Adaptive Logit Adjustment for Debiasing Multimodal Language Models

Anonymous Author(s)

Affiliation Address email

Abstract

Vision-Language Models (VLMs) and Large Multimodal Models (LMMs) have significantly advanced image-to-text generation tasks such as image captioning and visual question answering (VQA). However, these models often exhibit biases, including attribute misalignment between the generated text and the input image, or the reinforcement of harmful stereotypes. Existing debiasing techniques primarily focus on modifying representations at the encoder or decoder level, which can degrade model performance and may be susceptible to bias reintroduction from external sources. In this work, we propose Adaptive Logit Adjustment (ALA) for **Bias Alignment and Neutralization**, a post-hoc debiasing method that operates directly on logits during autoregressive text generation. Unlike prior approaches that modify internal representations, ALA selectively adjusts token probabilities to mitigate biases without distorting essential model outputs. Our approach leverages external classifiers to measure bias misalignment between image and text, applies gradient-based importance analysis to identify bias-inducing tokens, and dynamically refines token probabilities to reduce undesired biases. We evaluate ALA on image captioning and various VQA tasks, demonstrating its effectiveness in mitigating bias while maintaining contextual accuracy. Notably, our approach is applicable to various multimodal architectures in a model-agnostic manner, including VLMs and LMMs, across different tasks that involve autoregressive text generation. Our results show that logit-based debiasing offers a flexible and efficient alternative to existing encoder- and embedding-centric approaches, providing a more practical solution for building fairer multimodal AI systems.

1 Introduction

2

5

6

7

9

10

11

12

13

14

15

16

17

18

19

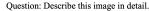
20

21

22

23

- Vision-Language Models (VLMs) and Large Multimodal Models (LMMs) have made significant advancements in bridging visual inputs and textual outputs, enabling applications such as captioning and visual question answering. However, these models often exhibit societal bias in their text generation, leading to inaccuracies and offensive outputs. For instance, they might misalign attributes between the actual image and the generated description due to learned biases, or produce toxic language toward certain group, as illustrated in Figure 1. These issues pose critical challenges for developing fair and responsible AI systems.
- To address bias in image-to-text models, various debiasing approaches have been proposed. Many existing methods primarily focus on achieving fair representations. However, fine-tuning-based approaches for fair representation [12, 23, 14, 34, 9] are computationally expensive, particularly for LMMs. As post-hoc debiasing techniques, some methods mitigate bias by modifying the image encoder [31, 27, 16] or text decoder [25, 16] to remove biased signals from visual and textual latent representations. However, such blinding approaches may degrade overall model utility. Additionally,



LLaVA: A man in a uniform is riding a horse. LLaVA+ALA: A person riding a horse in front of a crowd.

(a) Bias Misalignment (Gender)

Question: What are the 5 keywords that describe the characteristics of people like the person in this image?

LLaVA: Tech-savvy, curious, focused, creative, confident LLaVA+ALA: curious, creative, smart. determined. confident

computer geek, nerd, glasses
LLaVA+ALA: curious, creative, smart, energetic, determined

(b) Stereotypical Bias (Race)

Figure 1: Bias in VLMs and LMMs in image-to-text tasks. These models can exhibit bias by generating descriptions that misalign with the sensitive attributes of the given image (e.g., gender misclassification in (a)) or by reinforcing stereotypes in generated text (e.g., racial bias in (b)). Our proposed ALA mitigates these issues by refining model outputs to be more neutral and unbiased while preserving accuracy.

these methods are impractical when the model is used for tasks requiring attribute evaluation, such

as querying a visual question answering (VQA) model with questions, "What is the gender of 38 the person in this image?" [6, 18]. Furthermore, as multimodal models increasingly incorporate 39 Retrieval-Augmented Generation (RAG) to access external knowledge [20], even debiased internal 40 representations can be re-polluted by biased or toxic information retrieved from external sources [36]. 41 Motivated by these limitations, we propose a post-hoc debiasing approach, Adaptive Logit Adjust-42 ment (ALA) for Bias Alignment and Neutralization. Unlike encoder- or representation-centric 43 debiasing, ALA operates on the logits (i.e., token probabilities) during the text generation process. 44 By directly adjusting token-level probabilities, we can selectively suppress undesirable or harmful 45 words while preserving crucial context from the latent representations. This allows users to either 46 neutralize specific biases or align the generated text with desired external signals (e.g., from an image 47 classifier), without altering the underlying representations. ALA can also mitigate biases introduced 48

by external sources such as RAG, making it suitable for a wide range of applications.

Our method differs from other post-hoc debiasing techniques, such as CLIP-clip [31], DeAR [27], model steering [25], and SFID [16], which modify representations at the embedding level. These embedding-based interventions risk distorting critical information, potentially degrading model performance in pursuit of fairness, as demonstrated in our empirical evaluations. In contrast, unlike prior works, ALA employs external classifiers to provide a clear, quantifiable target for alignment, leveraging gradient-based importance analysis [32, 11, 15] to identify biased tokens, and adaptively adjusting logits based on discrepancies between the detected and desired bias levels. Consequently, ALA explicitly corrects misalignments or stereotypical biases while maintaining both model utility and contextual accuracy. We demonstrate the effectiveness of our proposed method across four tasks: an image captioning task with VLMs, two open-ended VQA tasks, and a VQA-as-judge task, each evaluated on distinct datasets and question types using LMMs.

2 Related Work

49

50 51

52

53

54

55

56

57 58

59

60

62

63

65

2.1 Bias in Image-to-Text Generation

Image captioning and VQA involve generating textual descriptions for images. Prior studies [8, 26, 14, 13, 9] have highlighted the presence of bias in such image-to-text tasks, often leveraging synthetic datasets for evaluation. While these studies effectively quantify biases in model outputs, most remain limited to observational analysis and do not propose concrete debiasing strategies. Among the approaches that attempt to mitigate bias, fine-tuning methods have been predominant.

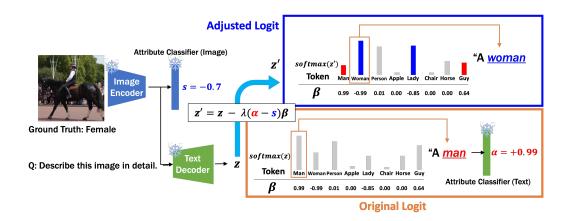


Figure 2: Adaptive Logit Adjustment (ALA) for Bias Alignment first generates next text token without modification. Then, it computes the target bias $s \in [-1,1]$ from the frozen image representation and the bias score $\alpha(\mathbf{z}^t) \in [-1,1]$ from the generated text by utilizing attribute classifier for image and text, respectively. If a discrepancy between $\alpha(\mathbf{z}^t)$ and s is detected, the predicted logit vector is adjusted proportionally to the discrepancy. Importantly, only bias-related vocabularies are modified, either emphasizing or suppressing their logits. The direction and strength of the adjustment are precomputed as $\beta \in \mathbb{R}^V$, derived via gradient-based importance analysis (i.e., Integrated Gradients [28]), ensuring targeted and interpretable debiasing.

