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Abstract

In this paper, we present and discuss practical applications
of large language models (LLMs) in software security, con-
cretely in code vulnerability detection, fuzz testing and exploit
generation. Measurements of various research outcomes are
analysed to answer questions about the performance of LLM
in those fields, including a comparison with tools following
traditional approaches. In addition, the drawbacks and a future
overlook with a delineation of technical challenges are given.
Challenges are found in the cost- and time-intensive training
of LLM, the limited context-length understanding of program
code, the high false positive rate because of hallucinations,
and keeping the data up-to-date so that definitions of newly
detected vulnerabilities are contained.

1 Introduction

Secure software development is an important topic, as vul-
nerabilities can impair applications and services, which have
become the foundational pillars of our daily life. Moreover,
many critical services are based on software-intensive infras-
tructure where confidentiality, integrity, and availability, i.e.,
CIA triad, are key requirements. Therefore, software security
is an omnipresent concern. In that regard, many security inci-
dents and breaches have been occurring, leading to damage
caused by vulnerabilities in software. One example is the Java
framework Apache Log4j, which was discovered to have a
vulnerability, allowing an attacker to execute a remote code
execution attack [21]. Some other examples are related to
insecure software development practices, like the discovered
vulnerabilities in Zoom [1] or malicious actors trying to in-
troduce backdoors in popular dependencies, with one recent
incident being the XZ backdoor [39].

Software development goes through different phases un-
til the finished product is established. On top of that, every
phase has different security aspects that need to be consid-
ered. Various methodologies provide a structured approach to
secure software development. For instance, the SecDevOps
lifecycle gives an overview of security topics that should be
checked during the development and the operation of soft-
ware [10]. Similarly, the Secure Software Development Life-
cycle (SSDLC) also targets security but with a focus on soft-
ware development [11]. Eventually, all these methodologies
and frameworks entail some common traits: Efficient and
diligent vulnerability detection and testing are crucial.

New methods and tools are researched and implemented to
help developers achieve secure software. One new approach
is using Large Language Models (LLMs). The focus of in-
terest for LLMs comes from its architecture, which was first
introduced in 2017 by Vaswani et al. [40]. The architecture,
consisting of an encoder and decoder, uses a so-called atten-
tion mechanism, allowing the LLM to focus on relevant input
sequences. As for training, enormous datasets are used, cov-
ering many different topics. The aim is to create foundation
models, which can be used in multifarious ways [3]. For ex-
ample, LLMs are already used in various ways, ranging from
medicine to education, and also in software engineering [19],
while software security represents a new research field.

In this paper, we provide a systemised description of LLM’s
role in software security, namely for security code review and
testing. We present a high-level introduction to LLMs, includ-
ing a technical description, a definition of the terminologies
used, and LLM training methods (Section 3). The focus relies
on secure implementation and security testing of software.
Firstly, we elaborate on automated static code vulnerability
detection in Section 4. It is an ideal entry point for a first
security check before merging the code with the codebase
in software development. Another technique for finding vul-
nerabilities is fuzz testing (Section 5). Here, we focus on the
creation and mutation of fuzzer input while also including the
generation of fuzz driver as a second subtopic. In Section 6,
we also want to show how these detected vulnerabilities can
be converted to exploitables by using an LLM as an auto-
mated exploit generator. Lastly, we discuss our findings per
our research questions, delineate the challenges of implement-
ing LLM approaches in this domain, and give an outlook on
what future developments could look like (Section 7).

Research questions - We build our systemisation of knowl-
edge for our scope around the following research questions
in this work:

@ What are practical use cases for LLMs in security
code review and testing, and how do they perform against
traditional tools?

9 What do current approaches look like?

@ What are the current challenges and what are the
prospects for LLMs in security code review and testing?
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Table 1: Overview of the related work used in this paper

Year | Work Key Points

Q| Topic

2023 | Cheshkov | Cheshkov et al. created a performance comparison using GPT models in code vulnerability detection by
etal. [8] categorising the vulnerability with a binary and multi-label classification approach.

LIMs: GPT-3.5 Turbo, Davinci

C,E | 2023 Fu et al. | Here, the whole lifecycle was considered. This includes tasks like vulnerability detection and its classifica-

[15] tion, a risk assessment and a proposal on how to mitigate the security risk.
LLMs: GPT-4, GPT-3.5 Turbo, CodeBERT, GraphCodeBERT, AIBugHunter
C 2024 | Guo et al. | Different LLM models with different training backgrounds were chosen to conduct a comparison in a binary
[18] classification task. Six LLMs are especially trained for vulnerability detection, while the other six LLMs

were only fine-tuned or taken as is without special training.

LLMs: GPT-4, CodeBERT, VulBert, CodeLlama, Mistral, Mixtral

C 2023 | Purba et | They compared different LLMs and traditional tools by using two different datasets to see whether the
al. [34] vulnerability is detected or not. The vulnerabilities were categorised by a binary classification approach.
LLMs: GPT-3.5 Turbo, Davinci, Codegen

C 2025 | Tamberg Tamberg and Bahsi analysed the use of LLMs in code vulnerability detection by testing different prompt
and Bahsi | strategies and comparing the results with the performance of traditional tools.

