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Abstract

Prompting is now a dominant method for eval-
uating the linguistic knowledge of large lan-
guage models (LLMs). While other methods
directly read out models’ probability distribu-
tions over strings, prompting requires models to
access this internal information by processing
linguistic input, thereby implicitly testing a new
type of emergent ability: metalinguistic judg-
ment. In this study, we compare metalinguis-
tic prompting and direct probability measure-
ments as ways of measuring models’ linguistic
knowledge. Broadly, we find that LLMs’ met-
alinguistic judgments are inferior to quantities
directly derived from representations. Further-
more, consistency gets worse as the prompt
query diverges from direct measurements of
next-word probabilities. Our findings suggest
that negative results relying on metalinguistic
prompts cannot be taken as conclusive evidence
that an LLM lacks a particular linguistic gener-
alization. Our results also highlight the value
that is lost with the move to closed APIs where
access to probability distributions is limited.

1 Introduction

Few technologies have been as exciting — and di-
visive — for language science as large language
models (LLMs). LLMs are capable of incredibly
sophisticated linguistic behaviors, which emerge
through statistical learning with massive amounts
of text data and highly expressive, domain-agnostic
learning architectures. On the one hand, the suc-
cess of these models has sparked a growing move-
ment to treat them as candidate models of human
language acquisition and processing (e.g., Baroni,
2022; Warstadt and Bowman, 2022; Wilcox et al.,
2022; Contreras Kallens et al., 2023) – indeed,
Piantadosi (2023) even claims that they “refute”
Chomsky’s approach to language. On the other
hand, linguists have highlighted shortcomings of

Code and data are available at https://github.com/jennhu/
metalinguistic-prompting.

current models that make them unsuitable as cog-
nitive theories (e.g., Dupre, 2021; Lan et al., 2022;
Katzir, 2023; Milway, 2023; Murphy, 2023).

No matter their theoretical position, researchers
need a way to assess the capabilities of LLMs in
order to substantiate such claims. The fundamen-
tal unit of LLM computation is P (token|context),
which, in principle, can be directly read out from a
model by accessing its output layer of vocabulary
logits. The distribution that this implies over word
strings reflects the model’s linguistic generaliza-
tions: that is, a generative model of the language
seen during training, which can be used to evaluate
the likelihood of previously unseen strings. Direct
measurements of model-derived string probabilities
have revealed capabilities such as syntactic gener-
alizations (e.g., Linzen et al., 2016; Futrell et al.,
2019; Hu et al., 2020; Warstadt et al., 2020), seman-
tic plausibility judgments (Kauf et al., 2022), and
certain coherence inferences (Beyer et al., 2021).

Recently, there has been a growing trend to use
prompting to evaluate LLMs’ capabilities. Prompt-
ing (popularized by Brown et al., 2020) enables
end-to-end interaction with models through natural
language, and can be done entirely through infer-
ence (i.e., without gradient updates). This method
has revealed new classes of emergent abilities in
LLMs, such as arithmetic, instruction-following,
and grounded conceptual mappings (Brown et al.,
2020; Wei et al., 2022a; Patel and Pavlick, 2022), as
well as the ability to render sentence acceptability
judgments (Dentella et al., 2023). From a sociolog-
ical angle, prompting has also made LLM evalua-
tions more accessible for domain experts in linguis-
tics and cognitive science, sparking new discussion
about the limitations of LLMs’ abilities (Katzir,
2023; Dentella et al., 2023; Ullman, 2023). For ex-
ample, Dentella et al. (2023) prompt GPT-3 to pro-
duce grammaticality judgments of infrequent lin-
guistic constructions, and conclude that the model
“show[s] a critical lack of understanding even of
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high-frequency words” (p. 1). Similarly, Katzir
(2023) argues that “LLMs are poor theories of hu-
man linguistic cognition” (p. 2) based on prompting
ChatGPT to compare the well-formedness of two
English sentences.

As these examples illustrate, researchers have
been making substantial theoretical claims based
on prompting. However, there is an important
caveat to using prompts to evaluate models’ lin-
guistic knowledge. Prompt-based methods test not
only whether a model represents the generalization
of interest (e.g., a certain ordering of probabilities),
but also whether the model can report the outcome
of applying the generalization to the sentence in
the prompt. In this way, prompting implicitly tests
a new type of emergent ability — metalinguistic
judgment — which has not yet been systematically
explored as a way to evaluate model capabilities.

To demonstrate the difference between di-
rect probability measurements and metalinguistic
prompting, consider the case of English subject-
verb agreement. A direct approach might compare
the probability assigned by the model to singular
and plural verbs, given a particular subject noun
phrase (e.g., Linzen et al., 2016). For example, we
might compare P (“is”) and P (“are”), conditioned
on the prefix given by (1-a). In contrast, a prompt-
ing approach might present a sentence prefix, and
pose a question about this linguistic content. For
example, we might compare P (“is”) and P (“are”),
conditioned on the prompt in (1-b).

(1) a. The keys to the cabinet
b. Here is a sentence: The keys to the

cabinet... What word is most likely to
come next?

