
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uasa20

Natural Gradient Variational Bayes Without Fisher
Matrix Analytic Calculation and Its Inversion

A. Godichon-Baggioni, D. Nguyen & M.-N. Tran

To cite this article: A. Godichon-Baggioni, D. Nguyen & M.-N. Tran (26 Sep 2024): Natural
Gradient Variational Bayes Without Fisher Matrix Analytic Calculation and Its Inversion, Journal
of the American Statistical Association, DOI: 10.1080/01621459.2024.2392904

To link to this article:  https://doi.org/10.1080/01621459.2024.2392904

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 26 Sep 2024.

Submit your article to this journal 

Article views: 515

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/journals/uasa20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2024.2392904
https://doi.org/10.1080/01621459.2024.2392904
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2024.2392904
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2024.2392904
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2024.2392904?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2024.2392904?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2392904&domain=pdf&date_stamp=26 Sep 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2392904&domain=pdf&date_stamp=26 Sep 2024


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2024, VOL. 00, NO. 0, 1–12: Theory and Methods
https://doi.org/10.1080/01621459.2024.2392904

Natural Gradient Variational Bayes Without Fisher Matrix Analytic Calculation and Its
Inversion

A. Godichon-Baggionia, D. Nguyenb, and M.-N. Tranc

aLaboratoire de Probabilités, Statistique et Modélisation, Sorbonne-Université, Paris, France; bDepartment of Mathematics, Marist College, Poughkeepsie,
NY; cBusiness Analytics Discipline, The University of Sydney Business School, Sydney, NSW, Australia

ABSTRACT
This article introduces a method for efficiently approximating the inverse of the Fisher information matrix,
a crucial step in achieving effective variational Bayes inference. A notable aspect of our approach is the
avoidance of analytically computing the Fisher information matrix and its explicit inversion. Instead, we
introduce an iterative procedure for generating a sequence of matrices that converge to the inverse of
Fisher information. The natural gradient variational Bayes algorithm without analytic expression of the
Fisher matrix and its inversion is provably convergent and achieves a convergence rate of order O(log s/s),
with s the number of iterations. We also obtain a central limit theorem for the iterates. Implementation of
our method does not require storage of large matrices, and achieves a linear complexity in the number
of variational parameters. Our algorithm exhibits versatility, making it applicable across a diverse array of
variational Bayes domains, including Gaussian approximation and normalizing flow Variational Bayes. We
offer a range of numerical examples to demonstrate the efficiency and reliability of the proposed variational
Bayes method. Supplementary materials for this article are available online, including a standardized
description of the materials available for reproducing the work.
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1. Introduction

The growing complexity of models used in modern statistics
and machine learning has spurred the demand for more efficient
Bayesian estimation techniques. Among the array of Bayesian
tools available, Variational Bayes (Waterhouse, MacKay, and
Robinson 1995; Jordan et al. 1999) has gained prominence as
a remarkably versatile alternative to traditional Monte Carlo
methods for tackling statistical inference in intricate models.
Variational Bayes (VB) operates by approximating the poste-
rior probability distribution using a member selected from a
family of tractable distributions, characterized by variational
parameters. The optimal member is determined through min-
imization of the Kullback-Leibler divergence, which quantifies
the disparity between the chosen candidate and the posterior
distribution. VB is a fast alternative to Markov chain Monte
Carlo (MCMC) methods, and has found diverse applications,
encompassing variational autoencoders (Kingma and Welling
2013), text analysis (Hoffman et al. 2013), Bayesian synthetic
likelihood (Ong et al. 2018), deep neural networks (Graves 2011;
Tran et al. 2020), to name a few. For recent advances in the field
of VB and Bayesian approximation in general, please refer to the
excellent survey papers of Blei, Kucukelbir, and McAuliffe (2017)
and Martin, Frazier, and Robert (2023).

VB turns the Baysesian inference problem into an optimiza-
tion problem, and a large class of VB methods use stochastic
gradient descent (SGD) as their backbone. In the recent decades,
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a great deal of effort has been devoted to developing and improv-
ing optimization algorithms for big and high dimensional data.
As a result, various first order stochastic optimization algorithms
have been developed in response to these new demands; notable
examples include AdaGrad of Duchi, Hazan, and Singer (2011),
Adam of Kingma and Ba (2014), Adadelta of Zeiler (2012), and
their variance reduction variations (Johnson and Zhang 2013;
Defazio, Bach, and Lacoste-Julien 2014; Nguyen et al. 2017).
For a detailed discussion on stochastic optimization, please refer
to the excellent books of Kushner and Yin (2003), Goodfellow,
Bengio, and Courville (2016), and Murphy (2012).

Gradient descent methods in VB rely on the gradient of
the objective lower bound function, whose definition depends
upon the metric on the variational parameter space. Optimiza-
tion in conventional VB methods uses the Euclidean gradient
defined using the usual Euclidean metric. It turns out that the
natural gradient, the term coined by Amari (1998), represents
a more adequate direction of ascent in the VB context as it
takes into account the information geometry of the variational
family (Martens 2020; Khan and Lin 2017). The natural gradient
is defined using the Fisher-Rao metric, which resembles the
Kullback-Leibler divergence between probability distributions
parameterized by the variational parameters. More precisely, the
natural gradient is the steepest ascent direction of the objective
function on the variational parameter space equipped with the
Fisher-Rao metric. Martens (2020) sheds light on the concept
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that natural gradient descent can be viewed as a second-order
optimization method where the Fisher information assumes the
role of the Hessian matrix. Because of this, natural gradients take
into account the curvature information (through the Fisher-Rao
metric) of the variational parameter space; therefore the number
of iteration steps required to find a local optimum is often found
significantly reduced (Tran, Nott, and Kohn 2017). According to
Tan (2021), stochastic optimization guided by natural gradients
has proven more resilient, capable of circumventing or escaping
plateaus, ultimately resulting in faster convergence; see also
(Rattray, Saad, and Amari 1998; Hoffman et al. 2013; Khan and
Lin 2017; Wilkinson, Särkkä, and Solin 2023).

The natural gradient is calculated by pre-multiplying the
Euclidean gradient of the lower bound function with the inverse
Fisher information matrix, a process that is notably intricate.
Computing the Fisher matrix, not to mention its inverse, is
challenging. In the realm of Gaussian variational approximation,
where the posterior is approximated by a Gaussian distribution,
the natural gradient can be calculated efficiently. Tran et al.
(2020) consider a factor structure for the covariance matrix,
and derive a closed-form approximation for the natural gra-
dient. Tan (2021) employs a Cholesky factor structure for the
covariance matrix and the precision matrix, and derives an
analytic natural gradient; see also Khan and Lin (2017) and
Magris, Shabani, and Iosifidis (2022). On the other hand, for
broader cases where the variational distribution is based on
neural networks, Martens and Grosse (2015) approximate the
Fisher matrix with a block diagonal matrix. It is important
to highlight that existing techniques for computing the natu-
ral gradient are primarily restricted to certain contexts (like
the Gaussian variational approximations mentioned above) or
are heavily dependent on simplified approximations (such as
employing a block-diagonal matrix). These constraints restrict
the broader application of natural gradients. For a large class of
VB methods, for example, when the variational distribution is a
mixture (Giordani et al. 2013), a copula (Gunawan, Kohn, and
Nott 2023) or a normalizing flow (Rezende and Mohamed 2015),
it is challenging to use the natural gradient as the Fisher matrix
is not available.