[37] LILMs: GPT-4 Turbo, GPT-4, Claude 3 Opus
C 2024 | Yin et al. | Yin et al. not only considered the vulnerability task, but they also researched how capable LLMs are when
[43] it comes to detection, risk assessment, location and reporting of the vulnerability.
LLMs: CodeBERT, CodeLlama, DeepSeek-Coder, StarCoder, CodeT5+, etc.
C 2024 | Yu et al. | Yuetal. applied five different prompts and evaluated which of them led to the best performance compared
[44] to traditional tools.
LLMs: GPT-4 Turbo, GPT-4, GPT-3.5, Gemini Pro, Llama 2
F 2024 | Black et | They analysed the effectiveness of LLM in seed generation in combination with the existing fuzzer Atheris,
al. [6] especially for the programming language Python.
LLMs: GPT-4, GPT-3.5, Gemini-1.0, Claude
F 2023 | Tamminga | Tamminga focused on an approach for using an LLM as a seed generator in combination with traditional
[38] fuzzers like AFL++ and libFuzzer. While focusing on the programming language Go, a priority was laid on

interoperability between different programming languages.

LLMs: GPT4, GPT-3.5 Turbo, CodeGen, StarCoderPlus, CodeT5+, etc.

F 2024 | Xia et al. | Xia et al. show a practical implementation for a mutation-based fuzzer, which is called Fuzz4All.
[42] LIMs: GPT-4, StarCoder

F 2024 | Zhang et | They created a tool, called LLAMAFUZZ, which can be used to enhance greybox fuzzing.

al. [48] LLMs: LLama 2

F 2024 | Zhang et | Zhang et al. are showing how an LLM can be used in fuzz driver creation.
al. [47] LLMs: GPT-4, GPT-3.5 Turbo, CodeLlama, Wizardcoder, text-bison
E 2024 | Fangetal. | The focus is on exploit generation for one-day vulnerabilities, using LLM:s.
[14] LLMs: GPT-4, GPT-3.5, Llama 2, Mistral, Mixtral, etc.
E 2023 | Zhang et | The topic is about exploit generation by using an LLM. It focuses on the use case of dependency vulnerability
al. [49] alerts and the diminishing of false positives. The result is then compared with traditional tools.
LLMs: GPT-4
E 2024 | Zhouetal. | Zhou et al. present a tool called Magneto, which uses fuzzing techniques to exploit unpatched vulnerabilities
[50] from third-party dependencies.
LLMs: GPT-4 Turbo, GPT-3 Turbo
o 2024 | Jiangetal. | Here, the challenges as well as recommendations are considered. They focused on fuzzing by conducting
[23] different research in this field.
LLMs: -
(0] 2023 | Kaddour | Kaddour et al. give a general overview of current challenges when applying LLMs in practical fields.

etal. [24] | LLMs: -
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2 Related work

To identify the related works as a manageable set, we followed
the following filtering steps to the wider set of papers collected
after a comprehensive search based on keywords like “LLM
in Code Vulnerability Detection”, “LLM Fuzzing” or “Exploit
Generation with LLM in Software Development” in academic
publishing venues such as ACM, IEEE, and Springer and
meta-search engines like Google Scholar:

¢ Identify which LLM is used. Prefer more recent LLMs
since they typically also demonstrate increased effi-
ciency. Hence, we only looked at papers from 2023 or
newer.

* Prefer implementations of prototypes or tools in the re-
spective field since the application and limitations of the
tools are more understandable.

¢ Check if performance comparisons by the creation of a
test harness, including a way to collate traditional tools
with LLMs, are employed.

In addition, survey papers were examined to gain an
overview of current works. The listed papers were also post-
filtered manually to avoid any duplication, misselection, and
quality issues. At the end, 17 papers were selected.

In Table 1, an outline of those surveyed papers is given. We
categorised them into four aforementioned categories, namely
“code vulnerability detection (C)”, “fuzz testing (F)”, “exploit
generation (E)” and “challenges and future outlook (O)”. The
final category was facilitated to provide a discussion on po-
tential future technical research and development directions.
We discuss the current approaches and summarise them to
give a broad view of different approaches. We also look at
the results and compare them with other papers. Please note
that our work is not an exhaustive literature survey paper
but a SoK paper presenting a concise and structured analysis
of a focused scope (LLMs for code vulnerability detection
and testing, including fuzzing and exploit generation). Fur-
thermore, we included the LLMs that the works used while
reducing the list to the more important ones and excluding
version-specific details. This approach allows the reader to
make a comparison over used LLMs in current research. Be-
sides the core papers in Table 1, additional auxiliary papers
were included to support the ideas or to give background in-
formation, e.g., LLM fundamentals, in our paper. Overall, we
use the papers listed in Table | to accomplish our goal of
answering the research questions in Section |.

3 Large Language Models (LLMs)

The task of a language model is to predict and generate
language. To do that, the likelihood of the next upcoming
word needs to be calculated [2]. To illustrate, if we consider

the sentence “I need an umbrella because it is ...” the next
best-guessed word could be “raining”. There are different ap-
proaches and concepts for constructing a language model [2].
In the beginning, statistical language models were used, which
are based on calculations made on text-containing datasets.
One implementation is the n-gram language model, which
predicts the next word based on the previous n-1 words [2,3].
After the introduction and the rise in popularity of neural
networks, the underlying technology in language models
changed. With a neural network, one could improve its param-
eters to get optimised outputs by applying training methods
using training datasets [2,3].

A step forward was achieved with the transformer archi-
tecture, which was introduced in 2017 by Vaswani et al. [40].
This architecture, which is based on a deep neural network,
enabled the creation of large language models (LLMs) [2].
The name affix “large” comes from the count of parameters
or the size of the used training dataset [17]. For example,
Llama 2 has 70 billion parameters and used 10 TB of text for
training, according to Karpathy [27]. The architecture builds
on a so-called attention mechanism, which uses weights to
distinguish the vital parts from the input [2]. It consists of an
encoder and decoder, but some approaches use only one of
the two parts [3]. The encoder processes the input and tries to
understand it by depicting it in a suitable format. The decoder,
on the other hand, is responsible for generating the result by
taking the encoder’s output as input [3].

