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Abstract

Deep learning (DL) models in medical imaging face challenges in generalizability and
robustness due to variations in image acquisition parameters (IAP). In this work, we
introduce a novel method using conditional denoising diffusion generative models (cD-
DGMs) to generate counterfactual medical images that simulate different IAP without
altering patient anatomy. We demonstrate that using these counterfactual images for mag-
netic resonance (MR) data augmentation can improve segmentation accuracy in out-of-
distribution settings, enhancing the overall generalizability and robustness of DL mod-
els across diverse imaging conditions. Our approach shows promise in addressing do-
main and covariate shifts in medical imaging. The code is publicly available at https:

//anonymous.4open.science/r/Counterfactual-MRI-Data-Augmentation

Keywords: Denoising Diffusion Generative Models, Data Augmentation, MRI, Medical
Imaging, Generalizability

1. Introduction

Deep learning (DL) models in medical imaging continue to face generalizability and ro-
bustness challenges. This is specially relevant given the variability of imaging devices and
their ability to change image acquisition parameters. While data augmentation has been
widely used to improve the performance of DL models in various fields, current augmenta-
tion techniques do not easily replicate domain, population, and covariate shifts that arise
from variations in medical image scanners, acquisition settings, and patient populations.
As variations in scanners, acquisition settings shall only produce changes in the image style,
style transfer has been proposed as a possible solution to harmonize images across different
acquisition settings and scanners (Karras, 2019; Zhu et al., 2017). However, those methods
usually work by mapping a source to a target domain on a pairwise basis. That approach
thus leads to combinatorially growing numbers of possible combinations that exponentially
increase as new scanners and acquisition protocols emerge.

Invariant based-methods, like the one proposed by Arjovsky et al. (2019), offer a promis-
ing solution to mitigate performance drops under domain and covariate shifts. However,
those methods often require detailed information about the environments in which the data
were acquired, as well as known clinical outcomes. Advances in image generation and modi-
fication techniques could be leveraged to synthesize new images, further enforcing invariance
during training. Thus, exploring how such techniques may improve DL models’ robustness
and generealizabily is a promising avenue. Towards this goal, this study investigates the
following open questions:
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Q1: Can we develop a generative model capable of counterfactually modify medical images,
in particular MRI images, simulating their acquisition in different image acquisition
settings?

Q2: Can the counterfactual images fool a classifier trained to accurately predict the image
acquisition parameters from the pixel data?

Q3: Does training a segmentation model with counterfactually modified images increase
performance on out-of-distribution samples?

Our work introduces a novel method for creating counterfactuals from existing data us-
ing conditional denoising diffusion generative models (cDDGMs). Our approach simulates
the acquisition of magnetic resonance (MR) images across different scanners and image
acquisition parameters (IAP). By incorporating IAP as conditioning context for the denois-
ing diffusion generative model (DDGM), we are able to alter images without affecting the
underlying patient anatomy.

We evaluate the effectiveness of the generated counterfactual IAP images using metrics
such as the Fréchet inception distance (FID), structural similarity index metric (SSIM), and
maximum mean discrepancy (MMD). Additionally, we assess the ability of these images
to mislead a multi-task model trained to predict the IAP from MR images. Finally, we
examine the impact of using these counterfactual images for data augmentation on the
generalizability of DL segmentation models, focusing on both in-distribution (ID) and out-
of-distribution (OOD) scenarios.

The main contributions of this study can be summarized as follows:

• We explore and demonstrates the feasibility of using cDDGM to generate counterfac-
tually IAP modified medical images.

• We assess the impact on generalizability when utilizing the proposed cDDGM as an
IAP data augmentation method for training segmentation models.

• We approach the stated open questions (Q1-3) by conducting experiments in a public
dataset and we open-sourced the code used in our experiments, allowing further testing
and extension of the proposed method by the research community.

