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1 Instituto Superior Técnico - Universidade de Lisboa, Lisboa, Portugal

Yasna Forghani2 yasna.forghani@research.fchampalimaud.org
2 Digital Surgery LAB, Breast Unit, Champalimaud Foundation, Lisboa, Portugal

Nuno Loução2 nuno.loucao@research.fchampalimaud.org
Pedro Gouveia2,3 pedro.gouveia@fundacaochampalimaud.pt
3 Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal

Mário A. T. Figueiredo1,4 mario.figueiredo@tecnico.ulisboa.pt
4 Instituto de Telecomunicações, Lisboa, Portugal

João Santinha2,3 joao.santinha@research.fchampalimaud.org

Editors: Accepted for publication at MIDL 2025

Abstract

Deep learning (DL) models in medical imaging face challenges in generalizability and
robustness due to variations in image acquisition parameters (IAP). In this work, we
introduce a novel method using conditional denoising diffusion generative models (cD-
DGMs) to generate counterfactual medical images that simulate different IAP without
altering patient anatomy. We demonstrate that using these counterfactual images for mag-
netic resonance (MR) data augmentation can improve segmentation accuracy in out-of-
distribution settings, enhancing the overall generalizability and robustness of DL mod-
els across diverse imaging conditions. Our approach shows promise in addressing do-
main and covariate shifts in medical imaging. The code is publicly available at https:

//github.com/pedromorao/Counterfactual-MRI-Data-Augmentation

Keywords: Denoising Diffusion Generative Models, Data Augmentation, MRI, Medical
Imaging, Generalizability

1. Introduction

Deep learning (DL) models in medical imaging continue to face generalizability and robust-
ness challenges. This is specially relevant given the variability of imaging devices and their
ability to change image acquisition parameters. While data augmentation has been widely
used to improve the performance of DL models in various fields, current augmentation
techniques do not easily replicate domain, population, and covariate shifts that arise from
variations in medical image scanners, acquisition settings, and patient populations. As vari-
ations in scanners and acquisition settings should only produce changes in the image style,
style transfer has been proposed as a possible solution to harmonize images across different
acquisition settings and scanners (Karras, 2019; Zhu et al., 2017). However, those methods
usually work by mapping a source to a target domain on a pairwise basis. That approach
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thus leads to combinatorially growing numbers of possible combinations that exponentially
increase as new scanners and acquisition protocols emerge.

Invariant-based methods, like the one proposed by Arjovsky et al. (2019), offer a promis-
ing solution to mitigate performance drops under domain and covariate shifts. However,
those methods often require detailed information about the environments in which the data
were acquired, as well as known clinical outcomes. Advances in image generation and mod-
ification techniques could be leveraged to synthesize new images (Fernandez et al., 2022;
Usman Akbar et al., 2024), further enforcing invariance during training. Several studies
have investigated generative methods for counterfactual image generation (Ribeiro et al.,
2023; Sanchez and Tsaftaris, 2022; Mertes et al., 2022; Konz et al., 2024). In particular,
Ribeiro et al. (2023), Mertes et al. (2022), and Konz et al. (2024) explored these methods
in medical imaging, evaluating their ability to simulate variations in patient demographics,
MRI sequences, and anatomical structures. However, no prior work has investigated the use
of generative models to produce counterfactual images by simulating different acquisition
settings while preserving anatomical structures. Thus, exploring how such techniques may
improve DL models’ robustness and generealizabily is a promising avenue. Towards this
goal, this study investigates the following open questions:

Q1: Can we develop a generative model capable of counterfactually modifying medical
images, in particular MRI, simulating different image acquisition settings?

Q2: Can the counterfactual images fool a classifier trained to accurately predict the image
acquisition parameters from the pixel data?

Q3: Does training a segmentation model with counterfactually modified images increase
performance on out-of-distribution samples?

Our work introduces a novel method for creating counterfactuals from existing data us-
ing conditional denoising diffusion generative models (cDDGMs). Our approach simulates
the acquisition of magnetic resonance (MR) images across different scanners and image
acquisition parameters (IAP). By incorporating IAP as conditioning context for the denois-
ing diffusion generative model (DDGM), we are able to alter images without affecting the
underlying patient anatomy.