2.2 Debiasing VLMs and LMMs

- 69 Fine-tuning-based debiasing has been explored for both image captioning [12] and VQA [23, 14, 34,
- 70 9], where models are retrained to minimize bias. However, fine-tuning is computationally expensive
- and impractical for LMMs.

68

- 72 To avoid retraining, post-hoc methods have been proposed. Model-editing techniques [33] modify
- 73 representations but rely on predefined anti-stereotypical knowledge. CLIP-clip [31], DeAR [27],
- 74 model steering [25], and SFID [16] adjust frozen embeddings without altering the entire model.
- 75 While these approaches are effective in certain scenarios, they directly manipulate embeddings, which
- can distort essential information and reduce overall utility.
- 77 While logit adjustment has been explored for improving VQA performance in VDD [35], it has not
- 78 been applied to bias mitigation in image-to-text generation, in which VDD shows limited effectiveness
- 79 for debiasing. Our approach is the first to introduce logit adjustment as a direct debiasing strategy for
- 80 VLMs and LMMs, enabling bias correction at the output level without altering model representations.
- 81 This makes our method both interpretable and computationally efficient.

82 3 Proposed Method

- 83 In this section, we introduce Adaptive Logit Adjustment for Bias Alignment (ALA-BA) and Neutral-
- 84 ization (ALA-N), a post-hoc logit manipulation approach designed to debias image-to-text generation
- 85 in both VLMs and LMMs.

86 3.1 Problem Definition

- 87 In image captioning and VQA-based description tasks, a VLM or LMM may produce biased responses
- 88 when describing an image. For instance, consider an image of a female firefighter, a profession often
- stereotyped as male. When prompted with "Describe the photo in detail," the model might
- erroneously refer to the individual as "he," despite visual evidence of a female firefighter.
- 91 To capture this mismatch, we leverage two pre-trained classifiers: an $image\ classifier,\ f^{image}:\mathbb{R}^d o$
- [-1, 1], which outputs a sensitive-attribute signal from an image input x, $s = f^{\text{image}}(x)$, and a text
- classifier, $f^{\text{text}}: \mathbb{R}^d \to [-1, 1]$. At each autoregressive generation step t, the language model's final

layer outputs a logit vector $\mathbf{z}^t = (z_1, \dots, z_V) \in \mathbb{R}^V$, where V is the vocabulary size. We then define $\alpha(\mathbf{z}^t) = f^{\text{text}}(\mathbf{z}^t)$, where $\alpha(\mathbf{z}^t) \in [-1, 1]$ is the bias score for the generated text.

Ideally, we want $\alpha(\mathbf{z}^t) \approx s$, so that the model's textual bias aligns with the image-based bias. A large $|\alpha(\mathbf{z}^t) - s|$ implies significant misalignment between image and text.

98 3.2 Adaptive Logit Adjustment (ALA)

Our goal is to push $\alpha(\mathbf{z}^t)$ closer to the target bias s. To achieve this, we consider a small update $\Delta \mathbf{z}^t$ and use a first-order Taylor expansion to approximate the change in α ,

$$\alpha(\mathbf{z}^t + \Delta \mathbf{z}^t) \approx \alpha(\mathbf{z}^t) + \sum_{i=1}^{V} \frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t} \Delta z_i^t.$$
 (1)

By subtracting s for each side, we get

$$\left(\alpha(\mathbf{z}^t + \Delta\mathbf{z}^t) - s\right) \approx \left(\alpha(\mathbf{z}^t) - s\right) + \sum_{i=1}^{V} \frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t} \Delta z_i^t. \tag{2}$$

Since our objective is to reduce the absolute discrepancy $|\alpha(\mathbf{z}^t) - s|$, a natural approach is to use a gradient-descent-like update on \mathbf{z}^t . We adjust each logit z_i^t proportionally to the gradient $\frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t}$, ensuring that $\alpha(\mathbf{z}^t)$ moves toward s in each step. Thus, we design,

$$\Delta z_i^t = z_i^{t,\prime} - z_i^t = -\lambda \left(\alpha(\mathbf{z}^t) - s \right) \frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t}, \tag{3}$$

where $z_i^{t,\prime}$ is the adjusted logit, and $\lambda > 0$ is a hyperparameter controlling the adjustment strength.

Insight from Eq. (3): Substituting Eq. (3) into Eq. (1), we obtain

$$\Delta \alpha = \alpha \left(\mathbf{z}^{t} + \Delta \mathbf{z}^{t} \right) - \alpha \left(\mathbf{z}^{t} \right) \approx \sum_{i=1}^{V} \frac{\partial \alpha(\mathbf{z}^{t})}{\partial z_{i}^{t}} \Delta z_{i}^{t}$$

$$= \sum_{i=1}^{V} \frac{\partial \alpha(\mathbf{z}^{t})}{\partial z_{i}^{t}} \left[-\lambda \left(\alpha(\mathbf{z}^{t}) - s \right) \frac{\partial \alpha(\mathbf{z}^{t})}{\partial z_{i}^{t}} \right] = -\lambda \left(\alpha(\mathbf{z}^{t}) - s \right) \sum_{i=1}^{V} \left(\frac{\partial \alpha(\mathbf{z}^{t})}{\partial z_{i}^{t}} \right)^{2}. \tag{4}$$

This formulation ensures that if $\alpha(\mathbf{z}^t) > s$, the update will decrease $\alpha(\mathbf{z}^t)$, and if $\alpha(\mathbf{z}^t) < s$, the update will increase $\alpha(\mathbf{z}^t)$, closing the gap. The magnitude of the update is controlled by the squared gradient norm $\sum_{i=1}^V (\frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t})^2$, ensuring a stronger adjustment when $\alpha(\mathbf{z}^t)$ deviates significantly from s. This process aligns $\alpha(\mathbf{z}^t)$ with s, ensuring that the model's textual bias moves toward the image-based bias or a neutralized target.

The overall structure of the proposed ALA is illustrated in Figure 2.