A model that perfectly performs the metalinguistic
task posed in prompt (1-b) should have identical
probability distributions over the next word given
(1-a) and (1-b). However, there is no guarantee
that a model’s response to a metalinguistic prompt
will match its underlying internal representations.
In light of this, how should we interpret models’
responses to metalinguistic prompts? How do these
responses correspond to models’ internal represen-
tations? And when should we use metalinguistic
prompts as opposed to direct measurements? These
questions are becoming increasingly important, as
prompting plays a growing role in the debate about
LLMs as models of human language processing.

In this study, we do not intend to take a stance

on this theoretical debate. Rather, our goal is to
evaluate the validity of metalinguistic prompting
as a way of measuring LLMs’ internal knowledge.
We pose two research questions: (1) How well do
models perform under direct and metalinguistic
evaluation methods? and (2) How consistent are
the metalinguistic methods with the direct method?
We investigate these questions through four exper-
iments, covering a range of tasks and linguistic
domains. Our findings (and their supporting fig-
ures) are summarized below:

1. The metalinguistic judgments elicited from
LLMs through prompting are not the same as
quantities directly derived from model repre-
sentations. (Figures 2 and 3)

2. Direct probability measurements generally
yield better or similar task performance, com-
pared to metalinguistic prompting. (Figure 2)

3. Minimal pairs help reveal models’ general-
ization capacities, compared to isolated judg-
ments. (Figure 2c vs. Figure 2d)

4. In general, the less similar the task/prompt
is to a direct probability measurement, the
worse the alignment between metalinguistic
and direct measurements. (Figure 3)

Taken together, our findings suggest that nega-
tive results relying on metalinguistic prompts can-
not be taken as conclusive evidence that an LLM
lacks a particular linguistic generalization. These
findings suggest a possible basis for a competence–
performance distinction in LLMs: namely, the
distinction between the information encoded in a
model’s isolated-sentence string probability distri-
bution versus the model’s behavioral responses to
prompts. We discuss this topic in greater detail in
Section 6.1.

Our results also highlight the value that is lost
as researchers move toward interacting with LLMs
through closed APIs, where access to models’ un-
derlying probability distributions is limited. Indeed,
only two days before acceptance of this paper to
EMNLP, the ability to obtain arbitrary token log-
probabilities from gpt-3.5-turbo-instruct was
removed from the OpenAI API, reinforcing the
timeliness of the issue. We urge future research
to clearly motivate the evaluation methods used to
assess LLM abilities, and highlight the importance
of developing and using open-source models with
access to internal probabilities.



Experiment Targeted ability Task Dataset(s)

1 (Section 4.1) Word prediction Predict final word in a sentence Pereira et al. (2018); news arti-
cles from March 2023

2 (Section 4.2) Semantic plausibility Determine which word (of two options)
is most likely, given preceding context

Vassallo et al. (2018)

3a (Section 4.3) Syntax Determine which sentence (of two op-
tions) is “better”, in isolation

SyntaxGym (Hu et al., 2020);
BLiMP (Warstadt et al., 2020)

3b (Section 4.4) Syntax Determine which sentence (of two op-
tions) is “better”, given both options

SyntaxGym (Hu et al., 2020);
BLiMP (Warstadt et al., 2020)

Table 1: Overview of experiments in our study.

2 Related work

Our study is related to model calibration, or the
problem of estimating predictive uncertainty (e.g.,
Guo et al., 2017; Minderer et al., 2021; Kadavath
et al., 2022; Mielke et al., 2022). Most relevant to
our work, Kadavath et al. (2022) perform a broad-
scale evaluation of “honesty” in LMs. In particu-
lar, they analyze models’ “truthfulness” and “self-
knowledge”, which are conceptually similar to our
ground-truth and internal consistency evaluations.
Similarly, Mielke et al. (2022) find that chatbots’
expressions of confidence and doubt are poorly
calibrated with the likelihood that the models’ re-
sponses are actually correct. These approaches dif-
fer from ours in that they analyze models’ metacog-
nition by annotating verbalized expressions (e.g., “I
don’t know, but...”), or by using models to evaluate
the correctness of their own generated answers.

Other studies have also demonstrated that mod-
els can respond to prompts in unexpected ways
(Khashabi et al., 2022; Min et al., 2022; Webson
and Pavlick, 2022; Webson et al., 2023; Prasad
et al., 2023), in some cases achieving successful
outcomes even when prompts are misleading or
incoherent. Similarly, Turpin et al. (2023) find
that explanations elicited through chain-of-thought
prompting (Nye et al., 2021; Wei et al., 2022b) can
systematically misrepresent the underlying reasons
and causes for a model’s prediction. McCoy et al.
(2023) also demonstrate how LLMs’ responses to
prompts are highly sensitive to word probabilities,
due to their original training objectives.

Beguš et al. (2023) also evaluate LLMs’ “met-
alinguistic” abilities, but in a different sense of the
word. They investigate whether LLMs can perform
theoretical analyses of the structures and regulari-
ties of linguistic expressions — for example, draw-
ing the syntactic tree diagram of a given sentence
in valid LATEX code. Beguš et al.’s tested abilities
are metalinguistic in the sense that they require

judgments about linguistic objects given linguistic
input. In contrast, our study investigates whether
models can access and report their internal proba-
bility distributions through linguistic prompts.