We evaluate the effectiveness of the generated counterfactual IAP images using metrics
such as the Fréchet inception distance (FID), structural similarity index metric (SSIM), and
maximum mean discrepancy (MMD). Additionally, we assess the ability of these images
to mislead a multi-task model trained to predict the IAP from MR images. Finally, we
examine the impact of using these counterfactual images for data augmentation on the
generalizability of DL segmentation models, focusing on both in-distribution (ID) and out-
of-distribution (OOD) scenarios.

The main contributions of this study can be summarized as follows:

• We explore and demonstrates the feasibility of using cDDGM to generate counterfac-
tually IAP modified medical images.

• We assess the impact on generalizability when using the proposed cDDGM as an IAP
data augmentation method for training segmentation models.
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• We approach the stated open questions (Q1-3) by conducting experiments in a public
dataset and we open-source the code used in our experiments, allowing further testing
and extension of the proposed method by the research community.

2. Materials and Methods

2.1. Dataset

We used the Duke-Breast-Cancer-MRI dataset (Saha et al., 2018) to train and evaluate our
deep generative model and to perform the different experiments. The dataset comprised pre-
contrast dynamic contrast-enhanced breast MRIs from 922 patients, with 100 patients (29
acquired with Siemens scanners and 71 acquired with GE scanners) also containing breast
tissue segmentation masks. Details pertaining to data normalization and pre-processing
can be found in Section A.1. More information regarding data partitioning for the different
experiments are provided in Section 3.1.3.

2.2. Conditional Denoising Diffusion Generative Model

Our proposed cDDGM is developed to modify MR images through the simulation of their
acquisition with counterfactual IAP. The proposed cDDGM architecture is based on the
DDPM architecture (Ho et al., 2020), using a conditional U-Net as the noise estimation
model which learns to reverse a Markovian diffusion process by gradually denoising an
image, starting from pure-noise. Additionally, inspired by the U-Net design from latent
diffusion models (Rombach et al., 2022), the proposed conditional U-Net architecture also
incorporates cross-attention mechanisms, which enhance the model’s ability to effectively
handle conditioning contexts that are more complex than simple image classes.

Our U-Net architecture consists of six downsampling layers (number of channels per
layer: 64, 64, 128, 128, 256, 256), one middle layer, and six upsampling layers, with each
layer containing two residual convolutional blocks. Cross-attention blocks are included on
the third and fifth of the downsampling layers, on the middle layer, and the corresponding
positions in the upsampling layers. While adding more cross-attention blocks could improve
the model’s performance, it also significantly increases the computational cost, particularly
if added to earlier layers of the U-Net. The conditioning is performed by adding the IAP
embedding to the time embeddings and incorporating it through the cross-attention blocks.
This ”hybrid” conditioning approach, which combines adding the condition embedding to
the time embeddings and cross-attention blocks, is similar to what is used by Pinaya et al.
(2022).

The model was trained using the simplified loss

L(θ) := Et,x0,ϵ∼N(0,I)

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥∥2] , (1)

where t is a timestep, x0 represent the original image; c are a set of IAP used for conditioning,
ᾱt =

∏t
s=1 αs, with αt = 1 − βt, and βt corresponding to the forward process variances at

step t. This loss function was adapted for the conditional training scenario, allowing the
model ϵθ to receive the IAP conditioning as input but still work in an unconditional setting
without c.
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To condition across the multiple classes, corresponding to the different IAP, we selected
the classifier free-guidance (CFG) method (Ho and Salimans, 2022), as it enables control-
ling the strength of the alignment with the conditional context through a guidance scale
parameter, eliminating the need for an additional classifier, as opposed to classifier guidance.

The training algorithm for the cDDGM is equal to the original DDPM training algorithm
(Ho et al., 2020), except the model is conditioned on the IAP with a conditional dropout
of 15%. The algorithm to counterfactually modify images and simulate their acquisition
with other IAP is shown in Algorithm 1. For the diffusion process, we use 1000 steps of
the original DDPM sampler with a cosine noise scheduler. Initially, noise is added to the
original image x0 until we reach t = steps, then we use the CFG method (Ho and Salimans,
2022) to denoise the image from t = steps back to t = 0, now conditioning the image
on a new set of IAP, cnew, and controlling the guidance scale with a parameter w. After
denoising xsteps, we return the modified x0 with its IAP changed.