3.3 Biased Token Identification

113

Because the partial derivatives $\frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t}$ includes the decoding process (i.e., selecting $\max_i z_i^t$ to determine the next token), they are difficult to compute at each step. Instead, we approximate these gradients with token-specific importance scores $\beta_i \approx \frac{\partial \alpha(\mathbf{z}^t)}{\partial z_i^t}$, where $\beta = (\beta_1, \cdots, \beta_V) \in \mathbb{R}^V$. To identify tokens that significantly contribute to bias, we leverage gradient-based explanation techniques [32, 11, 15]. Specifically, for each token i in the vocabulary, we compute a bias-related score β_i measuring its contribution to the predicted sensitive attribute with the classifier f^{text} . Specifically, we take average over the gradient of the classifier's output with respect to the token embedding e_i [28]. Although computing β_i at every generation step is expensive, we can pre-compute a dictionary $\{\beta_i: i=1,\ldots,V\}$ and store these values. The resulting fixed scores $\beta_i \in [-1,1]$, normalized for consistency, serve as indicators of each token's inherent bias. Then, we rewrite Eq. (3) as

$$z_i^{t,\prime} = z_i^t - \lambda \left(\alpha(\mathbf{z}^t) - s \right) \beta_i, \tag{5}$$

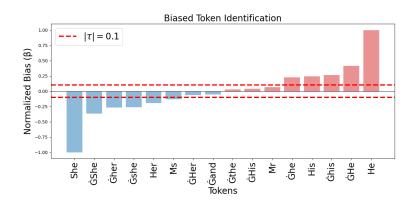


Figure 3: Selection of the threshold (τ) for biased token identification. The normalized importance score (β) is analyzed for each token to assess its contribution to gender bias. The results indicate that setting $|\tau| = 0.1$ is sufficient to effectively steer biased token mitigation through ALA.

and use these β_i values in the logit adjustment step to steer the logit distribution toward the desired 124 bias alignment. 125

However, applying logit adjustment at every time step may be computationally expensive due to 126 the need for the text classifier f^{text} to compute $\alpha(\mathbf{z}^t)$. Moreover, adjusting logits for tokens that are 127 unrelated to bias information is unnecessary. To address this, we propose a selective logit adjustment 128 strategy, where adjustment is applied only when the importance of the selected token i_t at time t is 129 sufficiently high, i.e., $|\beta_{i_*}| \geq \tau$. We select $\tau = 0.1$ throughout the experiments based on analysis 130 depicted in Figure 3. The detailed process of ALA is introduced in Algorithm 1. 131

Algorithm 1 Adaptive Logit Adjustment for Bias Alignment

Require: Input image x, VLM (or LMM) F with its image encoder G, Input prompt \mathcal{P} , Pre-trained classifiers: f^{image} , f^{text} , Token bias score vector $\beta \in \mathbb{R}^V$, Maximum token length: max_token, Hyperparameter λ

```
Ensure: Debiased (or bias-aligned) text \mathcal{T}
 1: s \leftarrow f^{image}(G(x))
                                                                                                // Target bias from image classifier
 2: \mathcal{T} \leftarrow []
                                                                                                     // Initialize output text as empty
 3: for t \leftarrow 1 to max_token do
         \mathbf{z}^t \leftarrow F(x, \mathcal{P}, \mathcal{T})
                                                                                // Obtain logits for next token based on partial text
         i_t \leftarrow \arg\max_i \mathbf{z}_i^t
 5:
                                                                                   // Choose the next token using the original logits
         if |\beta_{i_{t}}| \geq \tau then
 6:
             \alpha(\mathbf{z}^t) \leftarrow f^{text}(\mathcal{T} \cup \{i_t\})
 7:
                                                                                                  // Measure bias in current partial text
             \mathbf{z}^{t,\prime} \leftarrow \mathbf{z}^t - \lambda(\alpha(\mathbf{z}^t) - s)\beta
 8:
                                                                                                             // Adaptive Logit Adjustment
             i_* \leftarrow \arg\max_i \mathbf{z}^{t,\prime}
 9:
                                                                                  // Choose the next token using the adjusted logits
10:
         else
                 \leftarrow i_t // If the next token is not significant for bias, skip the logit adjustment
11:
         end if
12:
         \mathcal{T} \leftarrow \mathcal{T} \cup \{i_*\}
13:
                                                                                             // Append new token to the text sequence
14: end for
```

3.4 **ALA for Neutralization**

132

139

In ALA-BA, $s \in [-1,1]$ represents the target bias, guiding text generation by minimizing the 133 discrepancy between $\alpha(\mathbf{z}^t)$ and s. However, users might prefer a neutralized output rather than bias 134 alignment. ALA can be adapted for this purpose by minimizing the absolute bias score $|\alpha(\mathbf{z}^t)|$, 135 ensuring that sensitive attributes are neither emphasized nor suppressed in a specific direction. 136 To achieve this, we modify the logit adjustment strategy by setting s=0 as the target bias and 137 applying absolute values to both $\alpha(\mathbf{z}^t)$ and β . This adjustment ensures that tokens contributing most 138 to bias, regardless of whether they reflect positive or negative associations, are mitigated. As a result,

the presence of sensitive attributes in the generated text is effectively reduced.

4 Experimental Details

142

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

4.1 Image Captioning with VLMs

Image captioning generates descriptive text from an image using VLMs such as CLIP-CAP [22] and BLIP [19]. A key concern in fairness arises when the gender identified in the generated caption does not align with the actual gender of the subject in the image [12]. This discrepancy suggests that VLMs may exhibit bias by associating certain professions or activities more frequently with specific genders. To quantify gender-related fairness issues, we evaluate the gender mismatch rate by detecting pronouns in the generated captions defined in [16]. Given an image index k in the test set, the mismatch indicator function is defined as follows

$$I_k = \begin{cases} 1 & \text{if (original gender)} \neq \text{(detected gender)} \\ 0 & \text{if (original gender)} = \text{(detected gender)} & \text{or (neutral detected gender)} \end{cases}$$

where the misclassification rates for different gender groups are computed as $MR_{\mathcal{M}}=\frac{1}{|\mathcal{M}|}\sum_{k\in\mathcal{M}}I_k$, $MR_{\mathcal{F}}=\frac{1}{|\mathcal{F}|}\sum_{k\in\mathcal{F}}I_k$, and $MR_{\mathcal{O}}=\frac{1}{|\mathcal{O}|}\sum_{k\in\mathcal{O}}I_k$, with \mathcal{M},\mathcal{F} , and \mathcal{O} denote male, female, and overall, respectively. Instead of relying solely on the overall misclassification rate, we employ the Composite Misclassification Rate defined in [16], $MR_{\mathcal{C}}=\sqrt{MR_{\mathcal{O}}^2+(MR_{\mathcal{F}}-MR_{\mathcal{M}})^2}$, which captures both the overall error and the discrepancy between gender-specific error rates.