3 General methods

3.1 Overview of tasks

Our experiments feature four tasks, summarized
in Table 1. Together, the tasks cover both word-
and sentence-level computations, as well as both
isolated judgments and minimal-pair comparisons.
Since we aim to analyze the validity of using met-
alinguistic prompts to reveal linguistic knowledge,
the experiments also cover semantic plausibility
and syntax as linguistic domains of interest.

As mentioned in Section 1, word prediction
(Expt. 1) is a fundamental task for LLMs, and in-
volves the most straightforward operation on mod-
els’ representations: reading out the logits over the
vocabulary in the output layer. Because we know
that models represent next-token-probabilities, we
can treat the direct probability measurements as
providing ground-truth values. We therefore treat
word prediction as a baseline task, where we
can perform a tightly controlled comparison be-
tween probability measurements and metalinguistic
prompting. The other three tasks induce an intu-
itive (partial) ordering in terms of their similarity
to the baseline word prediction task (word compari-
son, sentence judgment, sentence comparison). We
return to this ordering in Section 5.2.

3.2 Overview of prompts

In each experiment, we evaluate models using four
methods: a direct method, and three zero-shot met-
alinguistic prompting methods. The direct method
involves computing probabilities of tokens or full
sentences based on the models’ internal logits over
vocabulary items. In contrast, the metalinguistic



Direct

A butterfly is a flying

insect with four large

vocab distribution

Metalinguistic

Here is a sentence: A

butterfly is a flying insect

with four large... What

word is most likely to

come next?

vocab distribution

=

?

(a)

Direct

S1 =
Every child

has studied.
P (S1)

S2 =
Every child

have studied.
P (S2)

P (S1) >
P (S2)?

Metalinguistic

Here are two English

sentences: 1) Every

child has studied. 2)

Every child have studied.

Which sentence is a

better English sentence?

Respond with either 1 or

2 as your answer.

vocab distribution

P (“1”) > P (“2”)?

(b)

Figure 1: Conceptual illustration of direct probability
measurements vs. metalinguistic judgments. (a) Ba-
sic word prediction task (Experiment 1, Section 4.1). (b)
Sentence comparison task (Experiment 3b, Section 4.4).

prompts ask a question or specify a task requiring
a judgment about a linguistic expression.

Taking direct probability measurements as our
baseline evaluation method, we also identify an or-
dering of the three metalinguistic methods in terms
of their similarity to baseline. In the MetaQues-
tionSimple and MetaQuestionComplex prompts,
the linguistic object of interest (e.g., a sentence
prefix) is linearly closest and farthest from the po-
sition where the model is asked to make a predic-
tion, respectively. The MetaInstruct prompts are
structured as an imperative instruction, and fall in
between the two MetaQuestion* prompts. Tables 2-
4b show example prompts for all experiments.1

3.3 Models
We test six models across all of our experiments:
three Flan-T5 models (small, large, XL; Chung

1To test the generalizability of our findings beyond English,
we also conducted preliminary experiments in Mandarin Chi-
nese. Details and results can be found in Appendix D.

et al., 2022),2 and three GPT-3/3.5 models (text-
curie-001/GPT-3, text-davinci-002/GPT-3.5, text-
davinci-003/GPT-3.5). Flan-T5 models were ac-
cessed through Huggingface, and GPT-3/3.5 mod-
els were accessed through the OpenAI API.

The Flan-T5 models have an encoder-decoder
architecture and were pre-trained on a span cor-
ruption task before fine-tuning on a large collec-
tion of instruction-based tasks. To measure next-
word probabilities under these models, we take the
sentence prefix ⟨w1, w2, . . . , wn−1⟩ (where wn is
the word to be predicted) and append the sentinel
token <extra_id_0>. We then create the output
sequence <extra_id_0> wn, and sum the prob-
abilities corresponding to the tokens of wn. To
measure full-sentence probabilities, we compute
a pseudo-likelihood inspired by Salazar et al.’s
(2020) method for scoring sentences under masked
language models. Going left to right, we mask out
each word in the sentence using the T5 sentinel
tokens, and then sum the log probabilities assigned
to each true word.

While the Flan-T5 models differ only in size, the
OpenAI models also differ in training regime: text-
curie-001 is an autoregressive language model at
its core (GPT-3; Brown et al., 2020), whereas text-
davinci-002 has additional supervised fine-tuning,
and text-davinci-003 has additional reinforcement
learning (Ouyang et al., 2022).3

4 Details of experiments

4.1 Experiment 1: Word prediction

Task and stimuli. The aim of this experiment is
to evaluate models’ ability to predict the next word
given a preceding context. Instead of a standard
language modeling task, where models are evalu-
ated on their ability to predict every word in a text,
we use the simplified task of predicting the final
word of a sentence. This makes the metalinguis-
tic evaluations more tractable, as we only need to
construct a single prompt for each item.

We use two datasets with contrasting style.
Our first dataset, taken from Pereira et al. (2018)
(“P18”), consists of 384 simple declarative sen-
tences that state a fact about familiar concepts, such

2Parameter counts: small 80M, large 780M, XL 3B.
3Many LLM evaluations use ChatGPT (Piantadosi, 2023;

Katzir, 2023) or GPT-4 (Beguš et al., 2023; Webb et al., 2023;
Moskvichev et al., 2023). However, we exclude these models
from our analyses because the OpenAI API does not provide
access to token probabilities for chat-based models.