This article makes several important contributions that sig-
nificantly improve the natural gradient VB method. First, we
present an approach for efficiently approximating the inverse
of Fisher information matrix. We emphasize that there are two
main difficulties in calculating the natural gradient: (i) analytical
calculation of the Fisher matrix that often involves intractable
expectations, and (ii) computing its matrix inversion. A notable
aspect of our approach is the avoidance of these two difficul-
ties altogether. Instead, we introduce an iterative procedure for
generating a sequence of positive definite matrices that con-
verge to the inverse of Fisher information. Pre-multiplying the
Euclidean gradient with these matrices provides estimates of
the natural gradient. Our method of approximating the natural
gradient is general, easy to implement, asymptotically exact and
applies to any variational distribution including Gaussian dis-
tributions, mixtures and normalizing flow based distributions.
It is important to note that, for high-dimensional applications,
implementation of our method does not require storage of large
matrices because the estimate of inverse Fisher matrix can be
written using outer products. Second, we propose a VB method

that streamlines the natural gradient estimation without matrix
inversion within the VB training iteration. This leads to an effi-
cient natural gradient VB algorithm, referred to as inversion-free
variational Bayes (IFVB). We also present a weighted averaged
estimate version of IFVB, called AIFVB, that converges faster
than IFVB. Both IFVB and AIFVB are provably convergent,
with AIFVB being shown asymptotically efficient and achieving
a central limit theorem. Third, to substantiate the effectiveness
and robustness of our proposed method, we offer a range of
numerical examples to demonstrate its efficiency and reliability.

The rest of the article is organized as follows: Section 2
provides a brief overview of the variational Bayesian inference
problem. Section 3 presents natural gradient and discusses its
advantages as well as its computational difficulty. We introduce
inversion free natural variational Bayes in Section 4. Section 5 is
concerned with convergence analysis. Numerical examples are
provided in Section 6. Section 7 concludes the article. The sup-
plementary material contains the proofs of the main theorems
and an Appendix with further technical details.

Notation. We denote by ‖x‖ = (x2
1 + · · · + x2

d)
1/2 the �2-norm

of the vector x = (x1, . . . , xd)
� ∈ Rd. For a function f on Rd,

∇xf = (
∂f
∂x1

, . . . , ∂f
∂xd

)� denotes the gradient vector, and ∇2
x f =

(
∂2f

∂xi∂xj
)i,j=1,...,d is the Hessian. ‖A‖op = max‖x‖≤1 ‖Ax‖ denotes

the operator norm of a matrix A; λmin(A), λmax(A) denote the
minimum eigenvalue and maximum eigenvalue of matrix A,
respectively. Id denotes a d × d identity matrix. Ef (g(X)) =∫

g(x)f (x)dx with X ∼ f . We write a = O(b) to denote a ≤ Cb
for some constant C > 0, and f (x) = o(g(x) means |f (x)| ≤
ε|g(x)| for all ε > 0. We use N (μ, �) to denote a Gaussian
random variable, or a Gaussian distribution, with mean μ and
covariance �.

2. Variational Bayes

This section gives a brief overview of the VB method. Let y
be the data and p(y|θ) the likelihood function, with θ the set
of model parameters. Let p(θ) be the prior. Bayesian inference
requires computing expectations with respect to the posterior
distribution with density

p(θ |y) = p(θ)p(y|θ)

p(y)
,

where p(y) = ∫
p(θ)p(y|θ)dθ is often called the marginal

likelihood. It is often difficult to compute such expectations,
partly because the density p(θ |y) itself is intractable as the nor-
malizing constant p(y) is unknown. For simple models, Bayesian
inference can be performed using Markov chain Monte Carlo
(MCMC), which estimates expectations with respect to p(θ |y)
by sampling from it. For models where θ is high dimensional or
has a complicated structure, MCMC methods in their current
development are either not applicable or very time consuming.
In the latter case, VB is an attractive alternative to MCMC. VB
approximates the posterior p(θ |y) by a probability distribution
with density qλ(θ), λ ∈ M—the variational parameter space,
belonging to some tractable family of distributions such as Gaus-
sian. The best λ is found by minimizing the Kullback-Leibler
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(KL) divergence of p(θ |y) from qλ(θ)

λ∗ = arg min
λ∈M

{
KL(qλ‖p(·|y)) =

∫
qλ(θ) log

qλ(θ)

p(θ |y)dθ

}
.

(2.1)
One can easily check that

KL(qλ‖p(·|y)) = −
∫

qλ(θ) log
p(θ)p(y|θ)

qλ(θ)
dθ + log p(y).

Thus minimizing KL is equivalent to maximizing the lower
bound which is also called ELBO on log p(y)

LB(λ) =
∫

qλ(θ) log
p(θ)p(y|θ)

qλ(θ)
dθ = Eqλ

[
log

p(θ)p(y|θ)

qλ(θ)

]
= Eqλ [hλ(θ)] , (2.2)

where hλ(θ) := log p(θ)+ log p(y|θ)− log qλ(θ). Using the fact
that Eqλ [∇λ log qλ(θ)] = 0, it can be seen that

∇λLB(λ) = Eqλ

[∇λ log qλ(θ) × hλ(θ)
]

. (2.3)

One then can obtain an unbiased estimate of ∇λLB(λ) by sam-
pling from qλ,

∇̂λLB(λ) = 1
B

B∑
s=1

∇λ log qλ(θs) × hλ(θs),

θs ∼ qλ(θ), s = 1, . . ., B. (2.4)

Alternative to (2.3), the Euclidean gradient ∇λLB(λ) can be
computed using the so-called reparameterization-trick method
(Kingma and Welling 2013; Titsias and Lázaro-Gredilla 2014).
The method for estimating the natural gradient proposed in this
article is applicable in both cases.

Stochastic gradient ascent (SGA) techniques are often
employed to solve the maximization problem in (2.1). More
specifically, one can iteratively update λ as follows

λ(k+1) = λ(k) + τk+1∇̂λLB(λ(k)), (2.5)

with the stepsize τk satisfying
∑∞

k=1 τk = ∞ and
∑∞

k=1 τ 2
k < ∞.

The convergence of the update in (2.5) has been studied in the
literature (see, e.g., Robbins and Monro 1951; Spall 2005).