2. Materials and Methods

2.1. Dataset

We used the Duke-Breast-Cancer-MRI dataset (Saha et al., 2018) to train and evaluate our
deep generative model and to perform the different experiments. The dataset comprised pre-
contrast dynamic contrast-enhanced breast MRIs from 922 patients, with 100 patients also
containing breast tissue segmentation masks. Details pertaining to data normalization and
pre-processing can be found in Section A.1. More information regarding data partitioning
for the different experiments are provided in Section 3.1.3.
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2.2. Conditional Denoising Diffusion Generative Model

Our proposed cDDGM is develop to modify MR images through the simulation of their
acquisition with counterfactual IAP. The proposed cDDGM architecture is based on the
DDPM architecture (Ho et al., 2020), using a conditional U-Net as the noise estimation
model which learns to reverse a Markovian diffusion process by gradually denoising an
image, starting from pure-noise. Additionally, inspired by the U-Net design from Latent
Diffusion Models (Rombach et al., 2022), the proposed conditional U-Net architecture also
incorporates cross-attention mechanisms, which enhance the model’s ability to effectively
handle conditioning contexts that are more complex than simple image classes.

Our U-Net architecture consists of six downsampling levels (number of channels per
level: 64, 64, 128, 128, 256, 256), one middle level, and six upsampling levels, with each level
containing two residual convolution blocks. Cross-attention blocks are included on the third
and fifth of the downsampling levels, on the middle level, and the corresponding positions in
the upsampling levels. While adding more cross-attention blocks could improve the model’s
performance, it also significantly increased the computational resources, particularly when
added to earlier levels of the U-Net. The conditioning is performed by adding the IAP
embedding to the time embeddings and incorporating it through the cross-attention blocks.
This ’hybrid’ conditioning approach, which combines adding the condition embedding to
the time embeddings and cross-attention blocks, is similar to the method used in (Pinaya
et al., 2022).

The model was trained using the simplified loss function from (Ho et al., 2020), as shown
in equation 1. This loss function was adapted for the conditional training scenario, allowing
the model ϵθ to receive the IAP conditioning as input but still work in an unconditional
setting without c.

L(θ) := Et,x0,ϵ∼N(0,I)

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥∥2] (1)

To condition across the multiple classes, corresponding to the different IAP, we selected
the classifier free-guidance (CFG) method (Ho and Salimans, 2022), as it enables control-
ling the strength of the alignment with the conditional context through a guidance scale
parameter and it eliminates the need for an additional classifier, as opposed to classifier
guidance.

The training algorithm for the cDDGM is equal to the original DDPM training algorithm
(Ho et al., 2020) except the model is conditioned on the IAP with a conditional dropout of
15%. The algorithm to counterfactually modify images and simulate their acquisition with
other IAP is shown in 1. For the diffusion process, we used 1000 steps of the original DDPM
sampler with a cosine noise scheduler. Initially, noise is added to the original image x0 until
we reach t = steps, then we use the CFG method (Ho and Salimans, 2022) to denoise the
image from t = steps back to t = 0, now conditioning the image on a new set of IAP, cnew,
and controlling the guidance scale with a parameter w. After denoising xsteps, we return
the modified x0 with its IAP changed.

This model was trained with a batch size of 32 and training spanning 15 epochs. The
Adam optimizer was utilized with a learning rate of 10−4 and weight decay of 10−3. Addi-
tional training details are provided in Section 3.1.3
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Algorithm 1: IAP modification algorithm using CFG

z ∼ N (0, I)
xsteps =

√
ᾱstepsx0 +

√
1− ᾱstepsz

for t = steps, · · · , 0 do
z ∼ N (0, I) if t > 0, else z = 0
ϵ̃t = (1− w)ϵθ(xt, t) + wϵθ(xt, cnew, t)
xt−1 =

1√
αt
(xt − 1−αt√

1−ᾱt
ϵ̃t) + σtz

end
return x0

3. Experiments

3.1. Experiments and Metrics to Evaluate Counterfactual Data Augmentation

After training the cDDGM, we counterfactually modified the original images by altering
their IAP. To achieve this, we stopped the forward diffusion process at an early stage, when
the perturbed image’s IAP distributions would overlap, and then reversed the diffusion
process while conditioning the image on a different set of IAP. This approach is similar to
that of Meng et al. (2022), but we employ a conditional model. We explore the impact of
varying the number of reverse diffusion steps and adjusting the CFG’s scale parameter on
the resulting counterfactual images.

To evaluate the proposed method, we utilized several image quality and generative
metrics, including the structural similarity metric (SSIM), Fréchet inception distance (FID),
and maximum mean discrepancy (MMD). Additionally, inspired by previous work from
Konz and Mazurowski (2024), we developed an IAP prediction models to assess whether
cDDGM’s counterfactual images could ”fool” the predictor into classifying them with the
counterfactual IAP rather than the original one. We evaluated the IAP predictor model
performance using top-1 accuracy for categorical IAP and mean squared error for continuous
IAP; further details about this model are provided in Section 3.1.1.