Type of prompt Example

Direct A butterfly is a flying insect with four large wings
MetaQuestionSimple What word is most likely to come next in the following sentence? A butterfly is a flying insect

with four large wings
MetaInstruct You are a helpful writing assistant. Tell me what word is most likely to come next in the following

sentence: A butterfly is a flying insect with four large wings
MetaQuestionComplex Here is the beginning of an English sentence: A butterfly is a flying insect with four large... What

is the best next word? Answer: wings

Table 2: Example prompts for Experiment 1. Region where we measure probability is marked in boldface. Ground-
truth sentence continuations are shown in blue.

Type of prompt Example

Direct The archer released the {arrow, interview}
MetaQuestionSimple What word is most likely to come next in the following sentence (arrow, or interview)? The

archer released the {arrow, interview}
MetaInstruct You are a helpful writing assistant. Tell me what word is most likely to come next in the following

sentence (arrow, or interview?): The archer released the {arrow, interview}
MetaQuestionComplex Here is the beginning of an English sentence: The archer released the... What word is more

likely to come next: arrow, or interview? Answer: {arrow, interview}

Table 3: Example prompts for Experiment 2. Region where we measure probability is marked in boldface.
Semantically plausible continuations are shown in blue; implausible in red.

as accordion or butterfly. All pronouns are derefer-
enced, making the dataset useful for testing predic-
tion in simple contexts with minimal dependencies.

There are at least two concerns with the P18
sentences. First, their simple structure might not
be representative of the text that models encounter
during training. Second, they have been publicly
available since 2018, making it possible that they
may be in the models’ training data. To address
these concerns, we constructed a second dataset
(“News”) containing sentences that are more natu-
ralistic, but highly unlikely to occur in the training
data. We used the NewsData tool4 to find English
news articles published in the United States in the
date range of March 20-26, 2023.5 The articles
cover a span of topics, such as business, politics,
and food. For each article, we construct a prefix by
concatenating the headline with the first sentence
(up to, but not including, the last word), separated
by the string “ – ”. There are 222 items in total.

Prompts. Example prompts are shown in Table 2
(only examples from the P18 corpus are shown, for
simplicity). The Direct prompt feeds the sentence
prefix to the model, and we measure the model’s
probability of the ground-truth next word (indicated

4https://newsdata.io/
5These are unlikely to be in the Flan-T5 training data,

as the models were publicly released in 2022. The OpenAI
model documentation also states that text-curie-001 only re-
ceived training data up to October 2019, and the text-davinci-*
models only received training data up to June 2021.

in blue boldface). The other prompts are designed
to elicit metalinguistic judgments, through ques-
tions (MetaQuestionSimple, MetaQuestionCom-
plex) and instructions (MetaInstruct). As a concep-
tual illustration, Figure 1a shows a comparison of
the Direct and MetaQuestionComplex methods.

Evaluation. Our measure of task performance is
the log probability assigned by each model to the
ground-truth sentence continuation. To measure
internal consistency (see Section 5.2), we analyzed
the relationship between log probabilities assigned
to ground-truth continuations, as measured by the
direct method and each metalinguistic method.

4.2 Experiment 2: Word comparison
Task and stimuli. The aim of this experiment is
to evaluate models’ ability to judge which of two
words is a more likely continuation of a sentence.
While Experiment 1 tested word prediction with-
out focus on any particular linguistic phenomenon,
here we use the word-comparison task to assess
knowledge of semantic plausibility.

We use a set of 395 minimal sentence pairs from
Vassallo et al. (2018). Each pair consists of two
sentences that differ only in the final word, which
alters the plausibility of the described event (e.g.,
“The archer released the arrow/interview”). Each
sentence has a simple syntactic structure.

Prompts. The prompts are similar to those from
Experiment 1, but here we ask models to make a

https://newsdata.io/
https://platform.openai.com/docs/models


Type of prompt Example

Direct {Every child has studied, Every child have studied}
MetaQuestionSimple Is the following sentence a good sentence of English? Every child has studied. Respond with

either Yes or No as your answer. {Yes, No}
MetaInstruct You are a helpful writing assistant. Tell me if the following sentence is a good sentence of

English. Every child has studied. Respond with either Yes or No as your answer. {Yes, No}
MetaQuestionComplex Here is a sentence: Every child has studied. Is the sentence a good sentence of English? Respond

with either Yes or No as your answer. Answer: {Yes, No}

(a)

Type of prompt Example

Direct {Every child has studied, Every child have studied}
MetaQuestionSimple Which sentence is a better English sentence? 1) Every child has studied. 2) Every child have

studied. Respond with either 1 or 2 as your answer. {1, 2}
MetaInstruct You are a helpful writing assistant. Tell me which sentence is a better English sentence. 1) Every

child has studied. 2) Every child have studied. Respond with either 1 or 2 as your answer. {1, 2}
MetaQuestionComplex Here are two English sentences: 1) Every child have studied. 2) Every child has studied. Which

sentence is a better English sentence? Respond with either 1 or 2 as your answer. Answer: {1, 2}

(b)

Table 4: Example prompts for Experiments 3a (a) and 3b (b). Region where we measure probability is marked in
boldface. Grammatical sentences and correct answer options are shown in blue; ungrammatical/incorrect in red.

comparison between two potential continuations
of the sentence prefix (Table 3). For the Direct
method, we present the model with the shared sen-
tence prefix, and compare the probability of the
plausible (e.g., “arrow”; indicated in blue) and im-
plausible (e.g., “interview”; indicated in red) con-
tinuations. For the Meta* prompts, we create two
versions of the prompt by shuffling the order in
which the answer options are presented.