In Figure 1, the LLM architecture as well as the training
steps before it can be used by a user are visualised. The initial
training of an LLM is called pre-training, and it is cost- and
time-intensive [27]. The reason relies on the training process
itself, which requires the gathering of a lot of information
and the calculation of the parameters. For example, Llama
4 Maverick [31] has a total of 400 billion parameters while
DeepSeek-V3 [12] has a total of 671 billion parameters. For
this reason, pre-trained, foundation LLMs are used as a base
and, if needed, only adjusted via fine-tuning [3].

The fine-tuning process starts with the gathering of labelled
datasets. This training data usually contains examples similar
to the data used for the classification task in production. In the
next step, labelled training data is used to fine-tune the model.
As aresult, an adjusted model is obtained. Fine-tuning is an
iterative process. As soon as the productive model is rolled
out, logs should be gathered to correct anomalies by applying
the described process again [27].

Another adjustment technique is prompt engineering. It
focuses on the input, which gets passed to the LLM. Vari-
ous patterns can be used so that the LLM generates output
within the boundaries given by the patterns. Sahoo et al. [35]
created a survey, describing common prompt patterns. Creat-
ing prompts without further refinements is called zero-shot
prompting. In few-shot prompting, we additionally include
some examples, intending to give the LLM a clearer instruc-
tion. A different approach is the so-called chain-of-thought
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Figure 1: Architecture of LLMs and training methods (adapted from [40])

prompting. Here we guide the LLM on how to calculate the
result, such that it shows its calculation steps. Auxiliary, many
other abbreviations exist using similar ideas [35].

4 Automated static code vulnerability detec-
tion

Code review is a technique used in software development,
where the code gets inspected by a coworker before it is
merged into the productive codebase [5]. There are different
reasons to conduct code reviews, some of which are shown in
the study of Bacchelli and Bird [5]. They concluded that the
motivation for doing code reviews is to increase the overall
code quality level of the codebase, find and eliminate bugs
to reduce the error ratio and for know-how transfer. In this
section, we will focus on security code review, which aims to
detect and find security flaws in software [13].

Although there are benefits in conducting code reviews,
they are not always carried out due to various factors. Ghan-
bari et al. [16] and Codegrip [9] have addressed the question
of why code reviews are neglected. Both came up with simi-
lar reasons. One reason was the increased workload and time
costs for carrying out a code review. A company might tend
to leave out code reviews to reach certain aims and to in-
crease the output. Another reason mentioned by both was
motivation. The software development team could simply
be disinterested in applying code reviews because of a lack
of interest, not understanding the benefits, or having a false
sense of risk [9, 16]. An additional reason given by Ghan-
bari et al. [16] was the technical complexity of the project
environment, leading sometimes to negligence in applying
code quality improvements. Bacchelli and Bird [5] supple-

ment the list by adding the understanding of code changes to
the challenges. In their interviews with software developers,
they found out that the major challenge lies in understanding
why the code change was made and what the influence of the
change on the functionality of the software is.

An additional aspect is the application of code reviews.
There are two types: manual and automatic code reviews [13].
Although most companies favour manual code reviews [9],
this is considered liable to errors, which is shown by the study
of Edmundson et al. [13]. They measured the effectiveness of
code vulnerability detection in manual security code reviews
by interviewing software developers. On average, a software
developer could find about a third of the known vulnerabili-
ties.

While this speaks in favour of using automated tools, just
27% of the surveyed companies in [9] are regularly using
an automated code review tool. The reason lies in the miss-
ing know-how for integrating such tools into their existing
workflow [9].

4.1 Automated security code review with LLM

As seen in the previous part, different hindrances prevent the
effective use of code reviews for code vulnerability mitigation.
Hence, new approaches are investigated to automate this pro-
cess by using general-purpose LLMs. The benefit comes from
the transformer architecture, which is trained on general data
and therefore makes the LLM suitable for different tasks, with
one of them being vulnerability detection in software [34].
Following, an example is shown by using ChatGPT-4 [32]
and a code example from OWASP [33]. The code example
contains a buffer overflow vulnerability. In such a case, the ap-
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Is there a software vulnerability? Answer only with yes or no, the
corresponding code line and the vulnerability type.
#include <stdio.h>
int main(int argc, char **argv) {
char buf[8];
gets(buf);
printf(*%s\n", buf);
return O;

}

@  Yes, gets(buf); - Buffer Overflow

Figure 2: Interaction with ChatGPT giving the task to detect
code vulnerabilities (adapted from [32-34])

plication’s memory is overwritten by exceeding the assigned
memory, thereby causing unpredictable behaviour in the appli-
cation [33]. The faulty line is the call to the method gets(),
which is considered unsafe in C since it does not check the
size of the buffer.

The task of the LLM is to notice the vulnerable code snip-
pet. Including the code with a corresponding question to the
prompt (similar to the research from Purba et al. [34]) leads
to ChatGTP [32] detecting the vulnerability, pointing to the
vulnerable code line and explaining why the code is viewed
as unsafe. The input and output can be seen in Figure 2.

4.1.1 Adapting LLMs for code vulnerability detection

In the research of Purba et al. [34], they compared different
LLMs and applied vulnerable code to measure how effec-
tive LLMs are in noticing code vulnerabilities. Furthermore,
they compared base models and fine-tuned models. The latter
were trained with labelled data containing vulnerable and se-
cure code examples. As for the validation dataset, they used
code examples containing buffer overflow and SQL injection
vulnerabilities [34].

Similar to Purba et al. [34], Guo et al. [18] tested the
capability of LLMs in the binary classification task with a
similar prompt. As a difference, they compared the perfor-
mance of differently trained LLMs. They included general-
purpose LLMs, self-fine-tuned LLMs and open-source LL.Ms
that were already trained for code vulnerability detection
tasks [18].