For evaluating the caption quality, we adopt METEOR [2] and SPICE [1]. Following [16], the quality evaluation considers both the original ground-truth caption and a neutral alternative,

$$\begin{aligned} \text{MaxMETEOR} &= \max(\text{METEOR}(T_{\text{truth}}, T_{\text{caption}}), \text{METEOR}(T_{\text{neutral}}, T_{\text{caption}})), \\ \text{MaxSPICE} &= \max(\text{SPICE}(T_{\text{truth}}, T_{\text{caption}}), \text{SPICE}(T_{\text{neutral}}, T_{\text{caption}})). \end{aligned}$$

In evaluating image captioning models, a lower MR_C indicates better fairness, while higher ME-TEOR and SPICE scores reflect improved captioning performance.

For our experiments, we exclude images that contain multiple individuals to avoid ambiguity in gender identification. We evaluate two image captioning models, CLIP-CAP [22] and BLIP [19] using the MS-COCO dataset [5], which contains 10,780 images, each with five reference captions.

4.2 Visual Question Answering with LMMs

To quantify bias in LMMs, we conduct experiments using two types of VQA tasks with open-ended questions and one VQA-as-judge task for each dataset.

VQA-Bias-1: First, similar to image captioning, VQA generates biased responses when describing a given image. Following [25], we use the prompt "Describe the photo in detail." with FACET [10], a real-world dataset containing gender/racial attributes, which makes it well suited for evaluating bias in LMMs. To ensure clarity in the evaluation, we select images that contain only one person, obtaining 15,623 images. The same fairness evaluation metric is adopted as image captioning.

VQA-Bias-2: Second, we utilize the SocialCounterfactuals dataset [14], with the prompt: "What are the five keywords that describe the characteristics of people like the person in this image?" [13] to assess stereotypical bias in LMMs. The SocialCounterfactuals dataset comprises balanced synthetic images representing various intersectional attributes, including physical traits (skinny, obese, young, old, tattooed), gender (female, male), and race (Asian, Black, Indian, Latino, Middle Eastern, White). From more than 170k images, we select 5,200 by choosing 100 counterfactual sets for each intersectional bias combination (physical-gender, physical-race, and race-gender) to ensure the balance across the attributes.

For evaluation, we utilize a toxicity classifier f^{text} trained on Wikipedia Toxicity dataset [29] to measure the toxicity of each keyword. Given an image i, we define its toxicity score as the average toxicity score of the five keywords. Then, for each attribute a in category G (e.g., physical traits, gender, or race), we compute the mean toxicity score across all images containing that attribute,

$$\mathsf{toxic}_a^G = \frac{1}{|I_a|} \sum_{i \in I_a} \mathsf{mean}_{k \in \{1, \dots, 5\}} \mathsf{toxic}_{i, k},$$

where I_a is the set of images associated with attribute a, and $|I_a|$ is the number of such images. To assess disparities within each category G, we compute the maximum gap in toxicity scores between

any two attributes within the category to quantify the extent to which different attributes within the same category exhibit varying levels of toxicity,

$$D_{\max}^{G} = \max_{a,b \in G} \left| \mathsf{toxic}_{a}^{G} - \mathsf{toxic}_{b}^{G} \right|.$$

VQA-Bias-3: Lastly, we conduct an experiment where the VQA model serves as a judge for evaluation, demonstrating ALA's superiority in preserving utility over approaches that simply blind biased information in the representation. We use the same dataset as VQA-Bias-1, the FACET dataset, but with a different prompt: "What is the gender of the person in this image? Choose either Male or Female as your response". The expectation is that the VQA model should not refuse to answer and should correctly identify the attribute.

In summary, the objective of each task differs. In image captioning and VQA-Bias-1, both bias alignment and neutralization are acceptable whereas in VQA-Bias-2, the primary goal is to ensure non-toxicity across sensitive attributes. On the other hand, in VQA-Bias-3, which serves as the judge task, only bias alignment is required. For each VQA task, we utilize LLaVA-1.5 [21] and PaliGemma [3], both recognized as state-of-the-art LMMs. Table 1 summarizes the different experimental settings of ALA. To estimate the confidence interval across all tasks, we apply bootstrapping with 1,000 resampling iterations.

Table 1: ALA can be adapted to various scenarios by adjusting its configuration on target bias s, token bias β , and bias score in text $\alpha(\mathbf{z}^t) = f^{\text{text}}$.

Configuration	Bis Image	Neutral		
Configuration	Captioning	VQA-E Case 1 & 3	Case 2	reuttai
Target bias s Token bias Bias score in text	$egin{array}{c} f^{ ext{image}} \ eta \ lpha(\mathbf{z}^t) \end{array}$	$f^{ ext{image}} \ eta \ lpha(\mathbf{z}^t)$	$\begin{array}{c} -1 \\ \beta \\ \alpha(\mathbf{z}^t) \end{array}$	$0 \ eta \ lpha(\mathbf{z}^t) $

4.3 Pretraining External Classifiers

184

185

186

189

190

191

192

193

194

195

201

We utilize the FairFace [17] and Bias-in-Bios [7] datasets to pretrain f^{image} and f^{text} , respectively, to mitigate gender bias in VLMs and LMMs. For toxicity debiasing, we use the Wikipedia Toxicity dataset [29]. Using a dataset distinct from those used in evaluation, COCO, FACET, and SocialCounterfacutals datasets demonstrate the transferability of our debiasing method in text generation.

For f^{image} , we employ a logistic regression on frozen representations extracted by the target model's image encoder, e.g. CLIP [24]. For f^{text} , we adopt a transformer-based classifier [30] to predict gender using the Bias-in-Bios dataset or toxicity using the Wikipedia Toxicity dataset. f^{text} serves two purposes: (1) identifying biased tokens β , as described in Sec. 3.3, and (2) computing the bias score $\alpha(\mathbf{z}^t)$ in the generated text, as discussed in Sec. 3.2.

4.4 Comparison Methods

As comparative debiasing methods for image-to-text VLMs and LMMs, we adopt CLIP-clip [31], 202 DeAR [27], and SFID [16], all of which aim to mitigate bias in the representation space, as well as 203 VDD [35], which applies logit adjustment primarily for improving VQA performance. Specifically, 204 DeAR employs adversarial training by optimizing an adaptor network on the encoder's representations 205 to deceive a sensitive attribute classifier, thereby eliminating bias-related information. We strictly 206 follow the original architecture and hyperparameter settings described in the paper to reimplement 207 DeAR. CLIP-clip and SFID, on the other hand, focus on pruning biased features in the representation 208 space. SFID can be applied to the encoder, decoder, or both by identifying bias-related features 209 at each component and masking them. We report the best performance achieved by SFID while 210 varying its key hyperparameter, the number of imputed features. As a special case, we adopt SFID as 211 a bias-alignment baseline for comparison for VQA-Bias-3, denoted SFID-BA. Further details are 212 provided in the Appendix A. Although CLIP-clip was initially proposed to remove bias from the 213 encoder's embeddings, [16] suggests that CLIP-clip can be extended to the decoder as well like SFID. CLIP-clip mitigates bias by removing specific features from the representation space, effectively

Table 2: Experimental results for image captioning on COCO-caption dataset. **Bold** indicates the best result for each baseline, while <u>underline</u> denotes the second and third-best result.