Finally, since the developed cDDGM was trained to perform changes in tissue contrast
based on the IAP, without changing the anatomy, we then used the IAP counterfactual
images as data augmentation samples and assessed the effect on the performance of the seg-
mentation models in the two scenarios presented in section 3.1.3. The segmentation models
are described in 3.1.2. We assessed the impact of the counterfactual data augmentation in
the segmentation models’ using the Dice-Sørensen coefficient and accuracy for each different
breast tissue present in the segmentation masks.

3.1.1. Image Acquisition Parameters Prediction Model

Following the model proposed by Konz and Mazurowski (2024), a ResNet-18 (He et al., 2016)
was modified to predict 7 image acquisition parameters through the final fully-connected
layer.

The four continuous (M = 4) IAP - Flip Angle (FA), Slice Thickness (ST), Echo Time
(TE), and Repetition Time (TR) - are predicted directly using a single unit for each of
them in our network’s output layer. The three categorical (K = 3) IAP considered -
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Scanner Manufacturer (SM), Field Strength (FS), and Scan Options (SO) - are converted
into one-hot encoding each with a different number of possible values/categories. For the
categorical variables, with Ck (k = 1, · · · ,K) denoting the number of categories in each
categorical variable, the final layer, has a total width of

∑K
k=1Ck +M .

The training of the IAP model involved a multi-task learning approach with the com-
bination of loss functions for the categorical (weighted-cross-entropy losses, LWCEk

) and
continuous IAP (mean squared error losses, LMSE):

LIAP =

K∑
k=1

LWCEk
(ŷ, y) +

M∑
m=1

LMSE(ŷ, y). (2)

The IAP prediction model was trained using a batch size of 512 over 200 epochs. The
Adam optimizer was employed with a learning rate of 10−5 and a weight decay parameter
of 10−4.

3.1.2. Breast Tissue Segmentation Model

For the breast tissue segmentation, a U-Net (Ronneberger et al., 2015), using residual
blocks to enable better gradient back-propagation and facilitate the optimization process,
was used to segment MRI images into 3 different labels fat, fibroglandular tissue (FGT)
and background. The segmentation models were trained using the Adam optimizer with a
learning rate of 0.002, a weight decay of 0.001, and a batch size of 256. Early stopping was
applied to determine the optimal stopping point during training. The number of channels
per level was 32, 64, 128, 256, 512, and 512.

3.1.3. Additional IAP, cDDGM, and Segmentation Models’ Training Details

We used images from the 822 patients without breast segmentations to train the cDDGM
and IAP models. The training of the segmentation models used the images and corre-
sponding breast tissue segmentation masks of the remaining 100 patients, while considering
different scenarios: (1) mix of images from different manufacturers available for training;
(2) images from only one manufacturer available for training.

An iterative method was used to split the images into training, validation, and test
sets, ensuring that different combinations of IAP were equally represented across all sets.
Additionally, the training/validation/test splitting procedure ensured that images from the
same patient were not included in different sets.

For the subset without segmentations, the dataset was split into 75% for training, 10%
for validation, and 15% for testing. In the subset with segmentations, 75% of the data was
used for training and 25% used for validation. Due to the limited number of patients with
segmentations, the validation set was also used as the test set to evaluate the segmentation
model in an ID setting. All OOD images were used as the test set in the OOD evaluation,
as they were not included in the training process.

4. Results and Discussion

The guidance scale and number of steps of the proposed cDDGM were optimized for coun-
terfactual IAP modification. As shown in 3 and 4 of Appendix A.3, increasing these hy-
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perparameters leads to deteriorated image quality and generative metrics, such as FID,
SSIMorig. and mod., and MMD, while simultaneously improving predictions of the IAP used
to counterfactually modify the images. Consequently, to generate counterfactual IAP sam-
ples for data augmentation and to evaluate its impact on segmentation model performance,
we selected a guidance scale of 3 and 50 steps. This configuration strikes a balance between
preserving image quality and achieving effective IAP prediction.

The performance of the IAP prediction model is summarized in Table 1. We see that the
IAP prediction model captures with very good accuracy the IAP of the test dataset. Consid-
ering the ranges of each continuous variable (FA: [7°-12°]; ST: [1.1mm-2.5mm]; TE:[1.250ms-
2.756ms]; TR: [3.540ms-7.395ms]), the IAP prediction models was able to estimate all vari-
ables with low MSE, except ST, for which the MSE was relatively higher (∼ 5-12%).

