×K
+ | QT1N = 1

K
1K ,Q1K = 1

N
1N

}
. (13)

This constraint implies that, on average, each cluster is expected to be assigned approximately N
K data points,

reflecting an equal distribution. To determine a suitable Q as a solution for Eq. 12 and 13, we leverage the
Sinkhorn-Knopp algorithm (Cuturi, 2013). Therefore, we iteratively calculate two renormalization vectors,
u ∈ RN and v ∈ RK , to address the optimization problem as

Q∗ = Diag(u) exp
(

CHT

ϵ

)
Diag(v). (14)

A.7 End-to-End Training Procedure

A.7.1 SG Mechanism

In the presence of a gradient path through the invariance term LI′ , the optimizer incentivizes the reduction
of G(i) entries. However, it is essential to note that these specific entries within G(i) are a refined sparse
subset derived from a potentially dense N × N relation matrix. The existence of such a gradient path to
update G(i) generator parameters implies the promotion of weaker relations among instances that initially
exhibit strong relations. Inspired by Grill et al. (2020) and Chen & He (2021), to simultaneously optimize
both sets of parameters, we propose an SG mechanism specifically on the G(i) generator parameters (Eq. 7),
such as the prototypes C for GO, through the LI′ path. Without this SG, we counter-intuitively diminish
the G(i) entries for candidate pairs with high potential for closer representations.

A.7.2 Relation Matrix Regularization

To ensure the end-to-end aggregation of different relation matrices for deriving the final relation matrix G,
the aggregator module Ψψ gets updates through the invariance term LI′ . The incentive here mirrors the one
encountered with each individual relation matrix G(i) in A.7.1, wherein, lacking constraints, the optimizer
tends to converge all G entries to a trivial solution. To mitigate this, we propose the incorporation of a
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Table 3: Statistics of the employed datasets.

Statistic WikiCS AmzComp AmzPhoto CoCS CoPhy Cora CiteSeer PubMed DBLP

# Nodes 11,701 13,752 7,650 18,333 34,493 2,708 3,327 19,717 17,716
# Edges 216,123 574,418 287,326 327,576 991,848 5,429 4,732 44,338 105,734

# Classes 10 10 8 15 5 7 6 3 4
# Features 300 767 745 6,805 8,451 1,433 3,703 500 1,639

regularizer aimed at discouraging the entries of G from collapsing to the degenerate solution, wherein all
entries converge to zero. This regularizer is formulated based on the concept of the summation of all G
entries demonstrated in Eq. 9.

A.7.3 Overall Multi-term Loss Objective

During optimization of LETE , parameters θ of the encoder fθ and ϕ of the expander gϕ undergo updates
through LV , LC , LI′ , and LO. The prototypes C receive updates through LO, while the aggregation module
parameters, including ψ for Ψψ, are updated through LR and invariance term LI .

B Experimental Evaluation

B.1 Datasets

Our node classification experiments encompass evaluations on 9 datasets: WikiCS, Amazon Computers
(AmzComp), Amazon Photo (AmzPhoto), Coauthor CS (CoCS), Coauthor Physics (CoPhy), Cora, Citeseer,
PubMed, and DBLP. The corresponding statistics for these datasets, such as the number of nodes, edges,
classes, and features, are provided in Table 3. Furthermore, if a specific dataset is not used to evaluate a
particular method, the corresponding cell is left blank in Table 1.

B.2 SSL Encoder

We employ the GCN proposed in Kipf & Welling (2016a) as the SSL encoder fθ. Specifically, the output of
the l-th GCN layer, H(l), is expressed as

H(l) = GCN(l)(X,A) = σ(D̂−1/2ÂD̂−1/2XW (l)). (15)

Here, Â = A + I represents the adjacency matrix in the presence of self-loops. Additionally, we denote
the degree matrix as D̂ =

∑
i Âi, nonlinear activation function as σ, and trainable parameters as W (l),

eventually forming parameters θ.