Cheshkov et al. [8] also evaluated how well GPT models
perform in vulnerability detection. Like the previous two ap-
proaches [18,34], they performed a binary classification but
also added a performance measurement for a multi-label clas-
sifier. The multi-label classification was done by providing
five different CWE vulnerability types and designing a prompt
asking the GPT model which of those five vulnerabilities are
included in the provided code snippet [8].

Another technique that can influence the results of an LLM
is prompt engineering. Thus, Yu et al. [44] designed five dif-
ferent prompts and tested their effectiveness. They included

an instruction and modified the prompt by adding or remov-
ing additional information, like project information or CWE
descriptions and using techniques like chain of thought. Tam-
berg and Bahsi [37] also followed the approach of testing
different prompt engineering approaches by applying 23 dif-
ferent prompts found in related works.

Yin et al. [43] not only discussed whether LLMs can de-
tect vulnerabilities, but they also investigated whether LLMs
are capable of finding the specific affected code location, dis-
closing why it is seen as a vulnerability and estimating the
risk coming from the discovered vulnerabilities. They tested
the performance of different base and fine-tuned LLMs by
using public datasets. As for prompt engineering, a few-shot
approach was chosen. The prompt contains a task description
similar to the descriptions already seen, the code under test,
and an indicator defining one of the four mentioned tasks [43].

Fu et al. [15] took this approach further and included the
whole lifecycle in their research. They measured the capability
of GPT models to detect vulnerabilities, but also to classify
them. Moreover, the GPT models were tasked with evaluating
the severity of the detected vulnerability and proposing a
mitigation [15].

4.1.2 Results

In the results of Purba et al. [34], Davinci, with fine-tuning,
achieved the best score across all models considered. Never-
theless, it had an F1 score of 73.2% with a recall of 94% and
a precision score of 60%, indicating that there is a high false
positive rate (FPR). Similarly, all of the compared LLM mod-
els suffered from a high FPR. In contrast, the false negative
rate (FNR) of the Davinci model was low at 6%. In the work
from Cheshkov et al. [8], the binary classifier also reached a
high FPR, while the multi-label classifier led to a lower F1
score and a lower precision and recall score.

Guo et al. [18] made the finding that the performance de-
pends on the training dataset, with only a limited capability
to generalise it. Fine-tuning, on the other hand, can be used to
adapt smaller LLMs to certain tasks, leading to better perfor-
mance than larger LLMs in those tasks. However, a problem
encountered during training, which could also affect the re-
sults of other research, was the inaccuracy of the dataset [18].

As for the prompt, Yu et al. [44] observed that the prompt
with an instruction and containing specific information about
the CWEs performed the best. Tamberg and Bahsi [37], who
also made a prompt-based approach, concluded that different
models react differently to the prompt. For GPT-4 Turbo, the
best performance could be reached with a dataflow analysis
prompt. This prompt includes a task description, which de-
mands an analysis of the data flow within the provided source
code and a template on how to answer. After receiving the
answer, a second and a third prompt were added, in which the
LLM is asked to review and improve its answer. For GPT-4
and Claude 3 Opus, the best performance was reached with
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a chain of thought prompt. Here, the process on how to ap-
proach the problem step by step was described, so that the
LLM can follow this manual [37].

Yin et al. [43] concluded that there is potential for LLMs in
the covered tasks, but they need further improvements. In the
analysis from Fu et al. [15], they concluded that base models
of ChatGPT are not suitable for use in all four observed tasks
because of their poor performance.

4.1.3 Comparison with traditional tools

Contrary to LLM, Purba et al. [34] and Tamberg and Bahsi
[37] included an overview of the performance of traditional
tools executing static code analysis. The traditional tools work
by using syntactic and semantic checks [29]. For example, a
rule set for a syntactic check could contain a set of different
vulnerable functions, such as the mentioned gets() function
in Figure 2 [29]. To detect intricate vulnerabilities, semantic
checks are necessary. Here, the code base gets transformed to
an enhanced control flow representation, allowing for a more
sophisticated vulnerability detection approach [29].

In the research of Purba et al. [34], the tool Checkmarx'
performed the best among the traditional tools with an F1
score of 47.3%. In comparison to LLMs, Checkmarx keeps
a lower FPR rate at 43.1%. However, the drawback of such
tools is the high false negative rate (FNR), which in the case
of Checkmarx was at 41.1% [34].

Tamberg and Bahsi [37] came to a similar conclusion re-
garding the false positive rate. However, their model reached
a higher precision with a lower recall compared to the Davinci
model from Purba et al. [34]. One explanation for this out-
come could be the overall performance gain with newer mod-
els since [37] was published in 2025 using GPT-4 while [34]
was published in 2023 using GPT-3.5-Turbo. However, the
reason could also rely on the usage of different prompts, fine-
tuning strategies or the dataset used for the benchmarking.
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Figure 3: Performance comparison of different code vulnera-
bility detection tools (adapted from [34,37])

S Fuzz Testing

Fuzz testing describes the method of using randomised in-
put to test how a function reacts, intending to detect code

!Checkmarx: https://checkmarx.com/

flaws and potential vulnerabilities [45]. While it is consid-
ered effective in discovering software vulnerabilities, different
hindrances prevent this technique’s use in the industry [28].

Firstly, the complexity of the environment setup needs to
be considered. Fuzzers have different requirements before
they can be applied. Since an existing environment uses vari-
ous technologies, including operating systems, programming
languages and external libraries, it is difficult to adapt it to a
fuzzer [28].