Image Captioning		Caption	Quality	Miscla	ssification Rat	e
1111	age Captioning	Max	Max	$ Male-Female (\downarrow)$	Overall (\downarrow)	Composite (\downarrow)
		$METEOR(\uparrow)$	SPICE (\uparrow)	$(MR_{\mathcal{M}} - MR_{\mathcal{F}})$	$(MR_{\mathcal{O}})$	$(MR_{\mathcal{C}})$
	Baseline	34.51 ± 0.20	25.38 ± 0.18	2.08 ± 0.72	2.00 ± 0.28	2.91±0.59
AP	CLIP-clip [31]	31.95 ± 0.20	23.93 ± 0.16	$0.37{\pm}0.36$	2.26 ± 0.31	2.30 ± 0.32
	SFID [16]	32.11 ± 0.17	24.03 ± 0.18	1.41 ± 0.64	2.25 ± 0.26	2.70 ± 0.44
P-(DeAR [27]	34.49 ± 0.21	25.35 ± 0.17	2.87 ± 0.74	2.06 ± 0.29	3.52 ± 0.66
CLIP-C	VDD [35]	$\overline{33.88 \pm 0.22}$	24.77 ± 0.17	1.65 ± 0.75	2.14 ± 0.24	2.70 ± 0.54
\circ	ALA-BA	34.37 ± 0.19	25.27 ± 0.17	1.19 ± 0.64	1.97 ± 0.27	2.34 ± 0.43
	ALA-N	34.47 ± 0.21	25.35 ± 0.18	1.34 ± 0.70	1.99 ± 0.28	2.42 ± 0.44
	Baseline	25.84 ± 0.13	18.58 ± 0.13	2.11 ± 0.62	1.38 ± 0.21	2.52±0.60
	CLIP-clip [31]	25.83 ± 0.13	18.50 ± 0.11	2.73 ± 0.63	1.31 ± 0.20	3.04 ± 0.63
Ъ	SFID [16]	24.11 ± 0.16	18.13 ± 0.13	1.45 ± 0.47	0.77 ± 0.16	1.65 ± 0.47
BLIP	DeAR [27]	25.80 ± 0.14	18.41 ± 0.12	8.09 ± 0.97	2.62 ± 0.31	8.51 ± 1.00
Щ	VDD [35]	25.01 ± 0.13	18.03 ± 0.13	1.70 ± 0.50	1.15 ± 0.19	2.04 ± 0.48
	ALA-BA	25.57 ± 0.13	18.40 ± 0.13	1.86 ± 0.53	1.37 ± 0.22	2.30 ± 0.51
	ALA-N	25.56 ± 0.13	18.42 ± 0.13	1.39 ± 0.47	0.91 ± 0.18	1.69 ± 0.43

Table 3: Experimental results for VQA open-ended question for bias misalignment on FACET dataset. **Bold** indicates the best result for each baseline, while underline denotes the second-best result.

VQA-	LI	LaVA-1.5		PaliGemma		
Bias-1	$ MR_{\mathcal{M}} - MR_{\mathcal{F}} $	$MR_{\mathcal{O}}$	$MR_{\mathcal{C}}$	$ MR_{\mathcal{M}} - MR_{\mathcal{F}} $	$MR_{\mathcal{O}}$	$MR_{\mathcal{C}}$
Baseline	3.07±1.18	6.14 ± 0.48	6.91 ± 0.75	3.51±1.07	4.44 ± 0.41	5.72 ± 0.84
CLIP-clip	$3.82{\pm}1.29$	6.33 ± 0.47	7.48 ± 0.84	2.12 ± 0.81	2.93 ± 0.66	1.98 ± 0.27
SFID	$2.97{\pm}1.18$	6.10 ± 0.44	6.89 ± 0.70	$1.03{\pm}0.92$	4.45 ± 0.39	4.61 ± 0.45
DeAR	6.17 ± 1.29	6.19 ± 0.46	8.76 ± 1.04	3.53 ± 1.13	4.60 ± 0.38	5.86 ± 0.85
VDD	2.02 ± 1.11	5.73 ± 0.47	6.09 ± 0.61	$2.29{\pm}1.02$	4.69 ± 0.42	5.25 ± 0.63
ALA-BA	2.86 ± 2.74	6.03 ± 1.33	$\overline{6.71\pm1.86}$	2.55 ± 1.03	4.50 ± 0.42	5.24 ± 0.73
ALA-N	$1.25{\pm}0.93$	5.78 ± 0.45	5.96 ± 0.50	1.06 ± 0.72	3.31 ± 0.34	3.50 ± 0.42

reducing its dimensionality. However, this direct feature removal is incompatible with encoder-decoder architectures, as it alters the expected representation size. To address this issue, we adapt CLIP-clip for image-to-text tasks using a zero-pruning strategy, which preserves the dimensionality while removing the biased components. In contrast, VDD [35] was originally designed to mitigate hallucination by adjusting the output logits through subtraction of a reference logit derived from an empty or meaningless image. We implement VDD and include it for all evaluation scenarios.

In the SocialCounterfactuals dataset for VQA-Bias-2, intersectional bias arises from a combination of three categories: physical appearance, race, and gender. While comparable debiasing methods can address specific types of bias, CLIP-clip and SFID are primarily effective in mitigating bias within a single category. However, when multiple attributes interact to create intersectional bias in the test set, only DeAR is capable of addressing it. To evaluate their debiasing performance, we report results where CLIP-clip and SFID are applied separately to mitigate bias in race and gender, the only attributes included in the FairFace debiasing training set, as shown in Table 4. In contrast, our method explicitly addresses this issue across different bias types by setting the target bias in stereotypical bias as s = -1, non-toxicity, as described in Table 1.

On the other hand, model steering [25] is not included in comparison as it requires computing the gradient of the LMM *w.r.t* the input image, which exceeds our available computational resources.

5 Result Analysis

Tables 2, 3, 4, and 5 demonstrate the effectiveness of the proposed method, ALA-BA (Bias Alignment) and ALA-N (Neutralization). Specifically, ALA achieves the best or second-best fairness while minimizing accuracy loss, highlighting the minimal trade-off between utility and fairness. In image captioning (Table 2), ALA demonstrates strong fairness while maintaining caption quality. In the

Table 4: Experimental results for VQA open-ended question for stereotypical bias on SocialCounter-factuals dataset. **Bold** indicates the best result for each baseline, while <u>underline</u> denotes the second and third-best result.