SGA approximates the exact gradient at each iteration by
an estimate using a mini-batch of the full sample (in big data
settings) or by sampling from qλ (as in (2.4)). This reduces
computational cost, and facilitates on-the-fly (online) learning
as new samples arrive. Note that, in practice, the data-dependent
term hλ(θ) is often estimated by using a mini-batch of the data.
It is documented extensively in the literature (see, e.g., Bercu,
Godichon, and Portier 2020; Kirkby et al. 2022; Chau et al. 2024)
that plain SGA as in (2.5) can lead to unsatisfactory estimates,
as it is highly sensitive to the choice of hyper-parameters such
as the step size or mini-batch size. In addition, SGA is known
to have slow convergence when the Hessian of the cost function
is ill-conditioned (Bottou, Curtis, and Nocedal 2018), and even
in the best case SGA converges no faster than sublinearly (Pel-
letier 1998; Agarwal et al. 2009; Saad 2009). Significant effort in
enhancing the plain SGA focuses on deriving adaptive learning
step sizes; notable methods include Adam (Kingma and Ba
2014), AdaGrad (Duchi, Hazan, and Singer 2011) and Adadelta
(Zeiler 2012). An alternative approach involves employing the
natural gradient, which we will discuss in the following section.

3. Natural Gradient

Let Q = {qλ(θ) : λ ∈ M ⊂ RD} be the set of VB
approximating probability distributions parameterized by λ. We
denote by d the dimension of the model parameter θ , and by
D the dimension of the variational parameter λ. Gradient-based
search for the optimal λ relies on the concept of gradient whose
definition depends upon the metric on M. It turns out that the
regular Euclidean metric may not be appropriate for measuring
the distance between two densities indexed by different vari-
ational parameters. For instance, by adapting examples given
in Salimbeni, Eleftheriadis, and Hensman (2018), the pair of
two Gaussians N (0, 0.1) and N (0, 1.1) look significantly dif-
ferent from each other, compared to the pair N (0, 1000) and
N (0, 1001). Both pairs have the same Euclidean distance, while
their KL divergences highlight a significant difference: the first
pair exhibits a KL divergence of 1.6, whereas the second pair has
a KL divergence of 2.5 × 10−7.

Now consider two variational parameters λ, λ + δλ and the
KL divergence KL(qλ||qλ+δλ). From Tran, Nguyen, and Nguyen
(2021), Tan (2021), it can be seen that

KL(qλ||qλ+δλ) ≈ 1
2
(δλ)�IF(λ)δλ,

where,

IF(λ) := −Eqλ

[
∇2

λ log qλ(θ)
]

= Eqλ

[
∇λ log qλ(θ)(∇λ log qλ(θ))�

]
(3.1)

is the Fisher information matrix of qλ. This shows that the local
KL divergence around the point qλ ∈ Q is characterized by
the Fisher matrix IF(λ). Therefore, a suitable metric between λ

and λ + δλ is the Fisher-Rao metric (δλ)�IF(λ)δλ. As a result,
assuming the objective function LB is smooth enough and for
l > 0, if one considers the following optimization problem,

arg max
δλ:(δλ)�IF(λ)δλ=l

{
∇λLB(λ)�δλ

}
, (3.2)

then through the method of Lagrangian multipliers, the steepest
ascent is

δλ = ∇nat
λ LB(λ) := I−1

F (λ)∇λLB(λ). (3.3)

Amari (1998) termed this the natural gradient and popularized
it in machine learning.

Using the natural gradient, the update in (2.5) becomes

λ(k+1) = λ(k) + τk+1I−1
F (λ(k))∇λLB(λ(k)). (3.4)

In the statistics literature, the steepest ascent in the form (3.4)
has been used for a long time and is often known as Fisher’s
scoring in the context of maximum likelihood estimation (see,
e.g., Longford 1987). The efficiency of the natural gradient over
the Euclidean gradient has been well documented (Sato 2001;
Hoffman et al. 2013; Tran, Nott, and Kohn 2017; Martens 2020;
Tan 2021). The natural gradient is invariant under parameter-
ization (Martens 2020), meaning it remains unchanged across
different coordinate systems and is an intrinsic geometric object.
This property makes it particularly suitable for use when the
variational parameter spaceM is a Riemannian manifold (Tran,
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Nguyen, and Nguyen 2021) as it is coordinate-free and leverages
the underlying geometry of the space.

In the special case of Gaussian approximations with a full
covariance matrix or a Cholesky-factor covariance matrix, it
is possible to obtain the inverse Fisher matrix in closed form
(Tan 2021; Magris, Shabani, and Iosifidis 2022). Beyond these
limited cases, however, it is challenging to accurately compute
the natural gradient. The natural gradient method requires the
analytic computation of the Fisher information matrix and its
inversion. Even if an analytical expression of the Fisher matrix is
obtained, computing its inverse has a complexity of O(Dκ), with
2 < κ ≤ 3 depending on various algorithms. It is therefore
either analytically infeasible or prohibitively computationally
expensive to use natural gradient in many modern statistical
applications; current practice resorts to heuristic workarounds
that can affect the results of Bayesian inference (Martens 2020;
Lopatnikova and Tran 2023).

4. Inversion Free Natural Gradient Variational Bayes

This section first presents the approach for approximating the
inverse of Fisher matrix. We then present the inversion free
natural gradient Variational Bayes method, referred to as IFVB,
and its weighted averaged version AIFVB. The IFVB and AIFVB
methods are stochastic natural gradient descent algorithms that
avoid computing the Fisher matrix and its inversion altogether.
As explained later, these methods also enable us to deal with
situations where the estimate of Fisher matrix has eigenval-
ues with significantly different orders of magnitude (i.e., poor
conditioning). In this section and Section 5, we will denote
L(λ) = −LB(λ), which can be viewed as the loss function,
and the problem of maximizing the lower bound becomes the
minimization of L.

4.1. Recursive Estimation of I−1
F (λ)

For each s = 1, 2 . . . , let

Hs = H0 +
s∑

j=1
∇λ log qλ(θj)(∇λ log qλ(θj))

�, θj ∼ qλ, (4.1)

where H0 is some positive definite matrix, for example H0 = εID
with ε > 0 and ID the identity matrix of size D. Theorem 4.1
says that Hs := Hs/s is a consistent estimate of IF defined
in (3.1) as s → ∞, and provides a recursive procedure for
obtaining H−1

s . This recursive procedure computes H−1
s+1 from

H−1
s without resorting to the usual (expensive and error prone)

matrix inversion. Additionally, the symmetry and positivity of
Hs, and hence of H−1

s , is preserved, which is an important
property.