Algorithm 1: IAP modification algorithm using CFG. t: timestep; x0: original image;
cnew: new set of IAP; xt: resulting images after step t; αt = 1−βt; βt: forward process
variances at step t; ᾱt =

∏t
s=1 αs.

z ∼ N (0, I)
xsteps =

√
ᾱstepsx0 +

√
1− ᾱstepsz

for t = steps, · · · , 0 do
z ∼ N (0, I) if t > 0, else z = 0
ϵ̃t = (1− w)ϵθ(xt, t) + wϵθ(xt, cnew, t)
xt−1 =

1√
αt
(xt − 1−αt√

1−ᾱt
ϵ̃t) + σtz

end
return x0

This model was trained with a batch size of 32 over 15 epochs. The Adam optimizer
was used with a learning rate of 10−4 and weight decay of 10−3. Additional training details
are provided in Section 3.1.3

3. Experiments

3.1. Experiments and Metrics to Evaluate Counterfactual Data Augmentation

After training the cDDGM, we counterfactually modified the original images by altering
their IAP. To achieve this, we stopped the forward diffusion process at an early stage, when
the perturbed image’s IAP distributions would overlap, and then reversed the diffusion
process while conditioning the image on a different set of IAP. This approach is similar to
that of Meng et al. (2022), but we employ a conditional model. We explore the impact
of varying the number of reverse diffusion steps and adjusting the CFG’s scale parameter
on the resulting counterfactual images. To generate the counterfactual version of the input
image, a set of IAP from a different manufacturer was randomly selected and used to modify
it.

To evaluate the proposed method, we used several image quality and generative met-
rics, including the structural similarity metric (SSIM), Fréchet inception distance (FID),
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and maximum mean discrepancy (MMD). Additionally, inspired by previous work from
Konz and Mazurowski (2024), we developed an IAP prediction models to assess whether
cDDGM’s counterfactual images could ”fool” the predictor into classifying them with the
counterfactual IAP rather than the original one. We evaluated the IAP predictor model
performance using top-1 accuracy for categorical IAP and mean squared error for continuous
IAP; further details about this model are provided in Section 3.1.1. Moreover, counterfac-
tual image generation was also assessed through the use of counterfactual prediction gain
(Nemirovsky et al., 2020).

Finally, since the developed cDDGM was trained to perform changes in tissue contrast
based on the IAP, without changing the anatomy, we then used the IAP counterfactual
images as data augmentation samples and assessed the effect on the performance of the seg-
mentation models in the two scenarios presented in Section 3.1.3. The segmentation models
are described in 3.1.2. We assessed the impact of the counterfactual data augmentation in
the segmentation models’ using the Dice-Sørensen coefficient and accuracy for each different
breast tissue present in the segmentation masks.

3.1.1. Image Acquisition Parameters Prediction Model

Following the model proposed by Konz and Mazurowski (2024), a ResNet-18 (He et al., 2016)
was modified to predict 7 image acquisition parameters through the final fully-connected
layer. These 7 MRI acquisition parameters change contrast in a non-linear manner, impact-
ing DL segmentation models, as existing harmonization and normalization methods fail to
fully compensate for these variations.

The four continuous (M = 4) IAP - Flip Angle (FA), Slice Thickness (ST), Echo Time
(TE), and Repetition Time (TR) - are predicted directly using a single unit for each of
them in our network’s output layer. The three categorical (K = 3) IAP considered -
Scanner Manufacturer (SM), Field Strength (FS), and Scan Options (SO) - are converted
into one-hot encoding each with a different number of possible values/categories. For the
categorical variables, with Ck (k = 1, · · · ,K) denoting the number of categories in each
categorical variable, the final layer, has a total width of

∑K
k=1Ck +M .