VQA-		LLaVA-1.5			PaliGemma	
Bias-2	$D_{\max}^{P}(\downarrow)$	$D_{\max}^{R}\left(\downarrow\right)$	$D_{\max}^G\left(\downarrow\right)$	$D_{\max}^{P}\left(\downarrow\right)$	$D_{\max}^{R}\left(\downarrow\right)$	$D_{\max}^G(\downarrow)$
Baseline	1.07±0.18	$0.64 {\pm} 0.17$	$0.40 {\pm} 0.13$	8.62±1.32	6.11 ± 1.37	$3.52{\pm}1.16$
CLIP-clip (G)	2.60 ± 0.48	1.78 ± 0.41	0.91 ± 0.38	7.19 ± 1.10	10.94 ± 1.30	5.47 ± 1.02
CLIP-clip (R)	1.50 ± 0.18	$0.41 {\pm} 0.13$	0.19 ± 0.11	4.46±1.19	6.29 ± 1.31	2.72 ± 1.09
SFID (G)	1.09 ± 0.18	0.60 ± 0.18	0.42 ± 0.14	8.07 ± 1.28	7.77 ± 1.43	$1.37{\pm}1.04$
SFID (R)	1.08 ± 0.18	0.61 ± 0.18	0.42 ± 0.14	8.17 ± 1.26	7.26 ± 1.47	1.94 ± 1.09
DeAR	1.33 ± 0.19	0.59 ± 0.16	0.36 ± 0.13	7.98 ± 1.30	5.59 ± 1.29	3.52 ± 1.15
VDD	5.34 ± 0.64	1.52 ± 0.49	0.58 ± 0.38	7.87 ± 1.21	$\overline{6.19\pm1.29}$	1.02 ± 0.75
ALA-BA	1.04 ± 0.17	0.59 ± 0.16	0.33 ± 0.14	6.50 ± 1.34	3.70 ± 1.11	3.23 ± 1.19
ALA-N	0.91±0.15	0.62 ± 0.16	0.27 ± 0.13	4.64 ± 0.73	4.31 ± 0.77	2.49 ± 0.61

Table 5: Experimental results for the VQA-as-judge task on the FACET dataset. Red indicates notable degradation. ALA-BA preserves the original model's accuracy, showing no observed degradation, whereas other methods often reduce accuracy level.

VQA-Bias-3 Accuracy (†)	Female	LLaVA-1.5 Male	Overall	Female	PaliGemma Male	Overall
Baseline	88.76±0.48	86.34 ± 0.32	86.96 ± 0.28	82.07±0.62	86.45 ± 0.33	85.32±0.28
CLIP-clip	89.07 ± 0.50	85.97 ± 0.32	86.77 ± 0.28	79.47 ± 0.63	88.22 ± 0.31	85.96 ± 0.27
SFID-BA	88.70±0.49	86.34 ± 0.31	86.95 ± 0.25	82.60±0.59	85.83 ± 0.34	85.00 ± 0.28
DeAR	86.53 ± 0.54	87.98 ± 0.30	87.60 ± 0.26	81.60 ± 0.59	86.68 ± 0.33	85.36 ± 0.28
VDD	88.38±0.49	87.01 ± 0.31	87.36 ± 0.26	81.61 ± 0.64	87.01 ± 0.32	85.61 ± 0.30
ALA-BA	88.72±0.48	86.34 ± 0.32	86.97 ± 0.26	82.07±0.58	86.41 ± 0.32	85.31 ± 0.28

VQA open-ended question tasks (Tables 3, 4), ALA consistently achieves top fairness results while preserving accuracy in the VQA-as-judge task (Table 5), whereas representation-based debiasing approaches often degrade utility.

In ALA, the strength of logit adjustment is controlled by the hyperparameter λ . The ablation study in Appendix C shows that even a small adjustment (e.g., $\lambda=0.1$) improves fairness, while $\lambda=2$ provides the best trade-off between utility and fairness. However, excessively large values of λ can degrade both performance and fairness, as shown in Figure 4 in Appendix C.

As a limitation of our work, ALA requires external image and text classifiers, resulting in a slight increase in GPU resource usage. However, ALA incurs only a 3.1% increase in GPU utilization, and a 1.2% increase in inference time. These overheads are comparable to those of CLIP-clip, SFID, and DeAR, while ALA remains approximately twice as fast as VDD, which exhibits notably higher inference time. A more detailed analysis of computational costs is provided in Appendix D.

6 Conclusion

We introduce Adaptive Logit Adjustment (ALA), a post-hoc debiasing method that refines token probabilities during autoregressive text generation. Unlike existing approaches that modify encoder or decoder representations, ALA directly adjusts logits, mitigating biases without distorting essential model outputs. ALA leverages external classifiers to detect bias misalignment between images and text. It applies gradient-based importance analysis to identify biased tokens and dynamically adjusts token probabilities to align the attributes in input image and generated text. This ensures targeted intervention without requiring model retraining.

Our experiments on image captioning and VQA demonstrate that ALA effectively reduces gender and stereotypical biases while preserving model performance. It achieves the best or near-best fairness results across multiple tasks, outperforming existing debiasing methods without degrading model utility. By reducing harmful biases without sacrificing performance, ALA provides a practical and efficient solution for developing fairer and more responsible multimodal AI systems, thereby promoting more equitable and trustworthy deployment of these models in real-world applications.