Theorem 4.1. Let φs = ∇λ log qλ(θs). We have that

H−1
s+1 = H−1

s −
(

1 + φ�
s+1H−1

s φs+1
)−1

H−1
s φs+1φ

�
s+1H−1

s , s = 0, 1, . . . (4.2)

In particular, the positivity and symmetry of Hs is preserved for
all s. Furthermore,

Hs = 1
s

Hs
a.s−−−−→

s→+∞ IF(λ) and H−1
s

a.s−−−−→
s→+∞ I−1

F (λ).
The proof of Theorem 4.1 can be found in the Appendix, sup-
plementary materials. The expression (4.2) suggests that H−1

s is a
sum of outer products—a property that can be exploited to avoid
storage of large matrices; see Remark 4.2.

4.2. Inversion Free Natural Gradient Variational Bayes

Theorem 4.1 suggests that one can approximate the inverse
Fisher matrix I−1

F by H−1
s = sH−1

s for some large s, where
H−1

s is calculated recursively as in (4.2). This method does not
require an analytic calculation of IF and its inversion; also, the
estimate H−1

s is guaranteed to be symmetric and positive defi-
nite. However, a direct application of Theorem 4.1 for computing
the natural gradient can be inefficient for two reasons.

First, in order to ensure the consistency of estimates λ(k)

from (3.4), where the inverse Fisher matrix is replaced by its
estimate H−1

s , one must control the eigenvalues of the estimate
H−1

s . See Bercu, Godichon, and Portier (2020) and Boyer and
Godichon-Baggioni (2023) for related discussion in the context
of stochastic Newton’s method. With this aim, we follow Boyer
and Godichon-Baggioni (2023) and modify (4.1) as follows

As(λ) = H0 +
s∑

j=1
∇λ log qλ(θj)(∇λ log qλ(θj))

�

+ cβ

s∑
j=1

j−βZjZ�
j , s = 1, 2, . . . (4.3)

where θj ∼ qλ(·), Z1, . . . , Zs ∼ N (0, ID) are independent
standard Gaussian vectors of dimension D, cβ ≥ 0 and β ∈
(0, α − 1/2) for some α ∈ (1/2, 1). Theorem A.1 in the
Appendix, supplementary materials shows that As/s converges
almost surely to IF(λ), and that A−1

s+1 can be computed recur-
sively as follows

⎧⎪⎨⎪⎩
A−1

s+ 1
2

= A−1
s − (

1 + φ�
s+1A−1

s φs+1
)−1 A−1

s φs+1φ
�
s+1A−1

s

A−1
s+1 = A−1

s+ 1
2

− cβ(s + 1)−β

(
1 + cβ(s + 1)−βZ�

s+1A−1
s+ 1

2
Zs+1

)−1
A−1

s+ 1
2
Zs+1Z�

s+1A−1
s+ 1

2

(4.4)

with φs = ∇λ log qλ(θs). As being shown later in the proof of
Theorem 5.1, taking cβ > 0 ensures the smallest eigenvalue of
the Fisher matrix estimate not going to zero faster than O(s−β)

almost surely, hence enabling strongly consistent estimates.

Second, a direct use of (4.3) would require a separate recur-
sive procedure (4.4) to calculate the inverse Fisher estimate
sA−1

s (λ(k)) in each update λ(k), k = 1, 2, . . ., in (3.4). This might
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make the VB training procedure in (3.4) computationally expen-
sive. Instead, we propose a “streamlined” version that updates
the Fisher matrix estimate along with the iterates λ(k). To this
end, we define

H̃s = H0 +
s−1∑
k=0

∇λ log qλ(k) (θk+1)
(∇λ log qλ(k) (θk+1)

)�

+ cβ

s∑
k=1

k−βZkZ�
k , s = 0, 1, . . ., (4.5)

where θk+1 ∼ qλ(k) (·). Note that, unlike (4.3), H̃s in (4.5)
depends on the iterates λ(k), k < s. Similar to (4.4), H̃−1

s+1 can
be computed recursively as follows

⎧⎪⎪⎨⎪⎪⎩
H̃−1

s+ 1
2

= H̃−1
s −

(
1 + φ�

s+1H̃−1
s φs+1

)−1
H̃−1

s φs+1φ
�
s+1H̃−1

s

H̃−1
s+1 = H̃−1

s+ 1
2

− cβ(s + 1)−β

(
1 + cβ(s + 1)−βZ�

s+1H̃−1
s+ 1

2
Zs+1

)−1
H̃−1

s+ 1
2

Zs+1Z�
s+1H̃−1

s+ 1
2

,
(4.6)

where φs+1 = ∇λ log qλ(s) (θs+1).
The Euclidean gradient of the loss function can be estimated

as

∇̂λL (λ) = − 1
B

B∑
i=1

∇λ log qλ (θi) × hλ (θi) , (4.7)

where the θi’s are B iid samples from qλ.
Putting these together, we propose the Inverse Free Natural

Gradient VB algorithm, referred to as IFVB and outlined in
Algorithm 1. The performance of this algorithm is found not
sensitive to ε and cβ ; both are set to 1 in our examples below
unless stated otherwise. We found that the algorithm works well
for β in the range (0.1,0.5).

Algorithm 1: Inversion-Free Natural Gradient Varia-
tional Bayes (IFVB)

Require: Choose an initial value λ(0), ε > 0 and cβ ≥ 0.
1: H0 = εID
2: for s = 0, 1, . . . , do
3: Compute ∇̂λL(λ(s)).
4: Sample θs+1 ∼ qλ(s) (θ), Zs+1 ∼ N (0, ID)

and let φs+1 = ∇λ log qλ(s) (θs+1). Calculate H̃−1
s+1 as in

(4.6), and H̃−1
s+1 = (s + 1)H̃−1

s+1.
5: Update λ(s+1) = λ(s) − τs+1H̃−1

s+1∇̂λL
(
λ(s)).

6: end for

Remark 4.1. Some remarks are in order. Line #4 in Algo-
rithm 1 updates H̃−1

s+1 from H̃−1
s using only one sample from

qλ(s) . Depending on applications, however, it might be ben-
eficial to use S samples (S > 1) to update H̃−1

s+1. One
then needs to run (4.6) for S times, and compute H̃−1

s+1 =
S(s + 1)H̃−1

s+1. The factor S is not practically important as
gradient clipping, that keeps the norm of the natural gradient
H̃−1

s+1∇̂λL
(
λ(s)) below some certain value, is often used in the

SGD literature (see, e.g., Goodfellow, Bengio, and Courville
2016).