B.3 Downstream Evaluation

To employ an SSL model for a downstream node classification task, the encoder fθ and expander gϕ undergo
joint training without utilizing labels Y s, effectively following an unsupervised approach for a predeter-
mined number of iterations. Subsequently, the expander gϕ is discarded, likely to leverage more generalized
representations. The fixed representations obtained from the encoder fθ, in addition to the labels Y s, are
employed to train a logistic regression classifier in the graph domain in contrast to the linear layer coun-
terpart used in vision applications (Thakoor et al., 2021). This classifier is trained on top of the frozen
representations and, subsequently, evaluated on a validation split to determine optimal hyperparameters.
Finally, the node classification accuracy is assessed on a separate test set. This entire process is repeated for
20 trials, each characterized by random model initialization and different train-validation-test splits. The
randomness is introduced due to the notable variability observed in computed accuracy across different splits
in graphs.
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Table 4: Ablation studies on CiteSeer. Models are altered concerning ExGRG (5k iters) as the reference.

[Ablated] Model Accuracy corr H corr Z std H std Z nstd H rank H rank Z

ExGRG (10k iters) 89.68 ± 1.46 0.0000 0.0163 0.0547 0.3335 0.0233 956 976
ExGRG (5k iters) 88.61 ± 1.47 0.0001 0.0138 0.0514 0.2799 0.0211 894 976

Binary G 84.57 ± 1.11 0.1491 0.0004 0.1150 0.0509 0.0258 237 627
No LR 83.96 ± 1.51 1.1409 0.0000 0.1847 0.0128 0.0231 103 578
No Ψψ 84.05 ± 1.43 1.1408 0.0000 0.1847 0.0127 0.0231 103 588

No FSG on GS 88.48 ± 1.42 0.0001 0.0135 0.0512 0.2759 0.0210 890 972
No Standalone Gk 88.47 ± 1.42 0.0001 0.0135 0.0512 0.2759 0.0210 890 972

No GA′ or GR′ 86.69 ± 1.12 0.0002 0.0030 0.0526 0.1747 0.0193 791 988
No Ga 84.35 ± 1.32 1.2491 0.0000 0.1852 0.0126 0.0232 99 598

No GA′ 84.20 ± 1.27 1.2497 0.0000 0.1853 0.0125 0.0232 99 618
No GL 85.67 ± 1.19 0.0002 0.0054 0.0540 0.1899 0.0208 737 902
No GR′ 87.92 ± 1.51 0.0001 0.0124 0.0560 0.2697 0.0216 864 969

GR instead of GR′ 83.98 ± 1.79 0.5892 0.0000 0.1579 0.0146 0.0279 110 1043
No GS 88.11 ± 1.44 0.0001 0.0125 0.0568 0.2702 0.0214 862 971

No GPSE or GA′ 87.90 ± 1.48 0.0001 0.0124 0.0560 0.2697 0.0215 864 969
No GO 88.57 ± 1.47 0.0001 0.0120 0.0521 0.2671 0.0204 883 974

Fk instead of FK in GO 88.48 ± 1.42 0.0001 0.0135 0.0512 0.2759 0.0210 890 972
SO = {(i, j)| i = j} 88.50 ± 1.42 0.0001 0.0135 0.0512 0.2759 0.0210 890 972

SO = Sa 88.35 ± 1.25 0.0001 0.0135 0.0512 0.2759 0.0210 890 972
Intra Relations 89.38 ± 1.25 0.0000 0.0159 0.0542 0.3273 0.0232 955 975

B.4 Additional Evaluation Metrics

In certain instances, the accuracy of the graph datasets exhibits a degree of resilience to alterations in the
model. This observation underscores the need to consider our defined metrics for a more comprehensive
comparison of different scenarios, including our ablated models. These metrics are computed on both H
and Z, providing deeper insights into their characteristics. Reported evaluation metrics are inspired by how
VICReg criteria in Eq. 1 contribute to constructing the representations.