Table 1: Model prediction performance for all IAP on the Test Set. An upward arrow
indicates that a higher value is better, and vice versa.

Image acquisition
parameter (IAP)

Top-1 pred.
acc. (%) ↑ Pred. MSE ↓

Manufacturer Model 98.9 NA

Field Strength 99.2 NA

Scan Options 99.9 NA

Flip Angle (º) NA 0.080

Slice Thickness (mm) NA 0.133

TE (ms) NA 0.005

TR (ms) NA 0.046

Table 2 presents the segmentation accuracies for background, fat, and FGT, along with
the mean Dice scores for models trained using images from GE and Siemens MRI scanners.
Additionally, it includes results for in-distribution (ID) settings (e.g., trained on GE, applied
to GE; trained on Siemens, applied to Siemens) and out-of-distribution (OOD) settings (e.g.,
trained on GE, applied to Siemens; trained on Siemens, applied to GE).

The results indicate that using IAP counterfactual images yields slight improvements
in segmentation accuracy for the background and FGT, as well as an enhanced Dice score
for fat in an ID setting with GE scanners. Similar improvements were observed for fat and
FGT when using Siemens scanners. In these ID scenarios, we did not expect larger seg-
mentation performance improvements, as the counterfactual data augmentation generated
by the proposed cDDGM produces OOD samples.

In OOD settings, when the model was trained with GE images, the inclusion of IAP
counterfactual images positively impacted the accuracies for background and fat, as well as
the mean and fat Dice scores. In the OOD setting, when the model was trained on Siemens
images and applied to GE images, the IAP counterfactual model improved the segmentation
accuracy for fat and FGT, along with enhancing the fat, FGT, and mean Dice scores.

Figure 1 showcases several examples of breast MRIs from the test set, along with cor-
responding ground truth tissue masks and DL segmentation predictions without and with
IAP counterfactual images used as data augmentation in the two OOD settings previously
mentioned. In Figure 1-A, we observe that the DL segmentation model without cDDGM
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Table 2: Segmentation performance in ID and OOD cases with and without counterfactual
IAP data augmentation.

Setting
Acc.
Background ↑

Acc.
Fat ↑

Acc.
FGT ↑

Dice
Fat ↑

Dice
FGT ↑

Mean
Dice ↑

Both 99.4 93.6 90.3 0.929 0.716 0.840

GE trained in GE 99.4 96.6 88.6 0.949 0.758 0.863
cDDGM - # steps:50; gs:3 99.5 96.5 89.4 0.950 0.757 0.863

SIEMENS trained in GE 98.3 94.0 62.3 0.860 0.555 0.730
cDDGM - # steps:50; gs:3 99.1 94.2 61.7 0.889 0.536 0.739

SIEMENS trained in SIEMENS 99.4 91.5 58.7 0.866 0.588 0.746
cDDGM - # steps:50; gs:3 99.1 92.3 60.2 0.863 0.571 0.737

GE trained in SIEMENS 98.9 89.3 59.7 0.886 0.549 0.742
cDDGM - # steps:50; gs:3 98.8 91.8 67.7 0.896 0.553 0.750

data augmentation has a propensity to incorrectly classify background areas (black) in the
chest wall (top image) and liver (third image), where the model with cDDGM data aug-
mentation was able to reduce these errors. As for Figure 1-B, we see several holes in the
breast tissue masks of the first and third predictions using the DL segmentation model
trained without cDDGM data augmentation that are reduced when the proposed data aug-
mentation method is used. Figure 2 in the Appendix A demonstrates that for both ID
scenarios.

Our work is limited by the lack of diversity in MRI scanner manufacturers and the
dataset size (e.g., of the 100 patients containing breast tissue segmentations, only 29 pa-
tients were acquired in Siemens scanners). Nevertheless the use of the proposed cDDGM
for counterfactual MRI data augmentation yielded promising results, demonstrating its
potential to improve generalizability and robustness of DL models in medical imaging.