Evaluation. Accuracy is the proportion of items
where the model assigns higher probability to the
plausible sentence continuation than to the implau-
sible continuation. Random performance is 50%.

To measure internal consistency, for each evalu-
ation method we computed the item-level log prob-
ability differentials between the plausible and im-
plausible sentence continuations. We then com-
puted the correlation between the differentials
elicited by the direct method and the differentials
elicited by each metalinguistic method.

4.3 Experiment 3a: Sentence judgment

Task and stimuli. The aim of this experiment
is to evaluate models’ ability to judge whether a
sentence is a “good” sentence of English. For any
particular sentence, we compare the model’s judg-
ment of that sentence to the model’s judgment of
another sentence that forms a minimal pair, only
differing in a critical syntactic feature that manipu-
lates grammaticality or acceptability.

We use minimal pairs from two datasets de-
signed to test knowledge of English syntax: Syn-
taxGym (Hu et al., 2020; Gauthier et al., 2020),
and the Benchmark of Linguistic Minimal Pairs
(BLiMP; Warstadt et al., 2020). Since SyntaxGym
was not designed for full-sentence probability com-
parisons, we first converted the SyntaxGym mate-
rials into sentence-level minimal pairs.6 We then
took a random sample of 15 items from each of
the 23 remaining suites, resulting in 345 items. For
BLiMP, we extracted the items that were compat-
ible with the “simple LM method” and then took
a random sample of 30 items from each of the 13
categories, resulting in 390 items. See Appendix A
for details on the tested phenomena.

Prompts. For the Direct method, we measure the
probability of each sentence in the minimal pair.
For the Meta* prompts, we construct a separate
prompt for each sentence in the minimal pair asking
whether the sentence is “a good sentence of English”
(see Table 4a), and then compare the probability
assigned by the model to “Yes” versus “No”.

Evaluation. To measure accuracy for the direct
condition, we compute the proportion of items
where the model assigns higher probability to the
grammatical sentence in the minimal pair. For

6We created full sentences by combining content across
regions, and then turned each success criterion inequality into
a minimal pair (see Hu et al., 2020, for details). For simplic-
ity, we omitted test suites with success criteria involving the
conjunction of ≥ 3 inequalities, or probability differentials.



the metalinguistic prompts, we report balanced ac-
curacy, or the mean of the true positive rate and
true negative rate. A true positive occurs when the
model assigns higher probability to “Yes” than “No”
for a grammatical sentence, and a true negative oc-
curs when the model assigns higher probability to
“No” than “Yes” for an ungrammatical sentence.

To measure internal consistency, we compare the
log probability differentials for each method. For
the direct method, the differential is the difference
in log probability of the grammatical and ungram-
matical sentences. For each metalinguistic method,
the differential is the difference in log probability
of the “Yes” token conditioned on the grammatical
and ungrammatical sentence prompts.

4.4 Experiment 3b: Sentence comparison
Task and stimuli. As in Experiment 3a (Sec-
tion 4.3), the goal is to measure models’ syntactic
judgments. However, instead of presenting the
model with sentences in isolation and asking for
judgments, in Experiment 3b we present the model
with the minimal pair of sentences, and probe
which sentence it takes to be a “better” sentence of
English. For our stimuli, we use the same subsets
of SyntaxGym and BLiMP as in Experiment 3a.

Prompts. The direct evaluation method is the
same as in Experiment 3a: we compare probabili-
ties of each sentence in the minimal pair. For the
metalinguistic prompts, we have a single prompt
for each minimal pair that presents both sentences
at once. We assign an identifier (1 or 2) to each
sentence in the pair, present a multiple-choice ques-
tion comparing both sentences, and compare the
probabilities assigned by the model to each answer
option (i.e., “1” or “2”). As in Experiment 2, we av-
erage model results over two versions of the prompt
that counterbalance the order of answer options
(for metalinguistic prompts). Example prompts are
shown in Table 4b. As a conceptual illustration,
Figure 1b shows a comparison of the Direct and
MetaQuestionComplex methods.

Evaluation. Accuracy is measured as the pro-
portion of items where the model assigns higher
probability to the grammatical sentence in the min-
imal pair (direct method), or to the answer option
corresponding to the grammatical sentence (met-
alinguistic prompts). Random performance is 50%.

To measure internal consistency, we compare the
log probability differentials between the grammati-
cal and ungrammatical sentences (measured by the

direct method) to the log probability differentials
between the answer options corresponding to the
grammatical and ungrammatical sentences (mea-
sured by each metalinguistic prompting method).

5 Results

We now return to our main research questions, laid
out in the Introduction: (1) How well does each
evaluation method perform on each task? (2) How
consistent are the metalinguistic evaluation meth-
ods with the direct evaluation method? We address
these in Sections 5.1 and 5.2, respectively.