Secondly, fuzz driver implementation is challenging. A
fuzz driver describes the link between the test function and
the API. Thus, software developers need to know how the
software works in technical and functional detail so that they
can write test cases ensuring the security of the provided
code [46].

For these reasons, research is done to automate the process.
LLMs are also considered since, with their general-purpose
implementation, they can adapt better to existing setups. This
section focuses on using LLMs in fuzz testing, and it discusses
the potential of LLMs in this field.

5.1 Input generation with LLM fuzzers

A fuzzer can be viewed as a generator which generates random
inputs. This input is later used to feed the function under
test. The aim is to check whether the input is causing the
function to behave unexpectedly. With an early discovery of
such behaviour, bugs and security vulnerabilities can be fixed.
Different degrees of fuzzers exist [45]:

* Standard fuzzers: A standard fuzzer creates random input
without prior knowledge of how the function works. A
drawback is that most of the randomly generated input
will be invalid and discarded by the function under test.

* Mutation-based fuzzers: An enhanced method is to use
a (partial) valid input, called seed, and to mutate it by
adding, removing or changing input parts. This is done
to achieve a more valid input, which passes initial input
checks in the function under test.

* Greybox fuzzers: Code coverage describes the parts of
the code which were executed by the calling function. A
fuzzer, which has access to this information, can steer
the input to trigger new processes within the function,
intending to enhance the code coverage. This ensures
that most of the function is executed and hence tested.
Fuzzers which have underlying information of the sys-
tem under test are called greybox fuzzers.

5.1.1 Seed generation with LLM

Seed generation is fundamental for fuzzers, since it represents
the basis of the inputs. It is challenging because it requires
knowledge of the underlying functions, the technologies used,
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Fuzzing with seeds generated by prompt-tuned models _39%—‘ 64%
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Figure 4: Comparison of libFuzzer with different seed generation approaches (adapted from [38])

and the specifications of the software [6]. In addition, the use
of existing solutions may be impractical if the used tech stack
is not compatible [28]. Because of the discussed obstacles, au-
tomated tools are preferred. Such automated tools are covered
in the work of Tamminga [38] and Black et al. [6].

Tamminga [38] investigated if an LLM can be modified
to use it as a seed generator for the existing fuzzer libFuzzer
and on the programming language Go, but with the aim to
be independent of the used tech stack. As a basis, pre-trained
LLMs were used and compared against each other. Further-
more, the LLMs were fine- or prompt-tuned with a focus on
seed generation. This process was done with a self-created
dataset [38].

Black et al. [6] focused their seed generator for the Arthe-
sis” fuzzer, which is a fuzzer for the programming language
Python. As for the prompt, a task description, the function
under test, and a description of the expected output were in-
cluded. To test the effectiveness of seed generation with LLM,
they created a testing pipeline that allows the generated seeds
to be passed to the function under test [6].

To measure the performance, Tamminga [38] created an
evaluation method based on the core idea of the benchmarking
process Magma, which was developed by Hazimeh et al. [20].
The benchmark includes measurements about the count of
detected bugs and the time within which they were discovered
[20,38]. Ultimately, StarCoderPlus with prompt engineering
could detect 39% of the crashes within 30 seconds, while
64% were triggered within 10 minutes [38]. In comparison,
libFuzzer without any seed generation only reached 23% in
30 seconds, but also 64% in 10 minutes [38]. A performance
summary, based on the measurement from Tamminga [38] is
in Figure 4 visualised.

Black et al. [6] used the reached coverage as a performance
measurement. As for the tests, they had three different ap-
proaches. The first approach uses only the fuzzer. In the sec-
ond approach, a combination of fuzzer and LLM is used, and
in the last approach, only the LLM is used. While there was no
clear winner, the combination of fuzzer and LLM performed
the best in most of the test cases, while for the other test cases,
fuzzing alone or LLM alone were better [6].

Zhttps://github.com/google/atheris

5.1.2 Mutation-based fuzzer with LLM

Fuzz4 All, developed by Xia et al. [42], goes one step further
and takes mutation generation into account. It implements
a fuzzer, which is independent of the used tech stack and
can be used for a wide range of programming languages. To
get fuzzing inputs, the user has to provide information for
Fuzz4All. This can include documentation, manuals or the
application code. The input is then applied to the autoprompt-
ing step. Since this information is written in natural language,
while the expected output should be code, Fuzz4All uses two
LLM models; one is used for the distillation phase, while the
other is used for the generation phase.

In the distillation phase, the LLM attempts to understand
and bundle the provided user information and to represent it
as candidate prompts containing only the relevant information.
Those candidate prompts are then passed to the generation
phase, in which another LLM tries to generate fuzzing inputs.
Afterwards, the candidates are evaluated against the function
under test by executing a fuzzing test. The evaluation calcu-
lates a score based on criteria like code coverage, triggered
crashes or, like in the example of Xia et al. [42], the validity
of the input. The candidate prompt with the highest score is
then used as the initial prompt.

The next step in Fuzz4All is the fuzzing loop. It is an
iterative process for generating fuzzing inputs. Some sub-
steps are thereby similar to those of the autoprompting step.
Firstly, the initial input prompt is applied to the generation
LLM, which generates fuzzing inputs. Secondly, the fuzzing
input is applied to the function under test to check the validity
of the fuzzing input and, ultimately, to trigger bugs. Now,
we have code snippets that are applicable as fuzzing inputs.
Since we want to gain as many different inputs as possible,
a mutation step is applied. It mutates the code snippet based
on a randomly chosen strategy to enable the LLM to generate
different fuzzing inputs. There are three mutation strategies.
Either the code snippets are mutated, semantically changed or
completely newly generated. Lastly, the output is used again
as input for the LLM generation. This process is applied
iteratively until a stop criterion is met [42].