The training of the IAP model involved a multi-task learning approach with the com-
bination of loss functions for the categorical (weighted-cross-entropy losses, LWCEk

) and
continuous IAP (mean squared error losses, LMSE):

LIAP =

K∑
k=1

LWCEk
(ŷ, y) +

M∑
m=1

LMSE(ŷ, y). (2)

The IAP prediction model was trained using a batch size of 512 over 200 epochs. The
Adam optimizer was used with a learning rate of 10−5 and a weight decay parameter of
10−4.

3.1.2. Breast Tissue Segmentation Model

For the breast tissue segmentation, a U-Net (Ronneberger et al., 2015) with residual blocks
to enable better gradient back-propagation and facilitate the optimization process, to seg-
ment MRI images into 3 different labels fat, fibroglandular tissue (FGT) and background.
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The segmentation models were trained using the Adam optimizer with a learning rate of
0.002, a weight decay of 0.001, and a batch size of 256. Early stopping was applied to
determine the optimal stopping point during training. The number of channels per layer
was 32, 64, 128, 256, 512, and 512.

3.1.3. Additional Details on IAP, cDDGM, and Segmentation Model
Training

We used images from the 822 patients without breast segmentations to train the cDDGM
and IAP models. The training of the segmentation models used the images and corre-
sponding breast tissue segmentation masks of the remaining 100 patients, while considering
different scenarios: (1) mix of images from different manufacturers available for training;
(2) images from only one manufacturer available for training.

An iterative method was used to split the images into training, validation, and test
sets, ensuring that different combinations of IAP were equally represented across all sets.
Additionally, the training/validation/test splitting procedure ensured that images from the
same patient were not included in different sets.

For the subset without segmentations, the dataset was split into 75% for training, 10%
for validation, and 15% for testing. In the subset with segmentations, 75% of the data was
used for training and 25% used for validation. Due to the limited number of patients with
segmentations, the validation set was also used as the test set to evaluate the segmentation
model in an ID setting. All OOD images were used as the test set in the OOD evaluation,
as they were not included in the training process.

4. Results and Discussion

The guidance scale and number of steps of the proposed cDDGM were optimized for coun-
terfactual IAP modification. As shown in Tables 4 and 5 of Appendix A.3, increasing these
hyperparameters leads to deteriorated image quality and generative metrics, such as FID,
SSIMorig. and mod., and MMD, while simultaneously improving predictions of the IAP used
to counterfactually modify the images. Consequently, to generate counterfactual IAP sam-
ples for data augmentation and to evaluate its impact on segmentation model performance,
we selected a guidance scale of 3 and 50 steps. This configuration strikes a balance between
preserving image quality and achieving effective IAP prediction.

The performance of the IAP prediction model is summarized in Table 1. We see that the
IAP prediction model captures with very good accuracy the IAP of the test dataset. Consid-
ering the ranges of each continuous variable (FA: [7°-12°]; ST: [1.1mm-2.5mm]; TE:[1.250ms-
2.756ms]; TR: [3.540ms-7.395ms]), the IAP prediction models was able to estimate all vari-
ables with low MSE, except ST, for which the MSE was relatively higher (∼ 5-12%).

The proposed method also shows the ability to generate counterfactuals MRIs, which
demonstrated the ability to improve counterfactual prediction gains for manufacturer, scan-
ner manufacturer models, and field strength, as show in Table 2.

Table 3 presents the segmentation accuracies for background, fat, and FGT, along with
the mean Dice scores for models trained using images from GE and Siemens MRI scanners.
This table includes results for in-distribution (ID) settings (e.g., trained on GE, applied
to GE; trained on Siemens, applied to Siemens) and out-of-distribution (OOD) settings
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Table 1: Model prediction performance for all IAP on the Test Set. An upward arrow
indicates that a higher value is better, and vice versa.

Image acquisition
parameter (IAP)

Top-1 pred.
acc. (%) ↑

Pred.
MSE ↓

Manufacturer Model 98.9 NA

Field Strength 99.2 NA

Scan Options 99.9 NA

Flip Angle (º) NA 0.080

Slice Thickness (mm) NA 0.133

TE (ms) NA 0.005

TR (ms) NA 0.046

Table 2: Counterfactual prediction gains for the categorical IAPs. The range for counter-
factual prediction gain is [0, 1] with an higher prediction gain indicating more
improvement.