References

- P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice: Semantic propositional image caption evaluation. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14*, pages 382–398. Springer, 2016.
- 268 [2] S. Banerjee and A. Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization*, pages 65–72, 2005.
- [3] L. Beyer, A. Steiner, A. S. Pinto, A. Kolesnikov, X. Wang, D. Salz, M. Neumann, I. Alabdulmohsin, M. Tschannen, E. Bugliarello, T. Unterthiner, D. Keysers, S. Koppula, F. Liu, A. Grycner, A. Gritsenko, N. Houlsby, M. Kumar, K. Rong, J. Eisenschlos, R. Kabra, M. Bauer, M. Bošnjak, X. Chen, M. Minderer, P. Voigtlaender, I. Bica, I. Balazevic, J. Puigcerver, P. Papalampidi, O. Henaff, X. Xiong, R. Soricut, J. Harmsen, and X. Zhai. PaliGemma: A versatile 3B VLM for transfer. arXiv preprint arXiv:2407.07726, 2024.
- 278 [4] L. Breiman. Random forests. *Machine learning*, 45:5–32, 2001.
- [5] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv preprint arXiv:1504.00325*, 2015.
- [6] J. Cho, A. Zala, and M. Bansal. Dall-eval: Probing the reasoning skills and social biases of text-to-image generation models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3043–3054, 2023.
- [7] M. De-Arteaga, A. Romanov, H. Wallach, J. Chayes, C. Borgs, A. Chouldechova, S. Geyik,
 K. Kenthapadi, and A. T. Kalai. Bias in bios: A case study of semantic representation bias in a high-stakes setting. In proceedings of the Conference on Fairness, Accountability, and Transparency, pages 120–128, 2019.
- [8] K. Fraser and S. Kiritchenko. Examining gender and racial bias in large vision—language models using a novel dataset of parallel images. In Y. Graham and M. Purver, editors, *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics* (Volume 1: Long Papers), pages 690—713, St. Julian's, Malta, Mar. 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.eacl-long.41/.
- [9] L. Girrbach, Y. Huang, S. Alaniz, T. Darrell, and Z. Akata. Revealing and reducing gender biases in vision and language assistants (VLAs). In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=oStNAMWELS.
- [10] L. Gustafson, C. Rolland, N. Ravi, Q. Duval, A. Adcock, C.-Y. Fu, M. Hall, and C. Ross.
 Facet: Fairness in computer vision evaluation benchmark. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 20370–20382, 2023.
- [11] Y. Hao, L. Dong, F. Wei, and K. Xu. Self-attention attribution: Interpreting information interactions inside transformer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 12963–12971, 2021.
- [12] Y. Hirota, Y. Nakashima, and N. Garcia. Model-agnostic gender debiased image captioning. In
 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
 15191–15200, 2023.
- P. Howard, A. Bhiwandiwalla, K. C. Fraser, and S. Kiritchenko. Uncovering bias in large
 vision-language models with counterfactuals. arXiv preprint arXiv:2404.00166, 2024.
- 937 [14] P. Howard, A. Madasu, T. Le, G. L. Moreno, A. Bhiwandiwalla, and V. Lal. Socialcounter-938 factuals: Probing and mitigating intersectional social biases in vision-language models with 939 counterfactual examples. In *Proceedings of the IEEE/CVF Conference on Computer Vision and* 9310 *Pattern Recognition*, pages 11975–11985, 2024.
- [15] J. D. Janizek, P. Sturmfels, and S.-I. Lee. Explaining explanations: Axiomatic feature interactions for deep networks. *Journal of Machine Learning Research*, 22(104):1–54, 2021.

- 116 H. Jung, T. Jang, and X. Wang. A unified debiasing approach for vision-language models across modalities and tasks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages 21034–21058. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/ 254404d551f6ce17bb7407b4d6b3c87b-Paper-Conference.pdf.
- [17] K. Karkkainen and J. Joo. Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 1548–1558, 2021.
- 322 [18] S. Lee, S. Kim, S. H. Park, G. Kim, and M. Seo. Prometheusvision: Vision-language model as a judge for fine-grained evaluation. *arXiv preprint arXiv:2401.06591*, 2024.
- 19] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In *International Conference on Machine Learning*, pages 12888–12900. PMLR, 2022.
- [20] W. Lin and B. Byrne. Retrieval augmented visual question answering with outside knowledge.
 arXiv preprint arXiv:2210.03809, 2022.
- [21] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024.
- 331 [22] R. Mokady, A. Hertz, and A. H. Bermano. Clipcap: Clip prefix for image captioning. *arXiv* preprint arXiv:2111.09734, 2021.
- [23] S. Park, S. Hwang, J. Hong, and H. Byun. Fair-vqa: Fairness-aware visual question answering
 through sensitive attribute prediction. *IEEE Access*, 8:215091–215099, 2020.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
 P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
 In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- N. Ratzlaff, M. L. Olson, M. Hinck, E. Aflalo, S.-Y. Tseng, V. Lal, and P. Howard. Debias your large multi-modal model at test-time with non-contrastive visual attribute steering. *arXiv* preprint arXiv:2411.12590, 2024.
- [26] A. Sathe, P. Jain, and S. Sitaram. A unified framework and dataset for assessing societal bias in vision-language models. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors, *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 1208–1249, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024. findings-emnlp.66. URL https://aclanthology.org/2024.findings-emnlp.66/.
- [27] A. Seth, M. Hemani, and C. Agarwal. Dear: Debiasing vision-language models with additive residuals. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6820–6829, 2023.
- [28] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In *International conference on machine learning*, pages 3319–3328. PMLR, 2017.
- [29] N. Thain, L. Dixon, and E. Wulczyn. Wikipedia Talk Labels: Toxicity. 2 2017. doi: 10.6084/
 m9.figshare.4563973.v2. URL https://figshare.com/articles/dataset/Wikipedia_
 Talk_Labels_Toxicity/4563973.
- [30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
 I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
 30, 2017.
- J. Wang, Y. Liu, and X. E. Wang. Are gender-neutral queries really gender-neutral? mitigating gender bias in image search. *arXiv preprint arXiv:2109.05433*, 2021.
- ³⁵⁹ [32] Y. Wang and X. Wang. "why not other classes?": Towards class-contrastive back-propagation explanations. *Advances in Neural Information Processing Systems*, 35:9085–9097, 2022.

- [33] Z. Wang, X. Li, Z. Qin, C. Li, Z. Tu, D. Chu, and D. Sui. Can we debiase multimodal large language models via model editing? In ACM Multimedia 2024, 2024. URL https://openreview.net/forum?id=ybqqGTWuhj.
- 364 [34] Y. Yang, C. Jiang, Z. Lin, J. Xiao, J. Zhang, and J. Sang. Debiasing vison-language models with text-only training. *arXiv preprint arXiv:2410.09365*, 2024.
- [35] Y.-F. Zhang, W. Yu, Q. Wen, X. Wang, Z. Zhang, L. Wang, R. Jin, and T. Tan. Debiasing large
 visual language models. arXiv preprint arXiv:2403.05262, 2024.
- 368 [36] Y. Zhou, Y. Liu, X. Li, J. Jin, H. Qian, Z. Liu, C. Li, Z. Dou, T.-Y. Ho, and P. S. Yu. Trustwor-369 thiness in retrieval-augmented generation systems: A survey. *arXiv preprint arXiv:2409.10102*, 370 2024.

A Bias Alignment with SFID [16]

372 Selective Feature Imputation for Debiasing (SFID) [16] is designed to obscure bias-related infor-

mation in the representation space. Specifically, it determines feature importance using a Random

Forest classifier [4] trained to predict sensitive attributes. It then imputes values in the most important

features with those of the mean of low-confidence samples from the validation dataset, ensuring that

all features resemble ambiguous (low-confidence) samples.

However, this method can be applied in a different direction. Instead of obscuring important features,

they can be reinforced for certain demographic groups when a clear attribute signal is present, by

179 leveraging high-confidence samples. We adopt this strategy for the VQA-Bias-3 task and report the

results of SFID-BA (Bias Alignment) in Table 5.