5. Conclusions

In this work, we demonstrated that integrating IAP counterfactual images using cDDGM
can enhance the generalizability and robustness of deep learning models in medical imaging.
The generated counterfactual images successfully misled the IAP prediction model into
predicting the intended counterfactual parameters. Moreover, using these images for data
augmentation led to slight improvements in segmentation accuracy, particularly in out-of-
distribution (OOD) settings, thereby improving the generalizability of DL models across
diverse medical imaging conditions.
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Figure 1: Comparison between the ground truth (True) and DL breast segmentation mod-
els trained without data augmentation (Pred.) and with data augmentation us-
ing cDDGM (Pred.Aug.), in out-of-distribution settings. (A) results of models
trained in GE when applied to Siemens MRIs. (B) results of models trained in
Siemens when applied to GE MRIs. Blue - Fat mask; Orange - FGT mask.
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Appendix A. Appendix

A.1. Data Normalization and Preprocessing

The Duke-Breast-Cancer-MRI dataset comprises multiple 3D and 4D MRI sequences. Since
each sequence is associated with only one set of IAP, pairwise supervised image modification
techniques are not applicable. Following the approach of Konz and Mazurowski (2024), we
focused on the 3D pre-contrast phase of 4D dynamic contrast-enhanced sequences. In 100
patients, this phase included corresponding 3D fat and fibroglandular tissue segmentations,
enabling us to evaluate the impact of the proposed cDDGM model as a data augmentation
technique for DL segmentation models.

Although the selected phase represents a 3D volume, due to the size of the cDDGM
model and hardware constraints, we developed and evaluated our model using 2D slices
extracted from the 3D volumes. The first and last 20 slices were discarded, as they typically
contained more noise and lacked relevant information.

We performed image normalization by resizing the images to 224x224 to ensure a fixed
size and to accelerate model training and optimization. Although more complex models,
such as Latent Diffusion Models, could handle larger images, they would require additional
training of encoder and decoder networks to obtain smaller latent space in which the dif-
fusion process would be executed. Moreover, the encoder and decoder would also need to
preserve IAP-related information to ensure that the latent representation would still contain
such information.

Image intensity values were normalized using percentile normalization, setting the 10th
percentile to 0 and the 99th percentile to 1, without clipping values. The lower percentile
was adjusted to a higher value due to the large number of low-intensity voxels in the
background and thoracic cavity, which are not particularly relevant for the cDDGM or
breast tissue segmentation model.

To normalize the IAP, categorical features were one-hot encoded, and numeric features
were normalized by dividing by the maximum value in the dataset. This approach was
chosen over min-max normalization to create a gap from 0 to the ratio of valuemin/valuemax,
allowing the model to use 0 as the unconditional value. And since valuemin ̸= 0, this is
always achievable.

A.2. Computational Resources and Training Setup

The training of all deep learning models was carried out using Pytorch (Paszke et al., 2019),
MONAI Core (Cardoso et al., 2022), and MONAI Generative (Pinaya et al., 2023) libraries.

The training processes were conducted on a single NVIDIA A6000 GPU with 48 GB of
memory.

The IAP prediction model training and testing phases combined took approximately 5
hours.

For the cDDGM model, the training took 9 hours and the testing the IAP modifications
applied to the test set took from 2 to 7 hours for configuration of steps and guidance scales,
varying with the number of steps.

Data augmentation was performed, with processing times ranging from 3 to 10 hours,
depending on the manufacturer and the number of steps specified.
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The segmentation model training, which followed the data augmentation, typically took
from 30 minutes up to 1 hour, with the models trained on the larger GE subset requiring
more time.

A.3. cDDGM Optimization

The guidance scale and number of steps of the proposed cDDGMwere optimized for counter-
factual IAP modification. The performance of the model with the different hyperparameters
was assessed using generative and similarity metrics, shown in Table 3, along with the IAP
prediction model performance, shown in Table 4.

Table 3: cDDGM performance metrics on the IAP modification. FID: Fréchet inception
distance, SSIM: Structural similarity index metric, MMD: Maximum mean dis-
crepancy. SSIMorig. and mod. represents structural similarity index between origi-
nal images and corresponding modified images. SSIMshuff. and mod. represents the
structural similarity index between images from which the IAP were originally ob-
tained and the images modified by our cDDGM using those IAP as conditioning
- importantly, the images being compared were not from the same patients. An
upward arrow indicates that a higher value is better, and vice versa.