Remark 4.2. For applications such as deep learning where the
size D of variational parameter λ is large, it is important to note
that implementation of Algorithm 1 does not require storage of
the matrices H̃−1

s+1. Let us take cβ = 0 to simplify the exposition;

the extension to the case cβ > 0 is straightforward. From (4.6),
H̃−1

s+1 takes the form

H̃−1
s+1 = 1

ε
ID −

s+1∑
k=1

ψkψ
�
k ,

ψk =
(

1 + φ�
k+1H̃−1

k φk+1
)−1/2

H̃−1
k φk+1, (4.8)

which is presented by outer products. As the result, all the
required matrix-vector multiplications can be performed effi-
ciently. That is,

H̃−1
s+1∇̂λL

(
λ(s)

)
= 1

ε
∇̂λL

(
λ(s)

)� ∇̂λL
(
λ(s)

)
−

s+1∑
k=1

(
ψ�

k ∇̂λL
(
λ(s)

) )
ψk

H̃−1
s φs+1 = 1

ε
φ�

s+1φs+1 −
s∑

k=1

(
ψ�

k φs+1
)
ψk

which does not necessitate storage of the matrices H̃−1
s . It is also

natural to only keep the last K outer products, for some K ≥ 1
(K = 100 in our examples below), in (4.8) to further reduce the
computation

H̃−1
s+1 ≈ 1

ε
ID −

s+1∑
k=s−K+2

ψkψ
�
k . (4.9)

The computational complexity of Algorithm 1 is therefore O(s×
D), with s the number of iterations. This complexity is the same
as that of the popular adaptive learning methods such as Adam
and AdaGrad.

4.3. Weighted Averaged IFVB Algorithm

It is a common practice in the SGD literature to use an average
of the iterates λ(k) to form the final estimate of the optimal λ∗
(Goodfellow, Bengio, and Courville 2016; Boyer and Godichon-
Baggioni 2023). The weighted averaged estimate is of the
form
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λ
(s+1) = 1∑s+1

k=1 wk

s+1∑
k=1

wkλ
(k)

= λ
(s) + ws+1∑s+1

k=1 wk

(
λ(s+1) − λ

(s)),

where the weights wk > 0. Inspired by Boyer and Godichon-
Baggioni (2023), we select wk = (

log(k)
)w with w ≥ 0. This

averaging scheme puts more weight on recent estimates λ(k) if
w > 0. If one chooses w = 0, this leads to the uniform averaging
technique, that is,

λ
(s) = 1

s

s∑
k=1

λ(k).

We use w = 2 in all the numerical examples in Section 6. We
arrive at the Weighted Averaged IFVB Algorithm (AIFVB)

λ(s+1) = λ(s) − τs+1H̃−1
s+1∇̂λL

(
λ(s)

)
λ

(s+1) = λ
(s) +

(
log(s + 1)

)w∑s
k=0

(
log(k + 1)

)w

(
λ(s+1) − λ

(s)) .

For the AIFVB algorithm, we consider the following estimate of
the Fisher matrix

H̃s = 1
s

(
H0 +

s−1∑
k=0

∇λ log q
λ

(k) (θk+1)(∇λ log q
λ

(k) (θk+1))
�

+ cβ

s∑
k=1

k−βZkZT
k

)
, (4.10)

for s = 1, 2, . . ., where θk+1 ∼ q
λ

(k) (θ), the Zk’s are defined as
before. Similar to (4.6), H̃−1

s+1 can be updated recursively.

Remark 4.3. In the estimate (4.10), we compute H̃s using the
averaged iterates λ

(k), as this can lead to a faster convergence.
Nonetheless, one can also use λ(k) instead of λ

(k) in (4.10).

Putting these together, we have the Weighted Averaged IFVB
Algorithm, outlined in Algorithm 2.

Algorithm 2: Weighted Averaged IFVB Algorithm
(AIFVB)

Require: Choose an initial value λ(0) = λ
(0), ε > 0 and

cβ ≥ 0.
1: H0 = εID
2: for s = 0, 1, . . . , do
3: Compute ∇̂λL(λ(s)).
4: Sample θ s+1 ∼ q

λ
(s) (θ), Zs+1 ∼ N (0, ID)

and let φs+1 = ∇λ log q
λ

(s) (θ s+1). Calculate H̃−1
s+1 as in

(4.6), and H̃−1
s+1 = (s + 1)H̃−1

s+1.
5: Update λ(s+1) = λ(s) − τs+1H̃−1

s+1∇̂λL
(
λ(s)).

6: Update λ
(s+1) = λ

(s) +
(

log(s+1)
)w∑s

k=0
(

log(k+1)
)w

(
λ(s+1) − λ

(s)).

7: end for

5. Convergence Analysis

For the convergence analysis in this section, we consider a step
size of the form τk = cα

(c′α+k)α with cα > 0, c′
α ≥ 0 and α ∈

(1/2, 1). Write
∇λL(λ) = Eqλ [−∇λ log qλ(θ) × hλ(θ)] =: Eqλ [�(θ , λ)].
It can be shown that (see Appendix A.3, supplementary mate-

rials for a detailed calculation; also, Tang and Ranganath 2019;
Tan 2021)

∇2
λL(λ) = IF(λ) +

∫
∇2

λqλ(θ)
(

log qλ(θ) − log p(θ |y))dθ .

At the optimal λ = λ∗, qλ∗(θ) ≈ p(θ |y), the second term
above expects to be close to zero. We can therefore expect
that, in a neighborhood of λ∗, the Fisher IF(λ) behaves like
the Hessian ∇2

λL(λ). This motivates us to adapt the results
from stochastic Newton algorithms (see, e.g., Bercu, Godi-
chon, and Portier 2020; Boyer and Godichon-Baggioni 2023)
for convergence analysis of IFVB and AIFVB proposed in this
article.

We now provide the convergence analysis for the AIFVB
algorithm; a minor modification provides convergence results
for IFVB.

Theorem 5.1. Assume that L is twice differentiable and that
there is L0 such that for all λ,

∥∥∇2
λL(λ)

∥∥
op ≤ L0. Suppose

that ∇λL(λ∗) = 0 and cβ > 0. Assume also that there are
nonnegative constants C0, C1 such that for all λ

E
[‖�(θ , λ)‖2] ≤ C0 + C1(L(λ) − L(λ∗))

and that there are positive constants C′
0, C′

1 such that for all λ,

E

[∥∥∇λ log qλ(θ)
∥∥4

]
≤ C′

0 + C′
1
(
L(λ) − L(λ∗)

)2 . (5.1)

Suppose that C′
1 = 0 or thatL is convex. Then the estimates λ(k),

λ
(k) k = 0, 1, . . ., from Algorithm 2 satisfy:

(i) L
(
λ(k))−L (λ∗) converges almost surely to a finite random

variable.
(ii) mins

k=0
∥∥∇L

(
λ(k))∥∥2 = o

(
s−(1−α)

)
a.s.

(iii) mins
k=0

∥∥∥∇L
(
λ

(k))∥∥∥2 = o
(
s−(1−α)

)
a.s.

If the convexity of L is satisfied, conclusions (ii) and (iii) in
Theorem 5.1 imply the almost sure convergence of λ(k) and λ

(k)

to λ∗. The assumption in (5.1) might appear to look irrelevant, as
the right-hand side term is model-dependent, that is depending
on the prior and likelihood, while the left-hand side is not. One
can simply replace (5.1) with an assumption on the uniform
bound of the fourth order moment of ∇λ log qλ, which obviously
implies (5.1). We use (5.1) to keep the result as general as
possible.