5.1 Task performance

Result #1: Metalinguistic judgments are not the
same as direct measurements. Figure 2 shows
task performance for each experiment. At the coars-
est level, the different methods (hues) yield differ-
ent performance scores, demonstrating that met-
alinguistic and direct responses are not identical.

Result #2: Direct measurements generally per-
form ≥ metalinguistic methods. Aross all ex-
periments, the direct method nearly always yields
best performance of all tested methods. There are
a few exceptions: in Experiment 1, Flan-T5-SM
performs best under MetaInstruct, and Flan-T5-XL
performs relatively well under MetaQuestionCom-
plex, as do the davinci models in Experiment 2.

Result #3: Minimal pairs help reveal models’
generalization capacities. The difference be-
tween Experiments 3a and 3b lies in the presen-
tation of minimal pairs. Comparing Figures 2c
and 2d, we first note that the direct results (darkest
bars) are identical by definition: they reflect com-
parisons of full-sentence probabilities. For the met-
alinguistic prompts, there is an increase in accuracy
going from the isolated sentence judgments (Fig-
ure 2c) to minimal-pair comparisons (Figure 2d),
for all models with above-chance performance.

5.2 Internal consistency

Result #4: Consistency gets worse as we get
further from direct measurement of next-word
probabilities. Figure 3 illustrates alignment be-
tween direct and metalinguistic measurements (see
Appendix Figure 6 for by-model internal consis-
tency results). Each cell shows the average corre-
lation coefficient (Pearson’s r) between the item-
level differentials measured by the direct method
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(b) Experiment 2: Word comparison (Semantic plausibility)
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(c) Experiment 3a: Sentence judgment (Syntax)
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(d) Experiment 3b: Sentence comparison (Syntax)

Figure 2: Task performance: Direct probability measurements generally outperform metalinguistic prompts.
(a) Log probability assigned to ground-truth sentence continuation, averaged over items and datasets. (b) Proportion
of items where model prefers semantically plausible continuation over implausible continuation. (c)-(d) Proportion
of items where model prefers grammatical sentence over ungrammatical sentence in minimal pair, averaged over
datasets. Error bars denote bootstrapped 95% CIs. Dashed lines indicate random baseline.

and a particular metalinguistic prompting method.7

Recall from Section 3 that the tasks and prompts
in our study induce intuitive orderings in terms of
how similar they are to word prediction (at the task-
level) and direct probability measurements (at the
prompt-level). The columns of Figure 3 (prompt
types) are loosely ordered by similarity to direct
probability measurements, and the rows (tasks) are
loosely ordered by similarity to word prediction.
Broadly speaking, we find that as distance in either
dimension increases, the correlations get weaker.
These results further support Result #1: while di-
rect and metalinguistic responses are highly corre-
lated for some combinations of tasks and prompts,
the relationship is far from perfect.

6 Discussion

In this study, we compared metalinguistic prompt-
ing and direct measurements as ways of evaluating

7For Experiment 1, the correlation is computed between
the item-level probabilities of the ground-truth final word.

LLMs’ linguistic knowledge. Broadly, we find that
metalinguistic judgments are inferior to direct mea-
surements of token- or sentence-level probabilities.
We also find evidence that minimal-pair compar-
isons help reveal models’ generalization capacities.

We do not intend to claim that prompting should
be categorically dispreferred in favor of other eval-
uation methods. Prompting is useful for eliciting
open-ended responses, such as chain-of-thought
reasoning. Metalinguistic prompting could also be
used to ask questions that would be challenging to
translate into direct probability measurements (e.g.,
“Which of the following two sentences is more se-
mantically plausible, but less syntactically well-
formed?”). In addition, prompting lowers the tech-
nical barrier for domain experts to conduct LLM
evaluations, which could contribute to the develop-
ment of more robust behavioral benchmarks.

What do our findings mean for researchers in-
terested in the linguistic abilities of LLMs? While
there are valid reasons to prefer both prompting
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Figure 3: Internal consistency: Correlation between
metalinguistic and direct responses gets weaker as
prompts become less direct. Pearson r correlation be-
tween response magnitudes (averaged over models and
datasets) measured by direct prompts versus each met-
alinguistic prompt. See Appendix C for more details.

and direct probability measurements, these meth-
ods will not necessarily generate consistent results.
More specifically, our findings suggest that nega-
tive results relying on metalinguistic prompts can-
not be taken as conclusive.

While our paper focuses on the value of direct
probability measurements for evaluating linguistic
generalizations, other endeavors in cognitive sci-
ence and machine learning also rely on access to
LLM probabilities. For example, token probabili-
ties enable multiple-choice evaluation and beam
search, as well as investigating mode collapse
(Janus, 2022) and obtaining quantities for Bayesian
inference (e.g., Choi et al., 2022; Li et al., 2023;
Lipkin et al., 2023).8 Thus, the value that is lost
as we move toward closed APIs extends beyond
linguistic analysis, further underscoring the impor-
tance of using and developing LLMs with open
access to internal probabilities.

6.1 Competence vs. performance in LLMs

Humans use language in diverse contexts with vary-
ing task demands and constraints, but the underly-
ing linguistic knowledge is relatively stable. This
is the competence–performance distinction (e.g.,
Yngve, 1960; Chomsky, 1965): an individual’s
performance in a particular context may not re-
flect an individual’s full underlying competence.
Whether it is productive to distinguish between

8These examples were inspired by discussion by Tan
Zhi Xuan on Twitter (https://twitter.com/xuanalogue/status/
1637302507389984769).