This structure has different advantages. Firstly, since two
LLMs are in use, we can choose them according to their
capabilities. For the distillation phase, an LLM with a good
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understanding of natural language should be chosen. The
second LLM used in the generation phase should be trained
for code generation. Secondly, time efficiency can be achieved
since smaller LLM models can be used because the LLMs
need only to focus on specific tasks [42].

Compared to traditional fuzzers, this approach generates
fewer valid inputs, but it achieves a higher coverage in less
time. Figure 5 shows the comparison of Fuzz4All with tradi-
tional tools based on the measurement from Xia et al. [42].

mValidity BCoverage
+18.8%
100.00% 95.96% 198927
167453
57.22% - 817%
-58.7% 49.05%
-76.98% 3726% o
23 02% 38024 43317 +60.9%
[‘] 10285 16552
[ |
N = o = » = N = o = @ =
§ 5r 3 5r 2 3 § 5r 3 3 2 3
N g N % M 2 N M
N S N 3 N N S N . N
O =1 =] 2 = O = = 2 =
o] [ [ £ [ 5] [ [ s [
) 5
k3 I
Go Gee Javac Go Gee Javac

Figure 5: Validity and coverage comparison between
Fuzz4 All and traditional tools (adapted from [42])

5.1.3 Greybox fuzzing with LLM

Zhang et al. [48] implemented a tool called LLAMAFUZZ,
which is used to enhance greybox fuzzing. As the name indi-
cates, the used LLM is Llama 2. In greybox fuzzing, the tool
gets some more information about the system. This can, for
example, be the coverage reached while fuzzing. With this
information, a fuzzer can then improve the generated input
by trying to get a higher coverage [48].

The LLM is connected with the fuzzer, which in this case
is AFL++ °. While the LLM is used for input generation and
mutation, the fuzzer has the task to execute the generated
input in the function under test, to monitor the execution and
to pass the result back to the LLM [48].

LLAMAFUZZ could outperform traditional tools by reach-
ing a higher code coverage and achieving a higher bug count.
Overall, it increased the code coverage by 27.2% in compar-
ison to AFL++ without LLM enhancement and detected 41
bugs more on average [48].

5.2 Fuzz Driver Generation

A fuzz driver describes the link between the system under test
and the fuzzer by providing an API. This is a laborious task
since they are typically written manually by software devel-
opers [46]. Additionally, the API needs to be as precise as
possible since mistakes in the implementation could increase
the falsification of the result for the system under test [47].

3https://aflplus.plus/

Zhang et al. [47] considered different approaches for
prompt engineering an LLM to gain a fuzz driver generator.
The best-performing strategy they found is iterative prompt
processing. The strategy consists of a generation and several
fix prompts. As seen in Figure 6, the prompt consists of a
task description for the LLM model, a code documentation
and a code snippet of the API. ChatGPT gives, in this case,
a proposal of how implementing the function “FuzzerTest”
could look. The output can also be seen in Figure 6. After-
wards, one or more fix prompts are applied on cases where
the produced LLM output has compilation errors [47].

// The following is a fuzz driver written in C language,

// complete the implementation. Output the continued code
//in reply only.

#include "example/array.h"

7
* @brief: Gets the element at the given index.
* @param: index of the element

*/

extern int getArrayNumber(size_t index)

// the following function fuzzes getArrayNumber
int FuzzerTest(const uint8_t *Data, size_t Size)

(P Code kopieren

if (Size < sizeof(size_t)) {
return 8;

¥

size_t index;

memcpy (&index, Data, sizeof(size_t));

int result = getArrayNumber(index);

return 0;

Figure 6: Generation prompt and output from ChatGPT
(adapted from [32,47])

During the investigation of fuzz driver generation with
LLMs, Zhang et al. [47] discovered that the performance
depends on the complexity of the API. An LLM needs to
be able to forecast how an API works based on the given
questions and inputs from the user. Therefore, a conclusion
can be drawn that when the complexity of the system under
test rises, the performance of the LLM decreases. The best
performance was reached by GPT-4, which could answer 78
out of 86 questions in the right configuration [47].

LLM-aided fuzzing is already used in practice. In 2023,
Google [30] added LLM to their OSS-Fuzz project. It is used
to automate vulnerability detection, mainly in open-source
software. While doing so, they found that, in some cases, the
code coverage was improved. In one case, they increased the
code coverage by over 30%. To reach the same level for all
OSS-Fuzz projects, they stated that “several years” of manual
adaptation would have been necessary [30].
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6 Exploit Generation for Software Testing with
LLM

As discussed in Section 4, LLM suffers from a high FPR.
But traditional approaches also have false positives [44]. This
causes software developers to question the results of auto-
mated vulnerability detectors. Therefore, showing if and how
a vulnerability is exploitable is essential [49]. One example
is a dependency vulnerability detector. When it reports a vul-
nerability in one of the used libraries, it does not necessarily
mean it is exploitable in the application. A way of showing
the exploitability of a vulnerability is to write an exploit [49].

6.1 Research approaches

In the research of Zhang et al. [49], ChatGPT-4 was used to
generate security tests, which could then be used to test the
exploitability of the vulnerable dependency. The following
parameters were included in the prompt [49]: Task description,
Function name, Vulnerability ID, Vulnerable API list, Test
function name incl. an exemplar test implementation, and
client code implementation. When the LLM output contained
compilation errors, a manual process was applied to correct
the output.