Manufacturer Scanner Field Strenght

Counterfactual Prediction Gain 0.372 0.568 0.254

(e.g., trained on GE, applied to Siemens; trained on Siemens, applied to GE). Additionally,
we tested the use of the cDDGM as a data augmentation method for each setting, by
generating modified images simulating the acquisition of the training images using set of
IAP from images of a different manufacturer.

The results indicate that using IAP counterfactual images yields slight improvements
in segmentation accuracy for the background and FGT, as well as an enhanced Dice score
for fat in an ID setting with GE scanners. Similar improvements were observed for fat and
FGT when using Siemens scanners. In these ID scenarios, we did not expect larger seg-
mentation performance improvements, as the counterfactual data augmentation generated
by the proposed cDDGM produces OOD samples.

In OOD settings, when the model was trained with GE images, the inclusion of IAP
counterfactual images positively impacted the accuracies for background and fat, as well
as the mean and fat Dice scores. Despite statistically significant improvements of mean
and fat Dice, the same improvement was not observed for FGT. FGT is characterized by
having smaller dimensions, a more variable intensity distribution, patients with very little
or no FGT, and in some case less distinguishable boundaries from surrounding structures
compared to fat, making segmentation harder and more uncertain. In the OOD setting,
when the model was trained on Siemens images and applied to GE images, the IAP coun-
terfactual model provide statistically significant improvements on segmentation accuracy
for fat and FGT, along with enhancing the fat, FGT, and mean Dice scores.

Figure 1 showcases several examples of breast MRIs from the test set, along with cor-
responding ground truth tissue masks and DL segmentation predictions without and with
IAP counterfactual images used as data augmentation in the two OOD settings previously
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Table 3: Segmentation performance in ID (equal manufacturers in training and testing)
and OOD (different manufacturers in training and testing) cases with and with-
out counterfactual IAP data augmentation. CF: counterfactual; Acc.: accu-
racy; Backgr.: background; FGT: fibrogladular tissue; Manuf.: manufacturer; ∗ -
p < 0.05.

Training
Manuf.

Testing
Manuf.

Acc.
Backgr. ↑

Acc.
Fat ↑

Acc.
FGT ↑

Dice
Fat ↑

Dice
FGT ↑

Mean
Dice ↑

Both Both 99.4 93.6 90.3 0.929 0.716 0.840

GE GE 99.4 96.6 88.6 0.949 0.758 0.863

GE + CF Siemens GE 99.5 96.5 89.4∗ 0.950 0.757 0.863

GE Siemens 98.3 94.0 62.3 0.860 0.555∗ 0.730

GE + CF Siemens Siemens 99.1∗ 94.2 61.7 0.889∗ 0.536 0.739∗

Siemens Siemens 99.4 91.5 58.7 0.866 0.588∗ 0.746∗

Siemens + CF GE Siemens 99.1 92.3∗ 60.2∗ 0.863 0.571 0.737

Siemens GE 98.9 89.3 59.7 0.886 0.549 0.742

Siemens + CF GE GE 98.8 91.8∗ 67.7∗ 0.896∗ 0.553∗ 0.750∗

mentioned. In Figure 1-A, we observe that the DL segmentation model without cDDGM
data augmentation has a propensity to incorrectly classify background areas (black) in the
chest wall (top image) and liver (third image), where the model with cDDGM data aug-
mentation was able to reduce these errors. As for Figure 1-B, we see several holes in the
breast tissue masks of the first and third predictions using the DL segmentation model
trained without cDDGM data augmentation that are reduced when the proposed data aug-
mentation method is used. Figure 2 in the Appendix A demonstrates that for both ID
scenarios.

Our work is limited by the lack of diversity in MRI scanner manufacturers and the
dataset size (e.g., of the 100 patients containing breast tissue segmentations, only 29 pa-
tients were acquired in Siemens scanners). Nevertheless the use of the proposed cDDGM
for counterfactual MRI data augmentation yielded promising results, demonstrating its
potential to improve generalizability and robustness of DL models in medical imaging.