We now give the consistency of the estimates of the Fisher
information given in (4.10).

Corollary 5.1. Suppose that λ(k) converges almost surely to λ∗,
and that the map λ �−→ IF(λ) is continuous at λ∗. Suppose also
that (5.1) is satisfied. Then

H̃s
a.s−−−−→

s→+∞ IF
(
λ∗) .
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Note that we can obtain the convergence rate of H̃s to IF(λ∗),
or even the rate of convergence of H̃s to the Hessian ∇2

λL(λ∗).
Please see Appendix A.4, supplementary materials for more
details.

Without the convexity assumption, the proof of Theorem 5.1
implies that the estimates λ(k) converge to a stationary point λ∗
of the objective L, that is ∇λL(λ∗) = 0. The result below gives a
convergence rate of the estimates λ(k) to such λ∗.

Theorem 5.2. Suppose that λ(k) converges almost surely to λ∗.
Assume that the functionalL is differentiable with ∇λL(λ∗) = 0
and twice continuously differentiable in a neighborhood of λ∗.
Suppose also that there are η > 1

α
− 1 and positive constants

Cη,0, Cη,1 such that for all λ,

E
[‖�(θ , λ)‖2+2η

] ≤ Cη,0 + Cη,1
(
L(λ) − L

(
λ∗))1+η

and that inequality (5.1) holds. Suppose also that ∇2
λL (λ∗) and

IF (λ∗) are positive. Then∥∥∥λ(s) − λ∗
∥∥∥2 = O

(
log s
sα

)
a.s. (5.2)

Observe that (5.2) is the usual rate of convergence for (adap-
tive) stochastic gradient type algorithms (Bercu, Godichon, and
Portier 2020; Nguyen et al. 2021). The following theorem shows
that the weighted averaged estimates achieve a better conver-
gence rate and are asymptotically efficient.

Theorem 5.3. Suppose that the assumptions in Theorem 5.2
hold. Assume that the functional

λ �−→ �(λ) := Eqλ

[
�(θ , λ)�(θ , λ)�

]
is continuous at λ∗, and there are a neighborhood V∗ of λ∗ and
a constant Lδ such that for all λ ∈ V∗,∥∥∇λL(λ) − ∇2L(λ∗)(λ − λ∗)

∥∥ ≤ Lδ

∥∥λ − λ∗∥∥2 . (5.3)

Then ∥∥∥λ
(s) − λ∗

∥∥∥2 = O
(

log s
s

)
a.s.

In addition,
√

Bs
(
λ

(s) − λ∗)
law−−−−→

n→+∞ N
(

0, ∇2
λL

(
λ∗)−1

�
(
λ∗)∇2

λL
(
λ∗)−1

)
.

Remark 5.1. Comparing Theorems 5.2 and 5.3, it is intriguing
to observe that the averaging technique clearly contributes to
an improvement in the rate of convergence. Moreover, observe
that Bs represent the total number of samples generated for
the AIFVB algorithm (without taking into account the ones for
estimating the inverse of the Fisher information). In addition,
following Godichon-Baggioni and Werge (2023), that is tak-
ing B = D and generating only one sample to estimate the
inverse of the Fisher information, it leads to an algorithm with
O(sBD) operations, which is the same computational complex-
ity as stochastic gradient type algorithms. To be more precise,
taking B = D, and denoting by N = sB the total number of

simulated data used for estimating the gradients at each step of
the algorithm, one has

√
N

(
λ

N/D − λ∗)
law−−−−−→

N→+∞ N
(

0, ∇2
λL

(
λ∗)−1

�
(
λ∗) ∇2

λL
(
λ∗)−1

)
,

with O(ND) operations, which is exactly the same rate and
complexity as averaged stochastic gradient algorithms.

Remark 5.2. To the best of our knowledge, this article is the first
to give a central limit theorem for the estimate of variational
parameters in VB. This result can have some interesting implica-
tions. Given a variational familyQ and data y, one can define the
“final” variational approximation of the posterior distribution
p(θ |y) as

q(θ |y,Q) =
∫

qλ(θ)p(λ|y)dλ (5.4)

with p(λ|y) approximated by N
(
λ∗, 1

Bs∇2
λL (λ∗)−1 � (λ∗)∇2

λL
(λ∗)−1), who in turn can be further approximated
by N

(
λ∗, 1

Bs IF (λ∗)−1 � (λ∗) IF (λ∗)−1). The posterior
approximation in (5.4) not only takes into account the
uncertainty in the SGD training procedure of λ, but also
enlarges the variance in qλ∗(θ). We recall that underestimating
the posterior variance is a well perceived problem in the VB
literature (Blei, Kucukelbir, and McAuliffe 2017).

6. Numerical Examples

This section provides a range of examples to demonstrate the
applicability of the inversion free variational Bayes methods.
In Sections 4 and 5, to be consistent with the optimization
literature, we presented the VB problem in terms of optimizing
the negative lower bound L(λ). In this section, to be consistent
with the VB literature, we present the numerical examples in
terms of maximizing the lower bound LB(λ). The five examples
encompass a diverse array of domains ranging from Gaussian
approximation to normalizing flow Variational Bayes. We pro-
vide four examples in this section; another example is provided
in the supplementary material. The implementation code is
available at https://github.com/VBayesLab/Inversion-free-VB.

Example 1 (Beta variational approximation). We consider an
example in which the posterior distribution and the natural
gradient are given in closed-form. This helps facilitate the com-
parison among the considered approximation approaches. Fol-
lowing Tran, Nott, and Kohn (2017), we generated n = 200
observations y1, y2, . . . , y200 ∼ Bernoulli(1, θ = 0.3), and let
κ = ∑n

i=1 yi = 57. The prior distribution of θ is chosen to be
the uniform distribution on (0, 1). The posterior distribution is
Beta(κ+1, n−κ+1). Let λ∗ = (κ+1, n−κ+1)�. The variational
distribution qλ(θ) is chosen to be Beta(α, β), which belongs to
the exponential family with the natural parameter λ = (α, β)�.
We have

log qλ(θ) = log �(α + β) − log �(α) − log �(β)

+(α − 1) log θ + (β − 1) log(1 − θ).

https://github.com/VBayesLab/Inversion-free-VB
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Hence,

∇λ log qλ(θ) = (ψ(α + β) − ψ(α)

+ log(θ), ψ(α + β)

−ψ(β) + log(1 − θ)
)� ,

where ψ is the digamma function. In this case, the Fisher infor-
mation matrix is available in a closed-form

IF(λ) =
(

ϕ1(α) − ϕ1(α + β) −ϕ1(α + β)

−ϕ1(α + β) ϕ1(β) − ϕ1(α + β)

)
,

where ϕ1(x) is the trigamma function. In addition, we have that

∇λLB(λ) =
(

(κ + 1 − α)
(
ϕ1(α) − ϕ1(α + β)

) − (n − κ + 1 − β)ϕ1(α + β)

(n − κ + 1 − β)
(
ϕ1(β) − ϕ1(α + β)

) − (κ + 1 − α)ϕ1(α + β)

)
.