Fuzzing, which we discussed in Section 5, was used by
Zhou et al. [50] in their tool called Magneto. It aims to exploit
vulnerabilities in complex environments. In a first step, infor-
mation about the vulnerability itself is collected, including the
affected version and the functions, as well as an exploit and
its oracle. This information is then compared with the depen-
dency tree of the software project, and only the dependencies
matching the vulnerability description are kept. Afterwards,
Magneto tries to understand the underlying architecture of
the software by depicting the call chains of the software un-
der test. Based on the gathered information, Magneto tries to
exploit the vulnerability. For this, Magneto needs to find an
input so that it can be passed to the function on top of the call
chain while also remaining a capable input to trigger the vul-
nerability on the dependency under test. Its approach is done
incremental, by trying out different seeds, which are created
by an LLM. Eventually, it will maybe find an exploit [50].

Fang et al. [14] analysed the efficiency of LLM in exploit
generation for one-day vulnerabilities. To do this, they used
different LLMs and leveraged them for exploit generation.
The LLMs were provided with different resources, such as a
web browser, a terminal, and the ability to use a code inter-
preter and to create or modify files [14].

As already discussed in Section 4, Fu et al. [15] had a look
at a variety of tasks in the software vulnerability spectrum.
Here, we want to take a glance at the automated severity
estimation and mitigation of vulnerabilities with LLM. For the
severity estimation prompt, Fu et al. [15] proposed to include
a description of what the LLM has to do and to include the
vulnerable function. For the mitigation prompt, they included

several generic examples of vulnerable functions and their
repair methods with a task description, which is similar to a
few-shot prompting approach [15].

6.2 Performance comparison

Zhang et al. [49] tested the GPT model on 55 apps contain-
ing vulnerabilities. As a result, in 24 cases, the vulnerability
could be successfully exploited. In addition, a comparison
was made with the traditional tools SIEGE [22] and TRANS-
FER [26]. While TRANSFER [26] achieved writing four
exploits, SIEGE [22] could not generate one. This leads to
ChatGPT outperforming both tools [49]. Magneto, created by
Zhou et al. [50], was at least 75.6% more successful in creat-
ing an exploit compared to traditional tools like SIEGE [22],
TRANSFER [26] and VESTA [7].

Fang et al. [14] tested their prompt-engineered GPT-4
model against the traditional tools ZAP * and Metasploit ~.
In the end, they found out that the traditional tools, as well
as the other considered models, were not able to generate
exploits. Only their GPT-4 model could create exploits, but
with a success rate of 87%. To perform that well, the inclusion
of the CVE description in the prompt was mandatory [14].

For the severity estimation and mitigation task, Fu et al.
[15] came to a sobering result since the model was not able
to sufficiently estimate the severity or propose mitigations.

7 LLM Challenges and Future Outlook

In this section, we delineate our key takeaways through the
lens of the gathered information from the listed papers in
Section 2 and discuss the challenges and possible future ap-
proaches. The challenges were identified by mapping the
mentioned challenges from the discussed papers while also
considering the general difficulties of LLMs.

7.1 High False-Positive Rate (FPR)

A problem encountered in the discussed topics was the high
FPR [8, 23, 34, 37] and the low accuracy [15], which was
discovered by various researchers.

The recommendation from Cheshkov et al. [8] is to invest
further research in prompt engineering. Having a more en-
hanced prompt, like chain-of-thought, could lead to better
performance in the LLM for code vulnerability detection [8].
Jiang et al. [23] propose an iterative process in which the
output of the LLM is checked for errors.

An explanation can also be found in hallucination. Hallu-
cination describes the effect of an LLM that writes factually
incorrect outputs. A reason for this behaviour could be a lack
of knowledge because of missing, biased, or untrue training

“https://www.zaproxy.org/
Shttps://www.metasploit.com/
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data in the pre-training process [25]. To mitigate some of the
named reasons, a common technique is retrieval augmented
generation (RAG), which aims to include external knowledge
sources [4]. We describe this technique in more detail in
Section 7.2.

Decoding strategies can also be a culprit for hallucination.
They are often used to introduce randomness in favour of
producing more natural-sounding language. Therefore, new
decoding strategies are designed to diminish hallucinations.
Two examples are uncertainty-aware beam search and confi-
dent decoding [24].

7.2 Outdated data

Another challenge encountered in training is keeping the infor-
mation up to date. Some research from the field of code vulner-
ability detection [8, 15,43,44] and exploit generation [14,50],
handled with CWE and CVE definitions. While they used
mostly already known CWEs and CVEs covering general
vulnerability topics, it is important that the information basis
of an LLM is up-to-date to also understand new vulnerability
definitions.

There are different new approaches used in updating the
information of a model. The simplest is to enhance the prompt
by including missing information directly into the prompt.
This is shown by Fang et al. [14], where they had to include
the CVE description to gain a well-performing model.

A new approach facing this challenge is RAG. It enables the
LLM to access external knowledge which is not included in
the training dataset. In this case, an LLM has reference points
to gather additional information, which can, for example, be
websites, but also databases or other data storage. Those refer-
ence points are then considered when a corresponding prompt
is placed asking for specific information [4].

Model editing can also be used for this challenge. It tries
to identify the incorrect information base of an LLM and to
modify it correspondingly [24].

7.3 LLM Training

Pre-training an LLM is cost- and time-intensive [24]. This
limits the capability of researchers to create LLMs specifically
designed for the purposes we discussed in this paper.

To reduce computational power requirements, efforts are
made to understand so-called scaling laws. Concretely, in the
context of LLM, the interplay between the model size, data
size and computational power is analysed. A modification
in one of the three resources could lead to a proportional
alteration in a different resource [41].