5. Conclusions

In this work, we demonstrated that integrating image acquisition parameters counterfactual
images using conditional denoising diffusion generative models can enhance the generaliz-
ability and robustness of deep learning models in medical imaging. The generated counter-
factual images successfully misled the image acquisition parameters prediction model into
predicting the intended counterfactual parameters. Moreover, using these images for data
augmentation led to slight improvements in segmentation accuracy, particularly in out-of-

8



Diffusion Models For MRI Counterfactual Data Augmentation

Figure 1: Comparison between the ground truth (True) and DL breast segmentation mod-
els trained without data augmentation (Pred.) and with data augmentation us-
ing cDDGM (Pred.Aug.), in out-of-distribution settings. (A) results of models
trained in GE when applied to Siemens MRIs. (B) results of models trained in
Siemens when applied to GE MRIs. Blue - Fat mask; Orange - FGT mask.

distribution settings, thereby improving the generalizability of deep learning models across
diverse medical imaging conditions.
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Appendix A. Appendix

A.1. Data Normalization and Preprocessing

The Duke-Breast-Cancer-MRI dataset comprises multiple 3D and 4D MRI sequences. Since
each sequence is associated with only one set of IAP, pairwise supervised image modification
techniques are not applicable. Following the approach of Konz and Mazurowski (2024), we
focused on the 3D pre-contrast phase of 4D dynamic contrast-enhanced sequences. In 100
patients, this phase included corresponding 3D fat and fibroglandular tissue segmentations,
enabling us to evaluate the impact of the proposed cDDGM model as a data augmentation
technique for DL segmentation models.

Although the selected phase represents a 3D volume, due to the size of the cDDGM
model and hardware constraints, we developed and evaluated our model using 2D slices
extracted from the 3D volumes. The first and last 20 slices were discarded, as they typically
contained more noise and lacked relevant information.

We performed image normalization by resizing the images to 224x224 to ensure a fixed
size and to accelerate model training and optimization. Although more complex models,
such as Latent Diffusion Models, could handle larger images, they would require additional
training of encoder and decoder networks to obtain smaller latent space in which the dif-
fusion process would be executed. Moreover, the encoder and decoder would also need to
preserve IAP-related information to ensure that the latent representation would still contain
such information.

Image intensity values were normalized using percentile normalization, setting the 10th
percentile to 0 and the 99th percentile to 1, without clipping values. The lower percentile
was adjusted to a higher value due to the large number of low-intensity voxels in the
background and thoracic cavity, which are not particularly relevant for the cDDGM or
breast tissue segmentation model.

To normalize the IAP, categorical features were one-hot encoded, and numeric features
were normalized by dividing by the maximum value in the dataset. This approach was
chosen over min-max normalization to create a gap from 0 to the ratio of valuemin/valuemax,
allowing the model to use 0 as the unconditional value. And since valuemin ̸= 0, this is
always achievable.

A.2. Computational Resources and Training Setup

The training of all deep learning models was carried out using Pytorch (Paszke et al., 2019),
MONAI Core (Cardoso et al., 2022), and MONAI Generative (Pinaya et al., 2023) libraries.

The training processes were conducted on a single NVIDIA A6000 GPU with 48 GB of
memory.

The IAP prediction model training and testing phases combined took approximately 5
hours.

For the cDDGM model, the training took 9 hours and the testing the IAP modifications
applied to the test set took from 2 to 7 hours for configuration of steps and guidance scales,
varying with the number of steps.

Data augmentation was performed, with processing times ranging from 3 to 10 hours,
depending on the manufacturer and the number of steps specified.
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The segmentation model training, which followed the data augmentation, typically took
from 30 minutes up to 1 hour, with the models trained on the larger GE subset requiring
more time.