The corr metric measures a notion of correlation among different pairs of features. This is inspired by LC ,
representing the average over squared off-diagonal entries of the covariance matrix corresponding to each
pair of feature dimensions. The std metric calculates the average standard deviation along each feature
dimension. The nstd metric captures the same notion of average standard deviation as std but on the
L2-normalized representations. Given the utilization of Euclidean similarity in constructing the embeddings
Z, vector norms also encode information. Therefore, nstd is exclusively reported for H. The rank metric
corresponds to the rank of the representations, capturing dimensional collapse. Generally, a desirable model
exhibits higher values for accuracy’s mean, std, nstd, and rank while demonstrating lower values for corr
and accuracy’s standard deviation.

B.5 Ablation Studies

Followings are the direct impact of our ablations on the overall performance, including downstream accuracy
and our defined metrics in § B.4. These are reported based on the ablations on Amazon Computers in
Table 2 and slightly differ from observations in CiteSeer (Table 4) and Cora (Table 5).

ExGRG (Xk iters) signifies the reference model trained with X thousand(s) iterations. To maintain
consistency in comparison, all ablated models listed in other rows should be assessed relative to ExGRG (5k
iters), ensuring an equal number of iterations for reference. The Binary G model enforces strict binary values
(0 or 1) for all entries in G, unlike the soft version of ExGRG. This results in a slight decrease in accuracy,
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Table 5: Ablation studies on Cora. Models are altered concerning ExGRG (5k iters) as the reference.

[Ablated] Model Accuracy corr H corr Z std H std Z nstd H rank H rank Z

ExGRG (5k iters) 97.87 ± 0.55 0.0000 0.0935 0.0281 0.6168 0.0320 946 824
Binary G 93.84 ± 0.99 5.4081 0.0068 0.2642 0.0661 0.0121 47 43

No LR 93.57 ± 1.09 73.106 0.0065 0.4721 0.0604 0.0272 9 20
No Ψψ 93.61 ± 1.15 70.161 0.0067 0.4635 0.0607 0.0275 9 21

No FSG on GS 93.60 ± 1.25 0.0391 0.0061 0.0897 0.0662 0.0211 217 341
Add Standalone Gk 93.17 ± 1.16 11.229 0.0131 0.2841 0.1083 0.0171 23 61

No GA′ or GR′ 93.15 ± 1.19 127.182 0.0072 0.5422 0.0609 0.0229 8 21
No Ga 93.01 ± 1.17 14.856 0.0081 0.3121 0.0639 0.0258 13 19

No GA′ 93.18 ± 1.26 11.759 0.0086 0.2942 0.0649 0.0260 15 20
No GL 95.65 ± 1.13 0.2911 0.1888 0.1281 0.2483 0.0118 230 435
No GR′ 96.16 ± 1.03 0.0059 0.0646 0.0633 0.3737 0.0178 571 784

GR instead of GR′ 93.20 ± 1.35 0.0386 0.0069 0.0914 0.0679 0.0248 215 305
No GS 92.79 ± 1.13 0.0462 0.0086 0.0933 0.0728 0.0249 154 117

No GPSE or GA′ 95.91 ± 0.97 0.0067 0.0398 0.0662 0.2916 0.0172 570 783
No GO 93.10 ± 0.81 0.3040 0.0082 0.1174 0.0666 0.0259 91 108

Fk instead of FK in GO 93.43 ± 1.06 0.0356 0.0203 0.1039 0.1618 0.0147 272 439
SO = {(i, j)| i = j} 93.20 ± 1.24 0.0660 0.0062 0.0919 0.0639 0.0259 176 280

SO = Sa 96.17 ± 0.91 0.1995 0.0217 0.1089 0.1142 0.0117 256 462
Intra Relations 95.24 ± 1.07 0.0364 0.0219 0.0712 0.1030 0.0155 220 236

coupled with a notable increase in corr H, significantly lower std Z, lower ranks, and slightly decreased
nstd. No LR eliminates the G regularization loss, leading to reduced accuracy, notably increased corr H,
a substantial decrease in std Z, a slight dip in nstd, and significantly lower ranks, indicating a dimensional
collapse. No Ψψ removes the online aggregator Ψψ, implying that parameters λi become hyperparameters,
fixed throughout training. This results in diminished accuracy, elevated corr H, collapse indicated by low
ranks, and reduced std Z and nstd. No FSG on GS signifies the absence of the SG mechanism on SignNet,
allowing it to be altered from its pre-trained status. This leads to a marginal decrease in accuracy, while the
other metric values remain largely unchanged.