“competence” and “performance” in an AI model
has been a topic of debate. Katzir (2023) argues
that “[LLMs’] behavior directly reflects their com-
petence, and when they fail it is their competence
that is at fault” (pp. 4-5). We take Katzir to mean
that an LLM’s next-word probability distribution
is deterministic given its architecture, weights, and
the preceding context, and this probability distri-
bution is always computed when the LLM is used.
Therefore, as Katzir says, while humans may re-
cover from linguistic errors (e.g., in agreement or
parsing) given additional time or resources, “fur-
ther time and resources are of no use” to LLMs.
Firestone (2020) and Lampinen (2023), in contrast,
argue that performance conditions need to be care-
fully controlled in both humans and machines in
order to make fair comparisons between the two.9

Our work suggests that if a competence–
performance distinction is to be made for LLMs, a
natural locus is the contrast between the informa-
tion contained in an LLM’s string probability distri-
bution (corresponding to its competence) versus the
behavior the LLM exhibits when prompted (corre-
sponding to its performance). A model’s failure to
exhibit a linguistic generalization when prompted
might not reflect a lack of the relevant information
in its underlying conditional probability distribu-
tions, but instead an inability to access and behave
in accordance with that information in response to
a prompt that poses a metalinguistic query. This
view remains consistent with the fact that LLM be-
havioral errors may be corrected when illustrative
examples are included in the prompt — whether or
not such prompts pose metalinguistic queries, they
offer opportunity for in-context learning (Brown
et al., 2020) — or by allowing the model to produce
a reasoning trace before outputting an answer (Nye
et al., 2021; Wei et al., 2022b; Kojima et al., 2022).

To conclude, prompting is not a substitute for
direct probability measurements in LLMs. We un-
derscore the importance of specifying the assump-
tions underlying methodological choices in LLM
evaluation, and using open models with direct ac-
cess to probabilities for scientific research. If our
interactions with LLMs are limited to high-level
prompting, we lose the opportunity to measure ca-
pabilities that could advance our understanding of
these models and their relation to human language.

9Hahn et al. (2022), for example, show that imposing per-
formance constraints on LLMs (by degrading context repre-
sentations) derives human language processing behavior in
complex nested dependency constructions.

https://twitter.com/xuanalogue/status/1637302507389984769
https://twitter.com/xuanalogue/status/1637302507389984769


Limitations

Our experiments only test three types of metalin-
guistic prompts, and only perform zero-shot eval-
uations. In practice, the small number of metalin-
guistic prompt types was sufficient to illustrate the
difference between direct and metalinguistic re-
sponses. However, it would be beneficial to con-
sider more types of prompts to determine how
well the phenomenon generalizes. We also note
that models might achieve better task performance
under the metalinguistic prompts with few-shot
prompting or in-context learning. We did not in-
clude few-shot analyses due to space limitations,
and because many recent LLM evaluations rely on
zero-shot metalinguistic prompts. It remains to be
seen whether metalinguistic and direct responses
are better aligned when models have access to ex-
amples in the prompt.

Another limitation of our study is that we only
tested a small class of models. An important direc-
tion for future work would be to replicate our ex-
periments on models of different sizes and training
objectives (e.g., chat-based models). We also note
that the results from the OpenAI models are not
necessarily reproducible due to the models being
behind a closed API. Timestamps of our calls to the
OpenAI API are available in our data files (https:
//github.com/jennhu/metalinguistic-prompting).

Ethics Statement

This work does not release any new models or
datasets. Instead, the goal is to provide insights
into methodology for evaluating the internal knowl-
edge of modern LLMs, and in turn contribute to
the interpretability of these models. We hope that
our results illustrate the importance of open access
to model representations and the risks of relying on
high-level API interactions for scientific research.

With that said, the broader ethical concerns
about LLMs are still relevant to our work. LLMs
have been shown to produce output that is factually
incorrect, offensive, or discriminatory, and should
therefore be used with extreme caution, especially
in commercial applications or user-facing settings.
Any demonstrations of LLMs’ linguistic general-
izations should not imply that they are safe to use,
or can be expected to behave in a way that is aligned
with human preferences and values.
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A Details of syntactic phenomena

Table 5 summarizes the syntactic phenomena cov-
ered in the datasets used in Experiments 3a and
3b, which were taken from SyntaxGym (Hu et al.,
2020; Gauthier et al., 2020) and BLiMP (Warstadt
et al., 2020).

B Dataset-level task performance

Figure 4 shows task performance for each of the
tested datasets in Experiment 1 (left: P18; right:
News). Figure 5 shows task performance for each
of the tested datasets in Experiments 3a and 3b
(left: SyntaxGym; right: BLiMP).

C Relationship between metalinguistic
and direct predictions

Figure 6 shows the average Pearson r correlations
between metalinguistic and direct responses, for
each of the tested models.

Figures 7 to 10 show the relationship between re-
sponses measured by the direct and metalinguistic
prompting methods, for Experiments 1-3b, respec-
tively.