A.3. cDDGM Optimization

The guidance scale and number of steps of the proposed cDDGMwere optimized for counter-
factual IAP modification. The performance of the model with the different hyperparameters
was assessed using generative and similarity metrics, shown in Table 4, along with the IAP
prediction model performance, shown in Table 5. Within Table 4, SSIMorig. and mod. was
computed between between pairs original images and corresponding modified images, while
SSIMshuff. and mod. was obtained between images with the set of IAP used to modify the
images and the images modified by our cDDGM using those IAP as conditioning. A low
SSIMshuff. and mod. value is expected as the images being compared were not from the same
patients.

Table 4: cDDGM performance metrics on the IAP modification. FID: Fréchet inception
distance, SSIM: Structural similarity index metric, MMD: Maximum mean dis-
crepancy. SSIMorig. and mod. represents structural similarity index between origi-
nal images and corresponding modified images. SSIMshuff. and mod. represents the
structural similarity index between images from which the IAP were originally ob-
tained and the images modified by our cDDGM using those IAP as conditioning
- importantly, the images being compared were not from the same patients. An
upward arrow indicates that a higher value is better, and vice versa.

Hyperparameters FID ↓ SSIMorig. and mod.↑ SSIMshuff. and mod.↓ MMD ↓
Without cDPPM 0 1.000 0.258 0

# steps: 25; gs: 3 0.416 0.742 0.284 0.010x10−3

# steps: 25; gs: 5 0.501 0.709 0.277 0.016x10−3

# steps: 25; gs: 7 0.590 0.689 0.272 0.022x10−3

# steps: 50; gs: 3 0.513 0.657 0.287 0.016x10−3

# steps: 50; gs: 5 0.606 0.630 0.281 0.025x10−3

# steps: 50; gs: 7 0.702 0.613 0.276 0.037x10−3

# steps: 75; gs: 3 0.573 0.606 0.288 0.029x10−3

# steps: 75; gs: 5 0.669 0.583 0.283 0.036x10−3

# steps: 75; gs: 7 0.774 0.566 0.279 0.049x10−3

In the table 4 and 5, the row ’Without cDDGM’ represents the baseline case where the
model is not being applied to the images so the IAP are just being shuffled randomly for
the computation of SSIMshuff. and mod. and the prediction of the IAP.

Table 5 shows that increasing the guidance scale and the amount of noise - through
additional forward diffusion steps applied to the original image - enhances the proposed
model’s ability to predict the IAP used to generate counterfactual images. Regarding the
MSE obtained for the continuous variables, we can observe that these results represent
small error when compared with the range of value of each continuous variable presented in
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Table 5: Model Prediction Performance for all IAP on the Test Set. An upward arrow
indicates that a higher value is better, and vice versa.

Hyperparam.
MM Top-1
pred. acc.
(%) ↑

FS Top-1
pred. acc.
(%) ↑

SO Top-1
pred. acc.
(%) ↑

FA
Pred.
MSE ↓

ST
Pred.
MSE ↓

TR
Pred.
MSE ↓

TE
Pred.
MSE ↓

Without
cDPPM

22.8 49.8 28.0 0.440 0.260 1.046 0.481

# steps: 25
gs: 3

77.7 66.3 87.8 0.289 0.198 0.293 0.070

# steps: 25
gs: 5

82.4 71.7 92.8 0.292 0.192 0.249 0.055

# steps: 25
gs: 7

83.4 76.0 93.0 0.289 0.189 0.237 0.058

# steps: 50
gs: 3

85.8 76.9 96.0 0.282 0.190 0.207 0.038

# steps: 50
gs: 5

87.2 83.1 96.3 0.284 0.185 0.186 0.040

# steps: 50
gs: 7

88.3 87.0 96.6 0.275 0.180 0.179 0.042

# steps: 75
gs: 3

87.1 82.8 97.0 0.285 0.189 0.183 0.034

# steps: 75
gs: 5

88.5 88.5 96.5 0.273 0.181 0.174 0.039

# steps: 75
gs: 7

89.3 90.4 96.6 0.257 0.172 0.172 0.042

Section 4. However, this comes at the cost of reduced image quality, as indicated by higher
FID scores, lower SSIMorig. and mod. values, and increased MMD, as observed in Table 4.
Specifically, the decline in SSIM between the original and modified images suggest that
higher guidance scales and more diffusion steps lead to greater loss of the original image
anatomical structure. Despite these changes, the MMD remains very small, indicating
that the modified images stay close to the desired distribution after IAP modification.
Additionally, the SSIM between the images of different patients from which the IAP were
extrated to condition the image modification (shuffled) and the modified images remains
low, suggesting that the proposed cDDGM is not altering the structure to resemble that of
the shuffled reference image.