Add/No Standalone Gk signifies the addition or removal of a standalone relation matrix Gk solely based
on kNN in H. The inclusion of Gk depends on the extent to which the unfiltered kNN graph proves beneficial
for a particular dataset. For AmzComp, incorporating Gk leads to reduced accuracy and a slight decrease
in std Z. No GA′ or GR′ removes any relation graph derived from Gk, encompassing the exclusion of GA

or, in some datasets, the absence of GR, with details in Appendix Table 6 and § B.7. This leads to a minor
decrease in accuracy and a slight reduction in std Z. No Ga eliminates the relation graph directly based
on pairwise augmentation. In this scenario, where the enforcement of identical representations for pairs in
Sa is not explicitly present, random augmentations are still applied to two views. Thus, other components,
such as Gk may indirectly enforce similarity for pairs in Sa. This leads to a slight decrease in accuracy and
a minor reduction in std Z.

No GA′ excludes the utilization of adjacency information for constructing a relation matrix. This leads to
a slight decrease in accuracy and std Z. No GL eliminates the relation graph based on Laplacian encoding,
leading to a marginal decrease in accuracy and std Z. No GR′ eliminates the relation graph based on random
walk encoding, resulting in significantly higher corr H, reduced accuracy, std Z, nstd H, and a collapse
in ranks. GR instead of GR utilizes the unfiltered version of GR as opposed to filtering it by computing
GR ⊙ Gk with details in Appendix Table 6 and § B.7. This leads to decreased accuracy and reduced std Z.
No GS eliminates the relation graph based on SignNet encoding, leading to a slight decrease in accuracy and
a minor reduction in std Z. No GPSE or GA′ omits any utilization of positional or structural properties
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Figure 3: corr H vs. iterations throughout the SSL pre-training.

of the graph, involving neither PSE nor adjacency. This leads to a minor decrease in accuracy and a slight
reduction in std Z.

No GO entirely removes the end-to-end clustering module. This leads to decreased accuracy, notably
increased corr H, and significantly reduced std Z. Fk instead of FK in GO employs an alternative
method to sparsify GO by utilizing the local version Fk instead of the global FK in Eq. 6. In our proposed
setting, the top-K globally highest entries in the entire relation graph are selected, and the rest are set to
zero. Here, a kNN-like operation is performed, where, for each data point as an anchor, the top-K largest
entries are selected, and the rest are set to zero. This leads to a slight decrease in accuracy and std Z.
SO = {(i, j)| i = j} and SO = Sa yield similar outcomes, respectively eliminating augmentation pairs Sa
and self pairs (i = j) from SO. The set SO denotes the pairs for applying distribution alignment in the
optimal transport loss function. This includes both self data points, i.e., i = j, and augmentation pairs
(i, j). These ablations each eliminate one of these components in the model. This leads to a slight decrease
in accuracy and std Z.

Intra Relations represents a model where all relation graphs G(i) ∈ SG are forced to consider both inter-
and intra-view relations. With a fixed GPU memory allocation, the impact of this proposed approach
becomes more pronounced in smaller datasets such as CiteSeer and Cora in Appendix Tables 4 and 5. The
introduction of intra-view relations has the potential to result in the construction of better representations,
manifesting in higher accuracy and increased std Z. In Table 1, the decision on whether to consider intra-
relations for each G(i) is determined independently through balancing with mini-batch size considerations.

B.6 Pre-Training Analysis

This section serves as an extension to § 4.4, delving into the trends observed in correlations, standard
deviations, and ranks for representations H and embeddings Z.