A common technique used today to bypass pre-training is
to take a pre-trained model and to fine-tune it. This allows for
better performance in specific tasks compared to larger models
[18]. However, it comes with its challenges. One of them is
finding correctly labelled datasets. Guo et al. [18] found out
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that the dataset used for fine-tuning can affect the performance
of the LLM. However, they found that the labelling of the
dataset is not always correct, leading to wrong training of the
LLM.

Another technique is to apply different prompt strategies
as discussed in various works throughout this paper. The
benefit comes from the relatively easy application since no
modification to the model itself has to be made. However,
while there exist some guidelines and strategies, like those
from Sahoo et al. [35], it is difficult to determine what prompt
leads to better results [24], making it a trial-and-error process.

Another one is the requirements for the setup, which are
similar to the ones for pre-training. To fine-tune a model, it
must be downloaded, installed and executed [24]. Parameter-
efficient fine-tuning (PEFT) is a new way to train the LLM
for a specific task. The fundamental concept is to solidify
the neural network layers of the LLM and to add a layer at
the final layer. During training, only the parameters of the
additional layer are modified [36].

7.4 Limited Context Length Understanding

The applications of the discussed areas in this paper require a
deeper contextual understanding to perform well. As a data
basis, software code is provided, which includes different
information like the architecture, program logic and docu-
mentation. An LLM has the requirement to understand the
system under test and to perform the described tasks on it.
However, LLMs have a limitation in understanding contexts,
leading to missing essential parts [24]. A further effect can be
seen in fuzzing, since the limited context length understand-
ing also affects the variation of the created input, leading to
the generation of similar input [23].

There are different ways to tackle this type of challenge,
which may be applied in the future. According to Kaddour et
al. [24], current research focuses on implementing efficient
attention mechanisms capable of understanding the wider
context. Other research is focusing on length generalisation
with the aim that an LLM can be trained on short inputs but
that it can generalise to understand longer inputs. Kaddour
et al. [24] also discussed using alternatives to transformers.
Architectures like state space models (SSMs) or receptance
weighted key value (RWKYV) are designed for understanding
longer context.

8 Discussion

In this section, we summarise the key takeaways based on the
analysis of the related works and make the connection to the
research questions.

RQ1: What are practical use cases for LLMs in security
code review and testing, and how do they perform against
traditional tools? In Table 2, an overview of the key take-
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Table 2: Key takeaways per topic

LLM suffers from a high false positive rate (FPR). This limits the capability of LLM in use cases like code vulnerability
detection, since a low FPR is preferred to reduce the overhead for the software developer. On the other side, traditional
tools are also fighting against FPR and false negative rate (FNR). However, they focus on the true positives, so that software
developers can focus on them. While traditional tools had an overall better performance, the idea of using LLM remains
interesting since its advantage is the general-purpose design. In comparison, traditional solutions have specific requirements

Using LLM as a fuzzer has advantages. On the one hand, it is less time-consuming and can find coverage-increasing seeds
faster than its traditional counterparts. On the other hand, it can be used independently of the technology environment, while
traditional tools have mostly binding requirements. In addition, LLMs can also be used in mutation-based and greybox
fuzzing when using corresponding architectures. Nevertheless, there are different challenges that need to be considered,

LLM:s also have their applicability as fuzz drivers. Especially in autonomous applications like automatically generating
fuzz drivers for a wide range of open-source projects. There are also already existing implementations found, which are
used in practice. However, same as in the fuzz testing, the LLM reaches its limit as soon as the complexity of the API rises

According to the found papers in this area, exploit generation has potential. It is also an important research topic, since it
can be used in other areas to diminish false positives, but further investigations have to be made. In comparison to traditional
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aways per topic is provided. The general outcome of these
takeaways is that the performance of LLMs still needs to be
evaluated and scrutinised in a comprehensive set of circum-
stances and use cases for their utility to be properly quantified.
There are various challenges, as noted in the previous part.

RQ2: What do current approaches look like? We included
a range of papers having different approaches for the same
aim. To sum up, prompt engineering and fine-tuning are the
most important techniques, since they allow guiding the LLM
with reasonable effort. Other researchers propose enhanced
architectures ensembling different LLMs for different tasks,
as well as including numerous prompts in an iterative process.

RQ3: What are the current challenges and what are the
prospects for LLMs in security code review and testing?
Pitfalls can be found in general LLM challenges like high
FPR, training, outdated data, and limited context length un-
derstanding. While all topics suffer from those challenges,
they are not affected equally.

For the code vulnerability detection task, the high FPR is
the main challenge. A high FPR in this topic makes an LLM
unusable, since software developers would need to check
more possible threats. In Fuzzing, FPRs can be mitigated
with enhanced controls, like applying software tests. How-
ever, here, the limited context length makes it difficult for the
LLM to understand complex and extensive software. Exploit
generation on the other hand, lives from data actuality, since
it needs to know the information about new vulnerabilities.

Research is done to counteract those challenges. Such new
approaches are retrieval augmented generation (RAG), dataset
sanitisation, model editing, parameter-efficient fine-tuning
(PEFT) or / and architectural changes.
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9 Conclusion

Practical implementation areas for an LLM in software secu-
rity can be found in code vulnerability detection using a static
code analysis approach, fuzz testing, and exploit generation.
The performance varies between different disciplines. In code
vulnerability detection, the LLM suffers from a high false
positive rate, making it impractical to use. In the other two
fields, LLM could outperform traditional tools based on the
considered measurements.

Nevertheless, there are different challenges faced when
implementing LL.Ms in this field. Some of them are hallu-
cination, training costs, data actuality, and the limited con-
text length understanding. Prospective research could include
futuristic approaches like retrieval-augmented generation,
parameter-efficient fine-tuning, model editing, or architectural
changes. Further research can be made in understanding the
impact of prompt- and fine-tuning on those tasks.
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