Figure 2 shows several examples of breast MRIs from the test sets, along with corre-
sponding ground truth tissue masks and segmentation predictions without and with IAP
counterfactual images used as data augmentation in the two ID settings. In both scenarios,
A and B, corresponding to training and inference on images from GE and Siemens, respec-
tively, we can observe that the DL segmentation models with and without cDDGM data
augmentation perform similarly and are able approximate the ground truth.
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Figure 2: Comparison between the ground truth (True) and DL breast segmentation models
trained without data augmentation (Pred.) and with data augmentation using
cDDGM (Pred.Aug.), in in-distribution settings. (A) results of models trained in
GE when applied to GE MRIs. (B) results of models trained in GE when applied
to GE MRIs. Blue - Fat mask; Orange - FGT mask.

A.4. Radiological Assessment of Anatomical Changes in Counterfactual
Images

The central slice of the 100 volumes used for segmentation were assessed by breast radi-
ologists. The radiologist compared both original and corresponding counterfactual images
and classified the counterfactual images into: no, minimal, moderate, significant, and se-
vere anatomical changes. When anatomical changes were observed the radiologist indicated
whether such changes were present in the breast tissues or in non-breast tissues. Results of
this classication are shown in Table 6.

It is possible to observe that the majority of counterfactual images did not introduce
anatomical changes, with just two cases presenting minimal anatomical changes, all of which
outside breast tissues.
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Table 6: Radiological assessment of anatomical changes in counterfactual images for 100
patients used in the segmentation task and location such changes obtained. NA:
not applicable.

Anatomical
Change?

Count Changes within
breast tissues

Changes outside
breast tissues

No 98 NA NA

Minimal 2 0 2

Moderate 0 NA NA

Significant 0 NA NA

Severe 0 NA NA

A.5. Evaluation Metrics Formulas

Top-1 Accuracy = Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP, TN, FP, and FN are the number true positives, true negatives, false positives,
and false negatives, respectively.

MSE(y, ŷ) =

∑N−1
i=0 (yi − ŷi)

2

N
(4)

where yi, ŷi represent the true and predicted values, and N the number of data points.

FID = |µ1 − µ2|+Tr(σ1 + σ2 − 2
√
σ1 ∗ σ2) (5)

where µ1 and µ2, and σ1 and σ2 represent the mean and covariance of the two distribu-
tions of feature vectors. We used use the RadImageNwt pretrained on medical datasets
from MONAI, instead of activations of the pool 3 layer of an Inception v3 pretrained with
Imagenet.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where µx is the pixel sample mean of x, µy is the pixel sample mean of y, σ2
x is the sample

variance of x, σ2
y is the sample variance of y, c1 = (k1L)

2 and c2 = (k2L)
2 are two variables

to stabilize the division with weak denominator, L is the dynamic range of the pixel-values
(typically this is 2#bits per pixel − 1), and k1 = 0.01 and k2 = 0.03 by default.

MMD(F, X, Y ) := sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
j=1

f(yj)) (7)

Dice Similarity Score =
2TP

2TP + FP + FN
(8)
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where TP, FP, and FN are the number true positives, false positives, and false negatives,
respectively.

Counterfactual Prediction Gain = E[C(xcfi ) − C(xi)] (9)

where C is the target classifier and xi denotes the data point for which a counterfactual
(xcfi ) is sought through the proposed cDDGM, which is used to reconstruct xcfi (Nemirovsky
et al., 2020). The expectations are computed using the test sets.

A.6. Data, Models’ Weights and Code

Derived data, obtained from the Duke-Breast-Cancer-MRI dataset (Saha et al., 2018), and
models’ weights are made available at https://zenodo.org/records/13495922. Code is
available at https://github.com/pedromorao/Counterfactual-MRI-Data-Augmentation.
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