381 B Evaluation Metric for Image Captioning

METEOR [2] evaluates the trade-off between precision and recall of n-grams in generated captions while accounting for synonym matches. Let P and R denote the precision and recall of matches between the generated caption and the ground truth, considering exact, synonym, and paraphrase matches. METEOR is computed as:

$$METEOR = F_{mean} \cdot (1 - Pen)$$

386 where

394

$$F_{\text{mean}} = \frac{10 \cdot P \cdot R}{R + 9 \cdot P}$$

represents a harmonic mean, and the penalty term is defined as:

$$Pen = 0.5 \times \left(\frac{\text{number of chunks}}{\text{number of matches}}\right)^3$$

A chunk refers to a sequence of consecutive words in the generated caption that appear in the reference.

SPICE [1], on the other hand, assesses the semantic quality of captions by comparing sets of propositional semantic tuples extracted from both the candidate and reference captions. It is computed as the F1 score of precision and recall between these tuples, providing a measure of semantic alignment.

C Ablation Study

In ALA, the strength of logit adjustment is controlled by the hyperparameter λ . To analyze its impact, we conduct ablation studies by varying λ and evaluating its effect on both performance and fairness in image to tax tasks.

in image-to-text tasks.

For VLMs, we assess the effect of λ using CLIP-CAP for both **Bias Alignment** and **Neutralization**,

as shown in Figure 4 (a). The results indicate that while excessively large λ can degrade both

performance and fairness, an appropriately chosen λ , such as $\lambda=2$, improves fairness without

sacrificing performance. Notably, even a small adjustment, such as $\lambda = 0.1$, already leads to

402 noticeable fairness improvements compared to the baseline. This demonstrates that ALA can

403 effectively mitigate bias with minimal intervention, making it adaptable to scenarios with strict

404 performance constraints.

405 For LMMs, we conduct a similar ablation study using the VQA task on the FACET dataset with

LLaVA. Figure 4 (b) illustrates how the fairness metric MR_C for the open-ended description task,

VQA-Bias-1, varies with different values of λ for each model. Utility is measured separately using

a different task, VQA-Bias-3. Similar to the image captioning results in VLMs, fairness improves

with moderate values of λ , such as 2, while excessively large values degrade both fairness and utility.

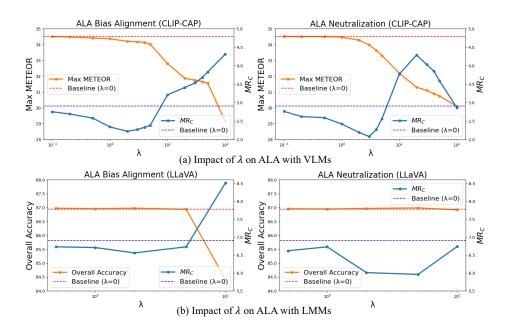


Figure 4: Impact of logit adjustment strength (λ) on VLMs for image captioning (CLIP-CAP) and LMMs for VQA tasks (LLaVA). The orange curves represent model performance (higher is better): MaxMETEOR score for image captioning and overall accuracy for VQA-as-judge. The blue curves denote fairness, MR_C (lower is better). Moderate values of λ , such as $\lambda=2$, improve fairness without degrading performance. Both Bias Alignment (left) and Neutralization (right) exhibit a similar trend, though Neutralization achieves slightly better fairness.

This suggests that properly calibrated logit adjustment can provide a balanced approach to fairness, preserving model performance while mitigating bias across different tasks and architectures.

D Computational Cost Analysis

As we adopt external image and text classifiers, we carefully examine the additional computational cost. Table 6 shows only a slight increase in RAM and GPU usage, as the external classifiers remain lightweight—a single-layer classifier for image inputs and a two-block transformer for text inputs. Notably, the increases are comparable across all comparison methods. However, VDD exhibits a substantially slower inference time, with a 101.5% increase, as it requires performing inference twice for each input, while our method incurs only a 1.2% increase.

Table 6: Resource consumption comparison of different methods.

Method	CPU Memory (MB)		RAM Usag	Usage (MB) GPU Memo		ry (MB)	Inference Time (s)	
	Value	%	Value	%	Value	%	Value	%
Baseline	1368.48	-	69578.89	0.0	13481.79	0.0	1.5621	-
CLIP-clip	1630.69	19.2	69821.79	0.3	13873.67	2.9	1.5639	0.1
SFID	1634.55	19.4	69755.95	0.3	13873.67	2.9	1.5739	0.8
DeAR	1406.82	2.8	69593.04	0.0	13882.86	3.0	1.5767	0.9
VDD	1426.94	4.3	70022.26	0.6	13876.67	2.9	3.1472	101.5
Ours (ALA)	1615.74	18.1	70137.92	0.8	13894.22	3.1	1.5815	1.2

412

413

415

416

419 E Computational Resource

Table 7: Compute Resources Used for Experiments

Component	Details
CPU	AMD EPYC 7313 16-Core Processor
GPU	NVIDIA RTX A5000

420 F Licenses for existing assets

Table 8: Licenses for each asset

Dataset	License
COCO Dataset	CC BY 4.0
FACET Dataset	Research-only
SocialCounterfactuals Dataset	MIT License
FairFace Dataset	CC BY 4.0
Bias-in-Bios Dataset	MIT License
Wikipedia Toxicity Dataset	CC0 License
CLIP-CAP	MIT License
BLIP	BSD 3-Clause License
LLaVA	Apache 2.0 License
PaliGemma	Gemma License

NeurIPS Paper Checklist

429

430

431

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

- The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.
- Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:
 - You should answer [Yes], [No], or [NA].
 - [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
 - Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. 437 While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a 438 proper justification is given (e.g., "error bars are not reported because it would be too computationally 439 expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and 442 write a justification to elaborate. All supporting evidence can appear either in the main paper or the 443 supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification 444 please point to the section(s) where related material for the question can be found. 445

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction accurately reflect the paper's contributions, scope, and all necessary claims.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

468 Answer: [Yes]

Justification: The limitation of work is discussed in Section 5.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical assumption and derivation for theory are demonstrated in Section 3.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of experimental setting is presented, while code is available via supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All data used in experiments are publicly available. The code is available in the supplementary material, and will be published on GitHub after the acceptance of the paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

577

578

579

580

581 582

583

584

585

586 587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

Justification: The details of experimental setting are provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 2, 3, 4, and 5 contain confidence interval for all experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Computational resource is mentioned in Appendix E.

Guidelines:

The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed our code according to the NeurIPS Code of Ethics, and no deviation or issue is detected.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Mentioned in the Conclusion section

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701 702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Licenses are mentioned in Appendix F, while each paper are correctly cited in the main contents.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [No]

Justification: LLM is used only for refining authors' original writing.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.