Correlation. Fig. 3 and 4 illustrate our defined corr metric, resembling the correlation among various
pairs of feature dimensions for H and Z. Although LC targets reducing correlation for Z, we observe that
the correlation among feature dimensions of H also decreases over iterations. The metric corr Z initially
experiences a significant decrease and then slightly increases throughout the training. We speculate this
behavior is because the correlation is slightly sacrificed after a few thousand iterations to address other
aspects of a proper representation.
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Figure 4: corr Z vs. iterations throughout the SSL pre-training.

Figure 5: nstd H vs. iterations throughout the SSL pre-training.
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Figure 6: std Z vs. iterations throughout the SSL pre-training.

Figure 7: nrank H vs. iterations throughout the SSL pre-training.

Standard Deviation. In Fig. 5 and 6, our nstd and std metrics for H and Z are presented. A higher
standard deviation for representations indicates a wider spread of data points in each feature dimension,
reflecting a notion of points’ separability along a particular dimension. The notable drop in std Z for Cora
aligns with the decrease in accuracy, suggesting that this metric could be an indicator to terminate SSL pre-
training. Our ultimate target for std Z is 1, corresponding to LV . Fig. 6 demonstrates that certain datasets
achieve this target within 10k iterations while others progressively move toward this objective throughout
the pre-training. Additionally, despite LV loss being applied to Z, Fig. 5 reveals a more or less increasing
trend for nstd H.

Rank. Fig. 7 and 8 demonstrates a notion of rank for H and Z. This is essentially the normalized version of
the introduced rank discussed in § B.4, obtained by dividing the rank by the corresponding DH or DZ . Higher
ranks signify a more effective utilization of the capacity of the feature dimensions to map the points. With
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Figure 8: nrank Z vs. iterations throughout the SSL pre-training.

the exception of PubMed, Fig. 8 demonstrates a consistent increase in nrank, showcasing the effectiveness
of LETE . We speculate that the PubMed trend suggests that necessary information could be encoded into
lower dimensions, a phenomenon also reflected in nrank H from Fig. 7. For PubMed, nrank Z increases
after an initial drop, closely mirroring the trend observed in accuracy. The corresponding drops in Cora are
also likely attributable to over-training, as evidenced by the corresponding accuracy trend on this dataset.

B.7 Selected Hyperparameters

Hyperparameter tuning is conducted to identify optimal parameters for each utilized dataset. The chosen
hyperparameters are outlined in Table 6, corresponding to the models whose performance is detailed in
Table 1. Due to constraints on the GPU with a 12 GB memory, a limited number of nodes is randomly
selected at each iteration to construct the relation graph G; this quantity is denoted as the mini-batch size
N (G B.S.). The optimizer algorithm utilized for end-to-end model training, including AdamW (Loshchilov
& Hutter, 2017) or Adam (Kingma & Ba, 2014) algorithms, is denoted as Optim. The learning rate is
represented by L.R., and #Iters. signifies the number of iterations used for training the SSL encoder
and expander without utilizing labels. No learning scheduler is employed. In the downstream evaluation,
mirroring methods like BGRL (Thakoor et al., 2021), the expander is replaced with an L2-regularized logistic
regression classifier, while the encoder weights remain fixed.

The coefficients for the variance, covariance, and invariance loss terms introduced in Eq. 1 are denoted by
α, β, and γ, respectively. We employed various activation functions in the SSL encoder and expander,
including PReLU (He et al., 2015), ReLU, and ELU (Clevert et al., 2015). Additionally, for normalization
techniques, we utilized BN (Batch Normalization) (Ioffe & Szegedy, 2015) or None (no normalization).
The parameters [fθ] Act., Norm., #Lay., #Hid., and DH denote the SSL encoder’s activation function,
normalization technique, number of GCN layers, number of features in hidden layers, and representation
dimension, i.e., the last GCN output dimension, respectively. The same set of hyperparameters is reported
for the expander gϕ modeled with an MLP.

The parameter α2 serves as the coefficient for the relation graph regularization loss term LR. Parameters
[Ψψ] #Lay. and #Hid./#In represent the number of layers and the proportion of the hidden to the input
dimension of the relation graph aggregator Ψψ.
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Table 6: Selected hyperparameters utilized for each dataset.