The Euclidean gradient ascent update is given by

λ(k+1) = λ(k) + τk∇λLB(λ(k)),
and the natural gradient ascent update is given by

λ(k+1) = λ(k) + τkI−1
F (λ(k))∇λLB(λ(k)).

Figure 1 compares the true posterior density with those
obtained by the Euclidean gradient ascent, the (exact) natural
gradient VB algorithm (NGVB) and IFVB, using two initializa-
tions for λ: λ(0) = (5; 45)� (Figure 1, left) and λ(0) = (25; 25)�
(Figure 1, right). We set cβ = 0 in this example. The step size for
IFVB is set as τk = 10/(1 + k)α with α = 0.6 (see Section 5),
while the step size for other methods is set to 1/(1 + k). All the
algorithms used the same stopping rule, which terminates the
training if the difference in l2-norm of two successive updates is
less than a tolerance of 10−5. The figure shows that the posterior
densities obtained by NGVB and IFVB are superior to using the
traditional Euclidean gradient. Furthermore, these algorithms
are insensitive to the initial λ(0).

As we know the exact posterior distribution in this case, we
now further compare the performance of NGVB, IFVB, and

AIFVB using the initialization λ(0) = (5; 45)�. Figure 2 plots
the error ‖λ(s) − λ∗‖ (‖λ(s) − λ∗‖ for AIFVB) as the function
of the number of iterations. It is clear from Figure 2 that both
the IFVB and AIFVB algorithms require more steps to achieve a
(relatively) equivalent error level compared to the exact natural
gradient ascent algorithm. This observation aligns with the fact
that both algorithms rely on an approximation of the inverse
Fisher information matrix. As time advances, the quality of
this approximation improves. Furthermore, it is evident that
the incorporation of an averaging technique significantly aids in
minimizing the error associated with the approximation.

Example 2 (Gaussian approximation). We consider a Gaus-
sian approximation example which was considered in Tan
(2021). Specifically, it is assumed that qλ(θ) = N (θ |μ, �)

which belongs to the exponential family and can be written
as

qλ(θ) = exp
(

s(θ)�λ − a(λ)
)

,

where s(θ) = (θ�, vech(θθ�)�)� is the sufficient statistics, λ =
(μ��−1, − 1

2 vec(�−1)��)� is the natural parameter, with �

Figure 1. Comparing the true posterior density versus those obtained by Euclidean gradient ascent, NGVB and IFVB.
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Figure 2. Error versus iterations.

the duplication matrix. It can be seen that a(λ) = 1
2μ��−1μ +

1
2 log |�| + d

2 log(2π) is the log-partition function. This implies
the natural gradient

∇nat
λ LB = I−1

F (λ)∇λLB(λ)

= I−1
F (λ)IF(λ)∇mLB(m) = ∇mLB

=
(∇μLB − 2(∇�LB)μ

��vec(∇�LB)

)
,

where vec(∇�LB) = ∇vec(�)LB. From here Tan (2021) derives
the updates for λ as follows,

1. �−1 ← �−1 − 2τk∇�LB
2. μ ← μ + τk�∇μLB.

Obviously, the traditional (Euclidean) gradient ascent is given by

1. μ ← μ + τk∇μLB
2. � ← � + τk∇�LB.

Let us consider a concrete example: Consider the log-linear
model for counts, yi ∼ Poisson(δi), δi = exp(x�

i θ) where
xi, θ ∈ Rd are the vector of covariates and regression coefficients,
respectively. Assume the prior of θ is p(θ) ∼ N (0, σ 2

0 Id). We use
a Gaussian qλ(θ) = N (θ |μ, �) to approximate the true poste-
rior distribution of θ . Let y = y1:n and X = (x1, x2, . . . , xn)�.
For each i = 1, . . . , n let wi = exp(x�

i μ + 1
2 x�

i �xi) and W =
diag(w1, . . . , wn). By computing directly Tan (2021) showed that
the closed form for the ELBO is,

LB(λ) = y�Xμ −
n∑

i=1
(wi + log(yi!)) − μ�μ + Tr(�)

2σ 2
0

+1
2

log |�| + d
2
(1 − log(σ 2

0 )).

From here it is immediate to see that ∇μLB, ∇�LB, and
∇vec(�)LB are given by

∇μLB = X�(y − w) − μ

σ 2
0

,

∇�LB = −1
2

X�WX − 1
2σ 2

0
I + 1

2
�−1

∇vec(�)LB = 1
2

vec(�−1 − 1
σ 2

0
I − X�WX).

Also we have

log qλ(θ) = −d
2

log(2π) − 1
2

log |�|

− 1
2
(θ − μ)��−1(θ − μ).

Hence
∇λqλ(θ) = (∇μqλ(θ), ∇vec(�)qλ(θ))

=
(

(θ − μ)��−1, vec
(

−1
2
�−1 + 1

2
�−1

(θ − μ)(θ − μ)��−1
)�)�

∈ Rd+d2
.

We choose n = 200, d = 3, σ 2
0 = 100, θ = (1, . . . , 1), xij ∼

N (0, 1), and simulate y1, . . . , y200 from those parameters. In this
case λ ∈ R12 hence IF ∈ R12×12. The initial guesses are μ(0) =
(0, . . . , 0)� and �(0) = 10−2Id. Moreover, we choose the step
size 1/(1000+k)0.75 and cβ = 1. As we know the analytical form
of the ELBO in this example, in Figure 3 we plot the graphs of
LB(λ) (as a function of the number of iterations) obtained from
the exact natural gradient ascent algorithm (NGVB) , inversion
free gradient algorithm (IFVB) and weighted inversion free
algorithm (AIFVB). It can be seen that the three algorithms have
almost identical performance in this case. One striking note is
that AIFVB even outperforms (obtaining a larger lower bound
value) the exact natural gradient algorithm in this case. It again
helps to confirm that the averaging technique is useful. We note
that we are tempted to include the ELBO obtained from the
Euclidean gradient ascent but its performance is too unstable
to include. This phenomenon has been observed in Tan (2021)
as the matrix � obtained from the traditional gradient ascent
is usually not positive definite, which results in an unstable
performance.