Hyperparameters FID ↓ SSIMorig. and mod.↑ SSIMshuff. and mod.↓ MMD ↓
Without cDPPM 0 1.000 0.258 0

# steps: 25; gs: 3 0.416 0.742 0.284 0.010x10−3

# steps: 25; gs: 5 0.501 0.709 0.277 0.016x10−3

# steps: 25; gs: 7 0.590 0.689 0.272 0.022x10−3

# steps: 50; gs: 3 0.513 0.657 0.287 0.016x10−3

# steps: 50; gs: 5 0.606 0.630 0.281 0.025x10−3

# steps: 50; gs: 7 0.702 0.613 0.276 0.037x10−3

# steps: 75; gs: 3 0.573 0.606 0.288 0.029x10−3

# steps: 75; gs: 5 0.669 0.583 0.283 0.036x10−3

# steps: 75; gs: 7 0.774 0.566 0.279 0.049x10−3

In the table 3 and 4, the row ’Without cDDGM’ represents the baseline case where the
model is not being applied to the images so the IAP are just being shuffled randomly for
the computation of SSIMshuff. and mod. and the prediction of the IAP.

Table 4 shows that increasing the guidance scale and the amount of noise - through addi-
tional forward diffusion steps applied to the original image - enhances the proposed model’s
ability to predict the IAP used to generate counterfactual images. However, this comes at
the cost of reduced image quality, as indicated by higher FID scores, lower SSIMorig. and mod.

values, and increased MMD, as observed in Table 3. Specifically, the decline in SSIM be-
tween the original and modified images suggest that higher guidance scales and more dif-
fusion steps lead to greater loss of the original image anatomical structure. Despite these
changes, the MMD remains very small, indicating that the modified images stay close to
the desired distribution after IAP modification. Additionally, the SSIM between the images
of different patients from which the IAP were extrated to condition the image modification
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Table 4: Model Prediction Performance for all IAP on the Test Set. An upward arrow
indicates that a higher value is better, and vice versa.

Hyperparam.
MM Top-1
pred. acc.
(%) ↑

FS Top-1
pred. acc.
(%) ↑

SO Top-1
pred. acc.
(%) ↑

FA
Pred.
MSE ↓

ST
Pred.
MSE ↓

TR
Pred.
MSE ↓

TE
Pred.
MSE ↓

Without
cDPPM

22.8 49.8 28.0 0.440 0.260 1.046 0.481

# steps: 25
gs: 3

77.7 66.3 87.8 0.289 0.198 0.293 0.070

# steps: 25
gs: 5

82.4 71.7 92.8 0.292 0.192 0.249 0.055

# steps: 25
gs: 7

83.4 76.0 93.0 0.289 0.189 0.237 0.058

# steps: 50
gs: 3

85.8 76.9 96.0 0.282 0.190 0.207 0.038

# steps: 50
gs: 5

87.2 83.1 96.3 0.284 0.185 0.186 0.040

# steps: 50
gs: 7

88.3 87.0 96.6 0.275 0.180 0.179 0.042

# steps: 75
gs: 3

87.1 82.8 97.0 0.285 0.189 0.183 0.034

# steps: 75
gs: 5

88.5 88.5 96.5 0.273 0.181 0.174 0.039

# steps: 75
gs: 7

89.3 90.4 96.6 0.257 0.172 0.172 0.042

(shuffled) and the modified images remains low, suggesting that the proposed cDDGM is
not altering the structure to resemble that of the shuffled reference image.

Figure 2 shows several examples of breast MRIs from the test sets, along with corre-
sponding ground truth tissue masks and segmentation predictions without and with IAP
counterfactual images used as data augmentation in the two ID settings. In both scenarios,
A and B, corresponding to training and inference on images from GE and Siemens, respec-
tively, we can observe that the DL segmentation models with and without cDDGM data
augmentation perform similarly and are able approximate the ground truth.

A.4. Data, Models’ Weights and Code

Derived data, obtained from the Duke-Breast-Cancer-MRI dataset (Saha et al., 2018), and
models’ weights are made available at https://zenodo.org/records/13495922. Code is
available at https://anonymous.4open.science/r/Counterfactual-MRI-Data-Augmentation.
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withheld

Figure 2: Comparison between the ground truth (True) and DL breast segmentation models
trained without data augmentation (Pred.) and with data augmentation using
cDDGM (Pred.Aug.), in in-distribution settings. (A) results of models trained in
GE when applied to GE MRIs. (B) results of models trained in GE when applied
to GE MRIs. Blue - Fat mask; Orange - FGT mask.
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