HP WikiCS AmzComp AmzPhoto CoCS CoPhy Cora CiteSeer PubMed DBLP

N (G B.S.) 3072 3072 3072 2560 2048 3072 2048 2560 3072
Optim. AdamW AdamW AdamW AdamW AdamW Adam Adam Adam Adam

L.R. 1e-4 1e-4 5e-5 5e-6 1e-5 5e-4 5e-5 1e-4 5e-4
#Iters. 1000 9000 9000 2000 6000 5000 10000 10000 10000
α [LV ] 40 100 80 60 60 100 40 80 100
β [LC ] 10 80 10 10 100 80 100 10 10
γ [LI′ ] 5 5 5 5 5 5 5 5 5

[fθ] Act. PReLU PReLU PReLU PReLU PReLU ReLU PReLU ReLU ReLU
[fθ] Norm. BN BN BN BN BN BN None BN None
[fθ] #Lay. 2 2 2 2 2 2 2 2 2
[fθ] #Hid. 1024 1024 1024 1024 1024 1024 1024 1024 1024

DH 512 512 1024 512 512 1024 1024 512 1024
[gϕ] Act. PReLU PReLU PReLU PReLU PReLU ELU ELU ELU ELU

[gϕ] Norm. BN BN BN BN None BN BN None BN
[gϕ] #Lay. 2 2 2 2 2 2 2 2 2
[gϕ] #Hid. 2048 2048 1024 2048 512 1024 2048 512 512

DZ 1024 1024 1024 1024 128 1024 2048 1024 1024
α2 [LR] 0.05 0.02 0.5 0.2 2 0.5 0.02 0.2 2

[Ψψ] #Lay. 3 3 3 3 3 4 2 3 4
[Ψψ] #Hid./#In 2 2 2 2 2 2 2 2 2

[Ga] pe1 0.2 0.5 0.4 0.3 0.4 0.2 0.2 0.4 0.1
[Ga] pn1 0.2 0.2 0.1 0.3 0.1 0.3 0.3 0 0.1
[Ga] pe2 0.3 0.4 0.1 0.2 0.1 0.4 0 0.1 0.4
[Ga] pn2 0.1 0.1 0.2 0.4 0.4 0.4 0.2 0.2 0

Standalone Gk False False False False True False True False False
[Gk] k 10 12 80 8 64 32 8 4 32
[GL] k 32 16 8 48 4 8 24 8 48

[GL] Freq. 40 56 8 32 16 32 64 48 40
[GR] k 40 64 16 8 32 80 40 56 56

[GR] Kernel 20 16 8 16 8 24 16 12 20
GR′ instead of GR True True True True False False True True True

[GS ] k 48 32 80 4 8 4 8 32 16
[GS ] Freq. 8 16 24 10 20 10 8 12 10
[GS ] Arch. DeepSet DeepSet MLP MLP MLP DeepSet MLP MLP MLP

[GO] K 64 64 64 64 64 64 128 64 64
[GO] τ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

[GO] S.K. #Iters. 6 6 6 6 6 6 6 6 6
[GO] ϵ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

[GO] Kg/N 32 8 4 14 48 12 32 8 32
α1[LO] 1 0.01 0.2 0.01 2 0.2 0.01 0.02 0.5
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Figure 9: Impact of simultaneously altering DH and DZ in the particular case where DH = DZ on our
metrics and downstream accuracy for Amazon Computers.

The augmentation hyperparameters, starting with Ga, are directly inherited from BGRL (Thakoor et al.,
2021). The parameters pei and pni represent the probabilities associated with masking edges and node features
in the i-th SSL view.

Standalone Gk signifies whether a relation graph exclusively derived from a kNN on representations, denoted
as Gk, is directly utilized. Depending on the noise level in this guidance, its inclusion may enhance perfor-
mance in certain datasets. For datasets where this parameter is set as False, Gk is still integrated into GA

to form GA′ and could potentially be incorporated into GR based on another boolean parameter denoted as
GR′ instead of GR. The parameter [Gk] k represents the value of k used for executing kNN to derive Gk.
Similar notations apply to the determination of k for performing kNNs to obtain GL, GR, and GS .