Example 3 (Normalizing flow Variational Bayes). The choice of
flexible variational distributions qλ is important in VB. Normal-
izing flows (Rezende and Mohamed 2015) are a class of tech-
niques for designing flexible and expressive qλ. We consider a
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Figure 3. Gaussian Approximation: Comparing NGVB, IFVB, and AIFVB.

flexible VB framework where the VB approximation distribution
qλ(θ) is constructed based on a normalizing flow as follows

ε ∼ Nd(0, I), Z = ψ(W1ε + b1), θ = W2Z + b2 (6.1)

where W1, W2 ∈ Mat(d, d) and b1, b2 are d-vectors, and ψ(·)
is an activation function such as sigmoid. The transformation
from ε to θ in (6.1) can be viewed as a neural network with one
hidden layer Z; it might be desirable to consider deeper neural
nets with more than one hidden layers, but we do not consider
it here. To be able to compute the density qλ(θ) resulting from
the transformations in (6.1), these transformations should be
invertibe and the determinants of the Jacobian matrices should
be easy to compute. To this end, we impose the orthogonality
constraint on W1 and W2: W�

1 W1 = W�
2 W2 = Id, that is the

columns are orthonormal. Details on the derivation of the lower
bound gradient and score function ∇ log qλ(θ) can be found in
the Appendix, supplementary materials.

Numerical Results
We apply the manifold normalizing flow VB (NLVB) (6.1)
to approximate the posterior distribution in a neural network
classification problem, using the German Credit dataset. This
dataset, available on the UCI Machine Learning Repository:
https://archive.ics.uci.edu/ml/index.php, consists of observations
on 1000 customers, each was already rated as being “good credit”
(700 cases) or “bad credit” (300 cases). We create 10 predictors
out of the available covariate variables including credit history,
education, employment status, etc. The classification problem
is based on a neural network with one hidden layer of 5 units.
As W1 and W2 belong to the Stiefel manifold, for a comparison
we use the VB on manifold algorithm of Tran, Nguyen, and
Nguyen (2021) for updating these parameters. Figure 4 plots the
lower bounds of the IFVB algorithm (solid red) together with
the conventional VB algorithm (dash blue) using the Euclidean
gradient. As shown, the IFVB algorithm converges quicker and
achieves a higher lower bound. Note that we do not consider the
AIFVB algorithm in this example, as the variational parameters

Figure 4. Normalizing flow VB: Lower bound values of Euclidean gradient VB (dash
blue) versus IFVB (solid red) over the iterations.

belong to the Stiefel manifold, making the averaging technique
challenging to use. It is interesting to extend the work to handle
cases where the parameter space is a Riemannian manifold;
however, we do not consider this in the present article.

Example 4 (Bayesian neural network). This example considers a
Bayesian neural network for regression

y = η(x, ω) + ε, ε ∼ N (0, σ 2), (6.2)
where y is a real-valued response variable, η(x, ω) denotes
the output of a neural network with the input vector x =
(x1, . . ., xp)� ∈ Rp and the vector of weights w. As neural
networks are prone to overfitting, we follow Tran et al. (2020)
and place a Bayesian adaptive group Lasso prior on the first-layer
weights

wxj |κj ∼ N (0, κjIm),

κj|γj ∼ Gamma

(
m + 1

2
,
γ 2

j

2

)
, j = 1, . . ., p, (6.3)

with the γj > 0 the shrinkage parameters; no regularization
prior is put on the rest of the network weights. Here wxj denotes

https://archive.ics.uci.edu/ml/index.php
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Figure 5. Bayesian neural network: Validation MSE values of ADAM (dotted black),
AIFVB (dot greenish), IFVB (red solid) and NAGVAC (dash blue) over the iterations.

the vector of weights that connect the input xj to the m units in
the first hidden layer. An inverse-Gamma prior is used for σ 2.
We use empirical Bayes for selecting the shrinkage parameters
γj, and the posterior of κj and σ 2 is approximated by a fixed-
form within mean-filed VB procedure. See Tran et al. (2020) for
the details.

The main task is to approximate the posterior of the net-
work weights ω. Let d be the dimension of ω. We choose to
approximate this posterior by a Gaussian variational distribution
of the form qλ(ω) = N (μ, �) with covariance matrix �

having a factor form � = bb� + diag(c)2, where b and c
are vectors in Rd. The vector of the variational parameters is
λ = (μ�, b�, c�)�. This factor structure of the covariance
matrix significantly reduces the size of variational parameters,
making the Gaussian variational approximation method com-
putationally efficient for Bayesian inference in large models such
as Bayesian neural networks.

Tran et al. (2020) exploit the factor structure of �, and by
setting certain sub-blocks of the Fisher information matrix IF(λ)

to zero, to be able to derive a closed-form approximation of the
inverse I−1

F (λ). Their VB method, termed the NAtural gradi-
ent Gaussian Variational Approximation with factor Covariance
method (NAGVAC), is highly computationally efficient; how-
ever, the approximation of I−1

F (λ) might offset the VB approxi-
mation accuracy.

We now fit the Bayesian neural network model (6.2)–(6.3)
to the Direct Marketing dataset (Jank 2011) that consists of
1000 observations, of which 800 were used for training, and the
rest for validation. The response y is the amount (in $1000) a
customer spends on the company’s products per year, and 11
covariates include gender, income, married status, etc. We use a
neural network with two hidden layers, each with ten units. Fig-
ure 5 plots the mean squared error (MSE) values, computed on
the validation set, of the VB training using ADAM (Kingma and
Ba 2014), AIFVB, IFVB, and NAGVAC. With the same stopping
rule, the four methods, ADAM, AIFVB, IFVB, and NAGVAC,
stop after 425, 221, 480, and 700 iterations, respectively. This
confirms the theoretical result in Theorem 5.3 that the averaging
technique speeds up the convergence of AIFVB compared to
IFVB. On the validation set, the smallest MSE values produced
by ADAM, AIFVB, IFVB, and NAGVAC are 0.2273, 0.1750,

0.1749, and 0.1992, respectively. Both IFVB and AIFVB per-
form better than ADAM and NAGVAC, probably because the
natural gradient approximation in NAGVAC, although being
highly computationally efficient, might offset the approximation
accuracy.

7. Conclusion

The article introduced an efficient approach for approximating
the inverse of Fisher information, a crucial component in vari-
ational Bayes used for approximating posterior distributions.
An outstanding feature of our algorithm is its avoidance of
calculating the Fisher matrix and its inversion. Instead, our
approach generates a sequence of matrices converging to the
inverse of Fisher information. Implementation of our method
for natural gradient estimate does not require storage of large
matrices. Our inversion free VB framework showcases versatil-
ity, enabling its application in a wide range of domains, includ-
ing Gaussian approximation and normalizing flow Variational
Bayes, and makes the natural gradient VB method applicable in
cases that were impossible before. To demonstrate the efficiency
and reliability of the method, we provided numerical examples
as evidence of its effectiveness. We find it intriguing to consider
expanding the scope of our approach to scenarios where the
variational parameter space is a Riemannian manifold and to
develop a rigorous theoretical framework for such cases. We plan
to explore this avenue in our future research studies.

Supplementary Materials

The online supplementary materials contain the proofs of the main theo-
rems and an Appendix with further technical details.
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