D Experiments in Mandarin Chinese

To explore the robustness of our results beyond En-
glish, we performed a preliminary investigation of
GPT-3.5 (text-davinci-003) on materials in Man-
darin Chinese. We first consulted a native speaker
to translate the metalinguistic prompts into Chinese.
We then tested GPT-3.5 on two datasets: (1) a set of
recent news articles for word prediction, mirroring
Experiment 1; and (2) a set of controlled minimal
pairs that cover semantic and syntactic phenomena
(Wang et al., 2021), mirroring a combination of
the phenomena tested in Experiments 2 and 3. We
tested the tasks of Experiments 3a and 3b on this
set of minimal pairs.

Figure 11 shows the results (task performance)
for Experiments 1, 3a, and 3b in Chinese. Like
our English experiments, in all our Chinese exper-
iments we find that metalinguistic prompting and
direct probability measurements do not yield the
same results. Like our Experiment 1 in English, we
also find that in the Chinese word prediction task,
GPT-3.5 assigns highest probability to the ground-
truth continuation under the “Direct” method. We
also find that model performance improves when
using minimal pairs, mirroring our original findings
comparing Experiments 3a and 3b. These findings
demonstrate how our English results may general-
ize to languages with different syntactic structures
and grammatical properties.

However, we also found differences between
the Chinese and English results: in the Chinese
version of Experiment 3b, the “Direct” method un-
derperformed the metalinguistic methods (accuracy
scores: Direct 0.6; others 0.8). One potential ex-
planation for this is that according to the OpenAI
documentation, the models are “optimized for use
in English,” although in practice they may work
well for other languages.10 Therefore, the models
may not be well-suited to scoring probabilities of
Chinese sentences with no context (as in the Direct
condition); instead, they may benefit from seeing
additional Chinese text in the prompt before the
sentence (as in the metalinguistic conditions).

10https://help.openai.com/en/articles/6742369-how-do-i-
use-the-openai-api-in-different-languages
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Dataset Phenomenon # items

SyntaxGym Center embedding 15
SyntaxGym Center embedding (modifier) 15
SyntaxGym Cleft 15
SyntaxGym Cleft (modifier) 15
SyntaxGym Filler-gap dependencies (3 sentential embeddings) 15
SyntaxGym Filler-gap dependencies (4 sentential embeddings) 15
SyntaxGym Filler-gap dependencies (hierarchy) 15
SyntaxGym Filler-gap dependencies (object extraction) 15
SyntaxGym Filler-gap dependencies (prepositional phrase extraction) 15
SyntaxGym Filler-gap dependencies (subject extraction) 15
SyntaxGym Subject-verb number agreement (object relative clause) 15
SyntaxGym Subject-verb number agreement (prepositional phrase) 15
SyntaxGym Subject-verb number agreement (subject relative clause) 15
SyntaxGym Reflexive number agreement (object relative clause, feminine) 15
SyntaxGym Reflexive number agreement (object relative clause, masculine) 15
SyntaxGym Reflexive number agreement (prepositional phrase, feminine) 15
SyntaxGym Reflexive number agreement (prepositional phrase, masculine) 15
SyntaxGym Reflexive number agreement (subject relative clause, feminine) 15
SyntaxGym Reflexive number agreement (subject relative clause, masculine) 15
SyntaxGym Subordination 15
SyntaxGym Subordination (object relative clause) 15
SyntaxGym Subordination (prepositional phrase) 15
SyntaxGym Subordination (subject relative clause) 15
BLiMP Anaphor agreement 30
BLiMP Argument structure 30
BLiMP Binding 30
BLiMP Control raising 30
BLiMP Determiner-noun agreement 30
BLiMP Ellipsis 30
BLiMP Filler-gap dependency 30
BLiMP Irregular forms 30
BLiMP Island effects 30
BLiMP NPI licensing 30
BLiMP Quantifiers 30
BLiMP S-selection 30
BLiMP Subject-verb agreement 30

Table 5: Coverage of syntactic phenomena in stimuli used in Experiments 3a and 3b.
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Figure 4: Task performance for each tested dataset in Experiment 1 (word prediction).
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Figure 7: Direct vs. metalinguistic responses for Experiment 1. Relationship between log probability assigned by
model to ground-truth sentence continuation under the direct method and each metalinguistic prompting method.
Dashed line indicates x = y.
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Figure 9: Direct vs. metalinguistic responses for Experiment 3a. Relationship between log probability differentials
measured by direct method and each metalinguistic prompting method. For the direct method, we compute the
difference in log probabilities assigned to the grammatical and ungrammatical sentences. For each metalinguistic
prompting method, we compute the difference in log probabilities assigned to the “Yes” token conditioned on the
grammatical and ungrammatical sentence prompts (see Section 4.3 for details).
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Figure 10: Direct vs. metalinguistic responses for Experiment 3b. Relationship between log probability
differentials measured by direct method and each metalinguistic prompting method. For the direct method,
we compute the difference in log probabilities assigned to the grammatical and ungrammatical sentences. For each
metalinguistic prompting method, we compute the difference in log probabilities assigned to the “1” or “2” answer
options corresponding to the grammatical and ungrammatical sentences (see Section 4.4 for details).
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Figure 11: Task performance from preliminary experiments in Mandarin Chinese. See Appendix D for details.