The parameters [GL] Freq. and [GS ] Freq. denote the maximum frequency utilized in generating the relation
graphs for LapPE and SignNet. The parameter [GS ] Arch. specifies the architecture employed to compute
the SignNet PSEs, while [GR] Kernel represents the specific kernel parameter used in computing RWSEs.

The hyperparameters [GO] K, τ , and ϵ correspond to the number of prototypes, softmax temperature in
Eq. 4, and the entropy balancing factor in Eq. 12. Additionally, [GO] Kg/N denotes the proportion of Kg

to the G mini-batch size used in sparsifying the relation graph GO within FK . For instance, in the case
of the Amazon Computers dataset, this parameter is set to 8, and the mini-batch size is 3072, resulting in
Kg = 8 × 3, 072 = 24, 578. The parameter [GO] S.K. #Iters. represents the number of iterations for the
Sinkhorn-Knopp algorithm, and α1 serves as the coefficient for the optimal transport alignment term LO.

B.8 Hyperparameter Analysis

This section extends § 4.4 by delving into an analysis of selected hyperparameters, shedding light on their
significance and some valuable insights gained from their impact on downstream performance and other
metrics. Since node classification accuracy may not be a sufficiently sensitive metric and is confined to a
specific task, we present values for our other predefined metrics outlined in § B.4. These evaluations are
conducted explicitly on the Amazon Computers dataset while keeping all other hyperparameters fixed as per
Table 6.

Fig. 9 represents a special scenario where DH = DZ . As we simultaneously alter the feature dimensions of
representations and embeddings, we observe a corresponding adjustment in accuracy and the rank of these
elements. This underscores the model’s effectiveness in harnessing larger feature dimensions.

In Fig. 10, we explore the impact of the mini-batch size N employed in constructing relation graphs. The
consistent stability in accuracy underscores our model’s ability to capture meaningful directions for guiding

27



Under review as submission to TMLR

Figure 10: Impact of altering N , G mini-batch size, on our metrics and downstream accuracy for Amazon
Computers.

the invariance term, even with a reduced number of points at each iteration. However, there is a slight
improvement in corr H, corr Z, and nstd H with larger mini-batch sizes. The observed degradation in std
Z with larger mini-batch size may be attributed to utilizing the same number of iterations for all models,
and this effect could potentially be mitigated with prolonged training, as the variance term LV directly
compares the spread with 1.

In Fig. 11, we investigate the impact of varying the parameter k for kNN while utilizing a standalone Gk.
This illustration reveals that performance tends to drop as the number of points selected in kNN to guide the
invariance loss LI′ becomes excessively large. This decline is attributed to the heightened noise introduced
by abundant guidance points in the kNN process.

In Fig. 12, we explore the influence of altering the number of prototypes K in the clustering module.
The overall trend highlights the relative stability of downstream accuracy in relation to the choice of the
number of clusters, a typically challenging task across different datasets. Moreover, the slightly increasing
trend underscores the model’s capability to leverage a higher number of prototypes. Therefore, there is no
necessity for tedious tuning specific to each dataset; having a sufficiently large number of prototypes proves
to be effective across diverse scenarios.

In Fig. 13, we explore the influence of varying α1, the coefficient for LO. As indicated by this figure and the
ablation studies in Table 2, the model exhibits improved performance as long as this loss term is present, with
a slightly more recognizable impact within a specific range of the coefficient α1. However, over-enforcement
of this alignment leads to a worsening performance.
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Figure 11: Impact of altering [Gk] k on our metrics and downstream accuracy for Amazon Computers.

Figure 12: Impact of altering [GO] K indicating the number of prototypes on our metrics and downstream
accuracy for Amazon Computers.
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Figure 13: Impact of altering α1[LO] indicating the coefficient for optimal transport alignment term on our
metrics and downstream accuracy for Amazon Computers.
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